JP5371545B2 - Method for producing naphthalene derivative - Google Patents

Method for producing naphthalene derivative Download PDF

Info

Publication number
JP5371545B2
JP5371545B2 JP2009124375A JP2009124375A JP5371545B2 JP 5371545 B2 JP5371545 B2 JP 5371545B2 JP 2009124375 A JP2009124375 A JP 2009124375A JP 2009124375 A JP2009124375 A JP 2009124375A JP 5371545 B2 JP5371545 B2 JP 5371545B2
Authority
JP
Japan
Prior art keywords
catalyst
cho
formula
reaction
hydrocarbon group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009124375A
Other languages
Japanese (ja)
Other versions
JP2010270075A (en
Inventor
春樹 岡田
浩幸 森
諭 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2009124375A priority Critical patent/JP5371545B2/en
Publication of JP2010270075A publication Critical patent/JP2010270075A/en
Application granted granted Critical
Publication of JP5371545B2 publication Critical patent/JP5371545B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparing a naphthalene derivative without any difficult operation. <P>SOLUTION: A compound (II) represented by formula (II) is produced by reducing a compound (I) represented by formula (I) in the presence of a catalyst and hydrogen (in the formulae, at least one of R<SB>7</SB>and R<SB>8</SB>is -Q<SP>1</SP>-CHO, while the remaining R<SB>7</SB>or R<SB>8</SB>and R<SB>1</SB>-R<SB>6</SB>are each independently a hydrogen atom, 1-6C monovalent hydrocarbon group, -Q<SP>2</SP>-OH or -Q<SP>3</SP>-OR'; R<SB>7</SB>' and R<SB>8</SB>' are identical to R<SB>7</SB>and R<SB>8</SB>, respectively, provided that when R<SB>7</SB>is -Q<SP>1</SP>-CHO, R<SB>7</SB>' is -Q<SP>1</SP>-CH<SB>2</SB>OH, and when R<SB>8</SB>is -Q<SP>1</SP>-CHO, R<SB>8</SB>' is -Q<SP>1</SP>-CH<SB>2</SB>OH; Q<SP>1</SP>-Q<SP>3</SP>are each independently a single bond or 1-6C bivalent hydrocarbon group; and R' is a 1-6C monovalent hydrocarbon group). <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、置換基に−CHOHを有するナフタレン誘導体の製造方法に関する。 The present invention relates to a method for producing a naphthalene derivative having —CH 2 OH as a substituent.

置換基に−CHOHを有するナフタレン誘導体の製造方法について、下記特許文献1には、6−ヒドロキシ−2−ナフタレンカルボン酸を、ボラン類で還元して、医薬や農薬等の製造用中間体として有用な6−ヒドロキシ−2−ナフタレンメタノールを製造する方法が記載されている。
また下記非特許文献1には、6−ヒドロキシ−2−ナフチルアルデヒドを、リチウムアルミニウムハイドライドで還元して6−ヒドロキシ−2−ナフタレンメタノールを製造する方法が記載されている。
The method for producing a naphthalene derivative having a -CH 2 OH substituent, the following Patent Document 1, 6-hydroxy-2-naphthalene carboxylic acid, and reduced with boranes, manufacturing intermediate member such as pharmaceutical and agricultural chemicals A process for producing 6-hydroxy-2-naphthalenemethanol useful as
Non-Patent Document 1 below describes a method for producing 6-hydroxy-2-naphthalenemethanol by reducing 6-hydroxy-2-naphthylaldehyde with lithium aluminum hydride.

国際公開第00/73252号パンフレットInternational Publication No. 00/73252 Pamphlet

Tetrahedron,2001年,第57巻,p.7349−7359Tetrahedron, 2001, 57, p. 7349-7359

しかし、特許文献1および非特許文献1に記載の方法は何れも、還元剤が高価であるとともに取り扱いが難しく、工業的に容易な製造方法とは言いがたい。   However, both of the methods described in Patent Document 1 and Non-Patent Document 1 are difficult to handle because of the high cost of the reducing agent and are difficult to say as industrially easy production methods.

本発明は上記問題を鑑みてなされたもので、置換基に−CHOHを有するナフタレン誘導体を、困難な操作を伴わない容易な方法で製造できるようにすることを目的とする。 The present invention has been made in consideration of the above situation, and an object thereof is to allow a naphthalene derivative having a -CH 2 OH substituent, can be prepared in a simple manner without the difficult operation.

前記課題を解決するために本発明の第1の態様は、下記一般式(I)で表わされる化合物(I)を、触媒および水素の存在下で還元することにより、下記一般式(II)で表わされる化合物(II)を製造することを特徴とする方法であって、前記触媒がパラジウムからなる金属触媒またはパラジウムを担体に担持させた担持触媒を含み、前記還元を行う際の反応温度が0℃以上50℃未満であるナフタレン誘導体の製造方法である。 In order to solve the above-mentioned problems, a first aspect of the present invention is to reduce a compound (I) represented by the following general formula (I) in the following general formula (II) in the presence of a catalyst and hydrogen. A compound characterized in that the compound (II) is produced , wherein the catalyst includes a metal catalyst composed of palladium or a supported catalyst in which palladium is supported on a support, and the reaction temperature during the reduction is 0 It is a manufacturing method of the naphthalene derivative which is more than 50 degreeC.

Figure 0005371545
Figure 0005371545

(式中、R7およびR8のうち少なくとも一つは−Q−CHOを表し、該R7およびR8のうち−Q−CHOでないもの、およびR〜Rはそれぞれ独立に、水素原子、炭素数1〜6の1価の炭化水素基、−Q−OH、または−Q−OR’を表わす。ただし、 は単結合を表し、Q はそれぞれ独立に単結合または炭素数1〜6の2価の炭化水素基を表わし、R’は炭素数1〜6の1価の炭化水素基を表わす。) (Wherein at least one of R 7 and R 8 represents -Q 1 -CHO, is not an -Q 1 -CHO of the R 7 and R 8, and R 1 to R 6 are each independently, Represents a hydrogen atom, a monovalent hydrocarbon group having 1 to 6 carbon atoms, —Q 2 —OH, or —Q 3 —OR ′, wherein Q 1 represents a single bond, and Q 2 and Q 3 are independent of each other. Represents a single bond or a divalent hydrocarbon group having 1 to 6 carbon atoms, and R ′ represents a monovalent hydrocarbon group having 1 to 6 carbon atoms.)

Figure 0005371545
Figure 0005371545

(式中、R〜Rは、式(I)におけるR〜Rとそれぞれ同じであり、R‘、R‘は、式(I)におけるR、Rとそれぞれ同じである。ただしRが−Q−CHOであるときR‘は、−Q−CHOHを表し、Rが−Q−CHOであるときR‘は−Q−CHOHを表す。Qは、式(I)におけるQと同じである。) (Wherein, R 1 to R 6 are respectively the same as R 1 to R 6 in formula (I), R 7 ', R 8' are respectively the same as R 7, R 8 in formula (I) Provided that when R 7 is —Q 1 —CHO, R 7 ′ represents —Q 1 —CH 2 OH, and when R 8 is —Q 1 —CHO, R 8 ′ represents —Q 1 —CH 2. Represents OH, Q 1 is the same as Q 1 in formula (I).

本発明の第2の態様は、前記第1の態様における反応温度が0℃以上40℃以下である、ナフタレン誘導体の製造方法である
本発明の第の態様は、前記第1または第2の態様における前記還元を行う際の、反応系内の水素圧が1.0×10Pa〜5.0×10Paの範囲である、ナフタレン誘導体の製造方法である。
The second aspect of the present invention is a method for producing a naphthalene derivative, wherein the reaction temperature in the first aspect is 0 ° C. or higher and 40 ° C. or lower .
In the third aspect of the present invention, the hydrogen pressure in the reaction system when performing the reduction in the first or second aspect is in the range of 1.0 × 10 4 Pa to 5.0 × 10 5 Pa. A method for producing a naphthalene derivative.

本発明によれば、前記式(II)で表わされるナフタレン誘導体、すなわち置換基に−CHOHを有するナフタレン誘導体を、困難な操作を伴わない容易な方法で製造できる。 According to the present invention, a naphthalene derivative represented by the above formula (II), that is, a naphthalene derivative having —CH 2 OH as a substituent can be produced by an easy method without any difficult operation.

本発明の製造方法は、前記一般式(I)で表わされる化合物(I)を、触媒および水素の存在下で還元して、前記一般式(II)で表わされる化合物(II)を得る工程(以下、還元工程ということもある。)を有する。
[化合物(I)]
前記一般式(I)において、R7およびR8のうち少なくとも一つは−Q−CHOを表し、Qは単結合または炭素数1〜6の2価の炭化水素基を表わす。
連結基Qとしての炭素数1〜6の2価の炭化水素基は、直鎖でも分岐を有していてもよく、飽和であっても不飽和であってもよい。また、該炭化水素基は、炭素鎖の途中あるいは分岐鎖の末端に、酸素、硫黄、窒素などのヘテロ原子を有していてもよい。
In the production method of the present invention, the compound (I) represented by the general formula (I) is reduced in the presence of a catalyst and hydrogen to obtain the compound (II) represented by the general formula (II) ( Hereinafter, it may be referred to as a reduction step).
[Compound (I)]
In the general formula (I), at least one of R 7 and R 8 represents —Q 1 —CHO, and Q 1 represents a single bond or a divalent hydrocarbon group having 1 to 6 carbon atoms.
The C 1-6 divalent hydrocarbon group as the linking group Q 1 may be linear or branched, and may be saturated or unsaturated. The hydrocarbon group may have a heteroatom such as oxygen, sulfur, or nitrogen in the middle of the carbon chain or at the end of the branched chain.

一般式(I)において、R7およびR8のうち−Q−CHOでないもの、およびR〜Rはそれぞれ独立に、水素原子、炭素数1〜6の1価の炭化水素基、−Q−OH、または−Q−OR’を表わす。
〜Rとしての炭素数1〜6の1価の炭化水素基は直鎖でも分岐を有していてもよく、飽和であっても不飽和であってもよい。また、該炭化水素基は、炭素鎖の途中あるいは末端に、酸素、硫黄、窒素などのヘテロ原子を有していてもよい。
該炭化水素基の具体例は、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、tert−ペンチル基、ネオペンチル基、n−ヘキシル基、イソヘキシル基等が挙げられる。
In General Formula (I), R 7 and R 8 that are not —Q 1 —CHO and R 1 to R 6 are each independently a hydrogen atom, a monovalent hydrocarbon group having 1 to 6 carbon atoms, — Q 2 —OH or —Q 3 —OR ′ is represented.
The monovalent hydrocarbon group having 1 to 6 carbon atoms as R 1 to R 8 may be linear or branched, and may be saturated or unsaturated. The hydrocarbon group may have a heteroatom such as oxygen, sulfur, or nitrogen in the middle or at the end of the carbon chain.
Specific examples of the hydrocarbon group include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, tert -Pentyl group, neopentyl group, n-hexyl group, isohexyl group and the like.

連結基Q、Qは、Qと同様である。一分子中に、Q〜Qから選ばれる2つ以上が存在する場合、それらは互いに同一であってもよく、異なっていてもよい。
R’は炭素数1〜6の1価の炭化水素基を表わす。R’としての炭化水素基は、直鎖でも分岐を有していてもよく、飽和であっても不飽和であってもよい。また、該炭化水素基は、炭素鎖の途中あるいは末端に酸素、硫黄、窒素などのヘテロ原子を有していてもよい。
R’としての炭化水素基の具体例は、上記R〜Rとしての炭化水素基の具体例と同様のものが挙げられる。
The linking groups Q 2 and Q 3 are the same as Q 1 . When two or more selected from Q 1 to Q 3 are present in one molecule, they may be the same as or different from each other.
R ′ represents a monovalent hydrocarbon group having 1 to 6 carbon atoms. The hydrocarbon group as R ′ may be linear or branched and may be saturated or unsaturated. The hydrocarbon group may have a heteroatom such as oxygen, sulfur, or nitrogen in the middle or at the end of the carbon chain.
Specific examples of the hydrocarbon group as R ′ are the same as the specific examples of the hydrocarbon group as R 1 to R 8 .

[化合物(II)]
前記一般式(II)において、R〜Rはそれぞれ、式(I)におけるR〜Rと同じである。
式(I)においてRが−Q−CHOであるとき、式(II)におけるR’は、−Q−CHOHであり、Qは、式(I)におけるQと同じである。Rが−Q−CHOでない場合、R’は、式(I)におけるRと同じである。
同様にRが−Q−CHOであるとき、R’は、−Q−CHOHであり、Qは、式(I)におけるQと同じである。Rが−Q−CHOでない場合、R’は、式(I)におけるRと同じである。
化合物(II)の具体例としては、例えばフォトレジスト用高分子化合物を構成する単量体の中間体として有用な、2−ヒドロキシ−6−ナフタレンメタノールが挙げられる。
[Compound (II)]
In the general formula (II), R 1 to R 6 are the same as R 1 to R 6 in the formula (I), respectively.
In formula (I), when R 7 is —Q 1 —CHO, R 7 ′ in formula (II) is —Q 1 —CH 2 OH, and Q 1 is the same as Q 1 in formula (I). It is. When R 7 is not -Q 1 -CHO, R 7 ′ is the same as R 7 in formula (I).
Similarly, when R 8 is —Q 1 —CHO, R 8 ′ is —Q 1 —CH 2 OH, and Q 1 is the same as Q 1 in formula (I). When R 8 is not -Q 1 -CHO, R 8 ′ is the same as R 8 in formula (I).
Specific examples of the compound (II) include 2-hydroxy-6-naphthalenemethanol, which is useful as an intermediate for the monomer constituting the photoresist polymer compound.

[触媒]
還元工程で用いられる触媒としては、ニッケル、パラジウム、白金、ルテニウムおよびコバルトからなる群より選ばれる金属を含有する金属触媒が好ましい。金属は一種類でもよく2種類以上でもよい。特に高収率が得られやすい点でパラジウムを含むことが好ましい。
金属触媒として、金属をそのまま用いてもよく、担体に金属を担持させた担持触媒の形でも使用することができる。担体としては特に限定されないが、例として活性炭、シリカ、アルミナ等が挙げられる。
触媒は一種類を使用してもよく、二種類以上を組み合わせて使用してもよい。
触媒の添加量は特に限定されないが、経済性、反応速度、生成物選択率の観点から、反応基質である化合物(I)の使用量に対して、触媒に含まれる金属量が0.01質量%〜10質量%であることが好ましく、0.05質量%〜5質量%がより好ましい。
還元工程において、触媒の使用量の全量を一括的に添加してもよく、何回かに分けて添加してもよい。
[catalyst]
The catalyst used in the reduction step is preferably a metal catalyst containing a metal selected from the group consisting of nickel, palladium, platinum, ruthenium and cobalt. There may be one kind of metal or two or more kinds of metals. In particular, it is preferable to contain palladium in that a high yield is easily obtained.
As the metal catalyst, a metal may be used as it is, or a supported catalyst in which a metal is supported on a carrier can be used. Although it does not specifically limit as a support | carrier, For example, activated carbon, a silica, an alumina etc. are mentioned.
One type of catalyst may be used, or two or more types may be used in combination.
The addition amount of the catalyst is not particularly limited, but from the viewpoint of economy, reaction rate, and product selectivity, the amount of metal contained in the catalyst is 0.01 mass relative to the amount of compound (I) used as the reaction substrate. It is preferable that it is% -10 mass%, and 0.05 mass%-5 mass% are more preferable.
In the reduction step, the entire amount of the catalyst used may be added all at once or in several portions.

[溶媒]
還元工程では溶媒を適宜使用してもよい。溶媒としては、例えばメタノール、エタノール、2−プロパノール等の炭素数1〜4のアルコール類;1,4−ジオキサン、テトラヒドロフラン等の炭素数4〜6のエーテル類;酢酸、蟻酸などの炭素数1〜3のカルボン酸類;または水等が用いられる。これらは1種類を単独で用いてもよく、2種類以上を併用してもよい。
[solvent]
In the reduction step, a solvent may be appropriately used. Examples of the solvent include alcohols having 1 to 4 carbon atoms such as methanol, ethanol and 2-propanol; ethers having 4 to 6 carbon atoms such as 1,4-dioxane and tetrahydrofuran; 1 to 1 carbon atoms such as acetic acid and formic acid. 3 carboxylic acids; or water or the like. These may be used alone or in combination of two or more.

[助触媒]
還元工程では助触媒を添加してもよい。助触媒を添加することにより選択性の向上が期待できる。助触媒として、例えば鉛、カドミニウム、アンチモン、ビスマス、亜鉛、鉄、鉛、銅、スズ等が用いられる。これらは1種類を単独で用いてもよく、2種類以上を併用してもよい。助触媒の添加量は特に限定されないが、使用される触媒中の金属量の0.1〜50質量%が好ましい。
[Cocatalyst]
In the reduction step, a promoter may be added. The selectivity can be improved by adding a cocatalyst. As the promoter, for example, lead, cadmium, antimony, bismuth, zinc, iron, lead, copper, tin or the like is used. These may be used alone or in combination of two or more. Although the addition amount of a co-catalyst is not specifically limited, 0.1-50 mass% of the metal amount in the catalyst used is preferable.

[反応条件]
還元工程における反応温度とは、反応容器に反応基質(化合物(I))、触媒、さらに必要に応じて、助触媒、溶媒などを添加して反応液とした後、水素を共存させて反応基質を消費する時の反応液の温度をさす。反応温度は、使用する溶媒の沸点などの規制を受けるが、操作性、経済性の観点から0〜150℃の範囲内が好ましい。さらに反応速度、生成物選択率を考慮すると20〜100℃の範囲内が好ましい。反応温度が20℃以上であると反応速度が適度に高くなり原料の残存が抑えられる。原料の残存が少ないと、後工程における除去精製などの負荷が小さくなるため好ましい。反応温度が100℃を超えると、生成された化合物(II)において、特に化合物(I)のRあるいはRにおける−Q−CHOのQが単結合の場合、ベンジル位の水酸基が還元されて選択率が大きく低下する恐れがある。
反応温度は、還元工程の開始から終わりまで一定であってもよく、段階的に変化させてもよい。
[Reaction conditions]
The reaction temperature in the reduction step refers to a reaction substrate (compound (I)), a catalyst, and, if necessary, a co-catalyst, a solvent, etc. added to a reaction solution to make a reaction solution, and then coexist with hydrogen. Indicates the temperature of the reaction solution when consuming. Although reaction temperature receives restrictions, such as the boiling point of the solvent to be used, the inside of the range of 0-150 degreeC is preferable from a viewpoint of operativity and economical efficiency. Furthermore, when the reaction rate and product selectivity are taken into consideration, the range of 20 to 100 ° C. is preferable. When the reaction temperature is 20 ° C. or higher, the reaction rate is moderately high and the remaining raw materials are suppressed. It is preferable that the remaining of the raw material is small because a load such as removal purification in a subsequent process is reduced. When the reaction temperature exceeds 100 ° C., in the produced compound (II), particularly when Q 1 of —Q 1 —CHO in R 7 or R 8 of compound (I) is a single bond, the hydroxyl group at the benzyl position is reduced. The selectivity may be greatly reduced.
The reaction temperature may be constant from the start to the end of the reduction step, or may be changed stepwise.

還元工程における反応時間は、特に限定されるものではないが、短すぎると収率が低くなる。一方、必要以上に反応時間が長くなると、生成された化合物(II)において、特に化合物(I)のRあるいはRにおける−Q−CHOのQが単結合の場合、ベンジル位の水酸基が時間経過と共に徐々に還元されて選択率が大きく低下する恐れがある。したがって反応時間は0.1時間〜50時間が好ましく、1時間〜30時間がより好ましい。 The reaction time in the reduction step is not particularly limited, but if it is too short, the yield will be low. On the other hand, if the reaction time becomes longer than necessary, the hydroxyl group at the benzyl position in the produced compound (II), particularly when Q 1 of —Q 1 —CHO in R 7 or R 8 of compound (I) is a single bond, May be gradually reduced over time, and the selectivity may be greatly reduced. Therefore, the reaction time is preferably 0.1 hour to 50 hours, more preferably 1 hour to 30 hours.

還元工程における反応系には水素を存在させる。反応系内に存在する気体が、水素ガスのみからなるか、または水素ガスと、水素以外の他の不活性ガスとの混合ガスであることが好ましい。不活性ガスとしては、例えば窒素ガスを用いることができる。
反応系への水素ガスまたは混合ガスの供給方法は、特に限定されず、反応基質が水素と接触できる状態であればよい。例えば反応液中に吹き込んでもよく、反応系内の気相部に流通させてもよく、該気相部に間欠的に供給してもよい。
Hydrogen is present in the reaction system in the reduction step. The gas present in the reaction system is preferably composed of only hydrogen gas or a mixed gas of hydrogen gas and an inert gas other than hydrogen. For example, nitrogen gas can be used as the inert gas.
The method for supplying hydrogen gas or mixed gas to the reaction system is not particularly limited as long as the reaction substrate can come into contact with hydrogen. For example, it may be blown into the reaction solution, may be circulated to the gas phase portion in the reaction system, or may be intermittently supplied to the gas phase portion.

反応系内の水素圧は、反応系内の気体の温度において、1.0×10Pa〜5.0×10Paの範囲であることが好ましい。
なお本発明における、反応系内の水素圧とは、反応系内に存在する気体が水素ガスのみである場合は、反応系内の気体の圧力そのものであり、混合ガスである場合は、該混合ガスにおける水素分圧をさす。
反応系内の水素圧が低すぎると充分な反応速度が得られない。高すぎると還元反応が過度に促進され、特に化合物(I)のRあるいはRにおける−Q−CHOのQが単結合の場合、生成した化合物(II)におけるベンジル位の水酸基がさらに還元されて目的生成物の選択率が大きく低下する恐れがある。
反応系内の水素圧のより好ましい範囲は2.0×10Pa〜4.0×10Paの範囲であり、さらに好ましくは3.0×10Pa〜3.0×10Paの範囲である。
The hydrogen pressure in the reaction system is preferably in the range of 1.0 × 10 4 Pa to 5.0 × 10 5 Pa at the temperature of the gas in the reaction system.
In the present invention, the hydrogen pressure in the reaction system is the pressure of the gas in the reaction system when the gas existing in the reaction system is only hydrogen gas, and the mixed gas in the case of a mixed gas. Refers to the hydrogen partial pressure in the gas.
If the hydrogen pressure in the reaction system is too low, a sufficient reaction rate cannot be obtained. If it is too high, the reduction reaction is excessively promoted, and in particular, when Q 1 of —Q 1 —CHO in R 7 or R 8 of Compound (I) is a single bond, the hydroxyl group at the benzyl position in the produced Compound (II) is further increased. There is a possibility that the selectivity of the target product is greatly reduced due to reduction.
A more preferable range of the hydrogen pressure in the reaction system is a range of 2.0 × 10 4 Pa to 4.0 × 10 5 Pa, and a more preferable range is 3.0 × 10 4 Pa to 3.0 × 10 5 Pa. It is a range.

[後処理]
還元反応後の後処理としては、触媒および必要に応じて使用された助触媒を、ろ過、遠心分離、沈殿分離等の操作により固液分離した後、溶媒を留去する等の手段によって反応生成物を単離することができる。その後、再結晶、蒸留など公知の方法にて精製することも可能である。
[Post-processing]
As post-treatment after the reduction reaction, the catalyst and, if necessary, the co-catalyst are solid-liquid separated by operations such as filtration, centrifugation, and precipitation separation, and then the reaction is generated by means such as distilling off the solvent. Product can be isolated. Thereafter, it can be purified by a known method such as recrystallization or distillation.

本発明の方法によれば、取り扱いが難しい還元剤を使用する必要がないため、困難な操作を伴わない容易な方法で目的物を製造できる。また後述の実施例に示されるように、高収率、高選択率を達成することができる。   According to the method of the present invention, since it is not necessary to use a reducing agent that is difficult to handle, the target product can be produced by an easy method that does not involve difficult operations. In addition, as shown in Examples described later, high yield and high selectivity can be achieved.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。以下において、「%」は特に断りのない限り「質量%」である。   Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples. In the following, “%” is “% by mass” unless otherwise specified.

反応液の分析は以下の方法で実施した。まず、アセトニトリルと水の混合液(アセトニトリル:水の混合体積比=1:1)を調製して希釈溶媒とした。次いで、反応液をサンプリングし、これに質量比で10倍量の前記希釈溶媒を加えて希釈液を得た。続いて該希釈液をメンブレンフィルターにてろ過して触媒を除去した後に、高速液体クロマトグラフィー(HPLC)にて分析を実施した。検出器は示差屈折検出器(RI検出器)を用いた。   The analysis of the reaction solution was performed by the following method. First, a mixed solution of acetonitrile and water (acetonitrile: water mixed volume ratio = 1: 1) was prepared as a dilution solvent. Next, the reaction solution was sampled, and a 10-fold amount of the dilution solvent was added thereto to obtain a dilution solution. Subsequently, the diluted solution was filtered through a membrane filter to remove the catalyst, and then analyzed by high performance liquid chromatography (HPLC). A differential refraction detector (RI detector) was used as a detector.

(実施例1)
パラジウムを活性炭に担持させた担持触媒(パラジウムの含有量5%、和光純薬社製)に、水を同質量添加して、含水量50%のパラジウム/活性炭担持触媒を調製した。
室温(20℃)にて、ナスフラスコに、溶媒としてメタノールを50.0g、反応基質として2−ヒドロキシ−6−ナフトアルデヒド(アルドリッチ社製)を5.0g(29.1mmol)、および上記で調製したパラジウム/活性炭担持触媒(含水量50%)を0.25g添加した。その後、フラスコ内を減圧した後に、フラスコ内の気体を窒素で置換する操作を3回繰り返した。さらに、同様の手順にてフラスコ内の気体を水素で置換する操作を3回行った。その時点のフラスコ内における水素圧は1.0×10Paであった。
この後、フラスコ内の液を撹拌しながら、液温が反応温度である40℃になるまで昇温した。続いて液温を40℃に保持して撹拌を続け、4時間後に室温まで冷却し、フラスコ内の気体を窒素で置換し、反応液を得た。セライトを使用した加圧ろ過を行って、該反応液から触媒を取り除き、得られたろ液に対して減圧下で溶媒留去を行って、反応生成物5.80gを得た。
反応液について、上記の方法で分析を行ったところ、反応生成物は、目的物である2−ヒドロキシ−6−ナフタレンメタノール(下記式(III)で表わされる。)を含んでおり、目的物の収率91%、純度84%(HPLC面積百分率)、下記式(IV)で表わされる副生物(以下、副生物(IV)という。)の含有量6%(HPLC面積百分率)であることが確認された。
Example 1
A palladium / activated carbon supported catalyst having a water content of 50% was prepared by adding the same mass of water to a supported catalyst (palladium content 5%, manufactured by Wako Pure Chemical Industries, Ltd.) having palladium supported on activated carbon.
Prepared in an eggplant flask at room temperature (20 ° C.), 50.0 g of methanol as a solvent, 5.0 g (29.1 mmol) of 2-hydroxy-6-naphthaldehyde (manufactured by Aldrich) as a reaction substrate, and the above 0.25 g of the palladium / activated carbon supported catalyst (water content 50%) was added. Then, after reducing the pressure in the flask, the operation of replacing the gas in the flask with nitrogen was repeated three times. Furthermore, the operation of substituting the gas in the flask with hydrogen in the same procedure was performed three times. The hydrogen pressure in the flask at that time was 1.0 × 10 5 Pa.
Then, it heated up until the liquid temperature became 40 degreeC which is reaction temperature, stirring the liquid in a flask. Subsequently, the liquid temperature was kept at 40 ° C., and stirring was continued. After 4 hours, the mixture was cooled to room temperature, and the gas in the flask was replaced with nitrogen to obtain a reaction liquid. A pressure filtration using Celite was performed to remove the catalyst from the reaction solution, and the solvent was distilled off from the obtained filtrate under reduced pressure to obtain 5.80 g of a reaction product.
When the reaction solution was analyzed by the above method, the reaction product contained 2-hydroxy-6-naphthalenemethanol (represented by the following formula (III)), which was the target product. It was confirmed that the yield was 91%, purity was 84% (HPLC area percentage), and the content of the by-product represented by the following formula (IV) (hereinafter referred to as by-product (IV)) was 6% (HPLC area percentage). It was done.

Figure 0005371545
Figure 0005371545

参考例2)
実施例1において、反応温度を50℃に変更したほかは実施例1と同様の操作を行った。
その結果、目的物である2−ヒドロキシ−6−ナフタレンメタノールを含む固体を4.80g得た。分析の結果、収率73%、純度78%(HPLC面積百分率)、副生物(IV)20%(HPLC面積百分率)であった。
本例では反応温度を実施例1よりも高くしたため、生成物がさらに還元されて副生物が多く生成し、その結果、実施例1に比べて目的物の純度が低下した。
( Reference Example 2)
In Example 1, the same operation as in Example 1 was performed except that the reaction temperature was changed to 50 ° C.
As a result, 4.80 g of a solid containing 2-hydroxy-6-naphthalenemethanol, the target product, was obtained. As a result of the analysis, the yield was 73%, purity was 78% (HPLC area percentage), and by-product (IV) was 20% (HPLC area percentage).
In this example, since the reaction temperature was higher than in Example 1, the product was further reduced to produce more by-products, and as a result, the purity of the target product was lower than that in Example 1.

(実施例3)
まず、実施例1において、溶媒を1,4−ジオキサン60.0gに変更し、2−ヒドロキシ−6−ナフトアルデヒドの添加量を2.50g(14.5mmol)に変更し、パラジウム/活性炭担持触媒の添加量を0.10gに変更したほかは実施例1と同様にして、40℃にて4時間の反応を行った後、室温まで冷却し、フラスコ内の気体を窒素で置換するところまで行った。
続いて、前記と同じパラジウム/活性炭担持触媒を0.24g追加して40℃にて4時間反応させた後、さらにパラジウム/活性炭担持触媒を0.22g追加して60℃にて3時間反応させた。触媒の添加する際には、都度、触媒の追加前に窒素置換と、触媒追加後の水素置換を実施した(実施例1と同様)。
得られた反応液から、実施例1と同様にして触媒を取り除き、さらに溶媒留去を行って、
2−ヒドロキシ−6−ナフタレンメタノールを含む固体を2.52g得た。分析の結果、収率95%、純度93%(HPLC面積百分率)、副生物(IV)2%(HPLC面積百分率))であった。
(Example 3)
First, in Example 1, the solvent was changed to 1,4-dioxane 60.0 g, the addition amount of 2-hydroxy-6-naphthaldehyde was changed to 2.50 g (14.5 mmol), and the palladium / activated carbon supported catalyst. The reaction was conducted for 4 hours at 40 ° C. in the same manner as in Example 1 except that the amount of addition was changed to 0.10 g, and then cooled to room temperature until the gas in the flask was replaced with nitrogen. It was.
Subsequently, 0.24 g of the same palladium / activated carbon supported catalyst as described above was added and reacted at 40 ° C. for 4 hours, and then 0.22 g of palladium / activated carbon supported catalyst was added and reacted at 60 ° C. for 3 hours. It was. When the catalyst was added, nitrogen substitution and hydrogen substitution after addition of the catalyst were performed before the addition of the catalyst (same as in Example 1).
From the obtained reaction solution, the catalyst was removed in the same manner as in Example 1, and further the solvent was distilled off.
2.52 g of a solid containing 2-hydroxy-6-naphthalenemethanol was obtained. As a result of the analysis, the yield was 95%, the purity was 93% (HPLC area percentage), and the by-product (IV) was 2% (HPLC area percentage).

Claims (3)

下記一般式(I)
Figure 0005371545
(式中、R7およびR8のうち少なくとも一つは−Q−CHOを表し、該R7およびR8のうち−Q−CHOでないもの、およびR〜Rはそれぞれ独立に、水素原子、炭素数1〜6の1価の炭化水素基、−Q−OH、または−Q−OR’を表わす。ただし、Qは単結合を表し、Q、Qはそれぞれ独立に単結合または炭素数1〜6の2価の炭化水素基を表わし、R’は炭素数1〜6の1価の炭化水素基を表わす。)
で表わされる化合物(I)を、触媒および水素の存在下で還元することにより、下記一般式(II)
Figure 0005371545
(式中、R〜Rは、式(I)におけるR〜Rとそれぞれ同じであり、R’、R’は、式(I)におけるR、Rとそれぞれ同じである。ただしRが−Q−CHOであるときR’は、−Q−CHOHを表し、Rが−Q−CHOであるときR’は−Q−CHOHを表す。Qは、式(I)におけるQと同じである。)
で表わされる化合物(II)を製造する方法であって、
前記触媒がパラジウムからなる金属触媒またはパラジウムを担体に担持させた担持触媒を含み、
前記還元を行う際の反応温度が0℃以上50℃未満であることを特徴とするナフタレン誘導体の製造方法。
The following general formula (I)
Figure 0005371545
(Wherein at least one of R 7 and R 8 represents -Q 1 -CHO, is not an -Q 1 -CHO of the R 7 and R 8, and R 1 to R 6 are each independently, Represents a hydrogen atom, a monovalent hydrocarbon group having 1 to 6 carbon atoms, —Q 2 —OH, or —Q 3 —OR ′, wherein Q 1 represents a single bond, and Q 2 and Q 3 are independent of each other. Represents a single bond or a divalent hydrocarbon group having 1 to 6 carbon atoms, and R ′ represents a monovalent hydrocarbon group having 1 to 6 carbon atoms.)
The compound (I) represented by the following general formula (II) is reduced by reduction in the presence of a catalyst and hydrogen:
Figure 0005371545
(Wherein, R 1 to R 6 are respectively the same as R 1 to R 6 in formula (I), R 7 ', R 8' are respectively the same as R 7, R 8 in formula (I) Provided that when R 7 is —Q 1 —CHO, R 7 ′ represents —Q 1 —CH 2 OH, and when R 8 is —Q 1 —CHO, R 8 ′ represents —Q 1 —CH 2. Represents OH, Q 1 is the same as Q 1 in formula (I).
A compound (II) represented by the formula:
The catalyst comprises a metal catalyst comprising palladium or a supported catalyst in which palladium is supported on a carrier;
A method for producing a naphthalene derivative, wherein a reaction temperature during the reduction is 0 ° C or higher and lower than 50 ° C.
前記還元を行う際の反応温度が0℃以上40℃以下である、請求項1に記載のナフタレン誘導体の製造方法。   The method for producing a naphthalene derivative according to claim 1, wherein the reaction temperature during the reduction is 0 ° C or higher and 40 ° C or lower. 前記還元を行う際の、反応系内の水素圧が1.0×10Pa〜5.0×10Paの範囲である、請求項1または2に記載のナフタレン誘導体の製造方法。 The manufacturing method of the naphthalene derivative of Claim 1 or 2 whose hydrogen pressure in the reaction system at the time of the said reduction | restoration is the range of 1.0 * 10 < 4 > Pa-5.0 * 10 < 5 > Pa.
JP2009124375A 2009-05-22 2009-05-22 Method for producing naphthalene derivative Active JP5371545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009124375A JP5371545B2 (en) 2009-05-22 2009-05-22 Method for producing naphthalene derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009124375A JP5371545B2 (en) 2009-05-22 2009-05-22 Method for producing naphthalene derivative

Publications (2)

Publication Number Publication Date
JP2010270075A JP2010270075A (en) 2010-12-02
JP5371545B2 true JP5371545B2 (en) 2013-12-18

Family

ID=43418417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009124375A Active JP5371545B2 (en) 2009-05-22 2009-05-22 Method for producing naphthalene derivative

Country Status (1)

Country Link
JP (1) JP5371545B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2935453B2 (en) * 1994-12-07 1999-08-16 科学技術振興事業団 Method for producing alcohols

Also Published As

Publication number Publication date
JP2010270075A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
WO2012105431A1 (en) METHOD FOR PRODUCING β-FLUOROALCOHOL
WO2012121659A1 (en) Reduction of c-0 bonds by catalytic transfer hydrogenolysis
CN113201016B (en) Preparation method of C15 phosphine salt
EP1968925B1 (en) Process for producing difluoroethanol
WO2014016491A1 (en) Synthesising of methyl propanediol from allyl alcohol
JP5371545B2 (en) Method for producing naphthalene derivative
FR2818638A1 (en) PROCESS FOR THE PREPARATION OF CARBOXYLIC ACIDS BY PALLADIUM CARBONYLATION
CN113956157B (en) Method for synthesizing ethyl 2-formyl-1-cyclopropanecarboxylate
CN112675920B (en) Mono-chiral center catalyst, preparation thereof and method for catalytically synthesizing chiral alcohol compound and chiral alpha-allyl alcohol
BE897893A (en) PREPARATION OF CARBOXYLIC ACIDS
EP3227254B1 (en) Catalytic oxidation of but-3-ene-1,2-diol
CN111377850B (en) Chiral N-substituted-3,3-difluoro-4-hydroxypiperidine derivative and preparation method thereof
JP6999112B2 (en) 2,5-Bis (aminomethyl) furan dihalogenated hydrogen salt and its production method, and 2,5-bis (aminomethyl) furan production method.
CN112707899A (en) Preparation method of quininol
JP6918577B2 (en) A method for producing an aromatic compound by a dehydrogenation reaction of a compound having a cycloalkane or cycloalkene structure using a heterogeneous palladium catalyst.
JP5286604B2 (en) Method for producing calixarene
JP2017513940A (en) Processing process for homoserine compounds
JP2007031383A (en) Method for producing terephthalic acid diester
JP2014001154A (en) Method for producing 2-alkenyl ether compound
JP5673124B2 (en) Palladium catalyst for catalytic reduction
KR102125041B1 (en) Method of synthesis of ferrocene derivatives
JP5762288B2 (en) Method for producing allylamine
JP5085074B2 (en) Method for producing δ-valerolactone derivative
CN118026836A (en) Preparation method of 4-tert-butylcyclohexyl acetic acid or ester thereof
JP5544415B2 (en) Polymer-supported boron catalyst and production method of Michael addition reaction product using this catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R151 Written notification of patent or utility model registration

Ref document number: 5371545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250