JP5372410B2 - Exhaust gas purification catalyst, exhaust gas purification catalyst paint and diesel exhaust gas purification filter - Google Patents

Exhaust gas purification catalyst, exhaust gas purification catalyst paint and diesel exhaust gas purification filter Download PDF

Info

Publication number
JP5372410B2
JP5372410B2 JP2008150015A JP2008150015A JP5372410B2 JP 5372410 B2 JP5372410 B2 JP 5372410B2 JP 2008150015 A JP2008150015 A JP 2008150015A JP 2008150015 A JP2008150015 A JP 2008150015A JP 5372410 B2 JP5372410 B2 JP 5372410B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
noble metal
gas purification
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008150015A
Other languages
Japanese (ja)
Other versions
JP2009291753A (en
Inventor
浩一 湯崎
達郎 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2008150015A priority Critical patent/JP5372410B2/en
Publication of JP2009291753A publication Critical patent/JP2009291753A/en
Application granted granted Critical
Publication of JP5372410B2 publication Critical patent/JP5372410B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst which can be suitably used for oxidizes harmful gas components by burning the PM of diesel engine exhaust gas at low temperature and can reduce the content of an expensive noble metal element. <P>SOLUTION: In the exhaust gas clarifying catalyst, a composite oxide having a perovskite structure and a noble metal/oxide catalyst in which the noble metal is supported on an oxide are mixed mechanically in a prescribed ratio. The composite oxide is La<SB>x</SB>Ba<SB>1-x</SB>FeO<SB>3</SB>(0.6&le;x&le;0.9). and the noble metal/oxide catalyst is Pt/Al<SB>2</SB>O<SB>3</SB>. The mixing ratio between the composite oxide and the noble metal/oxide catalyst is 9:1-8:2. A coating for the exhaust gas clarifying catalyst contains the exhaust gas clarifying catalyst, a solvent, and an inorganic binder. A diesel exhaust gas clarifying filter has a porous filter and an exhaust gas clarifying catalyst layer containing the exhaust gas clarifying catalyst and the inorganic binder which is formed on the surface of the porous filter. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、自動車等のディーゼルエンジンから排出されるPM(粒子状物質)を燃焼させるのに適した複合酸化物からなる排ガス浄化触媒、およびそれを用いた触媒用塗料とその塗料を基材上に塗布したディーゼル排ガス浄化用フィルタに関する。   The present invention relates to an exhaust gas purification catalyst composed of a composite oxide suitable for burning PM (particulate matter) discharged from a diesel engine such as an automobile, and a catalyst paint using the same and a paint on the substrate. The present invention relates to a filter for purifying diesel exhaust gas applied to a filter.

ディーゼルエンジン排ガスの問題として、炭化水素系化合物(HC)、一酸化炭素(CO)窒素酸化物(NO)といったガス有害成分とカーボンを主体とする微粒子(以後「PM」とも言う。)が排ガス中に含まれ、環境汚染の原因となる点が挙げられる。 As a problem of diesel engine exhaust gas, harmful gases such as hydrocarbon compounds (HC), carbon monoxide (CO) nitrogen oxide (NO x ) and fine particles mainly composed of carbon (hereinafter also referred to as “PM”) are exhaust gas. It is included inside and causes environmental pollution.

ガス有害成分の除去にはアルミナ(Al)などの金属酸化物担体に白金(Pt)やパラジウム(Pd)やロジウム(Rh)などの触媒活性を有する貴金属粒子を担持した排ガス浄化触媒が利用されている。 An exhaust gas purification catalyst in which noble metal particles having catalytic activity such as platinum (Pt), palladium (Pd), and rhodium (Rh) are supported on a metal oxide support such as alumina (Al 2 O 3 ) is used to remove harmful gas components. It's being used.

一方、PMを除去する一般的な方法としては、排気ガス流路に多孔質体セラミックスからなるディーゼル・パーティキュレート・フィルタ(DPF)を設置してPMを捕集(トラップ)する方法が挙げられる。DPFにはPMが蓄積されてゆくが、捕集されたPMを間欠的または連続的に燃焼処理してPMを除去することで、DPFをPM捕集前の状態に再生することができる。   On the other hand, as a general method for removing PM, there is a method of collecting PM (trap) by installing a diesel particulate filter (DPF) made of porous ceramics in an exhaust gas passage. PM accumulates in the DPF, but the DPF can be regenerated to the state before PM collection by removing the PM by intermittently or continuously burning the collected PM.

このDPF再生処理には、電気ヒーターやバーナー等、外部からの強制加熱によりPMを燃焼させる方法、DPFよりもエンジン側に酸化触媒を設置し、排ガス中に含まれるNOを酸化触媒によりNOにし、NOの酸化力によりPMを燃焼させる方法などが一般的に用いられている。 In this DPF regeneration process, a method of burning PM by forced heating from the outside, such as an electric heater or a burner, an oxidation catalyst is installed on the engine side of the DPF, and NO contained in the exhaust gas is converted to NO 2 by the oxidation catalyst. A method of burning PM by the oxidizing power of NO 2 is generally used.

しかし、電気ヒーターやバーナーを使用するには外部に動力源を設置する必要があり、それらを確保、動作するための機構等が別途必要になるため排ガス浄化システムそのものが複雑化する。また、酸化触媒については触媒活性が十分発揮されるほど排ガス温度が高くないことや、ある一定の運転状況下でなければPM燃焼に必要なNOが排ガス中に含まれないといった種々の問題がある。   However, in order to use an electric heater or a burner, it is necessary to install a power source outside, and since a mechanism for securing and operating them is required separately, the exhaust gas purification system itself becomes complicated. In addition, the oxidation catalyst has various problems such that the exhaust gas temperature is not so high that the catalytic activity is sufficiently exerted, and NO required for PM combustion is not contained in the exhaust gas unless it is under a certain operating condition. .

そこで、DPFのより望ましい再生処理方法として、DPFそのものに触媒を担持させ、その触媒作用によりPMの燃焼開始温度を低下させた上で、PMを燃焼させる方法が検討されている。そして究極的な目標としては排ガス温度にて連続的に燃焼させる方法が最も望ましいとされている。   Therefore, as a more preferable regeneration treatment method of DPF, a method is considered in which a catalyst is supported on DPF itself, and the PM combustion start temperature is lowered by the catalytic action, and then PM is combusted. And as the ultimate goal, the method of burning continuously at the exhaust gas temperature is most desirable.

現在ではPMの燃焼開始温度を低下させる種々の触媒が提案されている。特許文献1には酸化セリウムを主体としたPM燃焼用の触媒が開示されている。さらに特許文献2乃至4には、Pt等の貴金属元素を含まないセリアの複合酸化物を基材とした酸化触媒として、CeとBiあるいはさらに遷移金属元素を含有する混合物が開示されている。また、特許文献5にはペブロスカイト構造を有するPM燃焼用触媒が開示されている。   At present, various catalysts that lower the combustion start temperature of PM have been proposed. Patent Document 1 discloses a catalyst for PM combustion mainly composed of cerium oxide. Further, Patent Documents 2 to 4 disclose a mixture containing Ce and Bi or a transition metal element as an oxidation catalyst based on a ceria composite oxide not containing a noble metal element such as Pt. Patent Document 5 discloses a PM combustion catalyst having a perovskite structure.

さて、ディーゼルエンジンの排ガスシステムでは、排気管の途中に排ガス浄化部を設けてガス有害成分やPMを除去する。しかし、ガス有害成分とPMは除去の方法が異なるため、触媒の配置には工夫が必要となる。   Now, in the exhaust gas system of a diesel engine, an exhaust gas purification part is provided in the middle of the exhaust pipe to remove gas harmful components and PM. However, since the method of removing gas harmful components and PM are different, it is necessary to devise the arrangement of the catalyst.

PMは基本的にフィルタで除去し、フィルタに蓄積したPMを触媒を使い低温で燃焼させるため、PM燃焼用触媒はフィルタのエンジン側の壁面に配置させておくのがよい。この部分にPMは蓄積されるからである。   Since PM is basically removed by a filter and the PM accumulated in the filter is burned at a low temperature using a catalyst, the PM combustion catalyst is preferably disposed on the wall of the filter on the engine side. This is because PM is accumulated in this portion.

一方、ガス有害成分は、フィルタを通過するために、ガス有害成分燃焼用触媒は、フィルタより大気開放側に配置する。これはフィルタよりエンジン側であって、PM燃焼用触媒より大気開放側にあってもよい。すなわち、フィルタのエンジン側壁面にガス有害成分燃焼用触媒とPM燃焼用触媒をこの順で積層する構造にしても構わない。   On the other hand, since harmful gas components pass through the filter, the harmful gas component combustion catalyst is arranged on the open side of the atmosphere from the filter. This may be closer to the engine than the filter and closer to the atmosphere than the PM combustion catalyst. That is, a structure in which a gas harmful component combustion catalyst and a PM combustion catalyst are laminated in this order on the engine sidewall of the filter may be used.

特開2007−245054号公報JP 2007-245054 A 特開平6−211525号公報Japanese Patent Laid-Open No. 6-211525 特開2003−238159号公報JP 2003-238159 A 特開2006−224032号公報JP 2006-224032 A 特開2007−237012号公報Japanese Patent Laid-Open No. 2007-237012

ガス有害成分燃焼用触媒は、貴金属を用いているため高価になる点が問題である。しかし、上記で説明したように、ガス有害成分とPMは除去する仕組みが異なるため、ガス有害成分燃焼用触媒は、ガス有害成分の除去に必要な貴金属を含有する必要があった。すなわち、PMとガス有害成分を除去する排ガス浄化システムにおいて、貴金属の使用を低減できないという課題があった。   The problem is that gas poisoning combustion catalysts are expensive because they use precious metals. However, as described above, since the mechanism for removing the gas harmful component and PM is different, the gas harmful component combustion catalyst needs to contain a noble metal necessary for removing the gas harmful component. That is, there has been a problem that the use of noble metals cannot be reduced in an exhaust gas purification system that removes PM and gas harmful components.

本発明者は、かかる目的を達成するため鋭意研究を重ねた結果、ペブロスカイト構造を有する複合酸化物に貴金属含有触媒を物理的に混合することで、貴金属元素の量が少なくてもガス有害成分の除去に優れた排ガス除去触媒を得ることができることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor has physically mixed a noble metal-containing catalyst with a composite oxide having a perovskite structure, so that even if the amount of noble metal element is small, the gas harmful component can be obtained. It has been found that an exhaust gas removal catalyst excellent in removal can be obtained, and the present invention has been completed.

即ち、本発明の排ガス浄化触媒は、ペロブスカイト構造の複合酸化物であるLaBa1−xFeO(0.6≦x≦0.9)と、貴金属を酸化物に担持させた酸化物担持貴金属触媒であるPt/Al のみを、それぞれ9:1乃至8:2の混合比で混合した排ガス浄化触媒である。 That is, the exhaust gas purifying catalyst of the present invention includes La x Ba 1-x FeO 3 (0.6 ≦ x ≦ 0.9), which is a complex oxide having a perovskite structure, and an oxide support in which a noble metal is supported on an oxide. This is an exhaust gas purification catalyst in which only Pt / Al 2 O 3 which is a noble metal catalyst is mixed at a mixing ratio of 9: 1 to 8: 2.

また、この排ガス浄化触媒を含む塗料と、その塗料を多孔質フィルタに塗布したDPFをも提供するものである。   The present invention also provides a paint containing the exhaust gas purifying catalyst and a DPF in which the paint is applied to a porous filter.

本発明の排ガス浄化触媒は、ペロブスカイト構造の複合酸化物と、貴金属を酸化物に担持させた酸化物担持貴金属触媒を混合したことで、同じ貴金属含有触媒を用いた場合でも、ガス有害成分の除去能力が向上する。すなわち、有害成分の除去能力が同じであれば貴金属の使用量を低減できるという効果を奏する。また、本発明の排ガス浄化触媒は、PM用およびガス有害成分用の触媒が混合された状態にあるため、これを塗料にすれば、多孔質のフィルタ基材に1度の塗布で触媒付DPFを作製することができるという効果も奏する。   The exhaust gas purifying catalyst of the present invention is a mixture of a perovskite structure composite oxide and an oxide-supported noble metal catalyst in which a noble metal is supported on an oxide, so that even when the same noble metal-containing catalyst is used, removal of harmful gas components Ability improves. That is, if the removal ability of harmful components is the same, there is an effect that the amount of noble metal used can be reduced. Further, since the exhaust gas purifying catalyst of the present invention is in a state where a catalyst for PM and a harmful gas component is mixed, if this is used as a paint, the DPF with catalyst can be applied once to a porous filter substrate. The effect that can be produced is also produced.

本発明の排ガス浄化触媒は、ペロブスカイト構造を有する複合酸化物と、貴金属を酸化物に担持させた酸化物担持貴金属触媒との物理的な混合物である。ペロブスカイトは通常組成式AMOで表される。ここで、Aサイトは1種以上の希土類元素と1種以上のアルカリ土類金属、Mサイトは1種以上の遷移金属元素である。 The exhaust gas purifying catalyst of the present invention is a physical mixture of a composite oxide having a perovskite structure and an oxide-supported noble metal catalyst in which a noble metal is supported on an oxide. Perovskite is usually expressed in a composition formula AMO 3. Here, the A site is one or more rare earth elements and one or more alkaline earth metals, and the M site is one or more transition metal elements.

例えば、AサイトにはLa、Y、Dy、Nd等の1種以上と、Sr、Ba、Mg等の1種以上の元素が入り、MサイトにはMn、Fe、Co等の1種以上が入る。より具体的には、LaSr1−xFeO(xは0.35乃至0.9)、LaBa1−xFeO(xは0.35乃至0.9)などが挙げられる。 For example, the A site contains one or more elements such as La, Y, Dy, and Nd and one or more elements such as Sr, Ba, and Mg, and the M site contains one or more elements such as Mn, Fe, and Co. enter. More specifically, La x Sr 1-x FeO 3 (x is 0.35 to 0.9), La x Ba 1- x FeO 3 (x is 0.35 to 0.9), and the like.

本発明で利用する貴金属とはAu、Ag、Pt、Pd、Rh、Ir、Ru、Osから選ぶことが出来るが、Pt、PdおよびRhから選ばれる少なくとも1種の金属であることが好ましい。これらの金属は貴金属の中でもガス有害成分に対する触媒活性が高いからである。   The noble metal used in the present invention can be selected from Au, Ag, Pt, Pd, Rh, Ir, Ru, and Os, but is preferably at least one metal selected from Pt, Pd, and Rh. This is because these metals have high catalytic activity against noxious components among noble metals.

貴金属を担持する酸化物はSiOやAlやZrOといった材料が特に望ましい。これらの材料は排ガス浄化触媒として、酸化・還元雰囲気の変動に対する耐性が高く、高い表面積を維持でき、耐熱性にも優れるからである。なかでも、貴金属元素のPtをAlに担持させたアルミナ担持白金触媒は好ましい。 The oxide supporting the noble metal is particularly preferably a material such as SiO 2 , Al 2 O 3 or ZrO 2 . This is because these materials are highly resistant to fluctuations in the oxidation / reduction atmosphere as an exhaust gas purification catalyst, can maintain a high surface area, and are excellent in heat resistance. Among these, an alumina-supported platinum catalyst in which the noble metal element Pt is supported on Al 2 O 3 is preferable.

貴金属を酸化物に担持させた酸化物担持貴金属触媒とペブロスカイト構造の複合酸化物との物理的な混合(単に「混合」ともいう。)とは、機械的に混ぜ合わせることをいう。本発明の排ガス浄化触媒は、複合酸化物と酸化物担持貴金属触媒との化学的な結合は必要としないからである。従って、混合はそれぞれの粉体同士を乳鉢や粉砕機で細かく砕きながら混合することができる。また、溶剤やバインダーといった媒体と共に分散して混合してもよい。   The physical mixing (also simply referred to as “mixing”) of an oxide-supported noble metal catalyst in which a noble metal is supported on an oxide and a composite oxide having a perovskite structure refers to mechanical mixing. This is because the exhaust gas purifying catalyst of the present invention does not require chemical bonding between the composite oxide and the oxide-supported noble metal catalyst. Therefore, mixing can be performed while finely pulverizing each powder with a mortar or a pulverizer. Moreover, you may disperse | distribute and mix with media, such as a solvent and a binder.

本発明の酸化物担持貴金属触媒は、貴金属塩の水溶液中に担体となる酸化物を浸漬し、乾燥させ焼成する含浸法によって調製できる。また、慣用のincipient wetness法によって調製してもよい。この方法は、担体となる酸化物に貴金属の溶液を滴下して貴金属と酸化物の酸化物担持貴金属触媒を得る。   The oxide-supported noble metal catalyst of the present invention can be prepared by an impregnation method in which an oxide serving as a support is immersed in an aqueous solution of a noble metal salt, dried and calcined. Moreover, you may prepare by the conventional incipient wetness method. In this method, a noble metal solution is dropped onto an oxide serving as a support to obtain a noble metal-oxide-supported noble metal catalyst.

本発明の排ガス浄化触媒は、溶剤やバインダーとともに、塗料にしてもよい。
溶剤としては、極性溶剤や非極性溶剤のどちらを用いても良い。フィルタ上に塗布した後、すばやく乾燥させるためには、沸点の低い溶剤がよいが、取り扱いの容易性を考慮すると水系の溶剤でもよい。具体的にはイソプロピルアルコール、テルピネオール、2−オクタノール、ブチルカルビトールアセテート等が好適に利用できる。
The exhaust gas purification catalyst of the present invention may be a paint together with a solvent and a binder.
As the solvent, either a polar solvent or a nonpolar solvent may be used. A solvent having a low boiling point is preferable in order to dry quickly after coating on the filter, but an aqueous solvent may be used in consideration of ease of handling. Specifically, isopropyl alcohol, terpineol, 2-octanol, butyl carbitol acetate and the like can be suitably used.

無機バインダとしては、Al、TiO、SiOなどの粉体が好適に用いられる。PM燃焼用触媒は高温に曝されるため、高温でも安定した特性を示す材料が好ましいからである。これらの材料は、塗布若しくはスプレーで扱いやすい粘度に調整してDPFとなる多孔質フィルタの表面に塗布する。 As the inorganic binder, powders such as Al 2 O 3 , TiO 2 , and SiO 2 are preferably used. This is because the PM combustion catalyst is exposed to a high temperature, and therefore a material exhibiting stable characteristics even at a high temperature is preferable. These materials are applied to the surface of a porous filter to be a DPF after adjusting the viscosity to be easy to handle by application or spray.

本発明の複合酸化物を用いたDPFは、構造は特に限定されない。例えば図8にDPFの構造の一例を示す。DPF1は入り口側10から見た断面がハニカム構造をした筒状の形態をしており、材質は多孔質なセラミックで構成されている。入り口側10と出口側11は直接的な貫通孔を有しておらず、多孔質セラミックがフィルタとなっている。多孔質セラミックには、具体的にはセラックス、コージェライト、炭化珪素、チタン酸アルミなどが好適に用いられる。また、形状は図8に示した構造のほか、発泡体、メッシュ、板状といった形状でもよい。   The structure of the DPF using the composite oxide of the present invention is not particularly limited. For example, FIG. 8 shows an example of the structure of the DPF. The DPF 1 has a cylindrical shape with a honeycomb structure as viewed from the entrance side 10 and is made of porous ceramic. The entrance side 10 and the exit side 11 do not have direct through holes, and porous ceramics are used as a filter. Specifically, ceramics, cordierite, silicon carbide, aluminum titanate, and the like are preferably used for the porous ceramic. Further, the shape may be a foam, a mesh, or a plate shape in addition to the structure shown in FIG.

本発明の排ガス浄化触媒はDPFのエンジン側壁面12に形成される(30)のがよい。PM(燃焼用)触媒を含んでいるので、PMが蓄積するエンジン側にないとPM燃焼温度を低下させることができないからである。なお、本発明の排ガス浄化触媒は、炭化水素や一酸化炭素といったガスを酸化する触媒となる貴金属を含むため、大気開放側の壁面14に形成して(40)もよい。また、大気開放側の壁面14には、本発明の排ガス浄化触媒以外のガス有害成分に対する触媒層を形成してもよい。   The exhaust gas purifying catalyst of the present invention is preferably formed on the engine side wall surface 12 of the DPF (30). This is because a PM (combustion) catalyst is included, and therefore, the PM combustion temperature cannot be lowered unless the engine accumulates PM. Since the exhaust gas purifying catalyst of the present invention includes a noble metal that becomes a catalyst for oxidizing a gas such as hydrocarbon or carbon monoxide, the exhaust gas purifying catalyst may be formed on the wall 14 on the open side of the atmosphere (40). Moreover, you may form the catalyst layer with respect to gas harmful components other than the exhaust gas purification catalyst of this invention in the wall surface 14 by the side of open | release to the atmosphere.

以下実施例について詳細に説明する。
《複合酸化物の作製》
各実施例、比較例の複合酸化物を以下のようにして作製した。
硝酸ランタンと硝酸バリウムと硝酸鉄を、ランタン元素とバリウム元素と鉄元素のモル比がx:1−x:1(ただし、x=0.6、0.8、0.9)となるように混合した。この混合物を、ランタン元素とバリウム元素と鉄元素の液中モル濃度の合計が0.2mol/Lとなるように水を添加して原料溶液(以下「原料1」と称する)を得た。
Examples will be described in detail below.
<Production of composite oxide>
The composite oxide of each example and comparative example was produced as follows.
Lanthanum nitrate, barium nitrate, and iron nitrate so that the molar ratio of lanthanum element, barium element, and iron element is x: 1-x: 1 (where x = 0.6, 0.8, 0.9). Mixed. Water was added to the mixture so that the total molar concentration of lanthanum element, barium element, and iron element was 0.2 mol / L to obtain a raw material solution (hereinafter referred to as “raw material 1”).

<La0.6Ba0.4FeO
原料1(x=0.6)を攪拌しながら溶液の温度を15℃に調整し、温度が15℃に到達した段階で、沈殿剤として炭酸アンモニウム溶液を添加しながらpH=7〜8に調製した。その後反応温度を15℃に保ちながら攪拌を1時間継続することにより、沈殿の生成を十分進行させた。得られた沈殿を濾過して回収した後、水洗し、145℃で一晩乾燥した。得られた粉末を大気雰囲気下800℃で2時間焼成し、解砕機(サンプルミル)で解粒した後、振動篩(200メッシュ)を用いて凝集物を除去した。
<La 0.6 Ba 0.4 FeO 3 >
The temperature of the solution is adjusted to 15 ° C. while stirring the raw material 1 (x = 0.6), and when the temperature reaches 15 ° C., the pH is adjusted to 7 to 8 while adding an ammonium carbonate solution as a precipitant. did. Thereafter, stirring was continued for 1 hour while maintaining the reaction temperature at 15 ° C., whereby the formation of precipitates was sufficiently advanced. The resulting precipitate was collected by filtration, washed with water, and dried at 145 ° C. overnight. The obtained powder was calcined at 800 ° C. for 2 hours in the air atmosphere, pulverized with a crusher (sample mill), and then aggregated using a vibrating sieve (200 mesh).

<La0.8Ba0.2FeO
原料1(x=0.8)を攪拌しながら溶液の温度を30℃に調整し、温度が30℃に到達した段階で、沈殿剤としてアンモニウム溶液を添加し、その後、さらに二酸化炭素を吹き込んで沈殿の生成を促した。その後反応温度を30℃に保ちながら攪拌を0.5時間継続することにより、沈殿の生成を十分進行させた。得られた沈殿を濾過して回収した後、水洗し、250℃で1.5時間乾燥した。得られた粉末を大気雰囲気下800℃で2時間焼成し、解粒した後、湿式粉砕により所定の粒度に調整した。
<La 0.8 Ba 0.2 FeO 3>
While stirring the raw material 1 (x = 0.8), the temperature of the solution was adjusted to 30 ° C., and when the temperature reached 30 ° C., an ammonium solution was added as a precipitant, and then carbon dioxide was blown into the solution. Urged the formation of a precipitate. Thereafter, the stirring was continued for 0.5 hours while maintaining the reaction temperature at 30 ° C., thereby sufficiently causing the precipitation. The resulting precipitate was collected by filtration, washed with water, and dried at 250 ° C. for 1.5 hours. The obtained powder was calcined at 800 ° C. for 2 hours in the air atmosphere, pulverized, and adjusted to a predetermined particle size by wet grinding.

<La0.9Ba0.1FeO
原料1(x=0.9)を攪拌しながら溶液の温度を15℃に調整し、温度が15℃に到達した段階で、沈殿剤としてアンモニウム溶液を添加し、その後、さらに二酸化炭素を吹き込んで沈殿の生成を促した。その後反応温度を15℃に保ちながら攪拌を0.5時間継続することにより、沈殿の生成を十分進行させた。得られた沈殿を濾過して回収した後、水洗し、125℃で一晩乾燥した。得られた粉末を大気雰囲気下800℃で2時間焼成し、解砕機(サンプルミル)で解粒した後、振動篩(200メッシュ)を用いて凝集物を除去した。
<La 0.9 Ba 0.1 FeO 3 >
While stirring the raw material 1 (x = 0.9), the temperature of the solution was adjusted to 15 ° C., and when the temperature reached 15 ° C., an ammonium solution was added as a precipitant, and then carbon dioxide was blown further. Urged the formation of a precipitate. Thereafter, the stirring was continued for 0.5 hours while maintaining the reaction temperature at 15 ° C., thereby sufficiently causing the precipitation. The resulting precipitate was collected by filtration, washed with water, and dried at 125 ° C. overnight. The obtained powder was calcined at 800 ° C. for 2 hours in the air atmosphere, pulverized with a crusher (sample mill), and then aggregated using a vibrating sieve (200 mesh).

表1に得られたサンプルのLa、Ba、Fe元素の質量%とモル比を示す。質量%の合計は100%にならないが、残りは酸素である。なお、以後は、それぞれのペロブスカイトのサンプルをLaとそのモル比で呼ぶ。例えば、La0.6Ba0.4FeOはLa0.6と呼ぶ。
Table 1 shows the mass% and molar ratio of La, Ba, and Fe elements of the samples obtained. The sum of mass% does not become 100%, but the rest is oxygen. Hereinafter, each perovskite sample is referred to as La and its molar ratio. For example, La 0.6 Ba 0.4 FeO 3 is called La0.6.

《酸化物担持貴金属触媒の作製》
次に酸化物担持貴金属触媒としてPt/Alを作製した。Pt(NH(NO溶液3.57g(Pt濃度8.486%)に純水を180ml加えて金属塩溶液を製造した。この溶液をマグネティックスターラーで攪拌しながら、そこにAl30gを投入した後、1時間攪拌した。得られた溶液をエバポレーターに移し、温度80℃、回転速度25rpmで溶媒を除去して粉末を得た。この粉末を130℃で一晩乾燥させた後、空気中で500℃で2時間焼成(昇温速度5℃/min)することでPt(1%)/Al粉末を得た。
<< Preparation of oxide-supported noble metal catalyst >>
Next, Pt / Al 2 O 3 was prepared as an oxide-supported noble metal catalyst. 180 ml of pure water was added to 3.57 g of Pt (NH 3 ) 2 (NO 2 ) 2 solution (Pt concentration: 8.486%) to prepare a metal salt solution. While stirring this solution with a magnetic stirrer, 30 g of Al 2 O 3 was added thereto, followed by stirring for 1 hour. The obtained solution was transferred to an evaporator, and the solvent was removed at a temperature of 80 ° C. and a rotation speed of 25 rpm to obtain a powder. This powder was dried at 130 ° C. overnight and then calcined in air at 500 ° C. for 2 hours (heating rate 5 ° C./min) to obtain Pt (1%) / Al 2 O 3 powder.

《サンプルの作製》
以下のようにして、本発明の排ガス浄化触媒である実施例1乃至5と比較例1乃至5(但し比較例2は欠番)を作製した。
(実施例1)
La0.8と酸化物担持貴金属触媒(Pt/Al)を、それぞれ9:1の質量比で秤量し、自動乳鉢で30分間混合し、実施例1の排ガス浄化触媒を得た。ガス酸化活性を測定する場合は、反応管中に配置した試料ステージに1.84gのサンプルを充填して測定した。具体的には1.656gのLa0.8と0.184gのPt/Alの混合物である。
<Production of sample>
Examples 1 to 5 and Comparative Examples 1 to 5 (however, Comparative Example 2 is a missing number), which are exhaust gas purifying catalysts of the present invention, were prepared as follows.
Example 1
La0.8 and an oxide-supported noble metal catalyst (Pt / Al 2 O 3 ) were weighed at a mass ratio of 9: 1, respectively, and mixed in an automatic mortar for 30 minutes to obtain an exhaust gas purification catalyst of Example 1. When measuring the gas oxidation activity, the sample stage placed in the reaction tube was filled with a 1.84 g sample. Specifically, it is a mixture of 1.656 g of La0.8 and 0.184 g of Pt / Al 2 O 3 .

(実施例2)
La0.8と酸化物担持貴金属触媒(Pt/Al)を、それぞれ8:2の質量比で秤量し、自動乳鉢で30分間混合し、実施例2の排ガス浄化触媒を得た。ガス酸化活性を測定する場合は、反応管中に配置した試料ステージに1.84gのサンプルを充填して測定した。具体的には1.472gのLa0.8と0.368gのPt/Alの混合物である。
(Example 2)
La0.8 and oxide-supported noble metal catalyst (Pt / Al 2 O 3 ) were weighed at a mass ratio of 8: 2, respectively, and mixed in an automatic mortar for 30 minutes to obtain an exhaust gas purification catalyst of Example 2. When measuring the gas oxidation activity, the sample stage placed in the reaction tube was filled with a 1.84 g sample. Specifically, it is a mixture of 1.472 g of La0.8 and 0.368 g of Pt / Al 2 O 3 .

参考例
La0.8と酸化物担持貴金属触媒(Pt/Al)を、それぞれ5:5の質量比で秤量し、自動乳鉢で30分間混合し、参考例の排ガス浄化触媒を得た。ガス酸化活性を測定する場合は、反応管中に配置した試料ステージに1.84gのサンプルを充填して測定した。具体的には0.92gのLa0.8と0.92gのPt/Alの混合物である。
( Reference example )
La0.8 and oxide-supported noble metal catalyst (Pt / Al 2 O 3 ) were weighed at a mass ratio of 5: 5, respectively, and mixed in an automatic mortar for 30 minutes to obtain an exhaust gas purification catalyst of Reference Example . When measuring the gas oxidation activity, the sample stage placed in the reaction tube was filled with a 1.84 g sample. Specifically, it is a mixture of 0.92 g of La0.8 and 0.92 g of Pt / Al 2 O 3 .

(実施例4)
La0.9と酸化物担持貴金属触媒(Pt/Al)を、それぞれ9:1の質量比で秤量し、自動乳鉢で30分間混合し、実施例4の排ガス浄化触媒を得た。ガス酸化活性を測定する場合は、反応管中に配置した試料ステージに1.84gのサンプルを充填して測定した。具体的には1.656gのLa0.9と0.184gのPt/Alの混合物である。
Example 4
La0.9 and the oxide-supported noble metal catalyst (Pt / Al 2 O 3 ) were weighed at a mass ratio of 9: 1, respectively, and mixed in an automatic mortar for 30 minutes to obtain an exhaust gas purification catalyst of Example 4. When measuring the gas oxidation activity, the sample stage placed in the reaction tube was filled with a 1.84 g sample. Specifically, it is a mixture of 1.656 g of La0.9 and 0.184 g of Pt / Al 2 O 3 .

(実施例5)
La0.6と酸化物担持貴金属触媒(Pt/Al)を、それぞれ9:1の質量比で秤量し、自動乳鉢で30分間混合し、実施例5の排ガス浄化触媒を得た。ガス酸化活性を測定する場合は、反応管中に配置した試料ステージに1.84gのサンプルを充填して測定した。具体的には1.656gのLa0.6と0.184gのPt/Alの混合物である。
(Example 5)
La0.6 and oxide-supported noble metal catalyst (Pt / Al 2 O 3 ) were weighed at a mass ratio of 9: 1, respectively, and mixed in an automatic mortar for 30 minutes to obtain an exhaust gas purification catalyst of Example 5. When measuring the gas oxidation activity, the sample stage placed in the reaction tube was filled with a 1.84 g sample. Specifically, it is a mixture of 1.656 g of La0.6 and 0.184 g of Pt / Al 2 O 3 .

(比較例1)
比較例1は実施例1と同じペロブスカイトとPt/Alを積層構造にしたものである。具体的には、反応管中に配置した試料ステージに、1.656gのLa0.8を下流側、0.184gのPt/Alが上流側となるように堆積した。なお、ここで上流、下流とは検査ガスを流す際に、より流出源に近い方を上流と呼ぶ。
(Comparative Example 1)
In Comparative Example 1, the same perovskite and Pt / Al 2 O 3 as in Example 1 are laminated. Specifically, 1.656 g of La0.8 was deposited on the sample stage placed in the reaction tube so that 0.184 g of Pt / Al 2 O 3 was on the upstream side. Here, the upstream and the downstream are referred to as the upstream when the inspection gas is flowed closer to the outflow source.

(比較例3)
比較例3は参考例と同じペロブスカイトとPt/Alを積層構造にしたものである。具体的には、反応管中に配置した試料ステージに、0.92gのLa0.8を下流側、0.92gのPt/Alが上流側となるように堆積した。
(Comparative Example 3)
Comparative Example 3 has the same perovskite and Pt / Al 2 O 3 layered structure as in the reference example . Specifically, the sample stage was placed in the reaction tube, the downstream side La0.8 of 0.92g, Pt / Al 2 O 3 of 0.92g were deposited such that the upstream side.

(比較例4)
比較例4は実施例4と同じペロブスカイトとPt/Alを積層構造にしたものである。具体的には、反応管中に配置した試料ステージに、1.656gのLa0.9を下流側、0.184gのPt/Alが上流側となるように堆積した。
(Comparative Example 4)
In Comparative Example 4, the same perovskite and Pt / Al 2 O 3 as in Example 4 are laminated. Specifically, 1.656 g of La0.9 was deposited on the sample stage disposed in the reaction tube so that 0.184 g of Pt / Al 2 O 3 was on the upstream side.

(比較例5)
比較例5は実施例5と同じペロブスカイトとPt/Alを積層構造にしたものである。具体的には、反応管中に配置した試料ステージに、1.656gのLa0.6を下流側、0.184gのPt/Alが上流側となるように堆積した。
(Comparative Example 5)
In Comparative Example 5, the same perovskite and Pt / Al 2 O 3 as in Example 5 are laminated. Specifically, 1.656 g of La0.6 was deposited on the sample stage disposed in the reaction tube so that 0.184 g of Pt / Al 2 O 3 was on the upstream side.

以上のように比較例1は、実施例1と同一組成で層構造を有するサンプルである。また同様に比較例3、4、5は参考例、実施例4、5に対応するサンプルである。なお、実施例2と同一組成の層構造サンプルは用意しなかったので、比較例2は欠番とした。 As described above, Comparative Example 1 is a sample having the same composition as Example 1 and a layer structure. Similarly, Comparative Examples 3 , 4 , and 5 are samples corresponding to Reference Examples and Examples 4 and 5. In addition, since the layer structure sample of the same composition as Example 2 was not prepared, the comparative example 2 was a missing number.

《CB燃焼温度の測定》
CB燃焼温度の被測定試料を準備した。また、市販のCB(カーボンブラック:三菱化学株式会社製)若しくはこの材料の同等品を準備した。
<< Measurement of CB combustion temperature >>
A sample to be measured for the CB combustion temperature was prepared. Moreover, commercially available CB (carbon black: manufactured by Mitsubishi Chemical Corporation) or an equivalent of this material was prepared.

そして、被測定試料とカーボンブラックの重量比が6:1になるように秤量し、自動乳鉢機(石川工場製AGA型)若しくはこの装置の同等品で20分混合し、被測定試料とカーボンブラックとの混合粉体を得た。   Then, weigh the sample to be measured and carbon black so that the weight ratio is 6: 1 and mix for 20 minutes with an automatic mortar machine (AGA type manufactured by Ishikawa Factory) or an equivalent of this device. A mixed powder was obtained.

この混合粉体20mgを、熱重量、示差熱測定(TG/DTA)装置に設置し、昇温速度10℃/分にて50℃から700℃まで大気中で昇温し、重量測定を行った。尚、熱重量、示差熱測定(TG/DTA)装置は、セイコーインスツルメンツ株式会社製、TG/DTA(6300型)若しくはこの装置の同等品を用い、DTAのピーク強度が最大になる点をもって、カーボンブラックの燃焼温度とした。カーボンブラックの燃焼温度は、低ければPM燃焼用触媒として有用であると判断できる指針である。   20 mg of this mixed powder was placed in a thermogravimetric / differential calorimetry (TG / DTA) apparatus, and the temperature was raised from 50 ° C. to 700 ° C. in the air at a temperature rising rate of 10 ° C./min, and the weight was measured. . The thermogravimetric and differential thermal measurement (TG / DTA) apparatus is TG / DTA (6300 type) manufactured by Seiko Instruments Inc. or an equivalent of this apparatus, and the carbon has a maximum DTA peak intensity. The black combustion temperature was used. If the combustion temperature of carbon black is low, it is a guideline that can be judged useful as a catalyst for PM combustion.

La0.6、La0.8、La0.9、Pt/Alおよび実施例1乃至2および参考例のCB燃焼温度を表2に示す。また、図7には、La0.8、実施例1乃至2および参考例とPt/AlについてCB燃焼温度をPt/Alの混合量との関係で表したグラフを示す。
Table 2 shows the CB combustion temperatures of La 0.6, La 0.8, La 0.9, Pt / Al 2 O 3 and Examples 1 to 2 and Reference Example . Further, in FIG. 7, La0.8, shows a graph of Examples 1 to 2 and Reference Example and Pt / Al 2 O 3 the CB combustion temperature in relation to the mixing amount of Pt / Al 2 O 3.

《粒度分布の測定》
粒度分布は、レーザー回折法による粒度分布測定によるD50径(または単にD50)を測定した。D50とは、粒子径の小さい方から順に並べたときに、全粒子数の中間の粒子の粒子径(μm)である。なお、La0.6、La0.8、La0.9のD50を表2に示す。
<Measurement of particle size distribution>
For the particle size distribution, D 50 diameter (or simply D 50 ) was measured by particle size distribution measurement by laser diffraction method. D 50 is the particle diameter (μm) of the intermediate particles of the total number of particles when arranged in order from the smallest particle diameter. Table 2 shows D 50 of La 0.6, La 0.8, and La 0.9.

《BET比表面積の測定》
被測定試料をメノウ乳鉢で解粒し、粉末とした後、BET法により比表面積(SBET:m/g)を求めた。測定はユアサイオニクス製の4ソーブUSを用いて行った。なお、La0.6、La0.8、La0.9、Pt/AlのSBETを表2に示す。
<< Measurement of BET specific surface area >>
The sample to be measured was pulverized with an agate mortar to form a powder, and then the specific surface area (S BET : m 2 / g) was determined by the BET method. The measurement was carried out using 4 Saab US made by Your Sonics. Table 2 shows S BET of La 0.6, La 0.8, La 0.9, and Pt / Al 2 O 3 .

《ガス酸化活性度の測定》
COおよびCの酸化活性は以下のようにして測定した。
実施例1、4、5、参考例の本発明の排ガス浄化触媒は、固定床流通系反応器に1〜2mmのペレット状にしたサンプルを1.84g充填した。
<Measurement of gas oxidation activity>
The oxidation activity of CO and C 3 H 6 was measured as follows.
The exhaust gas purifying catalyst of the present invention of Examples 1 , 4 , 5 , and Reference Example was charged with 1.84 g of a sample made into a 1 to 2 mm pellet in a fixed bed flow system reactor.

また、比較例1、3、4、5は、同上の試料ステージ上にペロブスカイトを充填し、その上にPt/Alを充填した積層構造とした。ペロブスカイトとPt/Alは上記の比率の質量を用いた。どの比較例も触媒は合計で1.84gを充填した。測定用のガスはPt/Alが上流側、ペロブスカイトが下流側になるように流した。 Further, Comparative Examples 1, 3, 4, and 5 have a laminated structure in which perovskite is filled on the same sample stage and Pt / Al 2 O 3 is filled thereon. Perovskite and Pt / Al 2 O 3 used the mass of the above ratio. In all comparative examples, the catalyst was charged in a total of 1.84 g. The measurement gas was flowed so that Pt / Al 2 O 3 was on the upstream side and perovskite was on the downstream side.

次に、表3に示す組成のディーゼル排ガスの模擬混合ガスを室温において全ガス流量8L/分で流通させた。固定床流通系反応器の出口側では、CO濃度を赤外分析計(堀場製作所製のVIA−510)で、またC濃度を水素イオン化法分析計(堀場製作所製のFIA−510)によってそれぞれモニタリングした。触媒充填層の温度を室温から500℃まで昇温し、測定温度におけるCO濃度とC濃度からCO転化率(%)とC転化率(%)を以下の(1)式および(2)式により求めた。なお、(1)式と(2)式中で、入口CO濃度および入口C濃度は表3の値を用いた。

CO転化率(%)=(入口CO濃度−出口CO濃度)×100/入口CO濃度
・・・・(1)
転化率(%)=(入口C濃度−出口C濃度)×100/入口C濃度
・・・・(2)

Next, a simulated mixed gas of diesel exhaust gas having the composition shown in Table 3 was circulated at room temperature at a total gas flow rate of 8 L / min. At the outlet side of the fixed bed flow system reactor, the CO concentration was measured by an infrared analyzer (VIA-510 manufactured by Horiba), and the C 3 H 6 concentration was measured by a hydrogen ionization analyzer (FIA-510 manufactured by Horiba). Respectively. The temperature of the catalyst packed bed is raised from room temperature to 500 ° C., and the CO conversion rate (%) and C 3 H 6 conversion rate (%) are calculated from the CO concentration and C 3 H 6 concentration at the measurement temperature by the following formula (1): And (2). The values in Table 3 were used for the inlet CO concentration and the inlet C 3 H 6 concentration in the equations (1) and (2).

CO conversion rate (%) = (inlet CO concentration−outlet CO concentration) × 100 / inlet CO concentration
(1)
C 3 H 6 conversion (%) = (inlet C 3 H 6 concentration−outlet C 3 H 6 concentration) × 100 / inlet C 3 H 6 concentration
(2)

図1および図2を参照して実施例1と参考例のCOに対する酸化活性を説明する。図1および図2とも、縦軸はCO転化率(%)を示し、横軸は触媒温度(℃)を示す。図1を参照して、La0.8とPt/Alを混合した実施例1は、それぞれを独立にして積層構造にした比較例1と比べて、酸化活性特性の立ち上がりが早かった。すなわち、例えば200℃までの任意の温度において実施例1の方が比較例1よりCO転化率が高くなっていた。これは温度が同じであれば、COをより多く酸化させることができることを意味する。言い換えるとCOの排出量を減らすことができる。 With reference to FIG. 1 and FIG. 2, the oxidation activity with respect to CO of Example 1 and the reference example will be described. In both FIG. 1 and FIG. 2, the vertical axis represents the CO conversion (%), and the horizontal axis represents the catalyst temperature (° C.). Referring to FIG. 1, Example 1 in which La0.8 and Pt / Al 2 O 3 were mixed had an earlier rise in oxidation activity characteristics than Comparative Example 1 in which each was independently formed into a laminated structure. That is, for example, the CO conversion rate of Example 1 was higher than that of Comparative Example 1 at an arbitrary temperature up to 200 ° C., for example. This means that more CO can be oxidized if the temperature is the same. In other words, CO emissions can be reduced.

このようにLa0.8とPt/Alを混合した実施例1が積層構造である比較例1より酸化活性が高くなる理由は明確ではない。しかし、La0.8とPt/Alを混合したためにLa0.8の酸素吸蔵放出能とPt/Alの酸化作用が相乗的に働いたものであると推定される。 The reason why Example 1 in which La0.8 and Pt / Al 2 O 3 are mixed in this way has higher oxidation activity than Comparative Example 1 having a laminated structure is not clear. However, since La0.8 and Pt / Al 2 O 3 are mixed, it is presumed that the oxygen storage / release ability of La0.8 and the oxidizing action of Pt / Al 2 O 3 work synergistically.

また、実施例1では、La0.8とPt/Alは質量比で9:1であり、Ptの総質量を考えると、比較例1よりはるかに少ないPtで、ガス酸化活性を得られていることになる。 In Example 1, La0.8 and Pt / Al 2 O 3 are 9: 1 in mass ratio. Considering the total mass of Pt, gas oxidation activity is obtained with much less Pt than Comparative Example 1. Will be.

一方、図2を参照して、La0.8と同質量のPt/Alを混合した参考例とそれぞれを積層した比較例3では、わずかにLa0.8の方が酸化活性は高いものの、混合による構造と積層構造は、ほぼ同じ特性を示した。これは、Ptが多くなるにつれ、混合も積層もあまり酸化活性には差がなくなることを示している。 On the other hand, referring to FIG. 2, in the reference example in which Pt / Al 2 O 3 having the same mass as La0.8 and Pt / Al 2 O 3 mixed together and Laminate each, La0.8 has slightly higher oxidation activity. The mixed structure and the laminated structure showed almost the same characteristics. This indicates that as Pt increases, there is not much difference in oxidation activity between mixing and stacking.

言い換えると、La0.8と少量のPt/Alを混合すると、それぞれを独立の形成層として用いる場合より、酸化活性が向上する。 In other words, when La0.8 and a small amount of Pt / Al 2 O 3 are mixed, the oxidation activity is improved as compared with the case where each is used as an independent formation layer.

図7には、La0.8自体と、実施例1乃至2と参考例およびPt/Al単独のCB燃焼温度の測定結果を示す。縦軸はCB燃焼温度(℃)であり、横軸はPt/Alの混合量(質量%)である。La0.8のペロブスカイトは、CB燃焼活性がある触媒であるので、La0.8単独(横軸がゼロに対応)の場合はCB燃焼温度が367℃と低かった。ついで、Pt/Alの混合量が増加するにつれ、CB燃焼温度は高くなった。 FIG. 7 shows measurement results of La0.8 itself, Examples 1 to 2, Reference Example, and CB combustion temperature of Pt / Al 2 O 3 alone. The vertical axis represents the CB combustion temperature (° C.), and the horizontal axis represents the mixing amount (% by mass) of Pt / Al 2 O 3 . Since the La0.8 perovskite is a catalyst having CB combustion activity, the CB combustion temperature was low at 367 ° C. when La0.8 alone (the horizontal axis corresponds to zero). Then, as the amount of Pt / Al 2 O 3 mixture increased, the CB combustion temperature increased.

ここで、Pt/Alの混合量が20質量%の実施例2(符号71)は、CB燃焼温度が411℃であった。これは、PM燃焼用触媒として、十分実用に耐える温度である。すなわち、Pt/Alの混合量が20質量%以下であれば、PM燃焼用触媒として実用に耐える。また、先の図1および2の結果を考慮すると、少なくともPt/Alの混合量が10質量%以上20質量%以下の範囲であれば、PM燃焼用触媒としても、ガス酸化活性触媒としても優れた特性を示したと言える。 Here, in Example 2 (symbol 71) in which the mixing amount of Pt / Al 2 O 3 was 20% by mass, the CB combustion temperature was 411 ° C. This is a temperature that is sufficiently practical for use as a PM combustion catalyst. That is, if the mixed amount of Pt / Al 2 O 3 is 20% by mass or less, it is practically used as a PM combustion catalyst. In consideration of the results of FIGS. 1 and 2, the gas oxidation active catalyst can be used as a PM combustion catalyst as long as the amount of Pt / Al 2 O 3 is at least in the range of 10% by mass to 20% by mass. It can be said that it showed excellent characteristics.

図3は、実施例4と比較例4のCO酸化活性と触媒温度の関係を示し、図4は実施例4と比較例4のCの酸化活性を示す。それぞれのグラフにおいて、縦軸は酸化活性を示し、横軸は触媒温度を示す。いずれの場合も混合をした場合の方が、積層にした場合より高い酸化活性を示した。すなわち、同じ酸化活性を得るためのPtの総量は少なくてよいという効果を得る。 FIG. 3 shows the relationship between the CO oxidation activity of Example 4 and Comparative Example 4 and the catalyst temperature, and FIG. 4 shows the oxidation activity of C 3 H 6 of Example 4 and Comparative Example 4. In each graph, the vertical axis represents the oxidation activity, and the horizontal axis represents the catalyst temperature. In any case, the case of mixing showed higher oxidation activity than the case of lamination. That is, there is an effect that the total amount of Pt for obtaining the same oxidation activity may be small.

図5および図6は実施例5と比較例5のCOおよびCに対するガス酸化活性を示す。横軸と縦軸は図3および図4の場合と同じである。ここでも、混合の方が積層よりも酸化活性は高かった。すなわち、実施例4の場合同様、同じ酸化活性を得るためのPtの総量は少なくてよいという効果を得る。 5 and 6 show the gas oxidation activity for CO and C 3 H 6 in Example 5 and Comparative Example 5. FIG. The horizontal and vertical axes are the same as those in FIGS. Again, the mixing had higher oxidation activity than the stack. That is, as in Example 4, the effect is that the total amount of Pt for obtaining the same oxidation activity may be small.

実施例4および実施例5は、Laが0.9と0.6の場合である。表2を参照して、La0.6とLa0.9のCB燃焼温度はそれぞれ365℃と392℃であった。La0.8のCB燃焼温度が367℃であったので、Laの含有量が多くなると、CB燃焼温度は高くなる。   Examples 4 and 5 are cases where La is 0.9 and 0.6. Referring to Table 2, the CB combustion temperatures of La 0.6 and La 0.9 were 365 ° C. and 392 ° C., respectively. Since the CB combustion temperature of La0.8 was 367 ° C., the CB combustion temperature increases as the La content increases.

図7を再度参照して、ペロブスカイトとPt/Alの混合においては、CB燃焼温度は、Pt/Alの混合量にほぼ比例して増加した。そこで、La0.9をグラフ上にプロットする(符号72)と、ライン70がLa0.9の場合のPt/Alの混合量依存性を示す。Pt/Alが20質量%と想定される点は符号73である。この符号73の点でのCB燃焼温度はおよそ447℃である。 Referring to FIG. 7 again, in the mixing of perovskite and Pt / Al 2 O 3 , the CB combustion temperature increased almost in proportion to the amount of Pt / Al 2 O 3 mixed. Therefore, when La0.9 is plotted on the graph (reference numeral 72), the dependency on the mixing amount of Pt / Al 2 O 3 when the line 70 is La0.9 is shown. Reference numeral 73 indicates that Pt / Al 2 O 3 is assumed to be 20 mass%. The CB combustion temperature at point 73 is approximately 447 ° C.

この想定されたPt/Alの混合量依存性においても、Pt/Alの含有量が10質量%から20質量%においては、450℃以下のCB燃焼温度が期待できる。すなわち、ペロブスカイトにおけるLaの含有量が0.6乃至0.9の範囲で、本発明の複合酸化物と酸化物担持貴金属触媒の混合触媒は、PM燃焼用触媒とガス酸化活性触媒として良好な特性を有する。 Also in this assumed Pt / Al 2 O 3 mixing amount dependency, a CB combustion temperature of 450 ° C. or less can be expected when the Pt / Al 2 O 3 content is 10% by mass to 20% by mass. That is, when the La content in the perovskite is in the range of 0.6 to 0.9, the mixed catalyst of the composite oxide and the oxide-supported noble metal catalyst of the present invention has good characteristics as a PM combustion catalyst and a gas oxidation active catalyst. Have

本発明は、ディーゼルエンジンの排ガスフィルタ(DPF)に好適に利用することができる。   The present invention can be suitably used for an exhaust gas filter (DPF) of a diesel engine.

実施例1と比較例1のCO酸化活性を示すグラフである。4 is a graph showing CO oxidation activity of Example 1 and Comparative Example 1. 参考例と比較例3のCO酸化活性を示すグラフである。 5 is a graph showing CO oxidation activity of Reference Example and Comparative Example 3. 実施例4と比較例4のCO酸化活性を示すグラフである。4 is a graph showing CO oxidation activity of Example 4 and Comparative Example 4. 実施例4と比較例4のC酸化活性を示すグラフである。 6 is a graph showing C 3 H 6 oxidation activity of Example 4 and Comparative Example 4. 実施例5と比較例5のCO酸化活性を示すグラフである。5 is a graph showing CO oxidation activity of Example 5 and Comparative Example 5. 実施例5と比較例5のC酸化活性を示すグラフである。 6 is a graph showing C 3 H 6 oxidation activity of Example 5 and Comparative Example 5. ペロブスカイトとPt/Alの混合比とCB燃焼温度の関係を示すグラフである。It is a graph showing the relationship between the mixing ratio and CB combustion temperature of perovskite and Pt / Al 2 O 3. 本発明の排ガス浄化触媒を用いたDPFの構成を示す図である。It is a figure which shows the structure of DPF using the exhaust gas purification catalyst of this invention.

Claims (3)

ペロブスカイト構造の複合酸化物であるLaBa1−xFeO(0.6≦x≦0.9)と、貴金属を酸化物に担持させた酸化物担持貴金属触媒であるPt/Alのみを、それぞれ9:1乃至8:2の質量比で混合したディーゼル排ガス浄化触媒。 La x Ba 1-x FeO 3 (0.6 ≦ x ≦ 0.9) which is a complex oxide having a perovskite structure and Pt / Al 2 O 3 which is an oxide-supported noble metal catalyst in which a noble metal is supported on an oxide. Diesel exhaust gas purification catalyst in which only these were mixed at a mass ratio of 9: 1 to 8: 2, respectively. 請求項1に記載された排ガス浄化触媒と、
溶剤と
無機バインダーを含む排ガス浄化触媒用塗料。
An exhaust gas purifying catalyst according to claim 1;
Paint for exhaust gas purification catalyst containing solvent and inorganic binder.
多孔質フィルタと、
前記多孔質フィルタの表面上に形成された、
請求項1に記載された排ガス浄化触媒と、
無機バインダーを含む排ガス浄化触媒層を有するディーゼル排ガス浄化用フィルタ。
A porous filter;
Formed on the surface of the porous filter,
An exhaust gas purifying catalyst according to claim 1;
A diesel exhaust gas purification filter having an exhaust gas purification catalyst layer containing an inorganic binder.
JP2008150015A 2008-06-09 2008-06-09 Exhaust gas purification catalyst, exhaust gas purification catalyst paint and diesel exhaust gas purification filter Expired - Fee Related JP5372410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008150015A JP5372410B2 (en) 2008-06-09 2008-06-09 Exhaust gas purification catalyst, exhaust gas purification catalyst paint and diesel exhaust gas purification filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008150015A JP5372410B2 (en) 2008-06-09 2008-06-09 Exhaust gas purification catalyst, exhaust gas purification catalyst paint and diesel exhaust gas purification filter

Publications (2)

Publication Number Publication Date
JP2009291753A JP2009291753A (en) 2009-12-17
JP5372410B2 true JP5372410B2 (en) 2013-12-18

Family

ID=41540437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008150015A Expired - Fee Related JP5372410B2 (en) 2008-06-09 2008-06-09 Exhaust gas purification catalyst, exhaust gas purification catalyst paint and diesel exhaust gas purification filter

Country Status (1)

Country Link
JP (1) JP5372410B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5875562B2 (en) * 2013-09-26 2016-03-02 三菱重工業株式会社 Exhaust gas treatment apparatus and exhaust gas treatment method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229404A (en) * 1995-02-27 1996-09-10 Toyota Central Res & Dev Lab Inc Exhaust gas purifying catalyst and apparatus
JP3493792B2 (en) * 1995-03-02 2004-02-03 日産自動車株式会社 Exhaust gas purification catalyst
JPH10290931A (en) * 1997-04-22 1998-11-04 Hino Motors Ltd Catalyst for purification of exhaust gas
JP2001263051A (en) * 2000-03-17 2001-09-26 Nissan Diesel Motor Co Ltd Exhaust emission control device for diesel engine
JP4591959B2 (en) * 2005-06-10 2010-12-01 国立大学法人九州大学 Diesel particulate filter
JP2007224747A (en) * 2006-02-21 2007-09-06 Mitsubishi Motors Corp Exhaust emission control filter and exhaust emission control device of diesel engine

Also Published As

Publication number Publication date
JP2009291753A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP4144898B2 (en) Particulate combustion catalyst, particulate filter and exhaust gas purification device
JP5356242B2 (en) NOx forming catalyst with little or no ammonia and carbon monoxide double oxidation catalyst
JP5350614B2 (en) Exhaust gas purification catalyst and exhaust gas purification apparatus using the same
US20090155151A1 (en) Methods and Systems Including CO Oxidation Catalyst With Low NO to NO2 Conversion
JP5528040B2 (en) COMPOSITE OXIDE FOR EXHAUST GAS PURIFYING CATALYST, ITS MANUFACTURING METHOD, COATING FOR EXHAUST GAS PURIFYING CATALYST, DIESEL EXHAUST PURIFYING FILTER
WO2006030763A1 (en) Cerium-zirconium-base composite oxide, process for producing the same, oxygen storage/release material using said cerium-zirconium-base composite oxide, exhaust gas purification catalyst, and exhaust gas purification method
WO2007066444A1 (en) Catalyst for exhaust gas purification and exhaust gas purification catalyst member
JP2008068225A (en) Catalyst system for use in exhaust emission control device for automobile, exhaust emission control device using the same, and exhaust emission control method
JP2007296518A (en) Catalyst and device for cleaning exhaust gas
EP2221104B1 (en) Purification catalyst
TW200846068A (en) Exhaust gas purification catalyst, and catalytic honey-comb structure for exhaust gas purification
JP5023969B2 (en) Exhaust gas component purification catalyst material and particulate filter with the catalyst material
CN106232228B (en) Catalyst composition for exhaust gas purification and exhaust gas purification catalyst
JP2010069471A (en) Compound oxide catalyst for burning pm, slurry prepared by using the same, and filter for cleaning exhaust gas
JP5468321B2 (en) Particulate combustion catalyst
CN104302389B (en) Catalyst for treating waste gas
WO2016163072A1 (en) Particulate matter combustion catalyst and particulate matter combustion catalyst filter
JP4730947B2 (en) Method for regenerating exhaust gas purification catalyst
JP5372410B2 (en) Exhaust gas purification catalyst, exhaust gas purification catalyst paint and diesel exhaust gas purification filter
CN106457226B (en) Catalyst for exhaust gas purification
JP5531567B2 (en) Exhaust gas purification catalyst
JP5427443B2 (en) Composite oxide for exhaust gas purification catalyst, paint for exhaust gas purification catalyst and filter for diesel exhaust gas purification
JP5348930B2 (en) Particulate combustion catalyst, particulate filter and exhaust gas purification device
JP2009178673A (en) Exhaust gas cleaning apparatus
JP2001046870A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Ref document number: 5372410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees