JP5673124B2 - Palladium catalyst for catalytic reduction - Google Patents

Palladium catalyst for catalytic reduction Download PDF

Info

Publication number
JP5673124B2
JP5673124B2 JP2011009218A JP2011009218A JP5673124B2 JP 5673124 B2 JP5673124 B2 JP 5673124B2 JP 2011009218 A JP2011009218 A JP 2011009218A JP 2011009218 A JP2011009218 A JP 2011009218A JP 5673124 B2 JP5673124 B2 JP 5673124B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
palladium
mmol
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011009218A
Other languages
Japanese (ja)
Other versions
JP2012148242A (en
Inventor
久大 萩原
久大 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University
Original Assignee
Niigata University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University filed Critical Niigata University
Priority to JP2011009218A priority Critical patent/JP5673124B2/en
Publication of JP2012148242A publication Critical patent/JP2012148242A/en
Application granted granted Critical
Publication of JP5673124B2 publication Critical patent/JP5673124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、接触還元反応に用いられるパラジウム触媒に関する。   The present invention relates to a palladium catalyst used in a catalytic reduction reaction.

接触還元反応とは、炭素-炭素多重結合の水素化反応である。有機物質の化学変換反応の中では最も基本的な反応であり、石油の接触改質、接触分解プロセスなどに用いられている。また、マーガリンやショートニングなどの硬化油の製造では日常的に用いられている。   The catalytic reduction reaction is a hydrogenation reaction of carbon-carbon multiple bonds. It is the most basic reaction among chemical conversion reactions of organic substances and is used in petroleum catalytic reforming and catalytic cracking processes. Also, it is routinely used in the manufacture of hardened oils such as margarine and shortening.

接触還元反応では、水素ガスに圧力をかけて行う加圧水素化が多い。したがって、装置の耐圧、水素漏洩などを考えなければならない。また、加温が必要な場合もある。多置換の基質(原材料)では特に加圧、加温などの活性化が必要である。その一方で、これらの活性化により分解してしまう基質も多い。還元反応に用いられる触媒は貴金属が多いが、これらは反応後に活性を失い、リサイクル使用のできないものが多い。   In the catalytic reduction reaction, there are many pressurized hydrogenations performed by applying pressure to hydrogen gas. Therefore, the pressure resistance of the device, hydrogen leakage, etc. must be considered. In some cases, heating is required. In the case of a polysubstituted substrate (raw material), activation such as pressurization and heating is particularly necessary. On the other hand, there are many substrates that decompose due to their activation. Many of the catalysts used for the reduction reaction are noble metals, but many of these lose their activity after the reaction and cannot be recycled.

接触還元反応に用いられる触媒としては、パラジウムが一般的に用いられている。パラジウム触媒を用いた水素化反応は、有機合成において極めて重要な反応である。日常的に用いられている触媒として、パラジウム炭素(Pd/C)などが挙げられる。これらの触媒は、幅広い還元性官能基の接触水素化に汎用されているが、触媒活性が高く、官能基選択的接触還元への適用は困難である。また、回収・再使用時における操作性が良くない。   As a catalyst used for the catalytic reduction reaction, palladium is generally used. Hydrogenation reaction using a palladium catalyst is a very important reaction in organic synthesis. Examples of the catalyst that is routinely used include palladium on carbon (Pd / C). These catalysts are widely used for catalytic hydrogenation of a wide range of reducing functional groups, but have high catalytic activity and are difficult to apply to functional group selective catalytic reduction. In addition, the operability during collection and reuse is not good.

なお、固体担体の細孔内に触媒を溶解させたイオン液体を取り込ませ、これを用いて接触還元を行うことが報告されている(非特許文献1、2)。非特許文献1では、高価なロジウム錯体を用い、加圧条件で還元を行っている。すなわち、([Rh(NBD)(PPh]PF錯体をシリカに[bmim]PFを用いて固定し、接触還元は室温、加圧(600psi)、無溶媒またはヘプタン中で行う。TOF329(min−1)でリサイクル18回である。また、非特許文献2では、パラジウムを用いている。すなわち、Pdナノパーティクルをモレキュラーシーブにグアニジンイオン液体を用いて固定し、接触還元は常圧、無溶媒で行う。リサイクルは5回である。しかし、いずれも極めて簡単なオレフィン化合物のみを原料とし、官能基選択性などは検討されていない。 It has been reported that an ionic liquid in which a catalyst is dissolved is taken into the pores of a solid support and catalytic reduction is performed using the ionic liquid (Non-Patent Documents 1 and 2). In Non-Patent Document 1, reduction is performed under pressure using an expensive rhodium complex. That is, the ([Rh (NBD) (PPh 3 ) 2 ] PF 6 complex is immobilized on silica using [bmim] PF 6 and the catalytic reduction is carried out at room temperature, pressure (600 psi), no solvent or heptane. Recycled 18 times with TOF329 (min −1 ), and palladium is used in Non-Patent Document 2. That is, Pd nanoparticles are fixed to a molecular sieve using a guanidine ionic liquid, and catalytic reduction is performed at normal pressure. Recycling is carried out 5 times, but all use only very simple olefin compounds as raw materials, and functional group selectivity has not been studied.

また、チオールプロピル基修飾シリカゲルにパラジウムを固定した例(イオン液体は用いていない)がある(非特許文献3、4)。これら非特許文献3、4では、メソポーラスSH−シリカにパラジウムを固定し、ヘック反応及び鈴木カップリング反応に使用している。しかし、いずれも水素化反応を対象としていない。   In addition, there is an example in which palladium is immobilized on thiolpropyl group-modified silica gel (no ionic liquid is used) (Non-Patent Documents 3 and 4). In these Non-Patent Documents 3 and 4, palladium is fixed to mesoporous SH-silica and used for Heck reaction and Suzuki coupling reaction. However, none of them are intended for hydrogenation reactions.

C. P. Mehnert, E. J. Mozeleski and R. A. Cook, Chem. Commun., 2002, 3010-3011C. P. Mehnert, E. J. Mozeleski and R. A. Cook, Chem. Commun., 2002, 3010-3011 J. Huang, T. Jiang, H. Gao, B. Han, Z. Liu, W. Wu, Y. Chang, and G. Zhao, Angew. Chem. Int. Ed. 2004, 43, 1397-1399J. Huang, T. Jiang, H. Gao, B. Han, Z. Liu, W. Wu, Y. Chang, and G. Zhao, Angew. Chem. Int. Ed. 2004, 43, 1397-1399 C. M. Crudden, M. Sateesh, and R. Lewis, J. Am. Chem. Soc. 2005, 127, 10045-10050C. M. Crudden, M. Sateesh, and R. Lewis, J. Am. Chem. Soc. 2005, 127, 10045-10050 K. Shimizu, S. Koizumi, T. Hatamachi, H. Yoshida, S. Komai, T. Kodama, Y. Kitayama, J. Catalysis 2004, 228, 141-151K. Shimizu, S. Koizumi, T. Hatamachi, H. Yoshida, S. Komai, T. Kodama, Y. Kitayama, J. Catalysis 2004, 228, 141-151

そこで、本発明は、官能基選択的接触還元への適用が可能であり、回収・再使用時における操作性が良好な、新規の接触還元用パラジウム触媒を提供することを目的とする。   Accordingly, an object of the present invention is to provide a novel catalytic reduction palladium catalyst which can be applied to functional group selective catalytic reduction and has good operability during recovery and reuse.

上記課題を解決するために鋭意検討した結果、チオール基で表面修飾したシリカゲルに酢酸パラジウムを担持(固定化)することにより、接触還元用触媒として多様な基質に適応され、またリサイクル使用可能な触媒が得られることを見出し、本発明に想到した。   As a result of diligent studies to solve the above problems, palladium acetate is supported (immobilized) on silica gel surface-modified with a thiol group, so that it can be applied to various substrates as a catalyst for catalytic reduction and can be recycled. The inventors have found that can be obtained, and have arrived at the present invention.

すなわち、本発明の請求項1記載の接触還元用パラジウム触媒は、チオール基で表面修飾したシリカゲルに1−ブチル−3−メチルイミダゾリウムテトラフルオロボレートに溶解した酢酸パラジウムを担持させてなるものである。 That is, catalytic reduction for the palladium catalyst according to claim 1 of the present invention, which made by supporting palladium acetate dissolved in silica gel 1-butyl-3-methylimidazolium tetrafluoroborate were surface-modified with thiols groups is there.

さらに、本発明の請求項記載の接触還元用パラジウム触媒は、請求項において、チオール基で表面修飾したシリカゲルが下記式(式中、Rは、メチル基又はエチル基)で表されるものである。 Furthermore, the palladium catalyst for catalytic reduction according to claim 2 of the present invention is the catalyst according to claim 1, wherein the silica gel surface-modified with a thiol group is represented by the following formula (wherein R is a methyl group or an ethyl group): It is.

Figure 0005673124
Figure 0005673124

本発明によれば、官能基選択的接触還元への適用が可能であり、回収・再使用時における操作性が良好な、新規のパラジウム触媒が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the novel palladium catalyst which can be applied to functional group selective catalytic reduction and has favorable operability at the time of collection | recovery and reuse is provided.

本発明の接触還元用パラジウム触媒は、チオール基で表面修飾したシリカゲルにパラジウム化合物を担持させてなるものである。   The palladium catalyst for catalytic reduction of the present invention comprises a palladium compound supported on silica gel surface-modified with a thiol group.

パラジウム化合物には、酢酸パラジウム(Pd(OAc)、ここで(OAc)は酢酸残基)、塩化パラジウム(PdCl)などのパラジウム塩、パラジウムブラック(Pd)、テトラ(トリフェニルホスフィン)パラジウム(Pd(PPh、ここでPhはフェニル基)などのパラジウム錯体など、一般に知られているパラジウム化合物が含まれる。これらの中では、特に酢酸パラジウムが好適に用いられる。 Examples of the palladium compound include palladium acetate (Pd (OAc) 2 , where (OAc is an acetic acid residue)), palladium salts such as palladium chloride (PdCl 2 ), palladium black (Pd), tetra (triphenylphosphine) palladium ( Commonly known palladium compounds such as palladium complexes such as Pd (PPh 3 ) 4 , where Ph is a phenyl group) are included. Of these, palladium acetate is particularly preferably used.

ここで、チオール基で表面修飾したシリカゲルに酢酸パラジウムを担持させる際には、イオン液体を用いてもよい。この場合、イオン液体に溶解した酢酸パラジウムがチオール基で表面修飾したシリカゲルに担持される。イオン液体としては、常温、好ましくは35℃以下で液体であって、パラジウム化合物を溶解できるものであって、チオール基と親和性の高いものが好ましく、1−ブチル−3−メチルイミダゾリウムテトラフルオロボレート([bmim]BF)、1−ブチル−3−メチルイミダゾリウムヘキサフルオロホスフェート([bmim]PF)、1−ヘキシル−3−メチルイミダゾリウムヘキサフルオロホスフェート([hmim]PF)などを用いることができるが、1−ブチル−3−メチルイミダゾリウムテトラフルオロボレート([bmim]BF)が特に好適に用いられる。 Here, when palladium acetate is supported on silica gel surface-modified with a thiol group, an ionic liquid may be used. In this case, palladium acetate dissolved in the ionic liquid is supported on silica gel whose surface is modified with a thiol group. The ionic liquid is a liquid at room temperature, preferably 35 ° C. or lower, and can dissolve a palladium compound, and preferably has a high affinity with a thiol group. 1-Butyl-3-methylimidazolium tetrafluoro Borate ([bmim] BF 4 ), 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] PF 6 ), 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim] PF 6 ), etc. 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim] BF 4 ) is particularly preferably used.

また、チオール基は有機基の末端に−SHが結合した置換基であり、シリカゲルを表面修飾するチオール基としては、例えば、直鎖のものとしては、−CHSH、−(CHSH、−(CHSH、−(CH2)SH、−(CH2)SHなどが挙げられる。また、上記のほか、側鎖を有するチオール基であってもよい。チオール基で表面修飾したシリカゲルは、例えば、下記式(式中、Rは、メチル基又はエチル基)で表される。なお、この式で表されるチオール基は、チオプロピル基と称される。なお、下記式中、Rがメチル基であってもエチル基であっても、接触還元用パラジウム触媒の触媒活性に差は見られない。 The thiol group is a substituent in which —SH is bonded to the end of the organic group, and examples of the thiol group for modifying the surface of the silica gel include —CH 2 SH and — (CH 2 ) 2. SH, — (CH 2 ) 3 SH, — (CH 2 ) 4 SH, — (CH 2) 5 SH and the like can be mentioned. In addition to the above, it may be a thiol group having a side chain. The silica gel whose surface is modified with a thiol group is represented by, for example, the following formula (wherein R is a methyl group or an ethyl group). In addition, the thiol group represented by this formula is called a thiopropyl group. In the following formula, no difference is observed in the catalytic activity of the catalytic reduction palladium catalyst, regardless of whether R is a methyl group or an ethyl group.

Figure 0005673124
Figure 0005673124

本発明の接触還元用パラジウム触媒の特徴は、必要に応じてイオン液体を用いて、パラジウム化合物をチオール基で表面修飾したシリカゲルの細孔内に取り込ませ、固定化した点にある。この固定化操作は極めて簡便であり、また、不安定なパラジウム化合物はイオン液体を媒介とする固定化を採用することにより安定化させることができる。一方、従来の考え方によると、チオール基はパラジウム化合物の触媒活性を減ずるものとされているが、本発明においては、チオール基はパラジウム化合物の活性化と固定化に寄与している。   The feature of the palladium catalyst for catalytic reduction of the present invention is that the palladium compound is incorporated into the pores of silica gel whose surface is modified with a thiol group and immobilized using an ionic liquid as necessary. This immobilization operation is extremely simple, and unstable palladium compounds can be stabilized by employing immobilization mediated by an ionic liquid. On the other hand, according to the conventional concept, the thiol group reduces the catalytic activity of the palladium compound. In the present invention, the thiol group contributes to activation and immobilization of the palladium compound.

本発明の接触還元用パラジウム触媒の触媒活性は高く、常圧、室温で反応を行うことができる。加圧装置の必要が無いため、装置的に有利である。特に、従来の触媒を用いた場合には加圧条件が必要であった多置換オレフィンも、常圧、常温で還元が可能である。また、本発明の接触還元用パラジウム触媒の触媒活性は高いものの、従来の触媒を用いた場合に分解していた基質にも適用可能である。また、簡単な濾過操作により触媒を少なくとも10回、その活性を落とさずにリサイクル使用できるのも大きな特徴である。   The catalytic activity of the catalytic reduction palladium catalyst of the present invention is high, and the reaction can be carried out at normal pressure and room temperature. Since there is no need for a pressurizing device, the device is advantageous. In particular, when a conventional catalyst is used, a polysubstituted olefin that requires pressure conditions can also be reduced at normal pressure and normal temperature. Further, although the catalytic activity of the catalytic reduction palladium catalyst of the present invention is high, it can also be applied to a substrate that has been decomposed when a conventional catalyst is used. Another major feature is that the catalyst can be recycled at least 10 times without reducing its activity by a simple filtration operation.

以下、具体的な実施例に基づいて、本発明について詳細に説明する。なお、本発明は、以下の実施例によって制限されるものではない。   Hereinafter, the present invention will be described in detail based on specific examples. In addition, this invention is not restrict | limited by a following example.

イオン液体を用いて酢酸パラジウムを担持して触媒を調製し、種々の接触還元反応を試みた。   Catalysts were prepared by supporting palladium acetate using an ionic liquid, and various catalytic reduction reactions were attempted.

Figure 0005673124
Figure 0005673124

[反応例1]   [Reaction Example 1]

Figure 0005673124
Figure 0005673124

固定化操作:
50mLの二口フラスコに下記式で表されるSH−SiO(粉末、0.300g)、[bmim]BF(29.9mg)、Pd(OAc)(46.6mg、0.207mmol)を入れ、THF(2mL)に懸濁させた。
Immobilization operation:
In a 50 mL two-necked flask, SH-SiO 2 (powder, 0.300 g), [bmim] BF 4 (29.9 mg), and Pd (OAc) 2 (46.6 mg, 0.207 mmol) represented by the following formula were added. And suspended in THF (2 mL).

Figure 0005673124
Figure 0005673124

その後、窒素雰囲気下、室温にて、4時間攪拌し、溶媒を減圧留去した。その後、EtO(×5)により洗浄し、シリカゲルを減圧下で乾燥したところ、橙色の担持触媒Pd−SILC(0.373g)を得た。担持量は0.51mmol/gであった。 Thereafter, the mixture was stirred at room temperature for 4 hours under a nitrogen atmosphere, and the solvent was distilled off under reduced pressure. Then, washed with Et 2 O (× 5), silica gel was dried under reduced pressure to give an orange supported catalyst Pd-SILC (0.373g). The supported amount was 0.51 mmol / g.

触媒活性化:
二口フラスコにPd−SILC(Pd(OAc)/SH−SiO/[bmim]BF、0.505mmol/g、300mg)、EtOH(5mL)を入れ、水素雰囲気下室温で5時間撹拌し、溶媒を減圧留去し黒色の担持触媒を回収した。窒素雰囲気下室温にて保存した。3ヶ月以上放置しても活性を減ずる事は無かった。また、室温で空気中に置いても、発火する事は無かった。
Catalyst activation:
Pd-SILC (Pd (OAc) 2 / SH-SiO 2 / [bmim] BF 4 , 0.505 mmol / g, 300 mg) and EtOH (5 mL) were placed in a two-necked flask and stirred at room temperature for 5 hours under a hydrogen atmosphere. The solvent was distilled off under reduced pressure to recover a black supported catalyst. It was stored at room temperature under a nitrogen atmosphere. Even if it was left for more than 3 months, there was no decrease in activity. Moreover, it did not ignite even when placed in the air at room temperature.

以下、この担持触媒を用いて種々のオレフィンの還元を試みた。   Hereinafter, reduction of various olefins was tried using this supported catalyst.

Figure 0005673124
Figure 0005673124

[反応例2]   [Reaction Example 2]

Figure 0005673124
Figure 0005673124

二口フラスコに(E)−3−メチル−2−シクロペンタデセノン(44.6mg、0.189mmol)を入れ、窒素置換し、EtOH(1.9mL)、Pd−SILC(Pd(OAc)/SH−SiO/[bmim]BF、0.472mmol/g)(19.9mg、0.009mmol)を加え、水素雰囲気下、室温、常圧で30分間撹拌させた。遠心分離機を用いて反応溶液を分離し、EtOにより触媒を洗浄した(×5)。溶媒を濃縮後、ショートカラム(EtOAc:ヘキサン=1:20)により精製を行った。還元生成物(44.7mg、0.188mmol、99%)を得た。 (E) -3-Methyl-2-cyclopentadecenone (44.6 mg, 0.189 mmol) was placed in a two-necked flask, purged with nitrogen, EtOH (1.9 mL), Pd-SILC (Pd (OAc) 2 / SH-SiO 2 / [bmim ] BF 4, 0.472mmol / g) (19.9mg, 0.009mmol) was added, under hydrogen atmosphere and allowed to stir at room temperature and atmospheric pressure for 30 minutes. The reaction solution was separated using a centrifuge, and the catalyst was washed with Et 2 O (× 5). After the solvent was concentrated, purification was performed with a short column (EtOAc: hexane = 1: 20). The reduction product (44.7 mg, 0.188 mmol, 99%) was obtained.

[反応例3]   [Reaction Example 3]

Figure 0005673124
Figure 0005673124

二口フラスコに(+)−プレゴン(46.1mg、0.303mmol)を入れ、窒素置換し、EtOH(3mL)、Pd−SILC(Pd(OAc)/SH−SiO/[bmim]BF、0.505mmol/g)(30.2mg、0.015mmol)を加え、水素雰囲気下、室温、常圧で30分間撹拌させた。遠心分離機を用いて反応溶液を分離し、EtOにより触媒を洗浄した(×5)。溶媒を濃縮後、ショートカラム(EtOAc:ヘキサン=1:6)及び、MPLC(EtOAc:ヘキサン=1:12)により精製を行い、濃縮したところ、還元生成物(40.3mg、86%)を1:1のジアステレオマー混合物として得た。 (+)-Pregon (46.1 mg, 0.303 mmol) was placed in a two-necked flask, purged with nitrogen, EtOH (3 mL), Pd-SILC (Pd (OAc) 2 / SH-SiO 2 / [bmim] BF 4 , 0.505 mmol / g) (30.2 mg, 0.015 mmol) was added, and the mixture was stirred at room temperature and normal pressure for 30 minutes in a hydrogen atmosphere. The reaction solution was separated using a centrifuge, and the catalyst was washed with Et 2 O (× 5). After the solvent was concentrated, purification was performed with a short column (EtOAc: hexane = 1: 6) and MPLC (EtOAc: hexane = 1: 12), and the mixture was concentrated to give a reduced product (40.3 mg, 86%) as 1 1 diastereomer mixture.

以上の結果より、四置換α,β−不飽和ケトンの二重結合を短時間で還元することができることが確認された。   From the above results, it was confirmed that the double bond of the tetrasubstituted α, β-unsaturated ketone can be reduced in a short time.

プレゴンをPd/Cを用いて還元すると脱水素を経てフェノールが副成する事を確認しているが、本触媒では副成しない。   It has been confirmed that when Pregon is reduced with Pd / C, phenol is formed as a by-product through dehydrogenation, but this catalyst does not form a by-product.

なお、還元生成物の単離収率は中程度であるが、これは、還元生成物が低分子量であるため、単離操作中に揮発したことによる。   The isolation yield of the reduction product is moderate, but this is because the reduction product has a low molecular weight and thus volatilized during the isolation operation.

[反応例4]   [Reaction Example 4]

Figure 0005673124
Figure 0005673124

二口フラスコにシンナムアルデヒド(40.0mg、0.303mmol)を入れ、窒素置換し、EtOH(3mL)、Pd−SILC(Pd(OAc)/SH−SiO/[bmim]BF、0.505mmol/g)(30.1mg、0.015mmol)を加え、水素雰囲気下、室温、常圧で2時間撹拌させた。遠心分離機を用いて反応溶液を分離し、EtOにより触媒を洗浄した(×5)。溶媒を濃縮後、ショートカラム(EtOAc:ヘキサン=1:3)、MPLC(EtOAc:ヘキサン=1:6)により精製を行った。還元生成物(31.7mg、78%)を得た。 Cinnamaldehyde (40.0 mg, 0.303 mmol) was placed in a two-necked flask, purged with nitrogen, EtOH (3 mL), Pd-SILC (Pd (OAc) 2 / SH-SiO 2 / [bmim] BF 4 , 0. 505 mmol / g) (30.1 mg, 0.015 mmol) was added, and the mixture was stirred under a hydrogen atmosphere at room temperature and normal pressure for 2 hours. The reaction solution was separated using a centrifuge, and the catalyst was washed with Et 2 O (× 5). After the solvent was concentrated, purification was performed by a short column (EtOAc: hexane = 1: 3) and MPLC (EtOAc: hexane = 1: 6). The reduction product (31.7 mg, 78%) was obtained.

シンナムアルデヒドの還元ではPd/Cを触媒として用いるとヒドロシンナムアルデヒドの生成と並行してヒドロシンナミルアルコールやプロピルベンゼンを副生しやすい。また、EtOH中で水素化するとアセタールの生成を伴うことが知られている。しかし、本反応例では、このような副生成物は確認されなかった。   In the reduction of cinnamaldehyde, when Pd / C is used as a catalyst, hydrocinnamyl alcohol or propylbenzene is easily produced as a by-product in parallel with the formation of hydrocinnamaldehyde. It is also known that hydrogenation in EtOH is accompanied by the formation of acetals. However, in this reaction example, such a by-product was not confirmed.

なお、還元生成物の単離収率は中程度であるが、これは、還元生成物が低分子量であるため、単離操作中に揮発したことによる。   The isolation yield of the reduction product is moderate, but this is because the reduction product has a low molecular weight and thus volatilized during the isolation operation.

[反応例5]   [Reaction Example 5]

Figure 0005673124
Figure 0005673124

二口フラスコにシトラール(46.1mg、0.303mmol)を入れ、窒素置換し、EtOH(3mL)、Pd−SILC(Pd(OAc)/SH−SiO/[bmim]BF、0.472mmol/g)(32.0mg、0.015mmol)を加え、水素雰囲気下、室温、常圧で4時間撹拌させた。遠心分離機を用いて反応溶液を分離し、EtOにより触媒を洗浄した(×5)。溶媒を濃縮後、ショートカラム(EtOAc:ヘキサン=1:6)、MPLC(EtOAc:ヘキサン=1:15)により精製を行った。還元生成物(30.5mg、64%)を得た。 Citral (46.1 mg, 0.303 mmol) was placed in a two-necked flask, purged with nitrogen, EtOH (3 mL), Pd-SILC (Pd (OAc) 2 / SH-SiO 2 / [bmim] BF 4 , 0.472 mmol / G) (32.0 mg, 0.015 mmol) was added, and the mixture was stirred under a hydrogen atmosphere at room temperature and normal pressure for 4 hours. The reaction solution was separated using a centrifuge, and the catalyst was washed with Et 2 O (× 5). After the solvent was concentrated, purification was performed by a short column (EtOAc: hexane = 1: 6) and MPLC (EtOAc: hexane = 1: 15). The reduction product (30.5 mg, 64%) was obtained.

シトラールの還元ではフォルミル基の還元を含め多くの副生成物が生じることが知られているが、長時間反応を行うことにより3,7−ジメチルオクタナールに収束した。   In the reduction of citral, it is known that many by-products are generated including the reduction of formyl group, but the reaction converged to 3,7-dimethyloctanal by carrying out the reaction for a long time.

なお、還元生成物の単離収率は中程度であるが、これは、還元生成物が低分子量であるため、単離操作中に揮発したことによる。   The isolation yield of the reduction product is moderate, but this is because the reduction product has a low molecular weight and thus volatilized during the isolation operation.

[反応例6]   [Reaction Example 6]

Figure 0005673124
Figure 0005673124

二口フラスコにシンナミルアルコール(54.2mg、0.404mmol)を入れ、窒素置換し、EtOH(4mL)、Pd−SILC(Pd(OAc)/SH−SiO/[bmim]BF、0.505mmol/g)(40.2mg、0.020mmol)を加え、水素雰囲気下、室温、常圧で2時間撹拌させた。遠心分離機を用いて反応溶液を分離し、EtOにより触媒を洗浄した(×5)。溶媒を濃縮後、ショートカラム(EtOAc:ヘキサン=1:3)、MPLC(EtOAc:ヘキサン=1:6)により精製を行った。還元生成物(55.6mg、定量的)を得た。 Cinnamyl alcohol (54.2 mg, 0.404 mmol) was placed in a two-necked flask, purged with nitrogen, EtOH (4 mL), Pd-SILC (Pd (OAc) 2 / SH-SiO 2 / [bmim] BF 4 , 0 .505 mmol / g) (40.2 mg, 0.020 mmol) was added, and the mixture was stirred under a hydrogen atmosphere at room temperature and normal pressure for 2 hours. The reaction solution was separated using a centrifuge, and the catalyst was washed with Et 2 O (× 5). After the solvent was concentrated, purification was performed by a short column (EtOAc: hexane = 1: 3) and MPLC (EtOAc: hexane = 1: 6). The reduction product (55.6 mg, quantitative) was obtained.

アリル位の水酸基は水素化分解を受けやすいが、シンナミルアルコールを基質とした水素化反応ではオレフィンのみが還元された。   The hydroxyl group at the allylic position is susceptible to hydrogenolysis, but only the olefin was reduced in the hydrogenation reaction using cinnamyl alcohol as a substrate.

[反応例7]   [Reaction Example 7]

Figure 0005673124
Figure 0005673124

二口フラスコに原料(上記式の左の化合物、Wieland-Miescherケトン誘導体)49.2mg、0.208mmol)を入れ、窒素置換し、EtOH(2mL)、Pd−SILC(Pd(OAc)/SH−SiO/[bmim]BF、0.505mmol/g)(20.6mg、0.010mmol)を加え、水素雰囲気下、室温、常圧で4時間撹拌させた。遠心分離機を用いて反応溶液を分離し、EtOにより触媒を洗浄した(×5)。溶媒を濃縮後、ショートカラム(EtOAc:ヘキサン=1:3)、MPLC(EtOAc:ヘキサン=1:3)により精製を行った。還元生成物(41.4mg、0.174mol、84%)を得た。 A raw material (49.2 mg, 0.208 mmol) of the raw material (the left compound of the above formula, Wieland-Miescher ketone derivative) was placed in a two-necked flask, purged with nitrogen, EtOH (2 mL), Pd-SILC (Pd (OAc) 2 / SH -SiO 2 / [bmim] BF 4 , 0.505mmol / g) (20.6mg, 0.010mmol) was added, under hydrogen atmosphere and allowed to stir 4 hours at room temperature, at atmospheric pressure. The reaction solution was separated using a centrifuge, and the catalyst was washed with Et 2 O (× 5). After the solvent was concentrated, purification was performed by a short column (EtOAc: hexane = 1: 3) and MPLC (EtOAc: hexane = 1: 3). A reduction product (41.4 mg, 0.174 mol, 84%) was obtained.

以上の結果より、四置換α,β−不飽和ケトンの二重結合を短時間で還元することができることが確認された。   From the above results, it was confirmed that the double bond of the tetrasubstituted α, β-unsaturated ketone can be reduced in a short time.

[反応例8]   [Reaction Example 8]

Figure 0005673124
Figure 0005673124

二口フラスコにイソホロン(55.8mg、0.404mmol)を入れ、窒素置換し、EtOH(2mL)、Pd−SILC(Pd(OAc)/SH−SiO/[bmim]BF、0.505mmol/g)(40.1mg、0.020mmol)を加え、水素雰囲気下、室温、常圧で40分間撹拌させた。遠心分離機を用いて反応溶液を分離し、EtOにより触媒を洗浄した(×5)。溶媒を濃縮後、ショートカラム(EtOAc:ヘキサン=1:6)により精製を行い、濃縮したところ、還元生成物(57.4mg、定量的)を得た。 Isophorone (55.8 mg, 0.404 mmol) was placed in a two-necked flask, purged with nitrogen, EtOH (2 mL), Pd-SILC (Pd (OAc) 2 / SH-SiO 2 / [bmim] BF 4 , 0.505 mmol / G) (40.1 mg, 0.020 mmol) was added, and the mixture was stirred under a hydrogen atmosphere at room temperature and normal pressure for 40 minutes. The reaction solution was separated using a centrifuge, and the catalyst was washed with Et 2 O (× 5). After concentrating the solvent, purification was performed with a short column (EtOAc: hexane = 1: 6), and concentration was performed to obtain a reduced product (57.4 mg, quantitative).

[反応例9]   [Reaction Example 9]

Figure 0005673124
Figure 0005673124

二口フラスコに原料(上記式の左の化合物、Bnはベンジル基)(54.9mg、0.206mmol)を入れ、窒素置換し、EtOH(2.1mL)、Pd−SILC(Pd(OAc)/SH−SiO/[bmim]BF、0.516mmol/g)(20.0mg、0.0103mmol)を加え、水素雰囲気下、室温、常圧で30分間撹拌させた。遠心分離機を用いて反応溶液を分離し、EtOにより触媒を洗浄した(×5)。溶媒を濃縮後、ショートカラム(EtOAc:ヘキサン=9:1)により精製を行い、還元体(52.2mg、0.193mmol、94%)を得た。 A raw material (the left compound of the above formula, Bn is a benzyl group) (54.9 mg, 0.206 mmol) (54.9 mg, 0.206 mmol) was placed in a two-necked flask, and the atmosphere was purged with nitrogen. EtOH (2.1 mL), Pd-SILC (Pd (OAc) 2 / SH-SiO 2 / [bmim ] BF 4, 0.516mmol / g) (20.0mg, 0.0103mmol) was added, under hydrogen atmosphere and allowed to stir at room temperature and atmospheric pressure for 30 minutes. The reaction solution was separated using a centrifuge, and the catalyst was washed with Et 2 O (× 5). After the solvent was concentrated, purification was performed with a short column (EtOAc: hexane = 9: 1) to obtain a reduced form (52.2 mg, 0.193 mmol, 94%).

通常の接触還元条件下ではベンジルオキシ基は脱保護されるが、本条件では安定であった。   Under normal catalytic reduction conditions, the benzyloxy group was deprotected but was stable under these conditions.

[反応例10〜16]
上記と同様に実施した反応例10〜16について表にまとめた。
[Reaction Examples 10 to 16]
The reaction examples 10 to 16 carried out in the same manner as described above are summarized in the table.

Figure 0005673124
Figure 0005673124

塩基性条件で脱保護されるアセトキシ基(反応例10)、酸性条件下で脱保護されるt−ブチルジメチルシロキシ基(反応例11)は安定であった。接触還元条件下で脱保護されるベンジルオキシ基は、24時間の水素接触下でも安定であった(反応例12)。コレステロールの還元では単一の立体異性体を与えた(反応例13)。ニトロ基は還元されず、二重結合のみ還元された(反応例16)。   The acetoxy group that was deprotected under basic conditions (reaction example 10) and the t-butyldimethylsiloxy group that was deprotected under acidic conditions (reaction example 11) were stable. The benzyloxy group deprotected under catalytic reduction conditions was stable even under 24 hours of hydrogen contact (Reaction Example 12). Reduction of cholesterol gave a single stereoisomer (Reaction Example 13). The nitro group was not reduced, and only the double bond was reduced (Reaction Example 16).

[反応例17]
リサイクル実験:
二口フラスコにシクロヘキセン(256μL、0.207g、2.525mmol)、内部標準としてトルエン(27μL、23.3mg、0.2525mmol)、EtOH(2.5mL)、あらかじめ還元し保存しておいたPd−SILC(Pd(OAc)/SH−SiO/[bmim]BF、0.505mmol/g)(25.0mg、0.0126mmol)を加え、水素雰囲気下、室温、常圧で70分間撹拌させた。反応溶液をガスクロマトグラフィーにより定性、定量を行ったところ、転化率は100%であった(目的物シクロヘキサン(2.528mmol))。反応後、EtOによりデカンテーションを行い、触媒を減圧乾燥させた。
[Reaction Example 17]
Recycling experiment:
In a two-necked flask, cyclohexene (256 μL, 0.207 g, 2.525 mmol), toluene (27 μL, 23.3 mg, 0.2525 mmol) as internal standards, EtOH (2.5 mL), Pd− previously reduced and stored SILC (Pd (OAc) 2 / SH-SiO 2 / [bmim] BF 4 , 0.505 mmol / g) (25.0 mg, 0.0126 mmol) was added, and the mixture was stirred at room temperature and normal pressure for 70 minutes in a hydrogen atmosphere. It was. The reaction solution was qualitatively and quantitatively analyzed by gas chromatography. The conversion rate was 100% (target product: cyclohexane (2.528 mmol)). After the reaction, decantation was performed with Et 2 O, and the catalyst was dried under reduced pressure.

この触媒を次の実験に用いた。結果を表に示す。   This catalyst was used in the next experiment. The results are shown in the table.

Figure 0005673124
Figure 0005673124

以上のように、本触媒は濾過により容易に回収できた。Pd/Cも同等の反応性を示すが、回収・再使用時の操作性においてはるかに勝る。また、本触媒は回収後活性を減ずることなく、少なくとも10回再使用できた。そして、シクロヘキセンの還元の触媒回転数(TON)は40,000に達した。気液接触の効率を改善すれば、さらに上がると考えられる。   As described above, the present catalyst was easily recovered by filtration. Pd / C also shows the same reactivity, but far superior in operability during recovery and reuse. Further, the catalyst could be reused at least 10 times without reducing the activity after recovery. The catalyst rotation number (TON) for cyclohexene reduction reached 40,000. If the efficiency of gas-liquid contact is improved, it is thought that it will increase further.

[参考例1]
イオン液体に[bmim]PFを用いて酢酸パラジウムを担持したところ、橙色の粉体を与えた。これを直ちに接触水素化触媒として用いたが、シクロヘキセンの還元では反応速度が遅かった。
[Reference Example 1]
When palladium acetate was supported on the ionic liquid using [bmim] PF 6 , an orange powder was obtained. This was immediately used as a catalytic hydrogenation catalyst, but the reaction rate was slow in the reduction of cyclohexene.

[参考例2]
イオン液体に[bmim]NTfを用いて酢酸パラジウムの担持を試みたが、[bmim]NTfは固定化されなかった。
[Reference Example 2]
The ionic liquid using [bmim] NTf 2 was attempted loading of palladium acetate but, [bmim] NTf 2 is not fixed.

[参考例3]
アミノプロピル基修飾シリカゲルに[bmim]PFを用いて酢酸パラジウムを担持したところ、橙色の粉体を与えた。一方、N,N−ジエチルアミノプロピル基修飾シリカゲルに[bmim]PFを用いて酢酸パラジウムを担持した固定化触媒は、担持操作中にパラジウムが還元されすでにパラジウムブラックとなっていた。これらを直ちに接触水素化触媒として用いたが、シクロヘキセンの還元では反応速度が遅かった。
[Reference Example 3]
When palladium acetate was supported on aminopropyl group-modified silica gel using [bmim] PF 6 , an orange powder was obtained. On the other hand, the immobilized catalyst in which palladium acetate was supported on N, N-diethylaminopropyl group-modified silica gel using [bmim] PF 6 had already been reduced to palladium black during the supporting operation. These were immediately used as catalytic hydrogenation catalysts, but the reaction rate was slow in the reduction of cyclohexene.

[参考例4]
順相シリカゲルに[bmim]PFを用いて酢酸パラジウムを担持したところ、薄い黄色の粉体を与えた。これを直ちに接触水素化触媒として用いたが、シクロヘキセンの還元では反応速度が遅かった。
[Reference Example 4]
When palladium acetate was supported on normal phase silica gel using [bmim] PF 6 , a light yellow powder was obtained. This was immediately used as a catalytic hydrogenation catalyst, but the reaction rate was slow in the reduction of cyclohexene.

イオン液体を用いずに酢酸パラジウムを担持して触媒を調製し、種々の接触還元反応を試みた。   Catalysts were prepared by supporting palladium acetate without using an ionic liquid, and various catalytic reduction reactions were attempted.

[反応例18]
固定化操作:
50mLの二口フラスコにSH−SiO(粉末、0.525g)、Pd(OAc)(67.4mg、0.30mmol)を入れ、THF(3mL)に懸濁させた。その後、窒素雰囲気下、室温にて、4時間攪拌し、溶媒を減圧留去した。その後、EtO(×5)により洗浄し、シリカゲルを減圧下で乾燥したところ、橙色の担持触媒(0.635g)を得た。担持量は0.472mmol/gであった。
[Reaction Example 18]
Immobilization operation:
SH-SiO 2 in a two-neck flask 50 mL (powder, 0.525 g), placed Pd (OAc) 2 (67.4mg, 0.30mmol), was suspended in THF (3 mL). Thereafter, the mixture was stirred at room temperature for 4 hours under a nitrogen atmosphere, and the solvent was distilled off under reduced pressure. Then, washed with Et 2 O (× 5), it was dried over silica gel under reduced pressure to give an orange supported catalyst (0.635 g). The supported amount was 0.472 mmol / g.

触媒活性化:
二口フラスコに上記担持触媒とEtOH(5mL)を入れ、水素雰囲気下室温で5時間撹拌し、溶媒を減圧留去し黒色の担持触媒を回収した。窒素雰囲気下室温にて保存した。
Catalyst activation:
The above supported catalyst and EtOH (5 mL) were placed in a two-necked flask and stirred at room temperature for 5 hours under a hydrogen atmosphere, and the solvent was distilled off under reduced pressure to recover a black supported catalyst. It was stored at room temperature under a nitrogen atmosphere.

以下、この担持触媒を用いて種々のオレフィンの還元を試みた。   Hereinafter, reduction of various olefins was tried using this supported catalyst.

[反応例19]
二口フラスコにシンナムアルデヒド(41.8mg、0.315mmol)を入れ、窒素置換し、EtOH(3.2mL)、Pd−SILC(Pd(OAc)/SH−SiO、0.525mmol/g)(30.1mg、0.0158mmol)を加え、水素雰囲気下、室温、常圧で75分撹拌した。遠心分離機を用いて反応溶液を分離し、EtOにより触媒を洗浄した(×5)。溶媒を濃縮後、ショートカラム(EtOAc:ヘキサン=1:3)、MPLC(EtOAc:ヘキサン=1:6)により精製を行った。還元生成物(26.3mg、62%)、そのジエチルアセタール体(4.5mg、7.4%)、シンナムアルデヒド(2.2mg、5.3%)を得た。
[Reaction Example 19]
Cinnamaldehyde (41.8 mg, 0.315 mmol) was placed in a two-necked flask, purged with nitrogen, EtOH (3.2 mL), Pd-SILC (Pd (OAc) 2 / SH-SiO 2 , 0.525 mmol / g) (30.1 mg, 0.0158 mmol) was added, and the mixture was stirred under a hydrogen atmosphere at room temperature and normal pressure for 75 minutes. The reaction solution was separated using a centrifuge, and the catalyst was washed with Et 2 O (× 5). After the solvent was concentrated, purification was performed by a short column (EtOAc: hexane = 1: 3) and MPLC (EtOAc: hexane = 1: 6). A reduction product (26.3 mg, 62%), its diethyl acetal compound (4.5 mg, 7.4%), and cinnamaldehyde (2.2 mg, 5.3%) were obtained.

[反応例20]
リサイクル実験:
シクロヘキセンの接触水素化の反応速度が速く、10回のリサイクル使用を行うことができた。しかし、反応例9と比較し反応完結に若干時間がかかった。
[Reaction Example 20]
Recycling experiment:
The reaction rate of the catalytic hydrogenation of cyclohexene was fast and could be recycled 10 times. However, it took some time to complete the reaction as compared with Reaction Example 9.

Claims (2)

チオール基で表面修飾したシリカゲルに1−ブチル−3−メチルイミダゾリウムテトラフルオロボレートに溶解した酢酸パラジウムを担持させてなる接触還元用パラジウム触媒。 A palladium catalyst for catalytic reduction obtained by supporting palladium acetate dissolved in 1-butyl-3-methylimidazolium tetrafluoroborate on silica gel surface-modified with a thiol group. チオール基で表面修飾したシリカゲルが下記式(式中、Rは、メチル基又はエチル基)で表される請求項記載の接触還元用パラジウム触媒。
Figure 0005673124
Surface modified silica gel is represented by the following formula with a thiol group (wherein, R is a methyl group or an ethyl group) catalytic reduction for the palladium catalyst according to claim 1, which is represented by.
Figure 0005673124
JP2011009218A 2011-01-19 2011-01-19 Palladium catalyst for catalytic reduction Active JP5673124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011009218A JP5673124B2 (en) 2011-01-19 2011-01-19 Palladium catalyst for catalytic reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011009218A JP5673124B2 (en) 2011-01-19 2011-01-19 Palladium catalyst for catalytic reduction

Publications (2)

Publication Number Publication Date
JP2012148242A JP2012148242A (en) 2012-08-09
JP5673124B2 true JP5673124B2 (en) 2015-02-18

Family

ID=46791063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011009218A Active JP5673124B2 (en) 2011-01-19 2011-01-19 Palladium catalyst for catalytic reduction

Country Status (1)

Country Link
JP (1) JP5673124B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109678684B (en) * 2018-12-25 2022-11-04 万华化学集团股份有限公司 Method for preparing levo muscone

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY107780A (en) * 1992-09-08 1996-06-15 Shell Int Research Hydroconversion catalyst
JP2009214094A (en) * 2008-02-15 2009-09-24 Tokyo Institute Of Technology Oxidation catalyst, oxidizing method, oxidation apparatus, and antimicrobial agent
JP2010188243A (en) * 2009-02-17 2010-09-02 Hitachi Ltd Catalytic material and method of producing the same

Also Published As

Publication number Publication date
JP2012148242A (en) 2012-08-09

Similar Documents

Publication Publication Date Title
Ishida et al. Carboxylation of benzylic and aliphatic C–H bonds with CO2 induced by light/ketone/nickel
Huang et al. Three-component, interrupted radical Heck/allylic substitution cascade involving unactivated alkyl bromides
Vidal et al. Chemicals from biomass: chemoselective reductive amination of ethyl levulinate with amines
Zhou et al. Enantioselective CuH-catalyzed hydroacylation employing unsaturated carboxylic acids as aldehyde surrogates
Mallat et al. Selectivity enhancement in heterogeneous catalysis induced by reaction modifiers
Tang et al. Regio-and enantioselective rhodium-catalyzed allylic alkylation of racemic allylic alcohols with 1, 3-diketones
Yoo et al. Reworking organic synthesis for the modern age: Synthetic strategies based on continuous-flow addition and condensation reactions with heterogeneous catalysts
Skouta et al. Gold-catalyzed reactions of C–H bonds
Chen et al. Recent advances in transition-metal-catalyzed functionalization of unstrained carbon–carbon bonds
Colacino et al. PEG as an alternative reaction medium in metal-mediated transformations
EP3257831B1 (en) Circular economy methods of preparing unsaturated compounds
JP6074858B2 (en) Process for producing unsaturated alcohol
KR101793110B1 (en) Composite containing catalytic metal nanoparticles, and use for same
CN106414419B (en) Chelate-controlled diastereoselective hydrogenation using heterogeneous catalysis
JP2014514272A (en) Reduction of C—O bonds by catalytic transfer hydrogenolysis
WO2017060922A1 (en) An eco-friendly process for hydrogenation or/and hydrodeoxygenation of organic compound using hydrous ruthenium oxide catalyst
CN113563370A (en) Preparation method for preparing beta-boryl ketone with substituent at alpha position by catalyzing chitosan loaded copper material
Li et al. Regio-and Trans-Selective Ni-Catalyzed Coupling of Butadiene, Carbonyls, and Arylboronic Acids to Homoallylic Alcohols under Base-Free Conditions
Lu et al. Highly enantioselective catalytic alkynylation of ketones–A convenient approach to optically active propargylic alcohols
Zhong et al. Copper (I)-catalyzed regioselective asymmetric addition of 1, 4-pentadiene to ketones
Ren et al. Ruthenium-Catalyzed Oxidation of Allyl Alcohols with Intermolecular Hydrogen Transfer: Synthesis of α, β-Unsaturated Carbonyl Compounds
Sheng et al. Application of noble metal nanoparticles in organic reactions
Tuokko et al. Palladium on charcoal as a catalyst for stoichiometric chemo-and stereoselective hydrosilylations and hydrogenations with triethylsilane
Djakovitch et al. First heterogeneously palladium catalysed α-arylation of diethyl malonate
Ilamanova et al. Heterogeneous metal catalysis for the environmentally benign synthesis of medicinally important scaffolds, intermediates, and building blocks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5673124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250