JPH10290931A - Catalyst for purification of exhaust gas - Google Patents

Catalyst for purification of exhaust gas

Info

Publication number
JPH10290931A
JPH10290931A JP9104217A JP10421797A JPH10290931A JP H10290931 A JPH10290931 A JP H10290931A JP 9104217 A JP9104217 A JP 9104217A JP 10421797 A JP10421797 A JP 10421797A JP H10290931 A JPH10290931 A JP H10290931A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
nox
noble metal
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9104217A
Other languages
Japanese (ja)
Inventor
Mitsuru Hosoya
満 細谷
Shinya Sato
信也 佐藤
Hiroshi Hirabayashi
浩 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP9104217A priority Critical patent/JPH10290931A/en
Publication of JPH10290931A publication Critical patent/JPH10290931A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To maintain NOx diminishing function effective in the wide temp. range of exhaust gas from a low temp. to a high temp. over a long period of time by using a mixture of a noble metallic catalyst carried on an alumina or zirconia carrier with an NOx occluding material made of a perovskite type multiple oxide. SOLUTION: This catalyst for purification of exhaust gas is made of a mixture of a noble metal carrying catalyst with an NOx occluding material made of a multiple oxide having a perovskite crystal structure such as perovskite (CaO-TiO2 ), BaO-TiO2 , ZrO2 -Al2 O3 or a mixture of them. The noble metal carrying catalyst is prepd. by mixing an aq. soln. of nitrate or chloride of a noble metal such as Pt or Pd with alumina and/or zirconia, drying and firing the resultant mixture. The multiple oxide occludes NOx in a low or medium temp. range of exhaust gas but loses its occluding performance in accordance with temp. rise and becomes liable to discharge occluded NOx. Since discharged NOx is, however, efficiently reduced with the high activity noble metal carrying catalyst, the function of the multiple oxide can be synthetically improved by combination with the catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関からの排
ガス中に含まれる窒素酸化物(NOx)を低減させ排ガ
スを浄化するための新規な構成の触媒に関する。さらに
詳しくは、本発明は、排ガス温度の変動にかかわらず低
温から高温に至る幅広い温度範囲でNOxを有効に低減
することができる新規な排ガス浄化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel catalyst for reducing nitrogen oxides (NOx) contained in exhaust gas from an internal combustion engine and purifying the exhaust gas. More specifically, the present invention relates to a novel exhaust gas purifying catalyst capable of effectively reducing NOx in a wide temperature range from a low temperature to a high temperature irrespective of fluctuations in exhaust gas temperature.

【0002】[0002]

【従来の技術】自動車等の内燃機関での燃料の燃焼に伴
って発生するNOxを含む排ガスを処理して、そのNO
x含量を低減させるための触媒として種々のものが提案
されてきている。その一例として銅−ゼオライト触媒、
すなわちNa型のZSM−5ゼオライトのNaイオンを
Cuイオンで交換した銅イオン交換ゼオライト触媒があ
る。このものは、典型的にはコージェライト等のセラミ
ックスから作られた多数の透通孔を有するモノリスハニ
カム担体の表面上にコーティングされた状態で排ガス処
理のために使用される。この触媒は、300〜500℃
の温度範囲でNOxの選択還元を高効率で行なう機能を
有するが使用時間の経過に伴ないその選択還元効率が低
下して来るという実用上の欠点がある。この原因は、銅
イオン交換ゼオライトの網目状分子構造内に排ガス中の
水分やSO2が吸着され、その吸着水分とSO2の存在に
よってNOx選択還元機能が著しく阻害されることにあ
る。従って銅イオン交換ゼオライト触媒は、耐久性が低
くあるいは使用寿命が短いという、実用化上の問題を有
している。
2. Description of the Related Art Exhaust gas containing NOx generated as a result of combustion of fuel in an internal combustion engine of an automobile or the like is processed and the NO.
Various catalysts have been proposed for reducing the x content. One example is a copper-zeolite catalyst,
That is, there is a copper ion exchanged zeolite catalyst obtained by exchanging Na ions of Na type ZSM-5 zeolite with Cu ions. This is used for exhaust gas treatment while being coated on the surface of a monolith honeycomb carrier having a large number of through holes, typically made of ceramics such as cordierite. This catalyst is 300-500 ° C
Has a function of performing the selective reduction of NOx with high efficiency in the above temperature range, but there is a practical disadvantage that the selective reduction efficiency decreases with the elapse of use time. This is because moisture and SO 2 in the exhaust gas are adsorbed in the network molecular structure of the copper ion exchanged zeolite, and the presence of the adsorbed moisture and SO 2 significantly inhibits the NOx selective reduction function. Therefore, the copper ion exchanged zeolite catalyst has a problem in practical use such as low durability or short service life.

【0003】さらには排ガスを処理してNOxを低減さ
せるための触媒として、白金−アルミナ触媒があり、こ
のものも一般的にはセラミックスハニカム担体の表面上
にコーティングされた状態で排気ガス処理のために使用
され、ほぼ160℃ないし300℃の温度範囲において
NOx低減活性を示すが、この温度範囲の両端近傍にお
けるNOx低減率は余り実効の有るものとは言えない程
低い。
[0003] Further, as a catalyst for treating exhaust gas to reduce NOx, there is a platinum-alumina catalyst, which is generally coated on the surface of a ceramic honeycomb carrier for exhaust gas treatment. And exhibits NOx reduction activity in the temperature range of approximately 160 ° C. to 300 ° C., but the NOx reduction rate near both ends of this temperature range is so low as to be less effective.

【0004】従って、排ガス処理用の触媒の耐久性(使
用寿命)を改善し、NOx低減活性温度範囲を拡張する
ことは、実用上著しく望ましいことである。
[0004] Therefore, it is extremely practically desirable to improve the durability (service life) of a catalyst for treating exhaust gas and to extend the NOx reduction activation temperature range.

【0005】例えば、安定であり、かつ高い効率で排ガ
スに含まれるNOxを低減する触媒として、特願平6−
296198号明細書には、SiO2、Al23、Ti
2及びZrO2のうちの少なくとも2種からなる複合酸
化物に貴金属を担持してなる排ガス浄化用触媒が開示さ
れている。
[0005] For example, as a catalyst that is stable and reduces NOx contained in exhaust gas with high efficiency, Japanese Patent Application Laid-Open No. H10-163,873 is disclosed.
296198 describes SiO 2 , Al 2 O 3 , Ti
There is disclosed an exhaust gas purifying catalyst in which a noble metal is supported on a composite oxide comprising at least two of O 2 and ZrO 2 .

【0006】[0006]

【発明が解決しようとする課題】本発明者は、排ガスN
Ox低減用触媒のNOx低減機能が排ガスの低温域から
高温域までの広い温度範囲にわたって有効に発揮され、
しかも当該機能が長期間維持されるような触媒の構成を
見出すべく鋭意研究検討を実施し、その結果として本発
明を創意完成するに至った。
SUMMARY OF THE INVENTION The present inventor has proposed that exhaust gas N
The NOx reduction function of the Ox reduction catalyst is effectively exhibited over a wide temperature range from a low temperature range to a high temperature range of exhaust gas,
In addition, intensive studies and investigations were conducted to find a configuration of the catalyst that would maintain the function for a long period of time, and as a result, the present invention was completed.

【0007】[0007]

【課題を解決するための手段】かくして、本発明は、特
定の複合酸化物からなるNOx吸蔵材を従来の貴金属−
アルミナ触媒と併用するという基本概念に基礎を置くも
のである。すなわち、本発明において使用される特定の
複合酸化物からなるNOx吸蔵材は、貴金属−アミルナ
触媒のNOx低減活性が充分には発現されない排ガス温
度、すなわち低温ないし中温時に排ガス中のNOxを効
率よく吸蔵保持し、そして貴金属−アミルナ触媒のNO
x低減活性が有効に高まる排ガス高温時に吸蔵NOxを
放出する。そのように放出されたNOxは、高温で活性
が高まっている貴金属−アミルナ触媒との接触によって
容易にNO2及び/またはN2にまで還元される。
Thus, the present invention provides a NOx occluding material comprising a specific composite oxide, which is a conventional noble metal-containing NOx occluding material.
It is based on the basic concept of being used with an alumina catalyst. That is, the NOx storage material composed of the specific composite oxide used in the present invention efficiently stores NOx in exhaust gas at an exhaust gas temperature at which the NOx reduction activity of the noble metal-amylna catalyst is not sufficiently exhibited, that is, at a low or medium temperature. Noble metal-amylna catalyst NO
The stored NOx is released at the time of high temperature of the exhaust gas where the x reduction activity is effectively increased. So released NOx is noble has increased activity at high temperature - is readily reduced to the NO 2 and / or N 2 by contact with Amiruna catalyst.

【0008】従って、本発明は、アミルナまたはジルコ
ニアの担体上に担持された貴金属触媒と、ペロブスカイ
ト型複合酸化物からなるNOx吸蔵材と、の混合物より
なる排ガス浄化用触媒を提供する。
Accordingly, the present invention provides an exhaust gas purifying catalyst comprising a mixture of a noble metal catalyst supported on an amylna or zirconia carrier and a NOx storage material composed of a perovskite-type composite oxide.

【0009】本発明で使用される貴金属担持触媒におけ
る貴金属の例としては、白金、パラジウム、ロジウム、
イリジウムを挙げることができ、これらを適宜に組合せ
て使用することもできる。これらの貴金属を担持するた
めの担体の典型的な例は、アミルナ、ジルコニア、及び
これらの混合物である。貴金属担持触媒は、白金、パラ
ジウム、ロジウム、イリジウム等の貴金属の硝酸塩また
は塩化物の水溶液を、アミルナ、ジルコニアまたはこれ
らの混合物と、混合し、乾燥し、焼成することにより調
製することができる。
Examples of the noble metal in the noble metal supported catalyst used in the present invention include platinum, palladium, rhodium,
Iridium can be mentioned, and these can also be used in appropriate combination. Typical examples of supports for supporting these noble metals are amylna, zirconia, and mixtures thereof. The noble metal supported catalyst can be prepared by mixing an aqueous solution of a nitrate or chloride of a noble metal such as platinum, palladium, rhodium or iridium with amylna, zirconia or a mixture thereof, drying and calcining.

【0010】本発明においてNOx吸蔵材として採用さ
れる複合酸化物は、その結晶構造型がペロブスカイト型
(立方格子)であり、その具体例として、ペロブスカイ
ト(CaO−TiO2、BaO−TiO2、SrO−Ti
2)、ZrO2−Al23、CoO2−Al23、Cu
2−Al23、SiO2−Al23あるいはこれらの混
合物があり、CuO2−Al23(酸化銅−アミル
ナ)、CoO2−Al23(酸化コバルト−アミルナ)
またはこれらの混合物が好適である。これらの複合酸化
物は、単独では、排ガスの低温ないし中温域(概略26
0℃〜380℃の範囲)でNOxを吸蔵する特性傾向が
あり、さらに温度が高まると吸蔵特性が消失し、逆に吸
蔵NOxを放出する特性傾向が顕著となる。前述のよう
に、ここで放出されたNOxは、その場に存在する高活
性の貴金属担持触媒の作用により効率良く還元される。
[0010] composite oxide is employed as the NOx storage material in the present invention, the crystal structure type is perovskite (cubic), and specific examples thereof include perovskite (CaO-TiO 2, BaO- TiO 2, SrO −Ti
O 2 ), ZrO 2 —Al 2 O 3 , CoO 2 —Al 2 O 3 , Cu
There are O 2 -Al 2 O 3 , SiO 2 -Al 2 O 3 or a mixture thereof, and CuO 2 -Al 2 O 3 (copper oxide-amylna), CoO 2 -Al 2 O 3 (cobalt oxide-amylna)
Or mixtures thereof are preferred. These composite oxides can be used alone in a low to medium temperature range (approximately 26
(In the range of 0 ° C. to 380 ° C.), there is a tendency to occlude NOx, and when the temperature is further increased, the occlusion characteristic disappears, and on the contrary, the characteristic tendency to release occluded NOx becomes remarkable. As described above, the NOx released here is efficiently reduced by the action of the highly active noble metal-supported catalyst present in the site.

【0011】貴金属担持触媒は、担体となるアミルナま
たはジルコニア、あるいはそれらの混合物の粉末に白
金、パラジウム、ロジウム、イリジウム等の貴金属の硝
酸塩または塩化物の水溶液を混合練り合せ、その混練物
を温度100〜120℃で乾燥し、次いで温度400〜
650℃、好ましくは450〜600℃において約1〜
6時間焼成することにより調製できる。焼成物は解砕ま
たは粉砕して粉末状とする。貴金属の硝酸塩または塩化
物の使用量は、上記で得られる焼成物中に貴金属換算
(例えばPt換算)で約0.05〜10重量%の貴金属
が導入担持されるような量である。上記の種々の貴金属
の硝酸塩または塩化物は2種以上の混合物として使用し
てもよい。このようにして得られる貴金属担持触媒の代
表的な組成例は、Pt−Al23、Pd−Al23、R
h−Al23、Ir−Al23、Pt−ZrO2、Pd
−ZrO2、Rh−ZrO2、Ir−ZrO2、Pt/R
h−Al23、Pt/Rh−ZrO2等である。
The noble metal-supported catalyst is prepared by mixing and kneading an aqueous solution of a nitrate or chloride of a noble metal such as platinum, palladium, rhodium or iridium with powder of amylna or zirconia serving as a carrier, or a mixture thereof, and mixing the mixture at a temperature of 100. Dry at ~ 120 ° C, then temperature 400 ~
650 ° C., preferably at 450-600 ° C.
It can be prepared by baking for 6 hours. The fired product is crushed or pulverized into a powder. The amount of the noble metal nitrate or chloride used is such that about 0.05 to 10% by weight of the noble metal is introduced and supported in terms of noble metal (for example, in terms of Pt) in the calcined product obtained above. The various noble metal nitrates or chlorides described above may be used as a mixture of two or more. Typical examples of the composition of the noble metal-supported catalyst thus obtained are Pt—Al 2 O 3 , Pd—Al 2 O 3 , R
h-Al 2 O 3, Ir -Al 2 O 3, Pt-ZrO 2, Pd
-ZrO 2, Rh-ZrO 2, Ir-ZrO 2, Pt / R
h-Al 2 O 3 and Pt / Rh-ZrO 2 .

【0012】貴金属担持触媒と混合されるべきNOx吸
蔵材をなす複合酸化物として、本発明の排ガス浄化用触
媒の製造に使用できるものは、ペロブスカイト型の結晶
構造(立方格子)を示すものであり、具体的な例として
は、先に挙げたペロブスカイト(CaO−TiO
2等)、ZrO2−Al23、CoO2−Al23、Cu
2−Al23、SiO2−Al23等がある。
As a composite oxide constituting the NOx storage material to be mixed with the noble metal-supported catalyst, one which can be used for producing the exhaust gas purifying catalyst of the present invention has a perovskite type crystal structure (cubic lattice). As a specific example, the perovskite (CaO-TiO.
2 ), ZrO 2 —Al 2 O 3 , CoO 2 —Al 2 O 3 , Cu
There are O 2 -Al 2 O 3 , SiO 2 -Al 2 O 3 and the like.

【0013】本発明による排ガス浄化用触媒は、内燃機
関の排気マニフォールドと排気マフラーとの間の排気管
路中において排ガス流と接触するように配置して使用さ
れる。本発明の触媒は、小寸法の成形体、例えばペレッ
ト、ハニカム成形体として、あるいはハニカム構造のセ
ラミックスまたはメタル担体表面上にコーティングされ
た状態で都合よく使用できる。
The exhaust gas purifying catalyst according to the present invention is used in an exhaust line between an exhaust manifold and an exhaust muffler of an internal combustion engine so as to be in contact with an exhaust gas flow. The catalysts of the present invention can be conveniently used as compacts, such as pellets, honeycomb compacts, or coated on the surface of a ceramic or metal carrier having a honeycomb structure.

【0014】本発明の排ガス浄化用触媒の製造に際して
は、前記のように調製した貴金属担持触媒(粉末)とペ
ロブスカイト型複合酸化物(粉末)とを良く混合してフ
リット状の触媒粉末混合物を得る。原料の貴金属担持触
媒粉末及び複合酸化物粉末の両者の粒度は余り重要な因
子ではないが、例えば約0.1mmないし数ミクロンの
範囲であってよく、非限定的な特定の好ましい例とし
て、約150メッシュないし100メッシュ付近の粒度
を挙げることができる。
In producing the exhaust gas purifying catalyst of the present invention, a noble metal-supported catalyst (powder) prepared as described above and a perovskite-type composite oxide (powder) are mixed well to obtain a frit-like catalyst powder mixture. . The particle size of both the starting noble metal-supported catalyst powder and the composite oxide powder is not a critical factor, but may be, for example, in the range of about 0.1 mm to several microns, with certain non-limiting preferred examples being about A particle size around 150 mesh to 100 mesh can be mentioned.

【0015】フリット状触媒粉末混合物には、当業者に
周知の無機系または有機系バインダーを添加して、成形
に適当な塑性を示す混練物となし、大きな比表面積を示
すペレット、またはハニカム等に押出成形加工する。こ
のようにして得られるペレット、ハニカム等の成形品
は、必要に応じて適切な乾燥及び/または焼成処理を受
けて、本発明による排ガス浄化用触媒となり、内燃機関
の排ガス管路における触媒充填区画域に装填される。
An inorganic or organic binder known to those skilled in the art is added to the frit-like catalyst powder mixture to form a kneaded product exhibiting appropriate plasticity for molding, and to form a pellet or honeycomb having a large specific surface area. Extrusion processing. The molded articles such as pellets, honeycombs and the like thus obtained are subjected to an appropriate drying and / or calcination treatment as required, and become the exhaust gas purifying catalyst according to the present invention. Is loaded into the area.

【0016】あるいはフリット状触媒粉末混合物に、無
機系または有機系バインダー及び適量の媒質(典型的に
は水)を加えて良く混合撹拌してスラリーとなし、この
スラリーを大きな比表面積を有するセラミックス製のハ
ニカム(例えばコージェライト製ハニカム)またはメタ
ルハニカム(例えばステンレス鋼製ハニカム)等の担体
表面にコーティングし、適当な熱処理(乾燥及び/また
は焼成)を行なうことにより、排ガス管路中に配置され
るハニカム触媒とすることができる。
Alternatively, an inorganic or organic binder and an appropriate amount of a medium (typically, water) are added to the frit-like catalyst powder mixture and mixed well to form a slurry, and the slurry is made of a ceramic material having a large specific surface area. (For example, a honeycomb made of cordierite) or a metal honeycomb (for example, a honeycomb made of stainless steel) is coated on a carrier surface and subjected to an appropriate heat treatment (drying and / or firing) to be disposed in an exhaust gas line. It can be a honeycomb catalyst.

【0017】上記で使用の無機系バインダーの例として
は、アルミナゾル、シリカゾル、硝酸アルミニウム、タ
ルク等があり、また有機系バインダーとしては炭水化物
類がある。
Examples of the inorganic binder used above include alumina sol, silica sol, aluminum nitrate and talc, and examples of the organic binder include carbohydrates.

【0018】本発明による排ガス浄化用触媒の固化物と
なった状態での微視的組織の模式図を図1に示す。符号
1はアルミナまたはジルコニア等の担体粒子であり、そ
の表面には貴金属2(小さな複数の黒点として表示)が
担持されている。3はNOx吸蔵材の粒子である。
FIG. 1 is a schematic diagram of a microscopic structure of the exhaust gas purifying catalyst according to the present invention in a state of being solidified. Reference numeral 1 denotes a carrier particle such as alumina or zirconia, and a noble metal 2 (shown as a plurality of small black spots) is carried on the surface thereof. Numeral 3 denotes particles of the NOx storage material.

【0019】本発明による排ガス浄化用触媒における貴
金属担持触媒とNOx吸蔵材複合酸化物との比率は、重
量基準で概略8:1ないし1:2、好ましくは5:1な
いし1:1の範囲である。
The ratio of the noble metal-supported catalyst to the NOx storage composite oxide in the exhaust gas purifying catalyst according to the present invention is approximately 8: 1 to 1: 2, preferably 5: 1 to 1: 1 on a weight basis. is there.

【0020】[0020]

【発明の実施の形態】貴金属担持触媒の調製 金属として計算して2.5gの貴金属を含むように算出
した量の硝酸白金、硝酸ロジウムまたは硝酸イリジウム
を水300mlに入れ良く混合撹拌し、さらに150g
のアルミナ粉末を加え、均質になるように充分に混合し
た。この水性混合物から余分の水性相を流去させ、残留
物を約100℃で5時間にわたって乾燥し、次いで約5
60〜580℃の水素含有窒素ガス流(1%H2/99
%N2容)中で3時間加熱処理し、顕微鏡検査するとア
ルミナ担体粒子の表面上に貴金属の微細な粒子が斑点状
に沈着している貴金属担持触媒が得られた。これを軽く
解砕、粉砕し、粒度150〜100メッシュの粉体とし
た。それぞれの貴金属の含有率(重量基準)は、下記の
通りであった。
BEST MODE FOR CARRYING OUT THE INVENTION 300 g of platinum nitrate, rhodium nitrate or iridium nitrate, calculated as containing a noble metal and containing 2.5 g of a noble metal, is mixed in 300 ml of water, mixed well, and stirred.
Was added and mixed well so as to be homogeneous. The excess aqueous phase is drained from the aqueous mixture and the residue is dried at about 100 ° C. for 5 hours and then
From 60 to 580 ° C. in a hydrogen-containing nitrogen gas stream (1% H 2/99
% N 2 vol) heat-treated for 3 hours in, microscopic examination to the alumina support precious metal fine particles on the surface of the particles the noble metal loaded catalyst was obtained which deposited spots. This was lightly crushed and pulverized to obtain a powder having a particle size of 150 to 100 mesh. The content (weight basis) of each noble metal was as follows.

【0021】 A. 白金担持触媒 Pt 1.3% B. ロジウム担持触媒 Rh 1.2% C. イリジウム担持触媒 Ir 1.3%複合酸化物(NOx吸蔵材)との混合 A’. 上記A.白金担持触媒とペロブスカイトとを重
量比2:1で混合した。
A. Pt supported catalyst 1.3% Bt. Rhodium supported catalyst Rh 1.2% C.I. Iridium supported catalyst Mixing with Ir 1.3% composite oxide (NOx storage material) A '. The above A. A platinum supported catalyst and perovskite were mixed at a weight ratio of 2: 1.

【0022】B’. 上記B.ロジウム担持触媒とCo
2−Al23複合酸化物とを重量比2:1で混合し
た。
B '. B. above. Rhodium supported catalyst and Co
O 2 -Al 2 O 3 composite oxide in a weight ratio of 2: 1 mixture.

【0023】C’. 上記C.イリジウム担持触媒とC
uO2−Al23複合酸化物とを重量比2:1で混合し
た。
C '. C. above. Iridium supported catalyst and C
The uO 2 -Al 2 O 3 composite oxide was mixed at a weight ratio of 2: 1.

【0024】コージェライト製ハニカム担体の触媒コー
ティング 純水、アルミナゾルバインダー及び上記A’(白金)、
B’(ロジウム)またはC’(イリジウム)の混合物を
重量比70:20:50で混合し、充分に撹拌混合して
均一なスラリーとした。スラリーにコージェライト製ハ
ニカム担体を浸漬し、引き上げ、大気中100℃で4時
間乾燥し、次いで大気中で600℃で10時間焼成し、
放冷し触媒コーティングされたハニカム担体を得た。
The catalyst core of the cordierite honeycomb carrier
Coating of pure water, the alumina sol binder and said A '(platinum),
A mixture of B '(rhodium) or C' (iridium) was mixed at a weight ratio of 70:20:50, and sufficiently stirred and mixed to obtain a uniform slurry. A cordierite honeycomb carrier is immersed in the slurry, pulled up, dried in the air at 100 ° C. for 4 hours, and then fired in the air at 600 ° C. for 10 hours,
It was allowed to cool to obtain a catalyst carrier coated with a catalyst.

【0025】比較例(対照)として、前記B.ロジウム
担持触媒のみを上記と同じ操作によってコージェライト
製ハニカムにコーティングした触媒を調製した。
As a comparative example (control), B.I. A catalyst in which only a rhodium-supported catalyst was coated on a cordierite honeycomb by the same operation as above was prepared.

【0026】NOx低減評価試験 上記の触媒A’、B’及びC’でコーティングしたハニ
カム及び比較例のハニカムを、それぞれ固定床流通式反
応装置に装着し、ディーゼルエンジン排ガスを模擬した
下記組成のガス混合物を空間速度(SV)=20,00
0hr-1で、触媒入口温度を種々に変えて、触媒下流排
ガスを排ガス分析装置により分析し、NOx低減率を測
定した。
NOx Reduction Evaluation Test Each of the honeycombs coated with the catalysts A ′, B ′ and C ′ and the honeycomb of the comparative example were mounted on a fixed-bed flow-type reactor, and a gas having the following composition simulating diesel engine exhaust gas was used. The mixture was subjected to a space velocity (SV) = 20,000
At 0 hr -1 , the catalyst inlet temperature was variously changed, and the exhaust gas downstream of the catalyst was analyzed by an exhaust gas analyzer to measure the NOx reduction rate.

【0027】模擬排ガス組成: NO 1,000ppm C36 1,300ppm O2 10% SO2 20ppm H2O 4% N2 残部 各触媒についての種々の温度におけるNOx低減率
(%)は下記の通りであった。
Simulated exhaust gas composition: NO 1,000 ppm C 3 H 6 1,300 ppm O 2 10% SO 2 20 ppm H 2 O 4% N 2 balance The NOx reduction rate (%) at various temperatures for each catalyst is as follows: It was right.

【0028】 触媒 A'コーティング B'コーティング C'コーティング 比較例 (Pt) (Rh) (Ir) (Rh) 200℃ 3.2 0 0 0 250℃ 9.0 2.0 1.5 1.5 300℃ 12.5 13.3 7.2 2.8 350℃ 11.1 21.4 16.0 8.1 400℃ 9.8 17.6 22.4 10.1 450℃ 4.8 9.8 14.7 3.4 500℃ 2.5 2.5 5.0 0 図2に、上記試験におけるB’(ロジウム担持触媒+N
Ox吸蔵材)コーティングハニカム触媒と比較例のロジ
ウム担持触媒コーティングハニカム触媒とのNOx低減
率(対触媒入口温度)のグラフを参考のために示す。
Catalyst A 'coating B' coating C 'coating Comparative Example (Pt) (Rh) (Ir) (Rh) 200 ° C. 3.2 00 250 ° C. 9.0 2.0 1.5 1.5 300 ° C 12.5 13.3 7.2 2.8 350 ° C 11.1 21.4 16.0 8.1 400 ° C 9.8 17.6 22.4 10.1 450 ° C 4.8 9.8 14 2.7 3.4 500 ° C. 2.5 2.5 5.0 0 FIG. 2 shows B ′ (rhodium-supported catalyst + N
A graph of the NOx reduction rate (vs. catalyst inlet temperature) of the coated honeycomb catalyst (Ox storage material) and the rhodium-supported catalyst coated catalyst of the comparative example is shown for reference.

【0029】本発明の触媒には、公知の銅イオン交換ゼ
オライト触媒における水分やSO2によるNOx選択還
元機能の劣化傾向は認められない。
The catalyst of the present invention does not show any tendency to deteriorate the NOx selective reduction function due to moisture or SO 2 in the known copper ion exchanged zeolite catalyst.

【0030】[0030]

【発明の効果】NOx吸蔵材を貴金属担持触媒と併用す
ることにより、低温ないし中温域におけるNOx低減機
能が著しく改善されるばかりでなく、高温域におけるN
Ox低減機能も総合的に向上した排ガス浄化用触媒が実
現された。
The use of the NOx storage material together with the noble metal-supported catalyst not only significantly improves the NOx reduction function in the low to medium temperature range, but also improves the NOx reduction in the high temperature range.
An exhaust gas purifying catalyst having an overall improved Ox reduction function has been realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の複合酸化物NOx吸蔵材と貴金属担持
触媒とを併用してなる排ガス浄化用触媒の固化物の組織
模式図。
FIG. 1 is a schematic structural view of a solidified product of an exhaust gas purifying catalyst obtained by using a composite oxide NOx storage material of the present invention and a noble metal-supported catalyst in combination.

【図2】本発明による排ガス浄化触媒の一例と比較例
(対照)との種々の排ガス触媒入口温度におけるNOx
低減率を示すグラフ。
FIG. 2 shows NOx at various exhaust gas catalyst inlet temperatures of an example of an exhaust gas purifying catalyst according to the present invention and a comparative example (control).
5 is a graph showing a reduction rate.

【符号の説明】[Explanation of symbols]

1 アルミナまたはジルコニアの担体粒子 2 貴金属微細粒子 3 吸蔵材粒子 1 alumina or zirconia carrier particles 2 noble metal fine particles 3 occlusion material particles

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 35/04 B01J 35/04 301Z 301 37/02 301C 37/02 301 B01D 53/36 102A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 35/04 B01J 35/04 301Z 301 37/02 301C 37/02 301 B01D 53/36 102A

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アルミナまたはジルコニアの担体上に担
持される貴金属からなる触媒と、ペロブスカイト型複合
酸化物からなるNOx吸蔵材と、の混合物よりなる排ガ
ス浄化用触媒。
1. An exhaust gas purifying catalyst comprising a mixture of a catalyst made of a noble metal supported on an alumina or zirconia carrier and a NOx storage material made of a perovskite-type composite oxide.
【請求項2】 貴金属が白金、パラジウム、ロジウム及
びイリジウムから選択される1種又は2種以上である請
求項1の排ガス浄化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the noble metal is one or more selected from platinum, palladium, rhodium and iridium.
【請求項3】 ペロブスカイト型複合酸化物が酸化銅−
アルミナ、酸化コバルト−アルミナまたはこれらの混合
物である請求項1または2の排ガス浄化用触媒。
3. The method according to claim 1, wherein the perovskite-type composite oxide is copper oxide-
3. The exhaust gas purifying catalyst according to claim 1, which is alumina, cobalt oxide-alumina or a mixture thereof.
【請求項4】 ペレット、またはハニカムの形状に形成
された請求項1〜3のいずれかの排ガス浄化用触媒。
4. The exhaust gas purifying catalyst according to claim 1, wherein the catalyst is formed in a pellet or honeycomb shape.
【請求項5】 ハニカム構造のセラミックスまたはメタ
ル担体の表面上にコーティングされた請求項1〜3のい
ずれかの排ガス浄化用触媒。
5. The exhaust gas purifying catalyst according to claim 1, which is coated on the surface of a ceramic or metal carrier having a honeycomb structure.
JP9104217A 1997-04-22 1997-04-22 Catalyst for purification of exhaust gas Pending JPH10290931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9104217A JPH10290931A (en) 1997-04-22 1997-04-22 Catalyst for purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9104217A JPH10290931A (en) 1997-04-22 1997-04-22 Catalyst for purification of exhaust gas

Publications (1)

Publication Number Publication Date
JPH10290931A true JPH10290931A (en) 1998-11-04

Family

ID=14374803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9104217A Pending JPH10290931A (en) 1997-04-22 1997-04-22 Catalyst for purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPH10290931A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020155A1 (en) * 2000-09-08 2002-03-14 Toyota Jidosha Kabushiki Kaisha Absorption/reduction type catalyst for nox removal
US7081431B2 (en) 2000-09-08 2006-07-25 Toyota Jidosha Kabushiki Kaisha NOx absorbent and absorption reduction-type NOx purifying catalyst
JP2009291753A (en) * 2008-06-09 2009-12-17 Dowa Electronics Materials Co Ltd Exhaust gas clarifying catalyst, coating for exhaust gas clarifying catalyst, and diesel exhaust gas clarifying filter
WO2023151687A1 (en) * 2022-02-14 2023-08-17 有研稀土高技术有限公司 Grain boundary and surface-supported noble metal catalyst, and preparation method therefor and application thereof
WO2023151688A1 (en) * 2022-02-14 2023-08-17 有研稀土高技术有限公司 Catalyst for loading noble metal on grain boundary and surface, preparation method therefor, and use thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020155A1 (en) * 2000-09-08 2002-03-14 Toyota Jidosha Kabushiki Kaisha Absorption/reduction type catalyst for nox removal
US6906002B2 (en) 2000-09-08 2005-06-14 Toyota Jidosha Kabushiki Kaisha Absorption reduction-type NOx purifying catalyst
US7081431B2 (en) 2000-09-08 2006-07-25 Toyota Jidosha Kabushiki Kaisha NOx absorbent and absorption reduction-type NOx purifying catalyst
JP2009291753A (en) * 2008-06-09 2009-12-17 Dowa Electronics Materials Co Ltd Exhaust gas clarifying catalyst, coating for exhaust gas clarifying catalyst, and diesel exhaust gas clarifying filter
WO2023151687A1 (en) * 2022-02-14 2023-08-17 有研稀土高技术有限公司 Grain boundary and surface-supported noble metal catalyst, and preparation method therefor and application thereof
WO2023151688A1 (en) * 2022-02-14 2023-08-17 有研稀土高技术有限公司 Catalyst for loading noble metal on grain boundary and surface, preparation method therefor, and use thereof

Similar Documents

Publication Publication Date Title
JP4317345B2 (en) Low concentration CO-containing exhaust gas treatment method
JP4012320B2 (en) Exhaust gas purification catalyst for lean combustion engine
JPH01281144A (en) Catalyst for purifying exhaust gas
JP2007275878A (en) Exhaust gas cleaning catalyst, its manufacturing method and cleaning method for exhaust gas using the catalyst
JPH01139145A (en) Catalyst for controlling exhaust emission
WO2010110298A1 (en) Exhaust gas purifying catalyst
JPH10290931A (en) Catalyst for purification of exhaust gas
JP2000262898A (en) Catalyst for purifying exhaust gas
JP3786522B2 (en) Exhaust gas purification catalyst
JPH1076159A (en) Exhaust gas purification catalyst and its production
JPH07308578A (en) Exhaust gas purifying catalyst
JPH0578379B2 (en)
JPH11221467A (en) Catalyst for purifying exhaust gas
JPH0578380B2 (en)
JPH08182928A (en) Nitrogen oxide occlusion composition and exhaust gas purification
JP3447513B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH01304048A (en) Catalyst for purifying exhaust gas
JP3925015B2 (en) Internal combustion engine exhaust gas purification device, purification method, and purification catalyst
JPH04180835A (en) Production of catalyst for purifying exhaust gas
JPH0573463B2 (en)
EP4309785A1 (en) Catalyst composition for exhaust gas purification and catalyst for exhaust gas purification
JP3342043B2 (en) Exhaust gas purification device
JP4265445B2 (en) Exhaust gas purification catalyst
JP2008215359A (en) Purification method of lean-burn engine exhaust gas
JP2003343252A (en) Exhaust gas purifying system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040518