JP3576108B2 - Electrode, fuel cell using the same, and method of manufacturing electrode - Google Patents

Electrode, fuel cell using the same, and method of manufacturing electrode Download PDF

Info

Publication number
JP3576108B2
JP3576108B2 JP2001036890A JP2001036890A JP3576108B2 JP 3576108 B2 JP3576108 B2 JP 3576108B2 JP 2001036890 A JP2001036890 A JP 2001036890A JP 2001036890 A JP2001036890 A JP 2001036890A JP 3576108 B2 JP3576108 B2 JP 3576108B2
Authority
JP
Japan
Prior art keywords
electrode
catalyst
particles
platinum
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001036890A
Other languages
Japanese (ja)
Other versions
JP2002246033A (en
Inventor
義彦 中野
裕康 角野
麻紀 米津
雅弘 高下
浩久 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001036890A priority Critical patent/JP3576108B2/en
Publication of JP2002246033A publication Critical patent/JP2002246033A/en
Application granted granted Critical
Publication of JP3576108B2 publication Critical patent/JP3576108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、電極、電極用組成物およびそれを用いた燃料電池に係わり、特にプロトンの授受を行うための電極およびそれを用いた燃料電池に関する。
【0002】
【従来の技術】
燃料電池は、電池内で水素やメタノール等の燃料を電気化学的に酸化することにより,燃料の化学エネルギーを直接電気エネルギーに変換して取り出すものであり、火力発電のように燃料の燃焼によるNOxやSOxなどの発生がないため,クリーンな電気エネルギー供給源として注目されている。
【0003】
従来の燃料電池の電極構造は、例えば、カソード用集電体/カソード/プロトン伝導性膜/アノード/アノード集電体を順次積層した5層構造となっている。
【0004】
アノードやカソードなどの電極は、従来カーボンなどの触媒担体表面に白金あるいは白金合金などの金属粒子を担持させた触媒と、例えばスルホン酸基を有するフッ素樹脂などに代表されるプロトン伝導性物質とからなる組成物が用いられている。触媒担体としてカーボンを使用するのは、カーボンが導電性を有するため、金属粒子表面で発生した電子を取り出すために有効だと考えられているからである。
【0005】
この触媒とプロトン伝導性物質とを均一に分散させるために、通常プロトン伝導性物質を有機溶媒中に溶解した状態でカーボン微粒子と混合する必要がある。しかし、白金及びその合金などの金属粒子をカーボン表面に担持させた触媒は、酸素を含有する雰囲気中で有機溶媒(特にアルコール)と接触すると発火してしまうという問題が生じる。
【0006】
そのため、従来電極作製時には、まず、水中に触媒を分散させることで、空気(酸素)の存在下で有機溶媒が触媒表面に直接接触させないようにした上で、プロトン伝導性物質を溶解した有機溶媒と混合してスラリー化した後、有機溶媒および水を揮発させて電極を作製していた。
【0007】
しかしながら、このようにして得られた電極を用いて燃料電池を組み立てると電池特性にばらつきが生じ、ほとんどの場合に燃料電池を効率よく発電できないという問題があった。
【0008】
【発明が解決しようとする課題】
上述したように、従来の製造方法で得られた電極を燃料電池に使用した場合、効率よく発電を行うことができないという問題があった。
【0009】
本発明は、このような問題に鑑みて為されたものであり、発電効率の高い電極、電極用組成物、それを用いた燃料電池、および電極の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の電極は、白金またはその合金からなる金属粒子をSiO2を主成分とする触媒担体表面に担持する触媒粒子と、導電性粒子と、プロトン伝導性物質とを有し、前記触媒担体は、SiO 2 成分を50wt%以上含有するルイス酸性を呈する複合酸化物であることを特徴とする。
【0012】
本発明の電極の製造方法は、白金またはその合金からなる金属粒子をSiOを主成分とする触媒担体表面に担持する触媒粒子を水中に分散して触媒粒子分散水を調製する触媒粒子分散工程と、プロトン伝導性物質を溶解した有機溶媒と前記触媒粒子分散液とを含有する混合液を調製する混合工程と、前記触媒粒子分散液、前記有機溶媒あるいは前記混合液中に導電性粒子を分散させる導電粒子分散工程と、前記混合液を乾燥し、前記水および前記有機溶媒を除去する乾燥工程とを有することを特徴とする。
【0014】
前記プロトン伝導性物質は、有機溶媒中に溶解されていてもよい。
【0015】
本発明の燃料電池は、水素元素を含有する燃料が供給される燃料極と、酸素が供給される酸化剤極と、前記燃料極および酸化剤極とに挟持されてなるプロトン伝導体層とを具備する燃料電池において、前記燃料極および前記酸化剤極の少なくとも一方は、白金またはその合金からなる金属粒子をSiO2を主成分とする触媒担体表面に担持する触媒粒子と、導電性粒子と、プロトン伝導性物質とを含有し、前記触媒担体は、SiO 2 成分を50wt%以上含有するルイス酸性を呈する複合酸化物であることを特徴とする。
【0016】
【発明の実施の形態】
まず、燃料電池の基本構成を図1に示す。
【0017】
図1においては、集電体1、燃料極2、プロトン伝導性膜3、酸化剤極4および集電体1が順次積層されて燃料電池(起電部)5が構成されている。
【0018】
燃料極2にメタノールおよび水からなる混合燃料が、酸化剤極4に空気(酸素)が供給されると、それぞれの電極において化学式(1)および化学式(2)で示す触媒反応が生じる。
【0019】
燃料極 :CHOH+HO→CO+6H+6e (1)
酸化剤極:6H+(3/2)O+6e → 3HO (2)
このように、燃料極2で発生したプロトンはプロトン伝導性膜へ、電子は一方の集電体1へ移動し、酸化剤極4では他方の集電体1から供給される電子とプロトン伝導性膜3から供給されるプロトンと酸素とを反応させることで、一対の集電体1の間に電流を流す。
【0020】
したがって、それぞれの電極(燃料極および酸化剤極)は、化学式(1)あるいは化学式(2)の反応を生じさせる触媒としての特性、触媒粒子および集電体間の導電特性の他に、触媒粒子およびプロトン伝導性膜間のプロトン伝導特性が求められる。
【0021】
本発明においては、電極構造を図2に示すような構造としたことで、前述の3つの特性を効率よく発揮させることを可能にした。
【0022】
図2は本発明の電極近傍を模式的に示した拡大図であるが、触媒担体21および触媒特性を発揮する白金またはその合金からなる金属粒子22(以下、白金系金属粒子と呼ぶ)で構成される触媒粒子23と、導電性粒子24と、プロトン伝導性物質25とから形成された電極20である。
【0023】
この電極20では、電子は導電性粒子24を介して集電体1−白金系金属粒子22間を移動し、プロトンはプロトン伝導性物質25を介して白金系金属粒子22−プロトン伝導性膜4間を移動する。このような構成の電極は、触媒粒子23とプロトン伝導性物質とが均一に分散するためにプロトン伝導性も含めた前述の3つの特性を効率的に発揮させることを可能にした。
【0024】
すなわち、従来の炭素担体(導電性機能を兼ね備えた触媒担体)表面に白金系金属粒子を担持させた触媒粒子とプロトン伝導性物質からなる電極は、その製造工程において、撥水性の高いカーボンは水と共に攪拌しても均一に分散せずに凝集体となるため、プロトン伝導性物質(有機溶媒中に溶解したプロトン伝導性物質)が凝集体中に進入できない。そのため、得られる電極中における触媒粒子(白金系金属粒子)とプロトン伝導性物質との接触率が低くなり、白金系金属粒子で生成されるプロトンをプロトン伝導性膜へ移動させることができなくなっていた。
【0025】
本発明者らは、図2に示したように、電極20中に導電性粒子24を分散させることで、触媒担体21への親水性材料を可能にし、その結果白金系金属粒子22とプロトン伝導性膜4との間のプロトン導電効率を高め、ひいては燃料電池としてしようした際の発電効率を飛躍的に向上させることを確認し、本発明に至った。
【0026】
以下に、触媒粒子23、導電性粒子24およびプロトン伝導性物質25について詳細に説明する。
【0027】
<触媒粒子23>
触媒粒子は、白金系金属粒子22と、この白金系金属粒子を担持する触媒担体21とを具備する。
【0028】
本発明に係る触媒担体は、前述のように導電特性を有する必要はなく、親水性材料であるSiO単独あるいはSiOを主成分とする粒子を使用することができる。SiOを主成分とする粒子とは、SiOと他の成分との混合物であっても良いし、SiO−Mで示される複合酸化物であってもよく(Mは任意の元素)、SiO2成分が50モル%以上含有された粒子であることが望ましい。
【0029】
特に、ルイス酸性を示すSiO−Mで示される複合酸化物を使用することが好ましく、例えばMとして第2周期〜6周期の元素の中から選ばれた少なくとも1種以上の元素であることが望ましい。ルイス酸性を示すより具体的な材料としては、SiO−Al、SiO−B、SiO−WO、SiO−P、SiO−MoO、SiO−RuO、SiO−Ir、SiO−PtO、SiO−Rh、SiO−PdO、 SiO−ZrO、 SiO−TiO、SiO−Hf、 SiO−Al−P、SiO−TiO−P 、SiO−WO−P、SiO2−MnO2、SiO2−SnO2などが挙げられるが限定されるわけではない。
【0030】
触媒担体の平均粒径としては、10nm〜1μmの範囲内にあるものが好ましい。平均粒径が10nmよりも小さい場合触媒担体の製造性、取扱い性が困難になり、1μmよりも大きいと後述する導電性粒子と接触する白金系金属粒子の接触する比率が低下する。また触媒担体の比表面積(BET法による測定)としては、10〜2500m/g範囲の物が良く、特に50〜600m/gの物が良い。比表面積が10よりも小さいと白金系金属粒子の担持できる量が少なくなり、2500m/gを超えるとその合成が困難であり製造性に問題がある。
【0031】
本発明に係る白金系微粒子(白金またはその合金からなる微粒子)とは、前述した化学式(1)あるいは化学式(2)の反応を活性化させる金属からなる微粒子である。
【0032】
前記白金合金において白金と合金化される金属としては、例えばRu、Rh、Ir、OsあるいはPdなどの白金族元素や、第4周期〜第6周期の遷移金属などが挙げられ、具体的にはPt−Ru、Pt−Ru−Ir、Pt−Ru−Ir−Os、Pt−Ir、Pt−Mo、Pt−Fe、Pt−Co、Pt−Ni、Pt−W、Pt−Sn、Pt−CeあるいはPt−Reなどの合金が挙げられるが特にこれらに制限されるものではない。白金合金中の白金とその他の元素の比率は、その組合わせによって異なるが、通常その他の元素比率は、白金中に固溶する範囲内となるように調整される。
【0033】
特に、酸化剤極としてはPt、燃料極としてはPt−Ru合金からなる微粒子を使用することが好ましい。
【0034】
このような材料で構成される白金系金属粒子は、通常1〜10nm程度の平均粒径のものが用いられる。
【0035】
次に白金系金属粒子を触媒担体表面に担持させる方法の一例を説明する。
【0036】
まず、触媒担体を水中に懸濁させ、40℃〜100℃程度に加熱した後に、白金系金属粒子の前駆体を添加する。
【0037】
白金系金属粒子の前駆体としては、白金系金属粒子として白金微粒子を得る場合には、例えば塩化白金酸(HPtCl)、ジニトロジアミノ白金、塩化第二白金、塩化第一白金、ビスアセチルアセトナート白金、ジクロロジアンミン白金、ジクロロテトラミン白金、硫酸第二白金などを用いればよい。また、白金系金属粒子として白金合金を得る場合には、白金微粒子の前駆体にさらに塩化ルテニウム、塩化イリジウム、塩化オスニウム、塩化ロジウム、塩化第二鉄、塩化コバルト、塩化クロム、塩化金、硝酸銀、硝酸ロジウム、塩化パラジウム、硝酸ニッケル、硫酸鉄、塩化銅などの合金成分を含むものを加えた前駆体を使用すればよい。
【0038】
このような前駆体を懸濁液中に溶解することで、懸濁液を酸性溶液とする。
【0039】
酸性化された懸濁液にアルカリを加え、適宜加熱を続けることで中和し、例えばPt(OH)など、白金、あるいは白金合金を構成する金属の水酸化物を生成しこれを触媒担体表面に担持させる。さらにこの懸濁液を濾過・乾燥してPt(OH)などが担持された触媒担体を得る。必要に応じこの触媒粒子に水洗・濾過を繰り返し、中和反応により生成される不純物イオンの除去をさらに施してもよい。
【0040】
Pt(OH)などが担持された触媒粒子を還元雰囲気下に入れ、Pt(OH)などを還元して白金系金属粒子を生成することで、触媒担体表面に白金系金属粒子を担持させた触媒粒子が得られる。
【0041】
還元雰囲気としては、水素などの還元ガスを含むガス雰囲気中で、100℃〜900℃、好ましくは200℃〜500℃の温度域とすればよい。還元温度が100℃より低いと白金系金属粒子の結晶化が不充分となり、電極に使用した際、粒子径の増大が起こり易く成る。還元温度が900℃よりも高いと白金軽金属粒子の粒子径の増大が起こり触媒活性が低下する。
【0042】
触媒粒子中の白金系金属粒子の担持量は、20wt%から80wt%とすることが望ましい。20wt%よりも少ないと電池性能がでず、80wt%以上だと触媒担体上にうまく担持できなくなる。
【0043】
<導電性粒子24>
導電性粒子を構成する材料は、導電材料であれば特に限定されることなく使用でき、例えばカーボン粒子、カーボンファイバーあるいはカーボンナノチューブなどの炭素材料や及び金属粒子を使用することが可能である。特に炭素材料は、低コスト化、量産性、あるいは電極の軽量化の面で好ましい。また、樹脂などの絶縁性材料表面を導電性材料で被覆した粒子を使用することもできる。ただし、電極中をプロトンが移動することから、電極使用時には電極中は酸性状態になるため導電性材料としては耐酸性の高い材料、例えば炭素材料や貴金属材料を使用することが望ましい。
【0044】
導電性粒子の平均粒径としては、5nm〜50μmのものが使用できるが、特に100nm〜10μmのものを使用することが望ましい。導電性粒子の粒径が100nmよりも小さいと導電粒子同士が接触しなくなる恐れがあり、電極中に導電パスが形成されなくなる恐れがあり、10μmよりも大きいと電極中に導電性粒子を均一に分散させることが困難になる。また、導電粒子の形状は球形に限らず、前述したカーボンファイバーなどの繊維形状のものも使用することができ、繊維形状の導電性粒子を使用することで、導電性粒子の比率を少なくしても電極中の導電パスを形成することが可能である。
【0045】
導電性粒子と触媒粒子との比率は、触媒粒子100重量部に対して導電性粒子を10重量部〜1000重量部、さらには50重量部〜500重量部の範囲内とすることが好ましい。導電性粒子の比率が10重量部よりも少ないと、導電パスを確保できず、1000重量部よりも多いと触媒粒子の比率が低下し触媒機能が低下する。
【0046】
<プロトン伝導性物質25>
プロトン伝導性物質は、プロトンを伝達できる材料であれば特に制限されることなく使用できる。例えばナフィオン(デュポン社製)、フレミオン(旭化成社製)、アシブレック(旭硝子社製)などのスルホン酸基を持つフッ素樹脂や、タングステン酸やリンタングステン酸などの無機物などが挙げられるが限定されるわけではない。
【0047】
電極中のプロトン伝導性物質の比率は、触媒粒子100重量部に対して、1〜1000重量部であり、特に10重量部から200重量部がよい。1重量部より少ないと電極のプロトン伝導性が十分に得られず、1000重量部を超えると触媒粒子の比率が低下して触媒機能が低下したり、導電性粒子の比率が低下して導電パスが形成されなくなる恐れがある。
【0048】
これらの材料から構成される電極は、気孔率0.1%〜85%程度の多孔体であることが望ましい。気孔率が0.1%よりも少ないと、電極の、電極に供給される燃料あるいは酸素との接触面積が小さくなり、前述の化学式(1)あるいは(2)の触媒反応を効率よく行うことができなくなる恐れがある。また気孔率が85%よりも多いと導電性粒子同士の接触確率が低下し、電極中の導電パスが形成されなくなる恐れがある。
【0049】
次に、電極の作製方法について説明する。
【0050】
本発明の電極の作製においては、前述の触媒粒子、導電性粒子、プロトン伝導性物質、水および有機溶媒を含有する電極組成物を調製した後に、水および有機溶媒を揮発させるなどして除去することで得られる。なお、触媒粒子、導電性粒子およびプロトン伝導性物質の材料や、それぞれの比率については前述した通りの材料および比率とすればよい。
【0051】
電極組成物は、例えばプロトン伝導性物質を溶解した有機溶媒に導電性粒子を分散させた分散水と、水中に触媒粒子を分散させた懸濁液とを準備し、両者を十分に攪拌・混合することで得られる。
【0052】
プロトン伝導性物質を有機溶媒中に溶解したのは、プロトン伝導性物質が一般に水溶性が低く、有機溶媒に対する溶解性が高いからであり、このように溶解することでプロトン伝導性物質を電極組成物中に均一に分散することが可能になる。使用する有機溶媒はプロトン伝導性物質を溶解できるものであれば特に制限されるものではなく、例えばエタノール、1−プロパノ−ルなどを使用することができ、またこれらの有機溶媒と水との混合液を使用することも可能である。
【0053】
また、触媒粒子を水中に分散させたのは、白金系金属粒子が酸素雰囲気(空気中)で有機溶媒と接触すると発火する恐れがあるため、水によって酸素を遮断した状態で白金軽金属粒子と有機溶媒とを接触させるためである。
【0054】
導電性粒子は、かならずしも有機溶媒中に分散させる必要はなく、例えば触媒と共に水中に分散さても良いし、プロトン伝導性粒子を溶解した有機溶媒と触媒粒子の懸濁液とを混合した混合液に導電性粒子を添加して混合液中で分散させてもい。ただし、導電性粒子として炭素材料など水との親和性の低い材料を使用する場合、水中に直接導電性粒子を投与すると均一に分散しなくなる恐れがあるため、前述したように親和性の高い有機溶媒中に分散させた後に触媒粒子の懸濁液と混合することが好ましい。但し、表面酸化などで親水化処理を施した炭素材料の場合は、水に直接投与しても大きな問題はない。
【0055】
このようにして、電極組成物を得ることができるが、さらに揮発性の高い有機溶媒成分のみ気化させた電極組成物にして、後述する成膜処理を行っても良い。
【0056】
さらに、後述する電極組成物の成膜性を良好なものとするために、電極用組成物中の固形成分(導電性粒子および触媒粒子)の比率が2〜60wt%の範囲となるように水および有機溶媒の量を調整することが好ましい。
【0057】
なお、有機溶媒中への導電性粒子の分散、水中への触媒粒子の分散、あるいは導電性粒子と触媒粒子とを含有する混合液の攪拌などは、ボールミル、サンドミル、ビーズミル、ペイントシェーカーあるいはナノマイザーなど既知の分散器を用いて行えばよい。
【0058】
このようにして得られた電極用組成物は、例えば集電体などを支持体として、この支持体上に塗布した後に乾燥することで電極層を形成することが可能になる。
【0059】
集電体としては、例えばカーボンクロスやカーボンペーパーなどの通気性あるいは通液性を持つ材料が使用される。また、必要に応じ集電体表面に撥水処理を施して集電体表面に電極用組成物の膜厚を調整することも可能である。
【0060】
また、本発明の電極は、上述した製造方法に限られるものではない。例えば触媒、導電性粒子およびバインダ樹脂からなる多孔体を形成した後に、多孔体の細孔表面にプロトン伝導性物質を以下に示す方法で製造することも可能である。この製造方法を具体的に説明する。
【0061】
水中に触媒粒子を分散させ懸濁液、熱可塑性のバインダー樹脂を溶解した有機溶媒中に導電性粒子および造孔剤を分散させた分散液を調製し、得られた懸濁液および分散液を混合し混合体とし、この混合体を加熱しつつ混練する混合体は一体化した固形物となる。
【0062】
この固形物を所望の形状に成形し、さらに必要に応じ乾燥させた後、溶解剤に浸漬して造孔剤を溶解することで混合体を多孔体化する。
【0063】
この多孔体化した混合体を洗浄した後、水などの無機の液体中に浸漬し、さらにこの液体中にプロトン伝導性物質を溶解した有機溶媒を加える。その結果、混合体の細孔中にプロトン伝導性物質が進入する。さらに細孔中に存在する水や有機溶媒などを揮発させることで、本発明の電極が形成される。
【0064】
この製造方法によれば、電極を所望の形状に成形できるため、例えば電極の膜厚を厚くすることが容易である。
【0065】
なお、この製造方法においても、触媒粒子、導電性粒子、プロトン伝導性物質の材料、比率などは前述した通りのものとすればよい。
【0066】
また、造孔剤は、所定の溶解剤、例えば酸性溶液、アルカリ性溶液などによって溶解され、水や有機溶媒などの前述の固形物中で溶解しないものを使用すればよく、具体的には炭酸リチウム、炭酸アンモニウム、フッ化リチウム、ポリビニルアルコール、ポリエチレンオキサイド、リンタングテン酸又とその塩、リンモリブテン酸とその塩、塩化アンモニウムなどを挙げることができるが、これらに限定されるわけではない。
【0067】
固形物中に占める造孔剤の組成比は、1wt%〜50wt%の範囲内、さらには5wt%〜30wt%の範囲内にすることが好ましい。1wt%より少ないとプロトン伝導性物質が細孔内に含浸できなったり、含浸したとしても電極内のプロトン伝導性物質の比率が低下してプロトン伝導性が低下する。50wt%を超えると細孔の比率が大きくなり電極の機械的な強度が弱まったり、触媒粒子や導電粒子の比率が低下するため触媒機能や導電機能がを十分に得られなくなる。
【0068】
また造孔剤の平均粒径は、0.01μm〜100μm程度にすることが好ましい。平均粒径が0.01μmよりも小さいと、電極に形成される細孔内にプロトン伝導物質が含浸できなくなるおそれがあり、100μmよりも大きいと、細孔の比表面積が小さくなるため細孔表面に付着するプロトン伝導性物質の量が低下してしまう。
【0069】
またバインダー樹脂としては、例えばポリオレフィン、ポリエステル、フッ素樹脂、ポリケトン、ポリエーテル、ポリサルフォンなどの熱可塑性樹脂を使用すればよい。
【0070】
バインダー樹脂の量は、触媒と導電性物質の合計100重量部に対して、10〜200重量部の範囲とすればよい。10重量部以下では、固形化物とした際の成形性が悪くなり、200重量部を超えるとバインダー樹脂が電気抵抗となり電極の導電機能が低下する。
【0071】
このようにして得られる集電体表面に形成された燃料極と、集電体表面に形成された酸化剤極とをプロトン伝導性膜を介して圧着することで本発明の燃料電池(起電部)が作製される。
【0072】
プロトン伝導性膜としては、電極材料として挙げたプロトン伝導性物質と同様な材料、すなわちスルホン酸基を持つフッ素系樹脂、タングステン酸あるいはリンタングステン酸などで作られたシートを使用すればよい。
【0073】
燃料電池を作製する際の圧着は、例えば100℃〜180℃、10〜200kg/cmの条件下で1分〜30分程度の条件で熱圧着すればよい。
【0074】
また、燃料電池の基本構成は図1に示したが、通常は図1に示す燃料電池セパレータで挟持したものを単セルとし、この単セルを積層した燃料電池を組み立てることで、所望の起電力を達成する。
【0075】
この単セルの断面図を図3に示す。
【0076】
起電部5は、一対のセパレータ31によって挟持されている。両セパレータ31は導電性材料であり、燃料極2あるいは酸化剤極4にそれぞれの集電体1を介して接続され、また、両セパレータ31間はプロトン導電性膜3によって電気的に絶縁されている。
【0077】
また、セパレータ31の集電体1側の面には複数の溝34が形成されており、この溝34に燃料あるいは酸化剤を供給することで、燃料極2あるいは酸化剤極4へ燃料あるいは酸化剤を供給する。
【0078】
このようにセパレータで仕切られた起電部を積層することで、起電部を直列接続し燃料電池の高出力化を可能にできる。
【0079】
【実施例】
(実施例1)
触媒粒子の作製
触媒担体としてSiO−Al粉末(エアロジル社製、MOX80、平均粒径0.03μm、比表面積80m/g、 Al含有量1%)を用い、この触媒担体20gを水1000mlにホノジナイザーを使って分散させ懸濁液を作製した。
【0080】
この懸濁液を、メカニカルスターラー、還流冷却管、滴下漏斗を取り付けたを3つ口フラスコに投入し、攪拌しながら1時間還流した後、白金系金属粒子の前駆体である塩化白金酸水溶液(Pt 42mg/ml)を160ml加えた。
【0081】
20分間攪拌し白金系金属粒子の前駆体を懸濁液中に均一に溶解した後、この懸濁液中に沈殿剤を添加し、白金系金属粒子の前駆体をPt(OH)化した。沈殿剤としては21.0gの炭酸水素ナトリウムを水600mlに溶かした溶液を用い、この溶液を60分間かけて徐々に滴下し、滴下後さらに懸濁液を2時間還流させて、この反応を終了させた。
【0082】
この懸濁液をろ過して得られた、Pt(OH)を担持した触媒担体を純水で洗浄した後、さらにこの触媒担体をフラスコに移し、純粋で2時間還流させ、ろ過し、沈殿物を純粋でよく洗浄した。このように洗浄を施した触媒担体を100℃の乾燥機で乾燥した。乾燥させた触媒担体を高純度ジルコニアボートに収納して円筒炉内に配置し、円筒炉内に3%H/Nで流量129mlでガスを流しながら200℃で10時間還元することで、 Pt(OH)を白金化することで、SiO−Al担体表面に白金微粒子を担持させた触媒粒子24.1gを得た。
【0083】
電極用組成物の調製
50mlポリ容器に得られた触媒粒子1g、純水2gとジルコニアボール(攪拌材:直径5mmを25gと直径10mmを50g)を加えて攪拌して水中に触媒粒子を分散させた懸濁液を得た。
【0084】
さらに、プロトン伝導性物質としてのスルホン酸基を有するフッ素樹脂(デュポン社製ナフィオン)を20%溶解した有機溶媒(1−プロパノール、エタノールと水の混合液)4.5gに、さらに有機溶媒である2−エトキシエタノール10gを加え、このプロトン伝導性物質を溶解した有機溶媒と前記懸濁液とを攪拌混合して混合液を得た。
【0085】
得られた混合液に導電性粒子としてのグラファイト(平均粒子径3μm)1gを加え、卓上型ボールミルで、6時間分散することで電極用組成物を調製した。
【0086】
電極の作製
電極の支持体として、集電体を兼ねる撥水処理済のカーボンペーパー(270μm、東レ社製)を準備し、この支持体上に得られた電極用組成物をコントロルコーター(ギャップ750μm)で塗布した後、電極用組成物を風乾して集電体表面に電極(カソード1)を作製した。得られた電極の厚さは110μmであった。
【0087】
(比較例1)
触媒担体としてカーボンブラック(デグサ社製 Printex L、比表面積が150m/g、平均粒径0.023μm)20gを用いたことを除き、実施例1と同様にして、カーボンブラック担体表面に白金微粒子を担持させた触媒粒子を作製した。ただし、還元後触媒を取り出す際は、ドライアイスで冷却すると共にCOによる不燃化処理をして触媒粒子を得た。
【0088】
この触媒粒子を使用したこと、導電性粒子を加えなかったことを除き、実施例1と同様にして集電体表面に電極(カソードa)を作製した。得られた電極の厚さは100μmであった。
【0089】
(実施例2)
触媒担体としてSiO−Al粉末(エアロジル社製、MOX170、比表面積170m/g、平均粒径0.015μm、Al含有量1%)10gを用いたことを除き、実施例1と全く同様にして、触媒粒子の作成、さらには電極(カソード2)の作成を行った。集電体表面に形成された電極の厚さは100μmであった。
【0090】
(実施例3)
白金系金属粒子の前駆体として、塩化白金酸水溶液120mlと塩化ルテニウム水溶液(Ru:43mg/ml)60mlを使用したことを除き、実施例1と同様にして触媒粒子を作製し、 SiO−Al担体表面にPt−Ru合金微粒子を担持させた触媒粒子を作製した。
【0091】
さらにこの触媒粒子を用いたこと、集電体として撥水処理を施したカーボンペーパー(厚さ350μm、東レ社製)を使用し、電極組成物をコントロールコーター(ギャップ900μm)で塗布したことを除き、実施例1と同様にして電極(アノード1)を作製した。
【0092】
(比較例2)
触媒担体としてカーボンブラック(デグサ社製 Printex L、比表面積が150m/g、平均粒径0.023μm)20gを用いたことを除き、実施例3と同様にして、カーボンブラック担体表面に白金微粒子を担持させた触媒粒子を作製した。ただし、還元後触媒を取り出す際は、ドライアイスで冷却すると共にCOによる不燃化処理をして触媒粒子を得た。
【0093】
この触媒粒子を使用したことを除き、実施例3と同様にして集電体表面に電極(アノードa)を作製した。得られた電極の厚さは140μmであった。
【0094】
(実施例4)
白金系金属粒子として、塩化白金酸水溶液80mlと塩化ルテニウム水溶液(Ru:43mg/ml)40mlとを使用したことを除き、実施例2と同様にして触媒粒子を作製し、 SiO−Al担体表面にPt−Ru合金微粒子を担持させた触媒粒子を作製した。
【0095】
この触媒粒子を使用したことを除き実施例3と同様にして集電体表面に電極(アノード2)を作製した。得られた電極の厚さは150μmであった。
【0096】
(実施例5)
触媒担体として、平均粒径0.050μm、比表面積50m/gのSiO粒子(日本アエロジル社製AEROSIL50)20gを使用したことを除き、実施例1と同様にして電極(カソード3)を作製した。得られた電極の厚さは110μmであった。
【0097】
(実施例6)
触媒担体として平均粒径0.02μm、比表面積170m/gのSiO粒子(日本アエロジル社製AEROSIL200)20gを使用したことを除き、実施例2と同様にして電極(カソード4)を作製した。得られた電極の厚さは100μmであった。
【0098】
(実施例7)
実施例2と同様にして得られた触媒粒子2gと水2gとをメノウ乳鉢に入れて混合した後、導電性粒子としてのグラファイト2g、ジエチレングリコール4g、造孔剤としての炭酸リチウム0.5gを加えて混練して均一に混合した。
【0099】
さらにバインダーとして熱可塑性の樹脂としてのPTFE(ポリテトラフルオロエチレン)を含有するPTFEディスパージョン1.5g(PTFE固形部60wt%)を加えて混練して全てを一体化した固形物とした。これをロールで延ばして膜厚約80μmのシート形状にした。これを6N硫酸の中に付け、造孔剤を溶解した後、水洗いを複数回繰り返した。この後、ろ紙で余剰の液体成分を吸い取り、さらに、このシート状の固形物を水中に入れ、さらにプロトン伝導性物質としてのスルホン酸基を有するフッ素樹脂(デュポン社製ナフィオン)を20%溶解した有機溶媒(1−プロパノール、エタノールと水の混合液)を添加し、攪拌した後、減圧下で乾燥して有機溶媒および水を除去し、シート状の電極(カソード3)を作製した。
【0100】
(実施例8)
実施例4と同様にして触媒粒子を作製し、この触媒粒子を使用したことを除き、実施例7と同様にして電極(アノード4)を作製した。
【0101】
実施例1乃至8および比較例1、2で使用した触媒担体、白金系金属粒子および導電性粒子を表1に示す。
【0102】
(実施例9〜13)
実施例1〜実施例6で作製された電極(および集電体)のうちの表1に示す2つの電極を使用して図3に示すような燃料電池の単セルを以下のようにして組み立てた。
【0103】
プロトン伝導性膜としては、膜厚200μmのスルホン酸基を有するフッ素樹脂(デュポン社製:ナフィオン117)を使用した。ぞれぞれの電極とプロトン伝導性膜との接触面積が10cmとなるように各電極(および集電体)を3.2cm×3.2cmに加工し、電極間にプロトン伝導性膜を挟み、125℃、10分間、100kg/cmの圧力で熱圧着して、燃料電池を作製した。
【0104】
アノード電極には燃料としての2Mメタノール溶液を流量0.6ml/min.で供給し、カソード電極には空気を60ml/min.を供給し、60℃、40mA/cmでの電極間に生じる電圧、およびこの燃料電池の閉回路電圧(OCV)を測定した。を測定して燃料電池評価を行った。その結果を表2に示す。
【0105】
(比較例3)
比較例1、2で得られた電極を用いたことを除き、実施例9と同様にして燃料電池を作製し、その評価を行った。その結果を表2に示す。
【0106】
(実施例14)
実施例1で使用したものと同じ集電体を2枚と、実施例9と同じプロトン伝導性膜を準備し、また、実施例7で得られた電極(カソード4)および実施例7で得られた電極(アノード4)を3.2cm×3.2cmに加工した。
【0107】
これらを集電体、カソード、プロトン伝導性膜、アノード、集電体の順で積層した後、これを125℃、30分、100kg/cmの圧力で熱圧着して、燃料電池を作製し、さらに実施例1と同様に燃料電池評価を行った。その結果を表2に示す。
【表1】

Figure 0003576108
【表2】
Figure 0003576108
以上の結果から、導電性粒子を加えることで、触媒粒子に導電性機能を持たない親水性のSiOを主成分とする触媒担体を使用した電極を用いた場合、実施例9乃至14に示すように、電池性能が向上することが分かる。
【0108】
また、SiOを主成分とする触媒担体のうち、ルイス酸を有する複合酸化物を使用したときに特に電池性能が向上していることが分かる。
【0109】
【発明の効果】
上述したように、本発明によれば、発電効率の高い電極、電極用組成物、それを用いた燃料電池をえることが可能になる。
【図面の簡単な説明】
【図1】本発明の燃料電池の基本構成を示す断面図。
【図2】本発明の電極の一例を示す概念図。
【図3】本発明の燃料電池の単セルを示す断面図。
【符号の説明】
1…集電体
2…燃料極
3…プロトン伝導性膜
4…酸化剤極
5…起電部
20…電極
21…触媒担体
22…白金系金属粒子
23…触媒粒子
24…導電性粒子
25…プロトン伝導性物質[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrode, a composition for an electrode, and a fuel cell using the same, and particularly to an electrode for transferring protons.ExtremeAnd a fuel cell using the same.
[0002]
[Prior art]
Fuel cells convert fuel chemical energy directly into electric energy by electrochemically oxidizing fuel such as hydrogen and methanol in the cell, and take out NOx by burning fuel like thermal power generation. Because there is no generation of SOx or SOx, it is attracting attention as a clean electric energy supply source.
[0003]
The electrode structure of a conventional fuel cell has, for example, a five-layer structure in which a cathode current collector / cathode / proton conductive membrane / anode / anode current collector are sequentially stacked.
[0004]
Electrodes such as anodes and cathodes are conventionally composed of a catalyst in which metal particles such as platinum or a platinum alloy are supported on the surface of a catalyst carrier such as carbon and a proton conductive material represented by, for example, a fluororesin having a sulfonic acid group. Compositions have been used. Carbon is used as the catalyst carrier because carbon is considered to be effective for extracting electrons generated on the surface of metal particles because carbon has conductivity.
[0005]
In order to uniformly disperse the catalyst and the proton conductive substance, it is usually necessary to mix the proton conductive substance with carbon fine particles in a state of being dissolved in an organic solvent. However, a catalyst in which metal particles such as platinum and an alloy thereof are supported on a carbon surface has a problem that it ignites when it comes into contact with an organic solvent (particularly alcohol) in an atmosphere containing oxygen.
[0006]
Therefore, when preparing the conventional electrode, first, the catalyst is dispersed in water to prevent the organic solvent from directly contacting the catalyst surface in the presence of air (oxygen), and then the organic solvent in which the proton conductive material is dissolved Then, after mixing to form a slurry, the organic solvent and water were volatilized to produce an electrode.
[0007]
However, when a fuel cell is assembled using the electrodes obtained in this manner, there is a problem that the cell characteristics vary, and in most cases, the fuel cell cannot efficiently generate power.
[0008]
[Problems to be solved by the invention]
As described above, when an electrode obtained by a conventional manufacturing method is used in a fuel cell, there is a problem that power cannot be efficiently generated.
[0009]
The present invention has been made in view of such a problem, and an object of the present invention is to provide an electrode having a high power generation efficiency, a composition for an electrode, a fuel cell using the same, and a method for producing an electrode.
[0010]
[Means for Solving the Problems]
The electrode of the present invention is obtained by converting metal particles composed of platinum or an alloy thereof to SiOTwoThe catalyst particles supported on the surface of the catalyst carrier having as a main component, the conductive particles, and the proton conductive materialWherein the catalyst support is SiO 2 Two A composite oxide exhibiting Lewis acidity containing at least 50 wt% of a componentIt is characterized by.
[0012]
The method for manufacturing an electrode according to the present invention comprises the steps of:2A catalyst particle dispersion step of preparing catalyst particle dispersion water by dispersing catalyst particles supported on the surface of a catalyst carrier containing as a main component, and containing an organic solvent in which a proton conductive substance is dissolved and the catalyst particle dispersion. A mixing step of preparing a mixed solution to be performed, the catalyst particle dispersion liquid, the organic solvent or a conductive particle dispersion step of dispersing conductive particles in the mixed liquid, and drying the mixed liquid, the water and the organic solvent And a drying step for removing
[0014]
The proton conductive substance may be dissolved in an organic solvent.
[0015]
The fuel cell of the present invention includes a fuel electrode to which a fuel containing a hydrogen element is supplied, an oxidant electrode to which oxygen is supplied, and a proton conductor layer sandwiched between the fuel electrode and the oxidant electrode. In the fuel cell provided, at least one of the fuel electrode and the oxidant electrode is made of a metal particle made of platinum or an alloy thereof formed of SiO.TwoContains catalyst particles supported on the surface of a catalyst carrier mainly composed of, conductive particles, and a proton conductive materialAnd the catalyst support is SiO 2 Two A composite oxide exhibiting Lewis acidity containing 50% by weight or more of a component.It is characterized by the following.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the basic configuration of a fuel cell is shown in FIG.
[0017]
In FIG. 1, a current collector 1, a fuel electrode 2, a proton conductive membrane 3, an oxidant electrode 4, and a current collector 1 are sequentially stacked to form a fuel cell (electric generator) 5.
[0018]
When a mixed fuel composed of methanol and water is supplied to the fuel electrode 2 and air (oxygen) is supplied to the oxidant electrode 4, a catalytic reaction represented by chemical formulas (1) and (2) occurs at each electrode.
[0019]
Fuel electrode: CH3OH + H2O → CO2+ 6H++ 6e  (1)
Oxidant electrode: 6H++ (3/2) O2+ 6e  → 3H2O (2)
As described above, the protons generated at the fuel electrode 2 move to the proton conductive membrane, the electrons move to one current collector 1, and the electrons supplied from the other current collector 1 and the proton conductivity move to the oxidant electrode 4. By reacting the proton supplied from the membrane 3 with oxygen, a current flows between the pair of current collectors 1.
[0020]
Therefore, each of the electrodes (the fuel electrode and the oxidizer electrode) has a catalyst particle that causes the reaction of the chemical formula (1) or the chemical formula (2), a conductive property between the catalyst particle and the current collector, and a catalyst particle. And proton conduction properties between the proton conductive membranes.
[0021]
In the present invention, by making the electrode structure as shown in FIG. 2, the above three characteristics can be efficiently exhibited.
[0022]
FIG. 2 is an enlarged view schematically showing the vicinity of the electrode of the present invention, which is composed of a catalyst carrier 21 and metal particles 22 of platinum or an alloy thereof exhibiting catalytic properties (hereinafter referred to as platinum-based metal particles). The electrode 20 is formed from the catalyst particles 23, the conductive particles 24, and the proton conductive material 25 to be formed.
[0023]
In the electrode 20, electrons move between the current collector 1 and the platinum-based metal particles 22 via the conductive particles 24, and protons are transferred through the platinum-based metal particles 22 and the proton-conductive film 4 via the proton-conductive substance 25. Move between. The electrode having such a configuration enables the catalyst particles 23 and the proton conductive substance to be uniformly dispersed, so that the above-described three characteristics including the proton conductivity can be efficiently exhibited.
[0024]
That is, an electrode composed of a catalyst particle and a proton conductive material, in which platinum-based metal particles are supported on the surface of a conventional carbon carrier (a catalyst carrier having a conductive function), has a high water-repellent carbon property in its manufacturing process. Even if the mixture is stirred together, the dispersion does not disperse uniformly and forms an aggregate, so that a proton conductive substance (a proton conductive substance dissolved in an organic solvent) cannot enter the aggregate. For this reason, the contact ratio between the catalyst particles (platinum-based metal particles) and the proton-conductive substance in the obtained electrode is reduced, and the protons generated by the platinum-based metal particles cannot be transferred to the proton-conductive membrane. Was.
[0025]
The present inventors disperse the conductive particles 24 in the electrode 20, as shown in FIG. 2, thereby enabling a hydrophilic material for the catalyst carrier 21. As a result, the platinum-based metal particles 22 It has been confirmed that the proton conduction efficiency with the conductive membrane 4 is increased, and that the power generation efficiency when used as a fuel cell is drastically improved, leading to the present invention.
[0026]
Hereinafter, the catalyst particles 23, the conductive particles 24, and the proton conductive substance 25 will be described in detail.
[0027]
<Catalyst particles 23>
The catalyst particles include platinum-based metal particles 22 and a catalyst carrier 21 that supports the platinum-based metal particles.
[0028]
The catalyst carrier according to the present invention does not need to have the conductive property as described above, and is a hydrophilic material such as SiO.2Alone or SiO2Can be used. SiO2The particles whose main component is SiO2And other components may be used.2-MxOy(M is an arbitrary element), and is preferably a particle containing at least 50 mol% of a SiO 2 component.
[0029]
In particular, SiO exhibiting Lewis acidity2-MxOyIt is preferable to use a composite oxide represented by the following formula, and for example, M is desirably at least one or more elements selected from elements in the second to sixth periods. More specific materials showing Lewis acidity include SiO 22-Al2O3, SiO2-B2O3, SiO2-WO3, SiO2-P2O5, SiO2-MoO3, SiO2-RuO2, SiO2-Ir2O3, SiO2-PtO2, SiO2-Rh2O3, SiO2-PdO, SiO2-ZrO2, SiO2-TiO2, SiO2-Hf2O3, SiO2-Al2O3-P2O5, SiO2-TiO2-P2O5  , SiO2-WO3-P2O5, SiO2-MnO2, SiO2-SnO2, etc., but are not limited thereto.
[0030]
The average particle size of the catalyst carrier is preferably in the range of 10 nm to 1 μm. When the average particle diameter is smaller than 10 nm, the productivity and handleability of the catalyst carrier become difficult, and when the average particle diameter is larger than 1 μm, the contact ratio of platinum-based metal particles in contact with the conductive particles described below decreases. The specific surface area (measured by the BET method) of the catalyst carrier is 10 to 2500 m2/ G range is good, especially 50-600m2/ G is good. When the specific surface area is smaller than 10, the amount of the platinum-based metal particles that can be supported is reduced, and the2If it exceeds / g, its synthesis is difficult and there is a problem in productivity.
[0031]
The platinum-based fine particles (fine particles made of platinum or an alloy thereof) according to the present invention are fine particles made of a metal that activates the reaction of the chemical formula (1) or the chemical formula (2) described above.
[0032]
Examples of the metal alloyed with platinum in the platinum alloy include platinum group elements such as Ru, Rh, Ir, Os, and Pd, and transition metals in the fourth to sixth cycles. Pt-Ru, Pt-Ru-Ir, Pt-Ru-Ir-Os, Pt-Ir, Pt-Mo, Pt-Fe, Pt-Co, Pt-Ni, Pt-W, Pt-Sn, Pt-Ce or Examples include alloys such as Pt-Re, but are not particularly limited thereto. The ratio of platinum to the other elements in the platinum alloy varies depending on the combination thereof, but the ratio of the other elements is usually adjusted so as to be in a range that forms a solid solution in platinum.
[0033]
In particular, it is preferable to use fine particles made of Pt as the oxidant electrode and Pt-Ru alloy as the fuel electrode.
[0034]
The platinum-based metal particles composed of such a material usually have an average particle size of about 1 to 10 nm.
[0035]
Next, an example of a method for supporting platinum-based metal particles on the surface of the catalyst carrier will be described.
[0036]
First, the catalyst support is suspended in water, heated to about 40 ° C. to 100 ° C., and then a precursor of platinum-based metal particles is added.
[0037]
In the case of obtaining platinum fine particles as platinum-based metal particles, for example, chloroplatinic acid (H2PtCl6), Dinitrodiaminoplatinum, second platinum chloride, first platinum chloride, bisacetylacetonato platinum, dichlorodiammine platinum, dichlorotetramine platinum, second platinum sulfate and the like. Further, when obtaining a platinum alloy as platinum-based metal particles, the precursor of platinum fine particles further ruthenium chloride, iridium chloride, osmium chloride, rhodium chloride, ferric chloride, cobalt chloride, chromium chloride, gold chloride, silver nitrate, A precursor to which an alloy component such as rhodium nitrate, palladium chloride, nickel nitrate, iron sulfate, and copper chloride is added may be used.
[0038]
By dissolving such a precursor in the suspension, the suspension is made an acidic solution.
[0039]
An alkali is added to the acidified suspension, and the suspension is heated appropriately to neutralize the suspension. For example, Pt (OH)4For example, a hydroxide of platinum or a metal constituting the platinum alloy is generated and supported on the surface of the catalyst carrier. The suspension is filtered and dried to obtain Pt (OH)4Thus, a catalyst carrier carrying the above is obtained. If necessary, washing and filtration of the catalyst particles may be repeated to further remove impurity ions generated by the neutralization reaction.
[0040]
Pt (OH)4Is placed in a reducing atmosphere, and Pt (OH)4The catalyst particles having platinum-based metal particles supported on the surface of the catalyst carrier can be obtained by reducing such as to generate platinum-based metal particles.
[0041]
The reducing atmosphere may be a temperature range of 100 ° C. to 900 ° C., preferably 200 ° C. to 500 ° C. in a gas atmosphere containing a reducing gas such as hydrogen. If the reduction temperature is lower than 100 ° C., the crystallization of the platinum-based metal particles becomes insufficient, and when used for an electrode, the particle diameter tends to increase. If the reduction temperature is higher than 900 ° C., the diameter of the platinum light metal particles increases, and the catalytic activity decreases.
[0042]
It is desirable that the supported amount of the platinum-based metal particles in the catalyst particles is 20 wt% to 80 wt%. If it is less than 20 wt%, the battery performance will not be obtained, and if it is more than 80 wt%, it will not be able to be properly supported on the catalyst carrier.
[0043]
<Conductive particles 24>
The material constituting the conductive particles can be used without particular limitation as long as it is a conductive material. For example, carbon materials such as carbon particles, carbon fibers or carbon nanotubes, and metal particles can be used. In particular, a carbon material is preferable in terms of cost reduction, mass productivity, and weight reduction of the electrode. Further, particles in which the surface of an insulating material such as a resin is coated with a conductive material can also be used. However, since protons move in the electrode, the electrode is in an acidic state when the electrode is used. Therefore, it is desirable to use a material having high acid resistance, for example, a carbon material or a noble metal material as the conductive material.
[0044]
As the average particle size of the conductive particles, those having a diameter of 5 nm to 50 μm can be used, and those having a diameter of 100 nm to 10 μm are particularly preferable. If the particle size of the conductive particles is smaller than 100 nm, the conductive particles may not come into contact with each other, a conductive path may not be formed in the electrode, and if the particle size is larger than 10 μm, the conductive particles may be uniformly formed in the electrode. It becomes difficult to disperse. In addition, the shape of the conductive particles is not limited to a spherical shape, and a fiber shape such as the carbon fiber described above can be used.By using the fiber-shaped conductive particles, the ratio of the conductive particles can be reduced. It is also possible to form conductive paths in the electrodes.
[0045]
The ratio of the conductive particles to the catalyst particles is preferably in the range of 10 parts by weight to 1000 parts by weight, more preferably 50 parts by weight to 500 parts by weight, based on 100 parts by weight of the catalyst particles. When the ratio of the conductive particles is less than 10 parts by weight, a conductive path cannot be secured, and when the ratio is more than 1000 parts by weight, the ratio of the catalyst particles decreases, and the catalytic function decreases.
[0046]
<Proton conductive substance 25>
The proton conductive substance can be used without any particular limitation as long as it can transmit protons. Examples include, but are not limited to, fluorine resins having a sulfonic acid group, such as Nafion (manufactured by DuPont), Flemion (manufactured by Asahi Kasei Corporation), and Ashbreck (manufactured by Asahi Glass), and inorganic substances such as tungstic acid and phosphotungstic acid. is not.
[0047]
The ratio of the proton conductive substance in the electrode is 1 to 1000 parts by weight, particularly 10 to 200 parts by weight, per 100 parts by weight of the catalyst particles. When the amount is less than 1 part by weight, the proton conductivity of the electrode cannot be sufficiently obtained, and when the amount is more than 1000 parts by weight, the ratio of the catalyst particles is reduced to deteriorate the catalytic function, or the ratio of the conductive particles is reduced and the conductive path is reduced. May not be formed.
[0048]
The electrode composed of these materials is preferably a porous body having a porosity of about 0.1% to 85%. When the porosity is less than 0.1%, the contact area of the electrode with the fuel or oxygen supplied to the electrode becomes small, and the catalytic reaction of the above-mentioned chemical formula (1) or (2) can be performed efficiently. It may not be possible. If the porosity is more than 85%, the probability of contact between the conductive particles decreases, and there is a possibility that a conductive path in the electrode may not be formed.
[0049]
Next, a method for manufacturing an electrode will be described.
[0050]
In the preparation of the electrode of the present invention, after preparing an electrode composition containing the above-described catalyst particles, conductive particles, proton conductive material, water and an organic solvent, the water and the organic solvent are removed by volatilization or the like. It can be obtained by: The materials of the catalyst particles, the conductive particles, and the proton conductive substance, and the respective ratios may be the same as those described above.
[0051]
For the electrode composition, for example, a dispersion water in which conductive particles are dispersed in an organic solvent in which a proton conductive substance is dissolved, and a suspension in which catalyst particles are dispersed in water are prepared, and both are sufficiently stirred and mixed. It is obtained by doing.
[0052]
The proton conductive substance was dissolved in the organic solvent because the proton conductive substance generally has low solubility in water and high solubility in the organic solvent. It becomes possible to disperse uniformly in an object. The organic solvent to be used is not particularly limited as long as it can dissolve the proton conductive substance. For example, ethanol, 1-propanol, and the like can be used. It is also possible to use liquids.
[0053]
In addition, the catalyst particles are dispersed in water because the platinum-based metal particles may ignite when they come into contact with an organic solvent in an oxygen atmosphere (in air). This is for bringing the solvent into contact.
[0054]
The conductive particles do not necessarily need to be dispersed in an organic solvent, and may be dispersed in water with a catalyst, for example, or in a mixed solution in which an organic solvent in which proton conductive particles are dissolved and a suspension of catalyst particles are mixed. Conductive particles may be added and dispersed in the mixture. However, when a material having a low affinity for water, such as a carbon material, is used as the conductive particles, if the conductive particles are administered directly into water, they may not be uniformly dispersed. It is preferable to mix with a suspension of catalyst particles after dispersing in a solvent. However, in the case of a carbon material that has been subjected to a hydrophilic treatment by surface oxidation or the like, there is no major problem even if it is directly administered to water.
[0055]
In this manner, the electrode composition can be obtained. However, the electrode composition in which only a more volatile organic solvent component is vaporized may be subjected to a film formation process described later.
[0056]
Further, in order to improve the film forming property of the electrode composition described later, water is added so that the ratio of the solid components (conductive particles and catalyst particles) in the electrode composition is in the range of 2 to 60 wt%. It is preferable to adjust the amount of the organic solvent.
[0057]
In addition, dispersion of conductive particles in an organic solvent, dispersion of catalyst particles in water, or stirring of a mixed solution containing conductive particles and catalyst particles, such as ball mill, sand mill, bead mill, paint shaker or nanomizer What is necessary is just to perform using a known disperser.
[0058]
The electrode composition thus obtained can form an electrode layer by, for example, using a current collector or the like as a support and applying it on the support and then drying.
[0059]
As the current collector, a material having gas permeability or liquid permeability, such as carbon cloth or carbon paper, is used. In addition, if necessary, the surface of the current collector may be subjected to a water-repellent treatment to adjust the film thickness of the composition for an electrode on the surface of the current collector.
[0060]
Further, the electrode of the present invention is not limited to the manufacturing method described above. For example, after a porous body composed of a catalyst, conductive particles and a binder resin is formed, a proton conductive substance can be produced on the pore surfaces of the porous body by the method described below. This manufacturing method will be specifically described.
[0061]
A suspension in which the catalyst particles are dispersed in water, a dispersion in which the conductive particles and the pore-forming agent are dispersed in an organic solvent in which a thermoplastic binder resin is dissolved is prepared, and the obtained suspension and dispersion are dispersed. The mixture is mixed to form a mixture, and the mixture that is kneaded while heating the mixture is an integrated solid.
[0062]
The solid is formed into a desired shape, dried if necessary, and then immersed in a dissolving agent to dissolve the pore-forming agent, thereby making the mixture porous.
[0063]
After the porous mixture is washed, it is immersed in an inorganic liquid such as water, and an organic solvent in which a proton conductive substance is dissolved in the liquid is added. As a result, the proton conductive material penetrates into the pores of the mixture. Further, the electrode of the present invention is formed by volatilizing water, an organic solvent, and the like existing in the pores.
[0064]
According to this manufacturing method, since the electrode can be formed into a desired shape, it is easy to increase the thickness of the electrode, for example.
[0065]
Also in this manufacturing method, the materials and ratios of the catalyst particles, the conductive particles, and the proton conductive substance may be the same as those described above.
[0066]
The pore-forming agent may be a predetermined dissolving agent, for example, a solution that is dissolved in an acidic solution, an alkaline solution, or the like and does not dissolve in the above-described solid such as water or an organic solvent. , Ammonium carbonate, lithium fluoride, polyvinyl alcohol, polyethylene oxide, lintangenic acid or a salt thereof, phosphomolybdic acid and a salt thereof, ammonium chloride, and the like, but are not limited thereto.
[0067]
The composition ratio of the pore-forming agent in the solid is preferably in the range of 1 wt% to 50 wt%, more preferably in the range of 5 wt% to 30 wt%. If the content is less than 1 wt%, the proton conductive substance cannot be impregnated into the pores, or even if the impregnation is performed, the ratio of the proton conductive substance in the electrode decreases, and the proton conductivity decreases. If it exceeds 50% by weight, the ratio of pores increases, the mechanical strength of the electrode decreases, and the ratio of catalyst particles and conductive particles decreases, so that a sufficient catalytic function and conductive function cannot be obtained.
[0068]
The average particle size of the pore-forming agent is preferably about 0.01 μm to 100 μm. When the average particle diameter is smaller than 0.01 μm, the proton conductive material may not be able to be impregnated in the pores formed in the electrode. When the average particle diameter is larger than 100 μm, the specific surface area of the pores becomes small, so that the pore surface becomes small. The amount of the proton conductive substance adhering to the surface decreases.
[0069]
As the binder resin, for example, a thermoplastic resin such as polyolefin, polyester, fluororesin, polyketone, polyether, and polysulfone may be used.
[0070]
The amount of the binder resin may be in the range of 10 to 200 parts by weight based on 100 parts by weight of the total of the catalyst and the conductive substance. If the amount is less than 10 parts by weight, the moldability of the solidified material will be poor. If the amount exceeds 200 parts by weight, the binder resin will have electrical resistance and the conductive function of the electrode will be reduced.
[0071]
The fuel electrode (electromotive force) according to the present invention is obtained by pressing the fuel electrode formed on the current collector surface and the oxidizer electrode formed on the current collector surface via a proton conductive membrane. Part) is produced.
[0072]
As the proton conductive membrane, a sheet made of the same material as the proton conductive substance mentioned as the electrode material, that is, a fluororesin having a sulfonic acid group, tungstic acid or phosphotungstic acid may be used.
[0073]
Compression bonding at the time of manufacturing a fuel cell is performed, for example, at 100 ° C. to 180 ° C. and at 10 to 200 kg / cm.2Thermocompression bonding may be performed for about 1 minute to 30 minutes.
[0074]
Although the basic configuration of the fuel cell is shown in FIG. 1, the desired electromotive force is usually obtained by assembling a single cell sandwiched between the fuel cell separators shown in FIG. To achieve.
[0075]
FIG. 3 shows a sectional view of this single cell.
[0076]
The electromotive unit 5 is sandwiched between a pair of separators 31. The separators 31 are made of a conductive material and are connected to the fuel electrode 2 or the oxidizer electrode 4 via the respective current collectors 1. The separators 31 are electrically insulated by the proton conductive film 3. I have.
[0077]
A plurality of grooves 34 are formed on the surface of the separator 31 on the side of the current collector 1. By supplying fuel or oxidant to the grooves 34, fuel or oxidant is supplied to the fuel electrode 2 or the oxidant electrode 4. Supply the agent.
[0078]
By laminating the electromotive sections partitioned by the separators in this way, the electromotive sections can be connected in series, and the output of the fuel cell can be increased.
[0079]
【Example】
(Example 1)
Preparation of catalyst particles
SiO as catalyst carrier2-Al2O3Powder (Aerosil, MOX80, average particle size 0.03 μm, specific surface area 80 m2/ G, Al2O3(Content 1%) and 20 g of this catalyst carrier was dispersed in 1000 ml of water using a honogenizer to prepare a suspension.
[0080]
The suspension was charged into a three-necked flask equipped with a mechanical stirrer, a reflux condenser, and a dropping funnel, and refluxed for 1 hour with stirring. 160 ml of Pt (42 mg / ml).
[0081]
After stirring for 20 minutes to uniformly dissolve the precursor of the platinum-based metal particles in the suspension, a precipitant is added to the suspension to convert the precursor of the platinum-based metal particles to Pt (OH).4It has become. As a precipitant, a solution prepared by dissolving 21.0 g of sodium bicarbonate in 600 ml of water was gradually added dropwise over 60 minutes, and after the addition, the suspension was refluxed for 2 hours to complete the reaction. I let it.
[0082]
Pt (OH) obtained by filtering this suspension4Was washed with pure water, then the catalyst carrier was transferred to a flask, refluxed with pure water for 2 hours, filtered, and the precipitate was thoroughly washed with pure water. The catalyst carrier thus washed was dried with a dryer at 100 ° C. The dried catalyst carrier is housed in a high-purity zirconia boat, placed in a cylindrical furnace, and 3% H2/ N2Pt (OH) by reducing at 200 ° C for 10 hours while flowing gas at a flow rate of 129 ml4Is converted to platinum, so that SiO2-Al2O324.1 g of catalyst particles having platinum fine particles supported on the support surface were obtained.
[0083]
Preparation of composition for electrode
1 g of the catalyst particles obtained in a 50 ml plastic container, 2 g of pure water and zirconia balls (25 g of a 5 mm diameter and 50 g of a 10 mm diameter) were added and stirred to obtain a suspension in which the catalyst particles were dispersed in water. Was.
[0084]
Further, 4.5 g of an organic solvent (a mixed solution of 1-propanol, ethanol and water) in which a fluororesin having a sulfonic acid group as a proton conductive substance (Nafion manufactured by DuPont) was dissolved by 20%, and an organic solvent was further added. 10 g of 2-ethoxyethanol was added, and the organic solvent in which the proton conductive material was dissolved and the suspension were stirred and mixed to obtain a mixed solution.
[0085]
1 g of graphite (average particle diameter: 3 μm) as conductive particles was added to the obtained mixture, and the mixture was dispersed in a table-top ball mill for 6 hours to prepare a composition for an electrode.
[0086]
Fabrication of electrodes
As a support for the electrode, a water-repellent treated carbon paper (270 μm, manufactured by Toray Industries Inc.), which also serves as a current collector, is prepared, and the obtained electrode composition is coated on the support with a control coater (gap: 750 μm). After that, the electrode composition was air-dried to form an electrode (cathode 1) on the surface of the current collector. The thickness of the obtained electrode was 110 μm.
[0087]
(Comparative Example 1)
Carbon black (Printex L, manufactured by Degussa, having a specific surface area of 150 m)2/ G, average particle size 0.023 μm), except that 20 g of the catalyst particles were prepared in the same manner as in Example 1 except that platinum fine particles were supported on the surface of the carbon black carrier. However, when removing the catalyst after reduction, cool it with dry ice and2To obtain catalyst particles.
[0088]
An electrode (cathode a) was formed on the surface of the current collector in the same manner as in Example 1, except that the catalyst particles were used and no conductive particles were added. The thickness of the obtained electrode was 100 μm.
[0089]
(Example 2)
SiO as catalyst carrier2-Al2O3Powder (Aerosil, MOX170, specific surface area 170m2/ G, average particle size 0.015 μm, Al2O3Except that 10 g (content 1%) was used, the preparation of the catalyst particles and the preparation of the electrode (cathode 2) were performed in exactly the same manner as in Example 1. The thickness of the electrode formed on the current collector surface was 100 μm.
[0090]
(Example 3)
Catalyst particles were prepared in the same manner as in Example 1, except that 120 ml of chloroplatinic acid aqueous solution and 60 ml of ruthenium chloride aqueous solution (Ru: 43 mg / ml) were used as precursors of the platinum-based metal particles.2-Al2O3Catalyst particles having Pt-Ru alloy fine particles supported on the support surface were produced.
[0091]
Further, except that the catalyst particles were used, and a water repellent carbon paper (thickness: 350 μm, manufactured by Toray Industries, Inc.) was used as a current collector, and the electrode composition was applied by a control coater (gap: 900 μm). An electrode (anode 1) was produced in the same manner as in Example 1.
[0092]
(Comparative Example 2)
Carbon black (Printex L, manufactured by Degussa, having a specific surface area of 150 m)2/ G, average particle size 0.023 μm), except that 20 g of catalyst particles were prepared in the same manner as in Example 3, except that platinum fine particles were supported on the surface of the carbon black carrier. However, when removing the catalyst after reduction, cool it with dry ice and2To obtain catalyst particles.
[0093]
An electrode (anode a) was formed on the surface of the current collector in the same manner as in Example 3, except that the catalyst particles were used. The thickness of the obtained electrode was 140 μm.
[0094]
(Example 4)
Catalyst particles were prepared in the same manner as in Example 2, except that 80 ml of chloroplatinic acid aqueous solution and 40 ml of ruthenium chloride aqueous solution (Ru: 43 mg / ml) were used as the platinum-based metal particles.2-Al2O3Catalyst particles having Pt-Ru alloy fine particles supported on the support surface were produced.
[0095]
An electrode (anode 2) was formed on the surface of the current collector in the same manner as in Example 3 except that the catalyst particles were used. The thickness of the obtained electrode was 150 μm.
[0096]
(Example 5)
As catalyst carrier, average particle size 0.050 μm, specific surface area 50 m2/ G SiO2An electrode (cathode 3) was produced in the same manner as in Example 1, except that 20 g of particles (Aerosil 50 manufactured by Nippon Aerosil Co., Ltd.) was used. The thickness of the obtained electrode was 110 μm.
[0097]
(Example 6)
Average particle size 0.02 μm, specific surface area 170 m as catalyst carrier2/ G SiO2An electrode (cathode 4) was produced in the same manner as in Example 2, except that 20 g of particles (AEROSIL 200 manufactured by Nippon Aerosil Co., Ltd.) was used. The thickness of the obtained electrode was 100 μm.
[0098]
(Example 7)
After 2 g of catalyst particles and 2 g of water obtained in the same manner as in Example 2 were mixed in an agate mortar, 2 g of graphite as conductive particles, 4 g of diethylene glycol, and 0.5 g of lithium carbonate as a pore-forming agent were added. And kneaded to mix uniformly.
[0099]
Further, 1.5 g (PTFE solid part 60 wt%) of a PTFE dispersion containing PTFE (polytetrafluoroethylene) as a thermoplastic resin was added and kneaded to obtain a solid body in which everything was integrated. This was rolled to form a sheet having a thickness of about 80 μm. This was placed in 6N sulfuric acid to dissolve the pore-forming agent, and then repeatedly washed with water several times. Thereafter, the excess liquid component was sucked off with a filter paper, and the sheet-like solid substance was put into water. Further, 20% of a fluororesin having a sulfonic acid group as a proton conductive substance (Dafon Nafion) was dissolved. An organic solvent (a mixture of 1-propanol, ethanol and water) was added, and the mixture was stirred and dried under reduced pressure to remove the organic solvent and water, thereby producing a sheet-like electrode (cathode 3).
[0100]
(Example 8)
Catalyst particles were produced in the same manner as in Example 4, and an electrode (anode 4) was produced in the same manner as in Example 7, except that the catalyst particles were used.
[0101]
Table 1 shows the catalyst carriers, platinum-based metal particles, and conductive particles used in Examples 1 to 8 and Comparative Examples 1 and 2.
[0102]
(Examples 9 to 13)
Using the two electrodes shown in Table 1 among the electrodes (and current collectors) produced in Examples 1 to 6, a single cell of a fuel cell as shown in FIG. 3 was assembled as follows. Was.
[0103]
As the proton conductive membrane, a fluorocarbon resin having a thickness of 200 μm and having a sulfonic acid group (manufactured by DuPont: Nafion 117) was used. The contact area between each electrode and the proton conductive membrane is 10 cm2Each electrode (and the current collector) was processed to 3.2 cm × 3.2 cm so that the proton conductive membrane was interposed between the electrodes, and the temperature was set at 125 ° C. for 10 minutes at 100 kg / cm.2To obtain a fuel cell.
[0104]
A 2 M methanol solution as a fuel was supplied to the anode electrode at a flow rate of 0.6 ml / min. And air was supplied to the cathode electrode at 60 ml / min. At 60 ° C. and 40 mA / cm2And the closed circuit voltage (OCV) of the fuel cell was measured. Was measured for fuel cell evaluation. Table 2 shows the results.
[0105]
(Comparative Example 3)
A fuel cell was fabricated and evaluated in the same manner as in Example 9, except that the electrodes obtained in Comparative Examples 1 and 2 were used. Table 2 shows the results.
[0106]
(Example 14)
The same current collectors as those used in Example 1 and the same proton conductive membrane as in Example 9 were prepared, and the electrode (cathode 4) obtained in Example 7 and the electrode obtained in Example 7 were obtained. The obtained electrode (anode 4) was processed to 3.2 cm × 3.2 cm.
[0107]
After laminating these in order of a current collector, a cathode, a proton conductive membrane, an anode, and a current collector, the laminate was placed at 125 ° C. for 30 minutes at 100 kg / cm.2A fuel cell was produced by thermocompression bonding at a pressure of, and the fuel cell was evaluated in the same manner as in Example 1. Table 2 shows the results.
[Table 1]
Figure 0003576108
[Table 2]
Figure 0003576108
From the above results, by adding the conductive particles, the catalyst particles have hydrophilic SiO 2 having no conductive function.2As shown in Examples 9 to 14, it is found that the performance of the battery is improved when the electrode using the catalyst carrier mainly composed of is used.
[0108]
In addition, SiO2It can be seen that among the catalyst carriers mainly containing, the use of a composite oxide having a Lewis acid particularly improves the battery performance.
[0109]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain an electrode having high power generation efficiency, an electrode composition, and a fuel cell using the same.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a basic configuration of a fuel cell according to the present invention.
FIG. 2 is a conceptual diagram showing an example of an electrode of the present invention.
FIG. 3 is a sectional view showing a single cell of the fuel cell of the present invention.
[Explanation of symbols]
1 ... current collector
2. Fuel electrode
3: Proton conductive membrane
4: Oxidizer electrode
5 ... electromotive part
20 ... electrode
21 ... catalyst carrier
22 ... Platinum-based metal particles
23 ... catalyst particles
24 ... conductive particles
25 ... Proton conductive material

Claims (3)

白金またはその合金からなる金属粒子をSiO2を主成分とする触媒担体表面に担持する触媒粒子と、導電性粒子と、プロトン伝導性物質とを有し、
前記触媒担体は、SiO 2 成分を50wt%以上含有するルイス酸性を呈する複合酸化物であることを特徴とする電極。
Catalyst particles carrying metal particles made of platinum or an alloy thereof on a catalyst carrier surface containing SiO 2 as a main component, conductive particles, and a proton conductive material ,
An electrode, wherein the catalyst carrier is a Lewis acidic composite oxide containing 50 wt% or more of a SiO 2 component .
白金またはその合金からなる金属粒子をSiOMetal particles made of platinum or an alloy thereof are made of SiO 2Two を主成分とする触媒担体表面に担持する触媒粒子を水中に分散して触媒粒子分散水を調製する触媒粒子分散工程と、A catalyst particle dispersion step of preparing catalyst particle dispersion water by dispersing the catalyst particles carried on the surface of the catalyst carrier containing as a main component a water,
プロトン伝導性物質を溶解した有機溶媒と前記触媒粒子分散液とを含有する混合液を調製する混合工程と、  A mixing step of preparing a mixed solution containing an organic solvent in which the proton conductive substance is dissolved and the catalyst particle dispersion liquid,
前記触媒粒子分散液、前記有機溶媒あるいは前記混合液中に導電性粒子を分散させる導電粒子分散工程と、  Conductive particle dispersion step of dispersing conductive particles in the catalyst particle dispersion, the organic solvent or the mixture,
前記混合液を乾燥し、前記水および前記有機溶媒を除去する乾燥工程とを有することを特徴とする電極の製造方法。  Drying the mixed solution to remove the water and the organic solvent.
水素元素を含有する燃料が供給される燃料極と、酸素が供給される酸化剤極と、前記燃料極および酸化剤極とに挟持されてなるプロトン伝導体層とを具備する燃料電池において、In a fuel cell including a fuel electrode to which a fuel containing a hydrogen element is supplied, an oxidant electrode to which oxygen is supplied, and a proton conductor layer sandwiched between the fuel electrode and the oxidant electrode,
前記燃料極および前記酸化剤極の少なくとも一方は、白金またはその合金からなる金属粒子をSiO  At least one of the fuel electrode and the oxidant electrode is formed by depositing metal particles made of platinum or an alloy thereof with SiO. 2Two を主成分とする触媒担体表面に担持する触媒粒子と、導電性粒子と、プロトン伝導性物質とを含有し、Containing catalyst particles supported on the surface of the catalyst carrier having as a main component, conductive particles, and a proton conductive material,
前記触媒担体は、SiO  The catalyst support is SiO 2 2Two 成分を50wt%以上含有するルイス酸性を呈する複合酸化物であることを特徴とする燃料電池。A fuel cell characterized by being a Lewis acidic composite oxide containing 50% by weight or more of a component.
JP2001036890A 2001-02-14 2001-02-14 Electrode, fuel cell using the same, and method of manufacturing electrode Expired - Fee Related JP3576108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001036890A JP3576108B2 (en) 2001-02-14 2001-02-14 Electrode, fuel cell using the same, and method of manufacturing electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001036890A JP3576108B2 (en) 2001-02-14 2001-02-14 Electrode, fuel cell using the same, and method of manufacturing electrode

Publications (2)

Publication Number Publication Date
JP2002246033A JP2002246033A (en) 2002-08-30
JP3576108B2 true JP3576108B2 (en) 2004-10-13

Family

ID=18900100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001036890A Expired - Fee Related JP3576108B2 (en) 2001-02-14 2001-02-14 Electrode, fuel cell using the same, and method of manufacturing electrode

Country Status (1)

Country Link
JP (1) JP3576108B2 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0200253D0 (en) * 2002-01-08 2002-02-20 Johnson Matthey Plc Improved material for electrode manufacture
US7569302B2 (en) 2002-11-05 2009-08-04 Panasonic Corporation Fuel cell for generating electric power
JP2004273434A (en) * 2003-02-20 2004-09-30 Jsr Corp Paste composition for electrode
JP2005209544A (en) * 2004-01-23 2005-08-04 Tomoegawa Paper Co Ltd Catalyst film for solid polymer electrolyte fuel cell, catalyst slurry used for it, its manufacturing method and film-electrode junction using it, and solid polymer electrolyte fuel cell
JP3867232B2 (en) 2004-03-25 2007-01-10 株式会社 東北テクノアーチ Catalyst nanoparticles
KR100551035B1 (en) * 2004-04-27 2006-02-13 삼성에스디아이 주식회사 Catalist for fuel cell, preparation method thereof, and fuel cell system comprising the same
JP2005334685A (en) * 2004-05-24 2005-12-08 Takayuki Abe Fine particle
JP4817622B2 (en) * 2004-07-12 2011-11-16 株式会社巴川製紙所 Method for producing gas diffusion electrode for polymer electrolyte fuel cell
JP2006092926A (en) * 2004-09-24 2006-04-06 Jsr Corp Paste composition for electrode and electrode layer manufactured from composition
JP2006210135A (en) * 2005-01-28 2006-08-10 Sony Corp Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device
JP4992185B2 (en) 2005-02-24 2012-08-08 トヨタ自動車株式会社 Catalyst for fuel cell, membrane electrode composite, and solid polymer electrolyte fuel cell
JP4693442B2 (en) * 2005-03-03 2011-06-01 大日本印刷株式会社 Gas diffusion electrode, manufacturing method thereof, and electrode-electrolyte membrane laminate
WO2006100982A1 (en) * 2005-03-18 2006-09-28 Nippon Shokubai Co., Ltd. Electrode catalyst for fuel cell
JP2007035289A (en) * 2005-07-22 2007-02-08 Nippon Shokubai Co Ltd Electrode catalyst for fuel cell, electrode composition, and fuel cell
WO2006124248A2 (en) * 2005-05-16 2006-11-23 General Motors Global Technology Operations, Inc. Catalyst for fuel cell electrode
EP1887642A4 (en) * 2005-05-25 2009-03-25 Nissan Motor Electrode material for fuel cell and fuel cell
JP4461088B2 (en) 2005-09-29 2010-05-12 株式会社東芝 Fuel cell electrode, membrane electrode composite, and fuel cell
JP4889413B2 (en) * 2006-09-04 2012-03-07 三菱電機株式会社 Conductive composition
JP5017981B2 (en) * 2006-09-21 2012-09-05 凸版印刷株式会社 Varnish for forming catalyst electrode for fuel cell, method for producing the same, and method for producing catalyst electrode using the same
KR20080042551A (en) * 2006-11-10 2008-05-15 삼성에스디아이 주식회사 Electrode for fuel cell, membrane-electrode assembly comprising same and fuel cell system comprising same
WO2008084713A1 (en) * 2006-12-27 2008-07-17 Toyota Jidosha Kabushiki Kaisha Composite powder for fuel cell, method for manufacturing the composite powder, electrode for fuel cell, and method for manufacturing membrane electroe structure
JP5166842B2 (en) 2007-06-11 2013-03-21 トヨタ自動車株式会社 ELECTRODE CATALYST FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL USING THE ELECTRODE CATALYST
JP5196988B2 (en) * 2007-12-21 2013-05-15 スリーエム イノベイティブ プロパティズ カンパニー Ink composition, method for producing the same, electrode catalyst layer formed using the ink composition, and uses thereof
WO2010033111A1 (en) 2008-09-17 2010-03-25 Utc Power Corporation Fuel cell catalyst support with fluoride-doped metal oxides/phosphates and method of manufacturing same
CN102388492A (en) * 2009-02-10 2012-03-21 Utc电力公司 Fuel cell catalyst with metal oxide/phosphate support structure and method of manufacturing same
KR101107073B1 (en) * 2009-06-05 2012-01-20 삼성에스디아이 주식회사 Catalist for fuel cell and fuel cell system including the same
WO2011040059A1 (en) * 2009-09-29 2011-04-07 凸版印刷株式会社 Method for producing electrode catalyst layer for fuel cell, membrane electrode assembly using same, solid polymer fuel cell, and composite particles
JP5358408B2 (en) * 2009-11-26 2013-12-04 株式会社日立製作所 Membrane electrode assembly and fuel cell using the same
EP2704239A1 (en) * 2012-08-29 2014-03-05 SolviCore GmbH & Co KG Colloidal dispersions comprising precious metal particles and acidic ionomer components and methods of their manufacture and use
KR101881209B1 (en) * 2016-07-29 2018-07-23 울산과학기술원 Self-supported mesoporous structure nanometal catalysts, manufacturing method thereof and fuel cell comprising the same
KR102230982B1 (en) 2018-01-26 2021-03-22 주식회사 엘지화학 Method for preparing catalyst layer, catalyst layer and membrane-electrode assembly and fuel cell comprising the same

Also Published As

Publication number Publication date
JP2002246033A (en) 2002-08-30

Similar Documents

Publication Publication Date Title
JP3576108B2 (en) Electrode, fuel cell using the same, and method of manufacturing electrode
JP4629699B2 (en) Supported catalyst and production method thereof, electrode and fuel cell using the same
JP4971898B2 (en) Supported catalyst for fuel cell and method for producing the same, electrode for fuel cell including the supported catalyst, membrane electrode assembly including the electrode, and fuel cell including the membrane electrode assembly
JP5322110B2 (en) Manufacturing method of cathode electrode material for fuel cell, cathode electrode material for fuel cell, and fuel cell using the cathode electrode material
JP4083721B2 (en) High concentration carbon supported catalyst, method for producing the same, catalyst electrode using the catalyst, and fuel cell using the same
JP4197683B2 (en) Catalyst for fuel cell electrode, fuel cell electrode, membrane electrode assembly, and fuel cell
JP4656572B2 (en) ELECTRODE FOR FUEL CELL, METHOD FOR PRODUCING ELECTRODE FOR FUEL CELL, AND FUEL CELL
US20080020924A1 (en) Method of fabricating platinum alloy electrocatalysts for membrane fuel cell applications
CN105609786B (en) Catalyst layer
WO2010131536A1 (en) Catalyst electrode, fuel cell, air cell and method for generating electric power
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
CN101808735A (en) Catalyst
CN106415905A (en) Membrane electrode assembly
JP2003036859A (en) Solid polymer type fuel cell and its fabrication method
JP6295993B2 (en) Method for producing electrode for fuel cell
KR20100068029A (en) Method for preparing catalyst slurry for fuel cell
JP5432443B2 (en) Membrane electrode assembly and fuel cell
JP2008041498A (en) Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP3824487B2 (en) Catalyst production method
JP3649686B2 (en) Method for producing electrode for polymer electrolyte fuel cell
JP2009076359A (en) Supported catalyst for fuel cell, electrode using it and fuel cell
JP2008270169A (en) Fuel cell
JP2003317737A (en) Fuel cell, catalyst electrode using it and solid electrolyte film
JP2005183263A (en) Porous structure
JP2005141966A (en) Catalyst-carrying electrode, mea for fuel cell, and the fuel cell

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees