JP2006049563A - Method of suppressing degradation of optical element used for extreme ultraviolet ray exposure device - Google Patents

Method of suppressing degradation of optical element used for extreme ultraviolet ray exposure device Download PDF

Info

Publication number
JP2006049563A
JP2006049563A JP2004228296A JP2004228296A JP2006049563A JP 2006049563 A JP2006049563 A JP 2006049563A JP 2004228296 A JP2004228296 A JP 2004228296A JP 2004228296 A JP2004228296 A JP 2004228296A JP 2006049563 A JP2006049563 A JP 2006049563A
Authority
JP
Japan
Prior art keywords
optical element
shield
extreme ultraviolet
mirror
ultraviolet ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004228296A
Other languages
Japanese (ja)
Inventor
Shuichi Matsunari
秀一 松成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004228296A priority Critical patent/JP2006049563A/en
Publication of JP2006049563A publication Critical patent/JP2006049563A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of requiring strict storage environment control or a protective film for suppressing degradation of an optical element. <P>SOLUTION: The optical element is suppressed from degrading by arranging a shielding body, in tight-contact manner, on the surface of optical element used for an extreme ultraviolet ray exposure device. The shielding body is made from such material as has oxygen transmissivity of 300 mL/(m<SP>2</SP>24h MPa) or less and water vapor transmissivity of 100 ml/(m<SP>2</SP>24h) or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、極端紫外線露光装置用の光学素子が酸素・水分などにより劣化するのを抑制する方法に関するものである。なお、本明細書及び特許請求の範囲では、極端紫外線とはEUV(Extreme Ultraviolet)光とも呼び、波長が100nm以下の光を言う。   The present invention relates to a method for suppressing deterioration of an optical element for an extreme ultraviolet exposure apparatus due to oxygen, moisture, or the like. In the present specification and claims, extreme ultraviolet light is also called EUV (Extreme Ultraviolet) light, which means light having a wavelength of 100 nm or less.

半導体集積回路の集積度が増すに従い、回路パターンが微細化し、従来使用されていた可視光や紫外光を使用した露光装置では、その解像度が足らなくなってきている。周知のように、露光装置の解像度は、転写光学系の開口数(NA)に逆比例し、露光に使用する光の波長に比例する。そのため、解像度を上げる一つの試みとして、可視光や紫外光に代わり、波長の短いEUV(軟X線と称されることもある)光源を露光転写に使用する試みがなされている。   As the degree of integration of semiconductor integrated circuits increases, the circuit pattern becomes finer, and the exposure apparatus using visible light or ultraviolet light that has been used conventionally has become insufficient in resolution. As is well known, the resolution of the exposure apparatus is inversely proportional to the numerical aperture (NA) of the transfer optical system and proportional to the wavelength of light used for exposure. Therefore, as one attempt to increase the resolution, an attempt has been made to use an EUV (sometimes referred to as soft X-ray) light source having a short wavelength for exposure transfer instead of visible light or ultraviolet light.

極端紫外線露光装置用の光学素子として、ガラスなどの光学材料基板上に屈折率の異なるSi、Mo、C、Sr、Y、Ru、Rhなどの金属、B4Cといった炭化物、その他化合物が交互に積層されたもので、分光特性を任意に変えたミラーが用いられている。これら光学素子を長期保管した場合、保管環境中に含まれる水分・酸素・有機(フタル酸エステルなど)・無機(NOx、SOxガスなど)ガスが光学素子表面に吸着したり、膜内侵入したり、化学反応をおこしたりして光学素子の性能(分光特性・耐久性など)を劣化させてしまう。このような劣化を抑制するためには保管環境管理を厳密に行う必要がある。光学素子を保管する部屋・保管庫内の気体・液体に含まれる水分・酸素・有機・無機ガスといった有害不純物を取り除くことは、大掛かりな除外装置・設備が必要になりコスト向上や生産効率の低下をもたらす原因である。また、保護膜を光学素子の最上層として成膜してしまう方法も一般的だが、その余分な保護膜をつけることで所望の光学性能を得ることができないことも多い。なぜなら、保護膜も光学素子の一部として機能してしまうからである。 As an optical element for extreme ultraviolet exposure equipment, metals such as Si, Mo, C, Sr, Y, Ru, and Rh, carbides such as B 4 C, and other compounds are alternately formed on an optical material substrate such as glass. A mirror that is laminated and whose spectral characteristics are arbitrarily changed is used. When these optical elements are stored for a long period of time, moisture, oxygen, organic (phthalate ester, etc.) and inorganic (NO x , SO x gas, etc.) gases contained in the storage environment are adsorbed on the surface of the optical element or enter the film. Or cause a chemical reaction to deteriorate the performance (spectral characteristics, durability, etc.) of the optical element. In order to suppress such deterioration, it is necessary to strictly manage the storage environment. Removing harmful impurities such as moisture, oxygen, organic and inorganic gases contained in gases and liquids in the room and storage of optical elements requires large exclusion devices and equipment, increasing costs and reducing production efficiency Is the cause of Further, although a method of forming a protective film as the uppermost layer of the optical element is common, it is often impossible to obtain desired optical performance by attaching the extra protective film. This is because the protective film also functions as a part of the optical element.

そこで本発明は、上記の問題を解決し、厳密な保管環境管理が不要で保護膜も要らない光学素子の劣化抑制方法を提供することを目的とする。   Therefore, an object of the present invention is to solve the above-described problems and provide a method for suppressing deterioration of an optical element that does not require strict storage environment management and does not require a protective film.

本発明は、前述した目的を達成するために、極端紫外線露光装置に用いられる光学素子の表面に、遮蔽体を密着して配置することにより光学素子の劣化を抑制する方法であって、前記遮蔽体は酸素透過度が300mL/m2・24h・MPa、水蒸気透過度が100ml/m2・24h以下の材料からなることを特徴とする方法を提供する。 In order to achieve the above-mentioned object, the present invention is a method for suppressing deterioration of an optical element by placing a shield in close contact with the surface of an optical element used in an extreme ultraviolet exposure apparatus, wherein the shielding The body provides a method characterized by comprising an oxygen permeability of 300 mL / m 2 · 24 h · MPa and a water vapor permeability of 100 ml / m 2 · 24 h or less.

この場合に、前記遮蔽体の前記光学素子に接触する面は前記光学素子と同一の面形状を有することは好ましい。同一の面形状であるため、遮蔽体をより密着させることができ、光学素子表面に有害なガスが接触することをより効果的に防止できる。   In this case, it is preferable that the surface of the shield that contacts the optical element has the same surface shape as the optical element. Since it is the same surface shape, a shield can be stuck more closely and it can prevent more effectively that harmful gas contacts an optical element surface.

また、前記遮蔽体が前記光学素子よりもやわらかい材料で構成されていることは好ましい。遮蔽体を柔らかい材料とすることにより、接触する光学素子表面が傷つくことを防止できる。   Moreover, it is preferable that the shield is made of a material softer than the optical element. By using a soft material for the shield, it is possible to prevent the surface of the optical element that comes into contact from being damaged.

また、この場合に、前記遮蔽体がガラス、金属、樹脂のいずれかであることは好ましい。
なお、極端紫外線露光装置用の光学素子とはガラスなどの基板上に屈折率の異なるSi、Mo、C、Sr、Y、Ru、Rhなどの金属、B4Cといった炭化物、その他化合物が交互に積層された所謂多層膜ミラー、多層膜マスクや全反射ミラーなどを示す。
In this case, it is preferable that the shield is one of glass, metal, and resin.
In addition, optical elements for extreme ultraviolet exposure equipment are alternately composed of metals such as Si, Mo, C, Sr, Y, Ru, and Rh, carbides such as B 4 C, and other compounds on a substrate such as glass. So-called multilayer mirrors, multilayer masks, total reflection mirrors, and the like are shown.

本発明によれば、酸素透過度が300mL/m2・24h・MPa、水蒸気透過度が100ml/m2・24h以下の遮蔽体を光学素子に密着させることにより、光学素子表面を構成する物質とガスとの接触を抑制することができる。接触が少なくなれば、有害なガスが光学素子を構成する物質への吸着、侵入、化学反応をおこしたりする確率が大幅に抑制されるので劣化を抑制することが出来る。従って、厳密な保管環境管理や保護膜が不要になり、簡単に光学素子の劣化抑制することが可能となる。 According to the present invention, an oxygen permeability is 300 mL / m 2 · 24 h · MPa, and a water vapor permeability of 100 ml / m 2 · 24 h or less is adhered to the optical element so that the substance constituting the surface of the optical element Contact with gas can be suppressed. If the contact is reduced, the probability of harmful gas adsorbing, intruding into a substance constituting the optical element, and causing a chemical reaction is greatly suppressed, so that deterioration can be suppressed. Accordingly, strict storage environment management and a protective film are not required, and it is possible to easily suppress deterioration of the optical element.

以下、本発明の実施の形態の例を、図を用いて説明する。図1は、本発明の実施の形態の1例である光学素子の保管例を示す概略断面図である。本例では光学素子としてミラーを例にあげ説明する。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing a storage example of an optical element which is an example of an embodiment of the present invention. In this example, a mirror will be described as an example of the optical element.

1はミラー基板、2はミラーに形成された多層膜(本例ではMoとSiの交互多層膜)、3は遮蔽体、4は遮蔽体抑え治具である。ミラー基板1と多層膜2によってミラー5が構成される。本例ではミラー5は説明の便宜上、平面ミラーとして説明するが、球面や非球面等の形状を有するミラーも同様に扱うことができ、その場合は遮蔽体の光学素子に密着する表面は球面あるいは非球面形状と同じ形状とすることが好ましい。また、本例ではミラー5の外径は円としているが、他の形状であってもよい。遮蔽体抑え治具4は遮蔽体3に接触して図面下側から挟み込む円環状の下側抑え板41と、ミラー5の裏面に接触する円形状の上側第3抑え板46,抑え板46を更に抑える第2抑え板42,第2抑え板42を上側から抑える円環状の第1抑え板43と、第1抑え板43と下側抑え板41とを固定するための棒ネジ45とナット44とからなる。第1抑え板43と下側抑え板41とは棒ネジ45とナット44により3カ所で固定されている。なお、ミラー5の裏面と接触する第3抑え板46はミラー5の裏面を傷つけないように柔らかい材料で構成されている。ミラー5を遮蔽体3に密着させた後に遮蔽体抑え治具4により固定する。なお、遮蔽体抑え治具4は本実施の形態の例に限られるわけではなく、遮蔽体3をミラー5に密着させた状態を保つことができるものであればどのようなものでもよい。   Reference numeral 1 denotes a mirror substrate, 2 denotes a multilayer film formed on the mirror (in this example, an alternating multilayer film of Mo and Si), 3 denotes a shielding body, and 4 denotes a shielding body holding jig. A mirror 5 is constituted by the mirror substrate 1 and the multilayer film 2. In this example, the mirror 5 is described as a plane mirror for convenience of explanation. However, a mirror having a spherical shape, an aspherical surface, or the like can be treated in the same manner. The shape is preferably the same as the aspherical shape. In this example, the outer diameter of the mirror 5 is a circle, but other shapes may be used. The shielding member holding jig 4 includes an annular lower holding plate 41 that is in contact with the shielding member 3 and sandwiched from the lower side of the drawing, and a circular upper third holding plate 46 and a holding plate 46 that are in contact with the back surface of the mirror 5. Further, the second restraining plate 42 to be restrained, the annular first restraining plate 43 for restraining the second restraining plate 42 from above, the bar screw 45 and the nut 44 for fixing the first restraining plate 43 and the lower restraining plate 41. It consists of. The first holding plate 43 and the lower holding plate 41 are fixed at three places by a bar screw 45 and a nut 44. In addition, the 3rd suppression board 46 which contacts the back surface of the mirror 5 is comprised by the soft material so that the back surface of the mirror 5 may not be damaged. After the mirror 5 is brought into close contact with the shield 3, the mirror 5 is fixed by the shield holding jig 4. Note that the shielding member holding jig 4 is not limited to the example of the present embodiment, and any member can be used as long as the shielding member 3 can be kept in close contact with the mirror 5.

光学素子に密着させる遮蔽体3とは、ガラス・金属・樹脂など気体透過度が低いものである。ガス透過性は低ければ低いほど良い。ガスの透過性の表し方は幾つかあるが、例えば、JIS-Z-0208・JIS-K-7126に基づく気体透過度、水蒸気透過度の試験法で測定して それぞれが300mL/m2・24h・MPa(酸素ガス)、100ml/m2・24h以下であれば良い。上記の値を満たせば、ガスを十分遮蔽することができる。ただし、光学素子表面を構成する物質と反応したり、悪影響を与えたりするガスを放出しないものを遮蔽体として光学素子に合わせて選ぶ必要がある。 The shield 3 to be in close contact with the optical element is a material having a low gas permeability such as glass, metal, or resin. The lower the gas permeability, the better. There are several ways to express gas permeability. For example, the gas permeability and water vapor permeability test methods based on JIS-Z-0208 and JIS-K-7126 are measured, and each is 300 mL / m 2 · 24 h.・ MPa (oxygen gas), 100ml / m 2 · 24h or less. If the above value is satisfied, the gas can be sufficiently shielded. However, it is necessary to select a material that does not emit a gas that reacts with or has an adverse effect on the surface of the optical element according to the optical element.

光学素子に密着させることで、光学素子表面を構成する物質と有害なガスとの接触を抑制することができる。接触が少なくなれば、有害なガスが光学素子表面を構成する物質に吸着したり、膜内侵入したり、化学反応をおこしたりする確率が大幅に抑制されるので劣化を抑制することが出来る。光学素子に密着させる際、光学素子を予め溶液や光照射などで洗浄しておくと、密着性は高まる。光学素子の保管が終わり使用する際には、遮蔽体を手などではずせば良い。ただし、取りつけ・取り外しの際に光学素子表面を傷つける可能性があるので注意が必要である。そのため、光学素子表面より柔らかい遮蔽体を選び、表面形状を正確に合わせることが望ましい。その点、樹脂であれば柔らかいので有利である。また、後に硬化する塗布できる樹脂も存在しており、それらを利用することで光学素子と樹脂を密着させることができる。   By being in close contact with the optical element, contact between a substance constituting the surface of the optical element and a harmful gas can be suppressed. If the contact is reduced, the probability of harmful gas adsorbing to a substance constituting the surface of the optical element, entering the film, or causing a chemical reaction is greatly suppressed, so that deterioration can be suppressed. When adhering to the optical element, if the optical element is previously washed with a solution or light irradiation, the adhesion is enhanced. When the optical element is stored and used, the shield may be removed by hand. However, care should be taken because there is a possibility of damaging the surface of the optical element during attachment / removal. For this reason, it is desirable to select a shield that is softer than the surface of the optical element and to accurately match the surface shape. In that respect, a resin is advantageous because it is soft. There are also resins that can be applied to be cured later, and by using them, the optical element and the resin can be brought into close contact with each other.

本発明の形態概略図である。It is the form schematic of this invention.

符号の説明Explanation of symbols

1 ミラー基板
2 多層膜
3 遮蔽体
4 遮蔽体抑え治具
5 ミラー
DESCRIPTION OF SYMBOLS 1 Mirror board | substrate 2 Multilayer film 3 Shielding body 4 Shielding body holding jig 5 Mirror

Claims (6)

極端紫外線露光装置に用いられる光学素子の表面に、遮蔽体を密着して配置することにより光学素子の劣化を抑制する方法であって、
前記遮蔽体は酸素透過度が300mL/m2・24h・MPa、水蒸気透過度が100ml/m2・24h以下の材料からなることを特徴とする方法
A method of suppressing deterioration of an optical element by closely placing a shield on the surface of an optical element used in an extreme ultraviolet exposure apparatus,
The shield is made of a material having an oxygen permeability of 300 mL / m 2 · 24 h · MPa and a water vapor permeability of 100 ml / m 2 · 24 h or less.
前記遮蔽体の前記光学素子に接触する面は前記光学素子と同一の面形状を有することを特徴とする請求項1に記載の方法。 The method according to claim 1, wherein a surface of the shield that contacts the optical element has the same surface shape as the optical element. 前記遮蔽体が前記光学素子よりもやわらかい材料で構成されていることを特徴とする請求項1または2に記載の方法。 The method according to claim 1, wherein the shield is made of a material softer than the optical element. 前記遮蔽体がガラスであることを特徴とする請求項1に記載の方法。 The method of claim 1, wherein the shield is glass. 前記遮蔽体が金属であることを特徴とする請求項1に記載の方法。 The method of claim 1, wherein the shield is a metal. 前記遮蔽体が樹脂であることを特徴とする請求項1に記載の方法。 The method of claim 1, wherein the shield is a resin.
JP2004228296A 2004-08-04 2004-08-04 Method of suppressing degradation of optical element used for extreme ultraviolet ray exposure device Pending JP2006049563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004228296A JP2006049563A (en) 2004-08-04 2004-08-04 Method of suppressing degradation of optical element used for extreme ultraviolet ray exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004228296A JP2006049563A (en) 2004-08-04 2004-08-04 Method of suppressing degradation of optical element used for extreme ultraviolet ray exposure device

Publications (1)

Publication Number Publication Date
JP2006049563A true JP2006049563A (en) 2006-02-16

Family

ID=36027782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004228296A Pending JP2006049563A (en) 2004-08-04 2004-08-04 Method of suppressing degradation of optical element used for extreme ultraviolet ray exposure device

Country Status (1)

Country Link
JP (1) JP2006049563A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010171397A (en) * 2008-12-26 2010-08-05 Tdk Corp Method for manufacturing thin-film capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010171397A (en) * 2008-12-26 2010-08-05 Tdk Corp Method for manufacturing thin-film capacitor

Similar Documents

Publication Publication Date Title
JP5189614B2 (en) Pellicle, method of attaching the pellicle, mask with pellicle and mask
JP5285185B2 (en) Photomask unit and manufacturing method thereof
TWI613511B (en) Dust-proof film assembly
CN106324982B (en) Mask pellicle indicator for preventing haze
JP6486388B2 (en) Monolithic mesh supported EUV film
TW200737300A (en) Reflexible photo-mask blank, manufacturing method thereof, reflexible photomask, and manufacturing method of semiconductor apparatus
KR20220100823A (en) Pellicle
TWI461841B (en) Pellicle for lithography
US10065402B2 (en) Method of manufacturing pellicle assembly and method of photomask assembly including the same
KR20160117170A (en) Pellicle
TWI515509B (en) Pellicle for lithography and method for fabricating the same
JP5703841B2 (en) Reflective mask
US20110129767A1 (en) Pellicle for lithography
JP2009151335A (en) Pellicle for lithography
JP2013195950A (en) Pellicle and photomask
JP4512782B2 (en) Mask structure and semiconductor device manufacturing method using the same
JP4396354B2 (en) Photo mask
TWI585517B (en) Dustproof film module containers for microfilm for developing dustproof film modules
JP2006049563A (en) Method of suppressing degradation of optical element used for extreme ultraviolet ray exposure device
TWI498672B (en) Pellicle for lithography
TWI408509B (en) Photomask mounting/housing device and resist inspection method and resist inspection apparatus using same
JP2003057804A (en) Pellicle for lithography
JP2011107293A (en) Pellicle for lithography
JP2009294432A (en) Method and apparatus for preventing fogging of photomask
JP5381167B2 (en) Reflective photomask blank and reflective photomask