JP5375545B2 - Solid electrolyte fuel cell and manufacturing method thereof - Google Patents

Solid electrolyte fuel cell and manufacturing method thereof Download PDF

Info

Publication number
JP5375545B2
JP5375545B2 JP2009264807A JP2009264807A JP5375545B2 JP 5375545 B2 JP5375545 B2 JP 5375545B2 JP 2009264807 A JP2009264807 A JP 2009264807A JP 2009264807 A JP2009264807 A JP 2009264807A JP 5375545 B2 JP5375545 B2 JP 5375545B2
Authority
JP
Japan
Prior art keywords
electrolyte
fuel cell
electrode
catalyst layer
metal compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009264807A
Other languages
Japanese (ja)
Other versions
JP2011108574A (en
Inventor
洋 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2009264807A priority Critical patent/JP5375545B2/en
Publication of JP2011108574A publication Critical patent/JP2011108574A/en
Application granted granted Critical
Publication of JP5375545B2 publication Critical patent/JP5375545B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、固体電解質形燃料電池およびその製造方法に関し、特に、その電極構造およびその形成方法に関するものである。   The present invention relates to a solid oxide fuel cell and a method for manufacturing the same, and more particularly to an electrode structure and a method for forming the same.

一対の電極で電解質層を挟んで配置し、アノード側電極に水素を、カソード側に酸素を含有するガスを供給して発電を行う燃料電池において、その電極を構成する触媒層は、反応ガスの反応場として、触媒能、イオン伝導、反応ガス拡散、電子伝導の機能が要求される。   In a fuel cell in which an electrolyte layer is disposed between a pair of electrodes, and hydrogen is supplied to the anode side electrode and a gas containing oxygen is supplied to the cathode side to generate power, the catalyst layer constituting the electrode has a reactive gas As a reaction field, functions of catalytic ability, ion conduction, reaction gas diffusion, and electron conduction are required.

従来、特許文献1には、固体電解質形燃料電池の燃料極と固体電解質膜とを同時焼成により形成し、燃料極を気孔率の高い多孔質体で構成することにより、燃料ガスの流通を促進することが記載されている。   Conventionally, in Patent Document 1, the fuel electrode and the solid electrolyte membrane of a solid oxide fuel cell are formed by simultaneous firing, and the fuel electrode is made of a porous material having a high porosity, thereby facilitating the flow of fuel gas. It is described to do.

また、特許文献2には、イオン伝導性を持つ固体酸化物と触媒作用を持つ金属との複合材料からなる基材の表面に、金属や金属化合物の導電性物質をコーティングした表面電子導電体を電極に含有させることが記載されている。   Patent Document 2 discloses a surface electronic conductor obtained by coating a surface of a base material made of a composite material of a solid oxide having ionic conductivity and a metal having a catalytic action with a conductive substance such as a metal or a metal compound. It is described that it is contained in an electrode.

一方、300℃以下の運転温度で発電が可能なアニオン伝導塩基性酸化物形燃料電池の研究が進められている(非特許文献1)。
図7に、非特許文献1に記載のアニオン伝導塩基性酸化物形燃料電池セルの模式図を示す。電解質層1として、水酸化物イオン伝導性を有するNaCo2O4が用いられ、アノード電極2とカソード電極3とでは次の反応が進行する。
On the other hand, research on an anion-conducting basic oxide fuel cell capable of generating electricity at an operating temperature of 300 ° C. or lower has been advanced (Non-patent Document 1).
FIG. 7 shows a schematic diagram of the anion conducting basic oxide fuel cell described in Non-Patent Document 1. NaCo 2 O 4 having hydroxide ion conductivity is used as the electrolyte layer 1, and the following reaction proceeds between the anode electrode 2 and the cathode electrode 3.

アノード反応: H2+2OH- →2H2O +2e-
カソード反応: 1/2O2+H2O +2e-→2OH-
Anode reaction: H 2 + 2OH → 2H 2 O + 2e
Cathode reaction: 1 / 2O 2 + H 2 O + 2e - → 2OH -

特開2006−59610号公報JP 2006-59610 A 特開2009−193765号公報JP 2009-193765 A

竹口 竜弥、「平成20年度中間年報 固体高分子形燃料電池実用化戦略的技術開発 次世代技術開発 アニオン伝導塩基性酸化物燃料電池の開発」、[online] 、2009年5月29日、独立行政法人 新エネルギー・産業技術総合開発機構 成果報告書、管理番号100014171、[2009年11月10日検索]、インターネット<https://app5.infoc.nedo.go.jp/disclosure/Search>Tatsuya Takeguchi, “Interim Annual Report 2008, Strategic Technology Development for Solid Polymer Fuel Cell Practical Use, Development of Next Generation Technology, Development of Anion Conducting Basic Oxide Fuel Cell”, [online], May 29, 2009, Independent Administration New Energy and Industrial Technology Development Organization Result Report, Management No. 100014171, [November 10, 2009 Search], Internet <https://app5.infoc.nedo.go.jp/disclosure/Search>

燃料電池の電極の触媒層は、反応ガスの反応場として、触媒能、イオン伝導、反応ガス拡散、電子伝導の機能が要求される。従来の金属化合物電解質を用いた固体電解質形燃料電池の触媒層は、微粉化した金属化合物電解質の粒子で形成されており、粒子同士の電子伝導性が小さい。また、特許文献2のように金属や金属化合物の導電性物質によるコーティングを施してもなお、粒子間の接触面積が小さいため導電経路が少なく、電池特性が十分に得られていなかった。   The catalyst layer of the electrode of the fuel cell is required to have functions of catalytic ability, ion conduction, reaction gas diffusion, and electron conduction as a reaction field of the reaction gas. The catalyst layer of a solid electrolyte fuel cell using a conventional metal compound electrolyte is formed of finely divided metal compound electrolyte particles, and the electron conductivity between the particles is small. Moreover, even if it coats with the electroconductive substance of a metal or a metal compound like patent document 2, since the contact area between particle | grains is small, there are few conductive paths and the battery characteristic was not fully acquired.

そこで、本発明は、電極を構成する金属化合物電解質粒子間の導電経路を増加させ、電子伝導性を向上させた固体電解質形燃料電池を提供することを目的とする。   Therefore, an object of the present invention is to provide a solid electrolyte fuel cell in which the number of conductive paths between metal compound electrolyte particles constituting an electrode is increased, and the electron conductivity is improved.

上記課題を解決するために、本願発明においては、アノード電極とカソード電極との間に、金属化合物からなる電解質を備える固体電解形燃料電池において、前記アノード電極およびカソード電極の少なくとも一方の電極の触媒層を、金属化合物電解質と導電性ポリマーとから構成することとした。   In order to solve the above problems, in the present invention, in a solid electrolytic fuel cell comprising an electrolyte made of a metal compound between an anode electrode and a cathode electrode, a catalyst for at least one of the anode electrode and the cathode electrode The layer was composed of a metal compound electrolyte and a conductive polymer.

また、前記少なくとも一方の電極の触媒層に、金属または金属酸化物の触媒、および/または、金属またはカーボンからなる導電性材料を含有させることとした。
また、前記触媒は、前記金属化合物からなる電解質の表面に担持させるものとした。
The catalyst layer of the at least one electrode contains a metal or metal oxide catalyst and / or a conductive material made of metal or carbon.
The catalyst is supported on the surface of the electrolyte made of the metal compound.

さらに、アノード電極とカソード電極との間に金属化合物からなる電解質を備える固体電解質形燃料電池の少なくとも一方電極は、金属化合物電解質の粉末、導電性ポリマーおよび溶媒を混合してペーストを調製する工程、前記電解質層上に、前記ペーストを塗布、乾燥して、前記電解質層上に触媒層を形成する工程、により形成することとした。 Furthermore, at least one electrode of the solid electrolyte fuel cell comprising an electrolyte of a metal compound between the anode electrode and the cathode electrode, the step of preparing a paste by mixing the powder of the metal compound electrolyte, a conductive polymer and solvent The paste is applied on the electrolyte layer and dried to form a catalyst layer on the electrolyte layer.

また、前記ペーストを調製する工程の後、前記ペーストにさらに金属またはカーボンからなる導電性材料、および/または、増孔剤を混合することとした。増孔剤や導電性材料は、金属化合粒電解質と導電性ポリマーとを混合してペーストを調製したあとで、ペーストへ加えることとすれば、導電性ポリマーが選択的に金属化合物上に薄く被覆され、反応ガス拡散性と電子伝導性が両立できる。   In addition, after the step of preparing the paste, a conductive material made of metal or carbon and / or a pore-increasing agent was further mixed into the paste. If a pore-forming agent or conductive material is prepared by mixing a metal compounded electrolyte and a conductive polymer and then adding it to the paste, the conductive polymer is selectively coated thinly on the metal compound. Therefore, both the reaction gas diffusibility and the electron conductivity can be achieved.

上記の本発明の構成とすれば、固体電解質形燃料電池の触媒層における電子伝導性を向上させることができる。     If it is the structure of said invention, the electronic conductivity in the catalyst layer of a solid oxide fuel cell can be improved.

本発明の第一の実施形態に係る固体電解質形燃料電池の電極構成図FIG. 1 is an electrode configuration diagram of a solid oxide fuel cell according to a first embodiment of the present invention. 本発明の第二の実施形態に係る固体電解質形燃料電池の電極構成図Electrode configuration diagram of a solid oxide fuel cell according to a second embodiment of the present invention 本発明の第三の実施形態に係る固体電解質形燃料電池の電極構成図Electrode configuration diagram of a solid oxide fuel cell according to a third embodiment of the present invention 本発明の第四の実施形態に係る固体電解質形燃料電池の電極構成図Electrode configuration diagram of a solid oxide fuel cell according to a fourth embodiment of the present invention 本発明の第五の実施形態に係る固体電解質形燃料電池の電極構成図Electrode configuration diagram of a solid oxide fuel cell according to a fifth embodiment of the present invention 実施例と比較例の固体電解質形燃料電池の特性を示す図The figure which shows the characteristic of the solid oxide form fuel cell of an Example and a comparative example アニオン伝導塩基性酸化物形燃料電池セルの模式図Schematic diagram of anion conducting basic oxide fuel cell

本発明の固体電解質形燃料電池は、触媒層を金属化合物電解質と導電性ポリマーとから構成することを特徴とし、さらに、触媒層に用いられる導電性ポリマーの融点より低い温度においてイオン導電性を有する金属化合物を電解質層および触媒層に用いる。このような金属化合物として、NaCo24、LaFe3Sr310、Bi4Sr14Fe2456を用いることができる。 The solid electrolyte fuel cell of the present invention is characterized in that the catalyst layer is composed of a metal compound electrolyte and a conductive polymer, and further has ionic conductivity at a temperature lower than the melting point of the conductive polymer used in the catalyst layer. A metal compound is used for the electrolyte layer and the catalyst layer. As such a metal compound, NaCo 2 O 4 , LaFe 3 Sr 3 O 10 , and Bi 4 Sr 14 Fe 24 O 56 can be used.

また、触媒層に用いられる導電性ポリマーとしては、ポリチオフェン、ポリピロール、ポリアニリン、ポリフェニレンビニレン、ポリアセチレン等を用いることができる。
図1は、本発明の第一の実施形態に係る固体電解質形燃料電池の電解質層4と一方の電極を表している。電極は、触媒層5と集電材6とから構成される。
As the conductive polymer used for the catalyst layer, polythiophene, polypyrrole, polyaniline, polyphenylene vinylene, polyacetylene, or the like can be used.
FIG. 1 shows an electrolyte layer 4 and one electrode of the solid oxide fuel cell according to the first embodiment of the present invention. The electrode is composed of a catalyst layer 5 and a current collector 6.

触媒層5の製作にあたっては、まず、上記の金属化合物電解質粒子7と導電性ポリマー8と溶媒とを混合して調整したペーストを、集電材6となるカーボン多孔質基材上に塗布、乾燥し、集電材6と触媒層5との一体化電極を作成した。   In producing the catalyst layer 5, first, a paste prepared by mixing the metal compound electrolyte particles 7, the conductive polymer 8, and the solvent is applied onto a carbon porous base material to be the current collector 6 and dried. Then, an integrated electrode of the current collector 6 and the catalyst layer 5 was prepared.

次に、この集電材6/触媒層5一体化電極の触媒層側の面が、緻密な金属化合電解質からなる電解質層4に接するように、電解質層4の両側面の各々に集電材6/触媒層5一体化電極を配置して、ホットプレスにより電極/電解質層/電極の接合体を製作した。   Next, the current collector 6 / catalyst layer 5 is integrated on each side surface of the electrolyte layer 4 so that the surface on the catalyst layer side of the integrated electrode 6 / catalyst layer 5 is in contact with the electrolyte layer 4 made of a dense metal compound electrolyte. The electrode integrated with the catalyst layer 5 was disposed, and an electrode / electrolyte layer / electrode assembly was produced by hot pressing.

図2は、本発明の第二の実施形態に係る固体電解質形燃料電池の模式構造図である。本実施形態は、触媒層5に、金属化合物電解質粒子7および導電性ポリマー8に加え、触媒9を混在させたものである。これにより、第一の実施形態に比べ、触媒能を向上させることができ、高い電池電圧を得ることができる。触媒としては、Pt、Au、Ag、Ni、Pd等の遷移金属やSnO2等の金属酸化物を用いることができる。 FIG. 2 is a schematic structural diagram of a solid oxide fuel cell according to the second embodiment of the present invention. In this embodiment, the catalyst layer 5 is mixed with the catalyst 9 in addition to the metal compound electrolyte particles 7 and the conductive polymer 8. Thereby, compared with 1st embodiment, a catalyst ability can be improved and a high battery voltage can be obtained. As the catalyst, transition metals such as Pt, Au, Ag, Ni, and Pd, and metal oxides such as SnO 2 can be used.

触媒9は触媒層5の金属化合物電解質表面に微粒子として担持することで、触媒と電解質の接触面積が増加し、高い電池特性を得ることができる。
図3は、本発明の第三の実施形態に係る固体電解質形燃料電池の模式構造図である。本実施形態においては、触媒層5を形成する金属化合物電解質粒子7と溶媒とを調製する際に、さらに増孔剤を添加したペーストを用いて第一の実施形態と同様に触媒層を形成する。増孔剤としては、集電材6/触媒層5一体化電極と電解質層とをホットプレスする際に、熱消失する炭酸アンモニウム、ポリ乳酸等を用いることができる。
By supporting the catalyst 9 as fine particles on the surface of the metal compound electrolyte of the catalyst layer 5, the contact area between the catalyst and the electrolyte increases, and high battery characteristics can be obtained.
FIG. 3 is a schematic structural diagram of a solid oxide fuel cell according to the third embodiment of the present invention. In the present embodiment, when preparing the metal compound electrolyte particles 7 forming the catalyst layer 5 and the solvent, the catalyst layer is formed in the same manner as in the first embodiment using a paste further added with a pore-increasing agent. . As the pore-increasing agent, ammonium carbonate, polylactic acid, or the like that disappears when the current collector 6 / catalyst layer 5 integrated electrode and the electrolyte layer are hot-pressed can be used.

これにより、触媒層5に増孔剤の消失後に形成される細孔によって、反応ガス拡散性を高めることができる。
図4は、本発明の第四の実施形態に係る固体電解質形燃料電池の模式構造図である。本実施形態においては、触媒層5の導電性ポリマー8中に導電性材料11を混在させる。導電性材料11としては、金属やカーボンブラック,炭素繊維等を用いることができる。
Thereby, the reaction gas diffusibility can be enhanced by the pores formed in the catalyst layer 5 after disappearance of the pore-forming agent.
FIG. 4 is a schematic structural diagram of a solid oxide fuel cell according to the fourth embodiment of the present invention. In the present embodiment, the conductive material 11 is mixed in the conductive polymer 8 of the catalyst layer 5. As the conductive material 11, metal, carbon black, carbon fiber, or the like can be used.

触媒層5への導電性ポリマー8の含有率を上げると、触媒層5の気孔率が低下して反応ガスの拡散性が低下するが、導電性材料11を混在させることで、電子伝導性とガス拡散性の両方を確保することができる。   When the content of the conductive polymer 8 in the catalyst layer 5 is increased, the porosity of the catalyst layer 5 is decreased and the diffusibility of the reaction gas is decreased. Both gas diffusibility can be ensured.

上記の本発明の実施形態について、次に実施例で説明する。なお、本発明はこれらの実施例に限定されるものではない。尚、以下の実施例および比較例においては、電解質層4として何れも緻密なNaCo24からなる電解質板を用いた。 The above-described embodiment of the present invention will be described in the following examples. The present invention is not limited to these examples. In the following examples and comparative examples, an electrolyte plate made of dense NaCo 2 O 4 was used as the electrolyte layer 4.

まず、金属化合物電解質としてNaCo24粉末10gとポリチオフェン含有イソプロピルアルコール溶液100gとを混合して触媒層用ペーストを調製した。これを集電材6となるカーボン多孔質基材上にスクリーン印刷を用いてNaCo24重量が1mg/cm2となるように塗布,乾燥し、集電材6/触媒層5の一体化電極を作製した(図1)。 First, 10 g of NaCo 2 O 4 powder and 100 g of polythiophene-containing isopropyl alcohol solution were mixed as a metal compound electrolyte to prepare a catalyst layer paste. This is applied onto a carbon porous base material to be the current collector 6 by screen printing so that the NaCo 2 O 4 weight is 1 mg / cm 2 and dried, and an integrated electrode of the current collector 6 / catalyst layer 5 is formed. It produced (FIG. 1).

次に、集電材6/触媒層5の一体化電極の触媒層5側の面がNaCo24を焼結して作成した緻密な金属化合物電解質からなる電解質層4側になるように、電解質層4の上下各々にセットし、140℃‐4MPaでホットプレスを実施して電極/電解質層/電極の接合体を製作した。 Next, the electrolyte so that the surface of the integrated electrode of the current collector 6 / catalyst layer 5 on the side of the catalyst layer 5 is on the side of the electrolyte layer 4 made of a dense metal compound electrolyte prepared by sintering NaCo 2 O 4. An electrode / electrolyte layer / electrode assembly was prepared by setting the layers 4 on and under the layer 4 and performing hot pressing at 140 ° C.-4 MPa.

NaCo24粉末10gを水300gに加え、超音波ホモジナイザにて5分間分散させた。次に、塩化白金酸溶液5gを加え、超音波ホモジナイザにて20分間分散させた。次に、炭酸ナトリウム水溶液をpHが1になるまで加え、超音波ホモジナイザにて10分間分散させた。最後に、蟻酸水溶液を滴下してNaCo24上に白金を析出させた。白金を析出させたNaCo24粉末を用いて、実施例1と同様の方法により、図2に示すような極/電解質層/電極の接合体を製作した。 10 g of NaCo 2 O 4 powder was added to 300 g of water and dispersed with an ultrasonic homogenizer for 5 minutes. Next, 5 g of chloroplatinic acid solution was added and dispersed for 20 minutes with an ultrasonic homogenizer. Next, an aqueous sodium carbonate solution was added until the pH reached 1, and the mixture was dispersed with an ultrasonic homogenizer for 10 minutes. Finally, formic acid aqueous solution was dropped to deposit platinum on NaCo 2 O 4 . A pole / electrolyte layer / electrode assembly as shown in FIG. 2 was produced in the same manner as in Example 1 using NaCo 2 O 4 powder on which platinum was deposited.

金属化合物電解質としてNaCo24粉末10gとポリチオフェン含有イソプロピルアルコール溶液100gとを混合してペーストを作製した。次に、ペーストに炭酸アンモニウム粒子を4g添加して触媒層用ペーストを作製し、集電材6となるカーボン多孔質基材上にスクリーン印刷を用いてNaCo24重量が1mg/cm2となるように塗布、50℃で乾燥処理を行い、集電材6/触媒層5の一体化電極を作製した(図3)。 A paste was prepared by mixing 10 g of NaCo 2 O 4 powder and 100 g of polythiophene-containing isopropyl alcohol solution as a metal compound electrolyte. Next, 4 g of ammonium carbonate particles are added to the paste to produce a catalyst layer paste, and the weight of NaCo 2 O 4 is 1 mg / cm 2 using screen printing on the carbon porous substrate to be the current collector 6. Thus, application | coating and the drying process were performed at 50 degreeC, and the integrated electrode of the current collector 6 / catalyst layer 5 was produced (FIG. 3).

NaCo24を焼結して作成した緻密な金属化合物電解質からなる電解質層4側になるように、電解質層4の上下各々にセットし、140℃‐4MPaでホットプレスを実施して電極/電解質層/電極の接合体を製作した。 The electrode layer 4 was set on each of the upper and lower sides of the electrolyte layer 4 so as to be on the side of the electrolyte layer 4 made of a dense metal compound electrolyte prepared by sintering NaCo 2 O 4 , and hot pressing was performed at 140 ° C.-4 MPa. An electrolyte layer / electrode assembly was fabricated.

金属化合物電解質としてNaCo24粉末10gとポリチオフェン含有イソプロピルアルコール溶液100gとを混合してペーストを作製した。次に、ペーストに銀粒子(導電性材料11)を4g添加して触媒層用ペーストを調製し、集電材のカーボン多孔質基材上にスクリーン印刷を用いてNaCo24重量が1mg/cm2となるように塗布、乾燥し、集電材6/触媒層5の一体化電極を作製した(図4)。 A paste was prepared by mixing 10 g of NaCo 2 O 4 powder and 100 g of polythiophene-containing isopropyl alcohol solution as a metal compound electrolyte. Next, 4 g of silver particles (conductive material 11) was added to the paste to prepare a catalyst layer paste, and the weight of NaCo 2 O 4 was 1 mg / cm using screen printing on the carbon porous substrate of the current collector. It was applied and dried so as to be 2 to produce an integrated electrode of current collector 6 / catalyst layer 5 (FIG. 4).

次に、NaCo24を焼結して作成した緻密な金属化合物電解質からなる電解質層4側になるように、電解質層4の上下各々にセットし、140℃‐4MPaでホットプレスを実施して電極/電解質層/電極の接合体を製作した。 Next, the electrolyte layer 4 is set on each of the upper and lower sides so as to be on the side of the electrolyte layer 4 made of a dense metal compound electrolyte prepared by sintering NaCo 2 O 4 , and hot pressing is performed at 140 ° C.-4 MPa. Thus, an electrode / electrolyte layer / electrode assembly was produced.

比較例Comparative example

NaCo24粉末をイソプロピルアルコールに分散したペーストを、スクリーン印刷を用いてNaCo24重量が1mg/cm2となるように集電材となるカーボン多孔質基材上に塗布した後、乾燥して、集電材6/触媒層5の一体化電極を作製した(図5)。
次に、集電材6/触媒層5の一体化電極を電解質層4の両側に各々配置して比較例の固体電解質形燃料電池を製作した。
A paste in which NaCo 2 O 4 powder is dispersed in isopropyl alcohol is applied onto a carbon porous substrate as a current collector so that the weight of NaCo 2 O 4 is 1 mg / cm 2 using screen printing, and then dried. Thus, an integrated electrode of current collector 6 / catalyst layer 5 was produced (FIG. 5).
Next, the integrated electrode of the current collector 6 / catalyst layer 5 was disposed on both sides of the electrolyte layer 4 to manufacture a solid electrolyte fuel cell of a comparative example.

実施例1〜4と比較例の固体電解質形燃料電池の電池特性を図6に示す。   The cell characteristics of the solid electrolyte fuel cells of Examples 1 to 4 and the comparative example are shown in FIG.

1、4 電解質層
2 アノード電極
3 カソード電極
5 触媒層
6 集電材
7 金属化合物電解質粒子
8 導電性ポリマー
9 触媒
10 空孔
11 導電性材料
1, 4 Electrolyte layer 2 Anode electrode 3 Cathode electrode 5 Catalyst layer 6 Current collector 7 Metal compound electrolyte particle 8 Conductive polymer 9 Catalyst 10 Void 11 Conductive material

Claims (6)

アノード電極とカソード電極との間に、金属化合物からなる電解質を備える固体電解形燃料電池において、
前記アノード電極およびカソード電極の少なくとも一方の電極の触媒層が、金属化合物電解質と導電性ポリマーとから構成されていることを特徴とする固体電解質形燃料電池。
In a solid electrolytic fuel cell including an electrolyte made of a metal compound between an anode electrode and a cathode electrode,
A solid oxide fuel cell, wherein a catalyst layer of at least one of the anode electrode and the cathode electrode is composed of a metal compound electrolyte and a conductive polymer.
前記少なくとも一方の電極の触媒層が、金属または金属酸化物の触媒を含有することを特徴とする請求項1に記載の固体電解質形燃料電池。   2. The solid oxide fuel cell according to claim 1, wherein the catalyst layer of the at least one electrode contains a metal or metal oxide catalyst. 前記触媒が、前記金属化合物からなる電解質の表面に担持させたものであることを特徴とする請求項2に記載の固体電解質形燃料電池。   3. The solid electrolyte fuel cell according to claim 2, wherein the catalyst is supported on the surface of an electrolyte made of the metal compound. 前記少なくとも一方の電極の触媒層が、さらに、金属またはカーボンからなる導電性材料を含有することを特徴とする請求項1から3の何れかに記載の固体電解質形燃料電池。   4. The solid oxide fuel cell according to claim 1, wherein the catalyst layer of the at least one electrode further contains a conductive material made of metal or carbon. アノード電極とカソード電極との間に金属化合物からなる電解質を備える固体電解質形燃料電池の少なくとも一方電極の形成工程が、
金属化合物電解質の粉末、導電性ポリマーおよび溶媒を混合してペーストを調製する工程、
前記電解質層上に、前記ペーストを塗布、乾燥して、前記電解質層上に触媒層を形成する工程、
からなることを特徴とする固体電解質形燃料電池の製造方法。
Step of forming the at least one electrode of the solid electrolyte fuel cell comprising an electrolyte of a metal compound between the anode electrode and the cathode electrode,
A step of mixing a metal compound electrolyte powder, a conductive polymer and a solvent to prepare a paste;
Applying the paste on the electrolyte layer and drying to form a catalyst layer on the electrolyte layer;
A method for producing a solid oxide fuel cell comprising:
前記ペーストを調製する工程の後、前記ペーストにさらに金属またはカーボンからなる導電性材料、および/または、増孔剤を混合することを特徴とする請求項5に記載の固体電解質形燃料電池の製造方法。   The solid oxide fuel cell production according to claim 5, wherein after the step of preparing the paste, a conductive material made of metal or carbon and / or a pore-increasing agent is further mixed into the paste. Method.
JP2009264807A 2009-11-20 2009-11-20 Solid electrolyte fuel cell and manufacturing method thereof Expired - Fee Related JP5375545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009264807A JP5375545B2 (en) 2009-11-20 2009-11-20 Solid electrolyte fuel cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009264807A JP5375545B2 (en) 2009-11-20 2009-11-20 Solid electrolyte fuel cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011108574A JP2011108574A (en) 2011-06-02
JP5375545B2 true JP5375545B2 (en) 2013-12-25

Family

ID=44231818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009264807A Expired - Fee Related JP5375545B2 (en) 2009-11-20 2009-11-20 Solid electrolyte fuel cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5375545B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11777076B2 (en) 2020-02-18 2023-10-03 Samsung Electronics Co., Ltd. All-solid secondary battery, and method of manufacturing all-solid secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122296A (en) * 1989-10-06 1991-05-24 Mitsui Toatsu Chem Inc Production of partially oxidized aromatic compound
CA2730791C (en) * 2008-07-15 2017-08-29 National University Corporation Hokkaido University Fuel cell and electricity generation method using the same
JP5381639B2 (en) * 2009-11-20 2014-01-08 富士電機株式会社 Solid electrolyte fuel cell and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11777076B2 (en) 2020-02-18 2023-10-03 Samsung Electronics Co., Ltd. All-solid secondary battery, and method of manufacturing all-solid secondary battery

Also Published As

Publication number Publication date
JP2011108574A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
JP5244423B2 (en) Solid oxide electrochemical cell and method for producing the same
Jiang et al. Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique
TWI289951B (en) Direct alcohol fuel cell and method for producing same
JP6080088B2 (en) Porous current collector and fuel cell using the same
JP3576108B2 (en) Electrode, fuel cell using the same, and method of manufacturing electrode
CN103280583B (en) Method for preparing catalytic layer structure of proton exchange membrane fuel cell
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
Zhou et al. Iridium incorporated into deoxygenated hierarchical graphene as a high-performance cathode for rechargeable Li–O 2 batteries
JP3924772B2 (en) Air electrode current collector of solid oxide fuel cell
JP4919005B2 (en) Method for producing electrode for fuel cell
JP3565696B2 (en) Method for manufacturing electrode of solid oxide fuel cell
JP2012035178A (en) Method for manufacturing catalyst, and catalyst
JP2004327278A (en) Electrode material for fuel cell, and solid oxide fuel cell using same
JP2007073291A (en) Electrode catalyst particles for fuel cell and fuel cell using it
US7691770B2 (en) Electrode structure and methods of making same
JP5381639B2 (en) Solid electrolyte fuel cell and manufacturing method thereof
JP2006147371A (en) Electrode catalyst for polymer electrolyte fuel cell, its manufacturing method and fuel cell
JP5375545B2 (en) Solid electrolyte fuel cell and manufacturing method thereof
JP6501779B2 (en) Arrangement of active layer / membrane for hydrogen production apparatus, and conjugate comprising said arrangement suitable for porous current collector, and method of making the arrangement
JP2006236778A (en) Catalyst for fuel cell, membrane electrode complex, and solid polymer electrolyte fuel cell
JP2009158131A (en) Electrocatalyst and method of manufacturing the same
JP2947495B2 (en) Fuel electrode fabrication method for solid oxide fuel cells
JP5359834B2 (en) Solid electrolyte fuel cell and manufacturing method thereof
KR101338047B1 (en) Cathode for molten carbonate fuel cell and manufacturing method of the same
JP2010211946A (en) Catalyst layer for fuel cell, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees