JP6074858B2 - Process for producing unsaturated alcohol - Google Patents

Process for producing unsaturated alcohol Download PDF

Info

Publication number
JP6074858B2
JP6074858B2 JP2013182985A JP2013182985A JP6074858B2 JP 6074858 B2 JP6074858 B2 JP 6074858B2 JP 2013182985 A JP2013182985 A JP 2013182985A JP 2013182985 A JP2013182985 A JP 2013182985A JP 6074858 B2 JP6074858 B2 JP 6074858B2
Authority
JP
Japan
Prior art keywords
unsaturated
catalyst
reaction
carrier
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013182985A
Other languages
Japanese (ja)
Other versions
JP2015048349A (en
Inventor
冨重 圭一
圭一 冨重
正純 田村
正純 田村
雄一郎 平井
雄一郎 平井
泰照 梶川
泰照 梶川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Daicel Corp
Original Assignee
Tohoku University NUC
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Daicel Corp filed Critical Tohoku University NUC
Priority to JP2013182985A priority Critical patent/JP6074858B2/en
Publication of JP2015048349A publication Critical patent/JP2015048349A/en
Application granted granted Critical
Publication of JP6074858B2 publication Critical patent/JP6074858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、分子内に炭素−炭素不飽和結合を1以上有する不飽和カルボニル化合物のカルボニル結合を選択的に還元し、対応する不飽和アルコールを製造する方法に関する。また、本発明は、不飽和カルボニル化合物のカルボニル結合を選択的に還元して対応する不飽和アルコールを生成させる反応に使用される、不飽和カルボニル化合物の還元反応用触媒に関する。   The present invention relates to a method for producing a corresponding unsaturated alcohol by selectively reducing a carbonyl bond of an unsaturated carbonyl compound having one or more carbon-carbon unsaturated bonds in the molecule. The present invention also relates to a catalyst for the reduction reaction of an unsaturated carbonyl compound, which is used in a reaction for selectively reducing a carbonyl bond of an unsaturated carbonyl compound to produce a corresponding unsaturated alcohol.

分子内に炭素−炭素不飽和結合を有するアルコール(不飽和アルコール)は、合成中間体や医薬、農薬、香料等に用いられる重要な化合物である。不飽和アルコールは、アルデヒドのアルドール縮合で容易に得られる不飽和アルデヒドの部分水素化により合成することができる。しかしながら、不飽和アルデヒドのような不飽和カルボニル化合物から不飽和アルコールを合成する反応は、一般に、カルボニル基よりも炭素−炭素不飽和結合の方が反応性が高いため、非常に難しい反応である。パラジウムやニッケル等の典型的な水素化触媒を用いた場合、炭素−炭素不飽和結合の還元が優先的に起こり、不飽和アルコールが生成しない。また、NaBH4やLiAlH4等の試薬を用いれば不飽和アルコールを合成することができるが、このような試薬は価格が高く、工業的な製造には適用できない。 Alcohol having a carbon-carbon unsaturated bond in the molecule (unsaturated alcohol) is an important compound used for synthetic intermediates, medicines, agricultural chemicals, fragrances and the like. Unsaturated alcohols can be synthesized by partial hydrogenation of unsaturated aldehydes readily obtained by aldol condensation of aldehydes. However, the reaction of synthesizing an unsaturated alcohol from an unsaturated carbonyl compound such as an unsaturated aldehyde is generally a very difficult reaction because the carbon-carbon unsaturated bond is more reactive than the carbonyl group. When a typical hydrogenation catalyst such as palladium or nickel is used, reduction of the carbon-carbon unsaturated bond occurs preferentially and no unsaturated alcohol is produced. Further, it is possible to synthesize unsaturated alcohols by using the reagent such as NaBH 4 or LiAlH 4, such reagents is high in price, it can not be applied to industrial production.

また、不飽和アルコールの一つであるアリルアルコールは、現在、プロピレンからプロピレンオキシドを経由する方法で製造されているが、アクロレインの直接水素化により合成できれば、反応後の精製工程の簡略化や、副生廃棄物の処理の軽減等により、工業的なコストが軽減できる可能性がある。このような観点から、不飽和アルデヒドのような不飽和カルボニル化合物から対応する不飽和アルコールを直接合成できるようにすることは、新しい化合物の合成方法の確立や、新しい反応プロセスの確立に寄与し、極めて有用である。   In addition, allyl alcohol which is one of unsaturated alcohols is currently produced by a method from propylene via propylene oxide, but if it can be synthesized by direct hydrogenation of acrolein, the purification process after the reaction can be simplified, Industrial costs may be reduced by reducing the treatment of by-product waste. From this point of view, the ability to directly synthesize the corresponding unsaturated alcohols from unsaturated carbonyl compounds such as unsaturated aldehydes contributes to the establishment of new compound synthesis methods and the establishment of new reaction processes. Very useful.

これまでに、不飽和アルデヒドから不飽和アルコールを直接高収率で合成する技術はほとんど存在していないが、例えば、不飽和アルデヒドのカルボニル結合(C=O)に対する反応性を向上させて不飽和アルコールの選択性を向上させるため、触媒の活性金属と第2金属の組み合わせを変えたり、触媒の結晶子径を制御したりと、色々な工夫がなされてきている(例えば、非特許文献1及び2参照)。   To date, there is almost no technology for directly synthesizing unsaturated alcohols from unsaturated aldehydes in high yields. For example, the reactivity of unsaturated aldehydes with respect to the carbonyl bond (C = O) is improved and unsaturated. In order to improve the selectivity of alcohol, various ideas have been made such as changing the combination of the active metal and the second metal of the catalyst or controlling the crystallite diameter of the catalyst (for example, Non-Patent Document 1 and 2).

Chem. Eur. J., 2013, 19, 5255.Chem. Eur. J., 2013, 19, 5255. J. Catal., 2007, 250, 195.J. Catal., 2007, 250, 195.

しかしながら、従来技術では、選択性の向上と引き換えに触媒の活性が低下してしまい、パラジウムやニッケル等の典型的な水素化触媒よりも低活性となってしまうのが現状であった。従来技術では、不飽和アルデヒドから不飽和アルコールを合成する反応の最高収率は86%であるが(非特許文献1の方法)、反応速度が遅く、選択性と活性(反応速度)を両立させることはできていない。また、従来技術において観測された最高のTOF(反応速度)は、126h-1に過ぎなかった(非特許文献2の方法)。また、従来技術においては、ほとんどの反応が100℃以上といった高温や1MPa以上といった高圧で行われていた。 However, in the prior art, the activity of the catalyst is reduced in exchange for the improvement of the selectivity, and the current state is that the activity is lower than that of a typical hydrogenation catalyst such as palladium or nickel. In the prior art, the maximum yield of a reaction for synthesizing an unsaturated alcohol from an unsaturated aldehyde is 86% (method of Non-Patent Document 1), but the reaction rate is slow, and both selectivity and activity (reaction rate) are compatible. I can't. Moreover, the highest TOF (reaction rate) observed in the prior art was only 126 h −1 (the method of Non-Patent Document 2). In the prior art, most reactions are performed at a high temperature such as 100 ° C. or higher and a high pressure such as 1 MPa or higher.

従って、本発明の目的は、不飽和カルボニル化合物を原料として、該不飽和カルボニル化合物のカルボニル結合のみが選択的に還元された不飽和アルコールを、優れた反応速度で、高選択性かつ高収率で製造できる方法を提供することにある。
また、本発明の他の目的は、不飽和カルボニル化合物を原料として、該不飽和カルボニル化合物のカルボニル結合のみが選択的に還元された不飽和アルコールを生成させる反応に用いられる触媒(不飽和カルボニル化合物の還元反応用触媒)を提供することにある。
Therefore, an object of the present invention is to use an unsaturated carbonyl compound as a raw material, an unsaturated alcohol in which only the carbonyl bond of the unsaturated carbonyl compound is selectively reduced, with high reaction rate, high selectivity and high yield. It is providing the method which can be manufactured by.
Another object of the present invention is to provide a catalyst (unsaturated carbonyl compound) used in a reaction for producing an unsaturated alcohol in which only an carbonyl bond of the unsaturated carbonyl compound is selectively reduced using an unsaturated carbonyl compound as a raw material. A catalyst for the reduction reaction).

本発明者らは上記課題を解決するため鋭意検討した結果、特定の触媒の存在下、不飽和カルボニル化合物の水素による還元反応を進行させる工程を含む方法によると、対応する不飽和アルコール(不飽和カルボニル化合物のカルボニル結合のみが選択的に還元された不飽和アルコール)を、優れた反応速度で、高選択性かつ高収率で製造できることを見出し、本発明を完成させた。   As a result of diligent studies to solve the above problems, the present inventors have found that according to a method including a step of proceeding a reduction reaction of an unsaturated carbonyl compound with hydrogen in the presence of a specific catalyst, the corresponding unsaturated alcohol (unsaturated) The present inventors have found that an unsaturated alcohol in which only the carbonyl bond of the carbonyl compound is selectively reduced can be produced at an excellent reaction rate with high selectivity and high yield.

すなわち、本発明は、コバルト、ニッケル、銅、亜鉛、ルテニウム、ロジウム、パラジウム、銀、オスミウム、イリジウム、及び白金からなる群より選択される少なくとも一種の金属、並びに、バナジウム、クロム、マンガン、鉄、モリブデン、タングステン、及びレニウムからなる群より選択される少なくとも一種の金属を含む触媒の存在下、分子内に炭素−炭素不飽和結合を1以上有する炭素数が3以上の不飽和カルボニル化合物の水素による還元反応を進行させ、対応する不飽和アルコールを生成させる工程を含むことを特徴とする不飽和アルコールの製造方法を提供する。   That is, the present invention includes at least one metal selected from the group consisting of cobalt, nickel, copper, zinc, ruthenium, rhodium, palladium, silver, osmium, iridium, and platinum, and vanadium, chromium, manganese, iron, In the presence of a catalyst containing at least one metal selected from the group consisting of molybdenum, tungsten, and rhenium, hydrogen of an unsaturated carbonyl compound having 1 or more carbon-carbon unsaturated bonds in the molecule and having 3 or more carbon atoms. There is provided a method for producing an unsaturated alcohol, comprising a step of proceeding a reduction reaction to produce a corresponding unsaturated alcohol.

さらに、前記還元反応が、前記不飽和カルボニル化合物、前記触媒、及び水素を、連続的又は回分式で接触させることにより反応させる不均一反応である前記の不飽和アルコールの製造方法を提供する。   Furthermore, the present invention provides a method for producing the unsaturated alcohol, wherein the reduction reaction is a heterogeneous reaction in which the unsaturated carbonyl compound, the catalyst, and hydrogen are reacted continuously or batchwise.

さらに、前記還元反応における水素圧が0.1MPa以上である前記の不飽和アルコールの製造方法を提供する。   Furthermore, the manufacturing method of the said unsaturated alcohol whose hydrogen pressure in the said reduction reaction is 0.1 Mpa or more is provided.

また、本発明は、分子内に炭素−炭素不飽和結合を1以上有する炭素数が3以上の不飽和カルボニル化合物の水素による還元反応を進行させ、対応する不飽和アルコールを生成させる反応において使用される触媒であって、
コバルト、ニッケル、銅、亜鉛、ルテニウム、ロジウム、パラジウム、銀、オスミウム、イリジウム、及び白金からなる群より選択される少なくとも一種の金属、並びに、バナジウム、クロム、マンガン、鉄、モリブデン、タングステン、及びレニウムからなる群より選択される少なくとも一種の金属を含むことを特徴とする不飽和カルボニル化合物の還元反応用触媒を提供する。
In addition, the present invention is used in a reaction in which a reduction reaction of an unsaturated carbonyl compound having 1 or more carbon-carbon unsaturated bonds in the molecule with 3 or more carbon atoms with hydrogen proceeds to produce a corresponding unsaturated alcohol. A catalyst,
At least one metal selected from the group consisting of cobalt, nickel, copper, zinc, ruthenium, rhodium, palladium, silver, osmium, iridium, and platinum, and vanadium, chromium, manganese, iron, molybdenum, tungsten, and rhenium A catalyst for the reduction reaction of an unsaturated carbonyl compound, comprising at least one metal selected from the group consisting of:

本発明の不飽和アルコールの製造方法は上記構成を有するため、不飽和カルボニル化合物を原料として、該不飽和カルボニル化合物のカルボニル結合のみが選択的に還元された不飽和アルコールを、優れた反応速度で、高選択性かつ高収率で製造できる。具体的には、例えば、本発明の不飽和アルコールの製造方法によると、原料としてクロトンアルデヒドを使用した場合、90%という高収率と、2160h-1という高いTOF(優れた反応速度)でクロチルアルコールを高い選択率で生成させることが可能となった(実施例参照)。また、本発明の不飽和アルコールの製造方法は、該製造方法における不飽和アルコールの水素による還元反応を低温・低圧で進行させることができるため、コスト面でも非常に有利である。 Since the method for producing an unsaturated alcohol of the present invention has the above-described configuration, an unsaturated alcohol in which only the carbonyl bond of the unsaturated carbonyl compound is selectively reduced using an unsaturated carbonyl compound as a raw material at an excellent reaction rate. Can be produced with high selectivity and high yield. Specifically, for example, according to the method for producing an unsaturated alcohol of the present invention, when crotonaldehyde is used as a raw material, the chlorotonaldehyde has a high yield of 90% and a high TOF of 2160 h −1 (excellent reaction rate). It became possible to produce chilled alcohol with high selectivity (see Examples). Further, the method for producing an unsaturated alcohol of the present invention is very advantageous in terms of cost because the reduction reaction of unsaturated alcohol with hydrogen in the production method can proceed at low temperature and low pressure.

実施例23の1〜4回目の還元反応におけるクロトンアルデヒドの転化率とクロチルアルコールの選択率を表したグラフである。14 is a graph showing the conversion rate of crotonaldehyde and the selectivity of crotyl alcohol in the first to fourth reduction reactions of Example 23. FIG.

<不飽和アルコールの製造方法>
本発明の不飽和アルコールの製造方法は、触媒の存在下、分子内に炭素−炭素不飽和結合を1以上有する炭素数が3以上の不飽和カルボニル化合物(単に「不飽和カルボニル化合物」と称する場合がある)の水素による還元反応を進行させ、対応する不飽和アルコール(単に「不飽和アルコール」と称する場合がある)を生成させる工程(「還元工程」と称する場合がある)を必須の工程として含む方法である。
<Production method of unsaturated alcohol>
In the method for producing an unsaturated alcohol of the present invention, in the presence of a catalyst, an unsaturated carbonyl compound having 1 or more carbon-carbon unsaturated bonds in the molecule and having 3 or more carbon atoms (simply referred to as “unsaturated carbonyl compound”). As a necessary step, the step of proceeding the reduction reaction with hydrogen in the presence of hydrogen to produce the corresponding unsaturated alcohol (sometimes referred to simply as “unsaturated alcohol”) (sometimes referred to as “reduction step”). It is the method of including.

[不飽和カルボニル化合物]
本発明の不飽和アルコールの製造方法において不飽和アルコールの原料として使用される不飽和カルボニル化合物は、上述のように、炭素数(総炭素数)が3以上(例えば、3〜30、より詳しくは3〜20)の化合物であって、分子内にカルボニル基を1以上(例えば、1つ)有し、なおかつ炭素−炭素不飽和結合を1以上(例えば、1〜5つ)有する化合物である。上記不飽和カルボニル化合物における炭素−炭素不飽和結合には、炭素−炭素二重結合及び炭素−炭素三重結合が包含される。なお、上記炭素−炭素二重結合には、エチレン性炭素−炭素二重結合と芳香族性炭素−炭素二重結合とが包含される。即ち、上記不飽和カルボニル化合物としては、例えば、炭素数が3以上の不飽和アルデヒド、炭素数が3以上の不飽和ケトン等の各種不飽和カルボニル化合物が挙げられる。
[Unsaturated carbonyl compound]
As described above, the unsaturated carbonyl compound used as the raw material of the unsaturated alcohol in the method for producing an unsaturated alcohol of the present invention has 3 or more carbon atoms (total carbon number) (for example, 3 to 30, more specifically, 3-20) which is a compound having one or more (for example, one) carbonyl groups and one or more (for example, one to five) carbon-carbon unsaturated bonds in the molecule. The carbon-carbon unsaturated bond in the unsaturated carbonyl compound includes a carbon-carbon double bond and a carbon-carbon triple bond. The carbon-carbon double bond includes an ethylenic carbon-carbon double bond and an aromatic carbon-carbon double bond. That is, examples of the unsaturated carbonyl compound include various unsaturated carbonyl compounds such as an unsaturated aldehyde having 3 or more carbon atoms and an unsaturated ketone having 3 or more carbon atoms.

上記不飽和カルボニル化合物としては、例えば、下記式(1)で表され、炭素数(総炭素数)が3以上であり、分子内に1以上の炭素−炭素不飽和結合を有する化合物が挙げられる。

Figure 0006074858
Examples of the unsaturated carbonyl compound include compounds represented by the following formula (1), having a carbon number (total carbon number) of 3 or more and having one or more carbon-carbon unsaturated bonds in the molecule. .
Figure 0006074858

式(1)中、R1は、置換基を有していてもよい1価の有機基(例えば、式中に示される炭素原子との結合部位に炭素原子を有する1価の有機基等)を示す。上記1価の有機基としては、公知乃至慣用の有機基が挙げられ、特に限定されないが、例えば、1価の炭化水素基;1価の複素環式基;炭化水素基の1以上と複素環式基の1以上とが連結して形成された1価の基;これら1価の基の1以上と連結基[例えば、エーテル結合、チオエーテル結合、エステル結合、アミド結合、カルボニル基、これらの2以上が連結して形成された2価の基等]の1以上とが連結して形成された1価の基等が挙げられる。 In formula (1), R 1 is a monovalent organic group which may have a substituent (for example, a monovalent organic group having a carbon atom at the bonding site with the carbon atom shown in the formula). Indicates. Examples of the monovalent organic group include known or conventional organic groups, and are not particularly limited. For example, a monovalent hydrocarbon group; a monovalent heterocyclic group; one or more hydrocarbon groups and a heterocyclic ring A monovalent group formed by linking one or more of the formula groups; one or more of these monovalent groups and a linking group [for example, ether bond, thioether bond, ester bond, amide bond, carbonyl group, these 2 A divalent group formed by linking one or more of the above-described divalent groups formed by linking].

上記1価の炭化水素基としては、例えば、脂肪族炭化水素基[例えば、アルキル基、アルケニル基、アルキニル基等];脂環式炭化水素基[例えば、シクロアルキル基、シクロアルケニル基、橋かけ環式炭化水素基等];芳香族炭化水素基;脂肪族炭化水素基、脂環式炭化水素基、及び芳香族炭化水素基の2種以上が連結して形成された1価の炭化水素基[例えば、シクロアルキル−アルキル基、アラルキル基、アルキル置換アリール基等]が挙げられる。   Examples of the monovalent hydrocarbon group include aliphatic hydrocarbon groups [eg, alkyl groups, alkenyl groups, alkynyl groups, etc.]; alicyclic hydrocarbon groups [eg, cycloalkyl groups, cycloalkenyl groups, bridges] Cyclic hydrocarbon group, etc.]; aromatic hydrocarbon group; monovalent hydrocarbon group formed by linking two or more of an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group [For example, a cycloalkyl-alkyl group, an aralkyl group, an alkyl-substituted aryl group, etc.].

上記1価の複素環式基としては、例えば、ヘテロ原子として酸素原子を含む複素環[例えば、オキシラン環、オキセタン環、フラン環、テトラヒドロフラン環、オキサゾール環、γ−ブチロラクトン環、4−オキソ−4H−ピラン環、モルホリン環、ベンゾフラン環3−オキサトリシクロ[4.3.1.14,8]ウンデカン−2−オン環等];ヘテロ原子として硫黄原子を含む複素環[例えば、チオフェン環、チアゾール環、チアジアゾール環、4−オキソ−4H−チオピラン環、ベンゾチオフェン環等];ヘテロ原子として窒素原子を含む複素環[例えば、ピロール環、ピロリジン環、ピラゾール環、イミダゾール環、トリアゾール環、ピリジン環、インドール環等]等の各種複素環に対応する1価の複素環式基等が挙げられる。 Examples of the monovalent heterocyclic group include a heterocyclic ring containing an oxygen atom as a hetero atom [for example, an oxirane ring, oxetane ring, furan ring, tetrahydrofuran ring, oxazole ring, γ-butyrolactone ring, 4-oxo-4H -Pyran ring, morpholine ring, benzofuran ring 3-oxatricyclo [4.3.1.1 4,8 ] undecan-2-one ring and the like]; a hetero ring containing a sulfur atom as a hetero atom [for example, a thiophene ring, Thiazole ring, thiadiazole ring, 4-oxo-4H-thiopyran ring, benzothiophene ring, etc.]; heterocycle containing a nitrogen atom as a hetero atom [eg, pyrrole ring, pyrrolidine ring, pyrazole ring, imidazole ring, triazole ring, pyridine ring , Indole rings, etc.] monovalent heterocyclic groups corresponding to various heterocyclic rings.

上記1価の有機基が有していてもよい置換基としては、例えば、ハロゲン原子、ヒドロキシ基、オキソ基、置換オキシ基[例えば、アルコキシ基、アリールオキシ基、アラルキルオキシ基、アシルオキシ基等]、カルボキシ基、置換オキシカルボニル基[アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基等]、置換又は無置換カルバモイル基、シアノ基、ニトロ基、置換又は無置換アミノ基、スルホ基等が挙げられる。   Examples of the substituent that the monovalent organic group may have include, for example, a halogen atom, a hydroxy group, an oxo group, a substituted oxy group [for example, an alkoxy group, an aryloxy group, an aralkyloxy group, an acyloxy group, etc.] Carboxy group, substituted oxycarbonyl group [alkoxycarbonyl group, aryloxycarbonyl group, aralkyloxycarbonyl group, etc.], substituted or unsubstituted carbamoyl group, cyano group, nitro group, substituted or unsubstituted amino group, sulfo group, etc. It is done.

式(1)中、R2は、水素原子、ヒドロキシ基、置換基を有していてもよい1価の有機基、又はハロゲン原子を示す。R2としての置換基を有していてもよい1価の有機基としては、例えば、R1として例示したものと同様の基が挙げられる。R2としてのハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子等が挙げられる。 In Formula (1), R 2 represents a hydrogen atom, a hydroxy group, a monovalent organic group which may have a substituent, or a halogen atom. Examples of the monovalent organic group which may have a substituent as R 2 include the same groups as those exemplified as R 1 . Examples of the halogen atom as R 2 include a fluorine atom, a chlorine atom, and a bromine atom.

式(1)中、R1及びR2のいずれか一方又は両方が、炭素−炭素不飽和結合を含む基である。また、R1を構成する炭素原子の数と、R2を構成する炭素原子の数の合計は、2以上(例えば、2〜29、より詳しくは2〜19)である。 In Formula (1), one or both of R 1 and R 2 is a group containing a carbon-carbon unsaturated bond. The total number of carbon atoms constituting R 1 and the number of carbon atoms constituting R 2 is 2 or more (for example, 2 to 29, more specifically 2 to 19).

本発明の不飽和アルコールの製造方法においては、特に、不飽和カルボニル化合物として、炭素数3以上の不飽和アルデヒドを使用した場合に、いっそう優れた反応速度で、高選択性かつ高収率で対応する不飽和アルコールを生成させることができる。但し、上記不飽和カルボニル化合物は、上述の不飽和アルデヒドに限定されない。   In the method for producing an unsaturated alcohol of the present invention, in particular, when an unsaturated aldehyde having 3 or more carbon atoms is used as the unsaturated carbonyl compound, it is possible to cope with a higher selectivity and a higher yield with a more excellent reaction rate. Unsaturated alcohol can be produced. However, the unsaturated carbonyl compound is not limited to the unsaturated aldehyde described above.

炭素数3以上の不飽和アルデヒドとしては、具体的には、例えば、アクロレイン、メタクロレイン、クロトンアルデヒド、2−エチルアクロレイン、2−イソプロピルアクロレイン、ネラール、ゲラニアール、シンナムアルデヒド、2−オクテン−1―アール、3−メチル−2−ブテナール(セネシオアルデヒド)、2−メチル−2−ブテナール、2−ペンテナール、2−メチル−2−ペンテナール、2−ヘキセナール、2−メチル−2−ヘキセナール、2−オクテナール、1−シクロペンテン−1−カルボアルデヒド、1−シクロヘキセン−1−カルボアルデヒド、1−シクロオクテン−1−カルボアルデヒド、シトラール、シトロネラール、テトラヒドロベンズアルデヒド(3−シクロヘキセン−1−カルボアルデヒド)等の不飽和アルデヒド[例えば、α,β−不飽和アルデヒド(共役不飽和アルデヒド)、非共役不飽和アルデヒド等];ベンズアルデヒド、アニスアルデヒド、p−ヒドロキシベンズアルデヒド、テレフタルアルデヒド、フルフラール、5−ヒドロキシメチルフルフラール、フェニルアセトアルデヒド等の芳香族アルデヒド[例えば、炭素数6〜20の芳香族アルデヒド等]が挙げられる。   Specific examples of the unsaturated aldehyde having 3 or more carbon atoms include, for example, acrolein, methacrolein, crotonaldehyde, 2-ethylacrolein, 2-isopropylacrolein, neral, geranial, cinnamaldehyde, 2-octen-1-al. 3-methyl-2-butenal (Senecioaldehyde), 2-methyl-2-butenal, 2-pentenal, 2-methyl-2-pentenal, 2-hexenal, 2-methyl-2-hexenal, 2-octenal, 1 -Unsaturated alkyls such as cyclopentene-1-carbaldehyde, 1-cyclohexene-1-carbaldehyde, 1-cyclooctene-1-carbaldehyde, citral, citronellal, tetrahydrobenzaldehyde (3-cyclohexene-1-carbaldehyde) Hyd [for example, α, β-unsaturated aldehyde (conjugated unsaturated aldehyde), non-conjugated unsaturated aldehyde, etc.]; benzaldehyde, anisaldehyde, p-hydroxybenzaldehyde, terephthalaldehyde, furfural, 5-hydroxymethylfurfural, phenylacetaldehyde, etc. Aromatic aldehydes [for example, aromatic aldehydes having 6 to 20 carbon atoms].

炭素数3以上の不飽和ケトンとしては、具体的には、例えば、メチルビニルケトン、メシチルオキサイド、メチル(1−シクロヘキセニル)ケトン、3−ペンテン−2−オン、3−メチル−3−ペンテン−2−オン、4−メチル−3−ペンテン−2−オン、2−シクロペンテン−1−オン、3−メチル−2−シクロペンテノン、3−ヘキセン−2−オン、3−メチル−3−ヘキセン−2−オン、4−ヘキセン−3−オン、5−メチル−3−ヘキセン−2−オン、2−シクロヘキセン−1−オン、2−シクロヘプテン−1−オン、2−シクロオクテン−1−オン、1−フェニル−2−ブテン−1−オン等が挙げられる。   Specific examples of the unsaturated ketone having 3 or more carbon atoms include methyl vinyl ketone, mesityl oxide, methyl (1-cyclohexenyl) ketone, 3-penten-2-one, and 3-methyl-3-pentene. 2-one, 4-methyl-3-penten-2-one, 2-cyclopenten-1-one, 3-methyl-2-cyclopentenone, 3-hexen-2-one, 3-methyl-3-hexene 2-one, 4-hexen-3-one, 5-methyl-3-hexen-2-one, 2-cyclohexen-1-one, 2-cyclohepten-1-one, 2-cycloocten-1-one, 1-phenyl-2-buten-1-one and the like can be mentioned.

[不飽和アルコール]
本発明の不飽和アルコールの製造方法により生成物として得られる不飽和アルコールは、上述の不飽和カルボニル化合物のカルボニル結合[−C(=O)−]が還元されて[−CH(OH)−]で表される基に選択的に還元され、一方で分子内の炭素−炭素不飽和結合はそのまま残存する化合物(不飽和カルボニル化合物に対応する不飽和アルコール)である。例えば、不飽和カルボニル化合物として式(1)で表される化合物を使用した場合、対応する不飽和アルコールは、下記式(2)で表され、炭素数(総炭素数)が3以上(例えば3〜30、より詳しくは3〜20)であり、分子内に1以上の炭素−炭素不飽和結合を有する化合物である。本発明の不飽和アルコールの製造方法により得られる不飽和アルコールは、例えば、合成中間体や医薬、農薬、香料等として有用である。

Figure 0006074858
[式(2)中、R1及びR2は、式(1)におけるものと同じ。] [Unsaturated alcohol]
In the unsaturated alcohol obtained as a product by the method for producing an unsaturated alcohol of the present invention, the carbonyl bond [—C (═O) —] of the above unsaturated carbonyl compound is reduced to [—CH (OH) —]. On the other hand, the carbon-carbon unsaturated bond in the molecule is left as it is (unsaturated alcohol corresponding to the unsaturated carbonyl compound). For example, when the compound represented by the formula (1) is used as the unsaturated carbonyl compound, the corresponding unsaturated alcohol is represented by the following formula (2), and the carbon number (total carbon number) is 3 or more (for example, 3 -30, more specifically 3-20), and a compound having one or more carbon-carbon unsaturated bonds in the molecule. The unsaturated alcohol obtained by the method for producing an unsaturated alcohol of the present invention is useful as, for example, a synthetic intermediate, a medicine, an agrochemical, a fragrance or the like.
Figure 0006074858
[In formula (2), R 1 and R 2 are the same as those in formula (1). ]

[触媒]
本発明の不飽和アルコールの製造方法の還元工程において使用する触媒は、上述の還元反応、詳しくは、不飽和カルボニル化合物のカルボニル基を水素により選択的に還元(水素化)して、対応する不飽和アルコールを生成させる反応に用いられる触媒[不飽和カルボニル化合物の還元反応用触媒(水素化反応用触媒)]である。上記触媒は、コバルト、ニッケル、銅、亜鉛、ルテニウム、ロジウム、パラジウム、イリジウム、銀、オスミウム、及び白金からなる群より選択される少なくとも一種の金属(「金属(1)」と称する場合がある)、並びに、バナジウム、クロム、マンガン、鉄、モリブデン、タングステン、及びレニウムからなる群より選択される少なくとも一種の金属(「金属(2)」と称する場合がある)を含む触媒(固体触媒)である。上記触媒が金属(1)と金属(2)とを組み合わせて含むことにより水素分子をH+とH-とに不均一に開裂させることが、上記還元反応が高転化率かつ高選択率で進行することの鍵であると推測される。
[catalyst]
The catalyst used in the reduction step of the method for producing an unsaturated alcohol of the present invention is the above-described reduction reaction, specifically, the carbonyl group of the unsaturated carbonyl compound is selectively reduced (hydrogenated) with hydrogen, and the corresponding unreacted catalyst is used. It is a catalyst [catalyst for reduction reaction of unsaturated carbonyl compound (catalyst for hydrogenation reaction)] used in a reaction for producing a saturated alcohol. The catalyst is at least one metal selected from the group consisting of cobalt, nickel, copper, zinc, ruthenium, rhodium, palladium, iridium, silver, osmium, and platinum (sometimes referred to as “metal (1)”). , And at least one metal selected from the group consisting of vanadium, chromium, manganese, iron, molybdenum, tungsten, and rhenium (sometimes referred to as “metal (2)”) (solid catalyst). . When the catalyst contains a combination of the metal (1) and the metal (2), the hydrogen molecules are cleaved heterogeneously into H + and H , so that the reduction reaction proceeds with high conversion and high selectivity. Presumed to be the key to doing.

上記触媒としては、特に、不飽和カルボニル化合物の還元反応における反応性と選択性に優れる点で、金属(1)としてイリジウムと、金属(2)としてレニウムとを少なくとも含む触媒が好ましく、より好ましくは担体と、担体に担持されたイリジウム及び担体に担持されたレニウムとを少なくとも含む触媒(固体触媒、担持固体触媒)である。なお、本明細書においては、上述の担体と、担体に担持されたイリジウム及び担体に担持されたレニウムとを少なくとも含む触媒を、特に「本発明の触媒」と称する場合がある。以下、特に本発明の触媒について具体的に説明するが、本発明の不飽和アルコールの製造方法において使用可能な触媒は、本発明の触媒に限定されない。   As the catalyst, in particular, a catalyst containing at least iridium as the metal (1) and rhenium as the metal (2) is preferable, more preferably, from the viewpoint of excellent reactivity and selectivity in the reduction reaction of the unsaturated carbonyl compound. A catalyst (solid catalyst, supported solid catalyst) containing at least a carrier, iridium supported on the carrier, and rhenium supported on the carrier. In the present specification, a catalyst containing at least the above-mentioned carrier, iridium supported on the carrier, and rhenium supported on the carrier may be particularly referred to as “the catalyst of the present invention”. Hereinafter, the catalyst of the present invention will be specifically described. However, the catalyst that can be used in the method for producing an unsaturated alcohol of the present invention is not limited to the catalyst of the present invention.

本発明の触媒におけるイリジウム及びレニウムは、それぞれ、担体に担持されていればよく、その形態(状態)は特に限定されない。イリジウム及びレニウムの形態としては、特に限定されないが、それぞれ、例えば、単体、塩、酸化物、水酸化物、錯体等の形態が挙げられる。   The iridium and rhenium in the catalyst of the present invention are only required to be supported on the carrier, and the form (state) is not particularly limited. Although it does not specifically limit as a form of iridium and rhenium, For example, forms, such as a simple substance, a salt, an oxide, a hydroxide, a complex, are mentioned, respectively.

本発明の触媒における担体としては、触媒の担体として使用される公知乃至慣用の担体を使用することができ、特に限定されないが、例えば、無機酸化物や活性炭等の無機物担体;イオン交換樹脂等の有機物担体等が挙げられる。上記担体としては、中でも、触媒活性に優れる点で、無機酸化物が好ましい。上記無機酸化物としては、例えば、シリカ(SiO2)、チタニア(TiO2)、ジルコニア(ZrO2)、アルミナ(Al23)、マグネシア(MgO)、これら無機酸化物の二種以上の複合体(例えば、ゼオライト等)等が挙げられる。上記無機酸化物の中でも、特に、触媒活性に優れる点で、シリカ(SiO2)、ゼオライトが好ましい。なお、本発明の触媒において担体は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。 As the carrier in the catalyst of the present invention, a known or conventional carrier used as a catalyst carrier can be used, and is not particularly limited. For example, an inorganic carrier such as an inorganic oxide or activated carbon; an ion exchange resin or the like Examples include organic carriers. As the carrier, an inorganic oxide is preferable from the viewpoint of excellent catalytic activity. Examples of the inorganic oxide include silica (SiO 2 ), titania (TiO 2 ), zirconia (ZrO 2 ), alumina (Al 2 O 3 ), magnesia (MgO), and a composite of two or more of these inorganic oxides. Body (for example, zeolite etc.) etc. are mentioned. Among the inorganic oxides, silica (SiO 2 ) and zeolite are particularly preferable in terms of excellent catalytic activity. In the catalyst of the present invention, one type of carrier can be used alone, or two or more types can be used in combination.

なお、本発明の触媒においてイリジウム及びレニウムは、同じ担体に担持されていてもよいし、別々の担体に担持されていてもよい。中でも、イリジウム及びレニウムは、同じ担体に担持されていることが好ましい。   In the catalyst of the present invention, iridium and rhenium may be supported on the same carrier or may be supported on different carriers. Among these, iridium and rhenium are preferably supported on the same carrier.

上記担体の比表面積は、特に限定されないが、イリジウム及びレニウム等の金属を高分散に配置でき、また、上記金属の凝集を抑制することができ、単位重量当たりの触媒活性を向上させることができる点で、50m2/g以上(例えば、50〜1500m2/g、好ましくは100〜1000m2/g)が好ましい。上記担体の比表面積が上記範囲を下回ると、単位重量当たりの触媒活性が低下する傾向がある。 The specific surface area of the carrier is not particularly limited, but metals such as iridium and rhenium can be arranged in a highly dispersed state, aggregation of the metal can be suppressed, and catalytic activity per unit weight can be improved. at point, 50 m 2 / g or more (e.g., 50~1500m 2 / g, preferably 100~1000m 2 / g) are preferable. When the specific surface area of the carrier is less than the above range, the catalytic activity per unit weight tends to decrease.

上記担体の細孔径は、特に限定されないが、イリジウム及びレニウム等の金属を高分散に配置でき、また、上記金属の凝集を抑制することができ、単位重量当たりの触媒活性を向上させることができる点で、1〜100nmが好ましく、より好ましくは5〜70nmである。   The pore diameter of the carrier is not particularly limited, but metals such as iridium and rhenium can be arranged in a highly dispersed manner, and aggregation of the metal can be suppressed, and the catalytic activity per unit weight can be improved. In this respect, 1 to 100 nm is preferable, and 5 to 70 nm is more preferable.

上記担体の平均粒径は、特に限定されないが、反応性の点や、連続式で反応を実施する場合の過剰な圧力損失を伴わない点で、100〜10000μmが好ましく、より好ましくは1000〜10000μmである。また、上記担体の形状は、粉末状、粒状、成型(成型体状)等のいずれであってもよく、特に限定されない。   The average particle diameter of the carrier is not particularly limited, but is preferably 100 to 10,000 μm, more preferably 1000 to 10,000 μm, in terms of reactivity and not accompanied by excessive pressure loss when the reaction is carried out continuously. It is. The shape of the carrier may be any of powder, granule, molding (molded body) and the like, and is not particularly limited.

イリジウムの担体への担持量は、特に限定されないが、イリジウムと担体の総量(100重量%)に対して、0.01〜50重量%程度が好ましく、より好ましくは0.01〜20重量%程度、さらに好ましくは0.5〜15重量%程度、特に好ましくは1.0〜10重量%程度である。イリジウムの担持量を0.01重量%以上とすることにより、多価アルコールの転化率がより向上する傾向がある。一方、イリジウムの担持量を50重量%以下とすることにより、経済的に有利となる傾向がある。   The amount of iridium supported on the carrier is not particularly limited, but is preferably about 0.01 to 50% by weight, more preferably about 0.01 to 20% by weight, based on the total amount of iridium and the carrier (100% by weight). More preferably, it is about 0.5 to 15% by weight, particularly preferably about 1.0 to 10% by weight. When the amount of iridium supported is 0.01% by weight or more, the conversion of polyhydric alcohol tends to be further improved. On the other hand, when the amount of iridium supported is 50% by weight or less, it tends to be economically advantageous.

イリジウムの担体への担持方法は、特に限定されず、公知乃至慣用の担持方法によりイリジウムを担体に担持することができる。具体的には、例えば、イリジウムを含有する溶液(例えば、塩化イリジウム酸の水溶液等)を担体に含浸させた後、乾燥させ、次いで焼成する方法等により担持することができる。なお、イリジウムを含有する溶液の濃度や、担体への含浸、及び乾燥処理の施用回数を調整することにより、イリジウムの担持量を制御することができる。また、イリジウムを含有する溶液を含浸させる際の温度、該溶液を含浸させた担体を乾燥させる際の温度は、特に限定されない。   The method for supporting iridium on the carrier is not particularly limited, and iridium can be supported on the carrier by a known or conventional supporting method. Specifically, for example, the carrier can be supported by a method of impregnating a carrier with an iridium-containing solution (for example, an aqueous solution of chloroiridic acid), and then drying and then firing. The amount of iridium supported can be controlled by adjusting the concentration of the iridium-containing solution, the impregnation of the carrier, and the number of times the drying treatment is applied. Further, the temperature at which the solution containing iridium is impregnated and the temperature at which the carrier impregnated with the solution is dried are not particularly limited.

レニウムの担体への担持方法は、特に限定されず、公知乃至慣用の担持方法によりレニウムを担体に担持することができる。具体的には、例えば、レニウムを含有する溶液(例えば、過レニウム酸アンモニウムの水溶液等)を担体に含浸させた後、乾燥させ、次いで焼成する方法等により担持することができる。また、レニウムをイリジウムと同じ担体に担持させる場合は、例えば、イリジウムを含有する溶液を含浸させ、乾燥させた後の担体に対して、さらにレニウムを含有する溶液を含浸させ、乾燥させた後、焼成する方法等が挙げられる。なお、レニウムを含有する溶液を含浸させる際の温度、該溶液を含浸させた担体を乾燥させる際の温度は特に限定されない。   The method for supporting rhenium on the carrier is not particularly limited, and rhenium can be supported on the carrier by a known or conventional loading method. Specifically, for example, it can be supported by a method of impregnating a carrier with a solution containing rhenium (for example, an aqueous solution of ammonium perrhenate), then drying and then firing. In the case where rhenium is supported on the same carrier as iridium, for example, after impregnating the solution containing iridium and drying the carrier, further impregnating the solution containing rhenium and drying, The method of baking etc. are mentioned. The temperature at which the solution containing rhenium is impregnated and the temperature at which the carrier impregnated with the solution is dried are not particularly limited.

また、担体にイリジウム及びレニウムを担持するその他の方法としては、例えば、イリジウム及びレニウムを含有する溶液を担体に含浸させた後、乾燥させ、次いで焼成する方法等も挙げられる。   Examples of other methods for supporting iridium and rhenium on the carrier include a method of impregnating the carrier with a solution containing iridium and rhenium, drying, and then firing.

イリジウムを含有する溶液及びレニウムを含有する溶液(又は、イリジウム及びレニウムを含有する溶液)を含浸させ、乾燥させた後の担体を焼成する際の温度(焼成温度)は、特に限定されないが、例えば、大気中において300〜750℃が好ましく、より好ましくは380〜650℃、さらに好ましくは400〜600℃、特に好ましくは450〜550℃である。また、焼成する際の雰囲気は、上述のように大気中に限定されず、例えば、窒素、アルゴン等の不活性ガス雰囲気等で焼成することもできる。   The temperature (firing temperature) at which the support after impregnating and drying the solution containing iridium and the solution containing rhenium (or the solution containing iridium and rhenium) is not particularly limited. In the atmosphere, 300 to 750 ° C is preferable, more preferably 380 to 650 ° C, still more preferably 400 to 600 ° C, and particularly preferably 450 to 550 ° C. Moreover, the atmosphere at the time of baking is not limited to air | atmosphere as mentioned above, For example, it can also bake in inert gas atmosphere etc., such as nitrogen and argon.

本発明の触媒におけるイリジウムとレニウムの割合(モル比、金属換算)[イリジウム/レニウム]は、特に限定されないが、不飽和カルボニル化合物の転化率の観点で、50/1〜1/6が好ましく、より好ましくは4/1〜1/4、さらに好ましくは3/1〜1/3である。   The ratio of iridium and rhenium (molar ratio, metal conversion) [iridium / rhenium] in the catalyst of the present invention is not particularly limited, but is preferably 50/1 to 1/6 from the viewpoint of the conversion rate of the unsaturated carbonyl compound. More preferably, it is 4/1-1/4, More preferably, it is 3/1-1/3.

なお、本発明の触媒は、金属成分として、イリジウム及びレニウム以外にも、例えば、白金、ロジウム、コバルト、パラジウム、ニッケル、モリブデン、タングステン、マンガン等を含んでいてもよい。   In addition, the catalyst of this invention may contain platinum, rhodium, cobalt, palladium, nickel, molybdenum, tungsten, manganese etc. as a metal component other than iridium and rhenium, for example.

上記触媒(特に、本発明の触媒)の平均粒径は、特に限定されないが、反応性の点や、連続式で反応を実施する場合の過剰な圧力損失を伴わない点で、100〜10000μmが好ましく、より好ましくは1000〜10000μmである。また、上記触媒(特に、本発明の触媒)の形状は、特に限定されないが、例えば、粉末状、粒状、成型(成型体状)等が挙げられる。   The average particle diameter of the catalyst (particularly the catalyst of the present invention) is not particularly limited, but is 100 to 10,000 μm in terms of reactivity and not accompanied by excessive pressure loss when the reaction is carried out continuously. Preferably, it is 1000-10000 micrometers. The shape of the catalyst (particularly the catalyst of the present invention) is not particularly limited, and examples thereof include powder, granule, and molded (molded body).

上記触媒は、公知乃至慣用の方法により再生させることができる。例えば、上記触媒は、上記還元反応において使用後、溶媒(例えば、水)で洗浄して生成物等を除去し、乾燥及び焼成等を行う再生処理によって、その触媒活性を回復させることができる。   The catalyst can be regenerated by a known or conventional method. For example, after the catalyst is used in the reduction reaction, its catalytic activity can be recovered by a regeneration treatment in which a product or the like is removed by washing with a solvent (for example, water), and drying and calcination are performed.

[水素]
本発明の不飽和アルコールの製造方法の還元工程において使用される水素(水素ガス)は、実質的に水素のみの状態で使用することもできるし、窒素、アルゴン、ヘリウム等の不活性ガス等により希釈した状態で使用することもできる。また、上記還元反応を経た結果得られる反応混合物から回収した水素(未反応の水素)を再利用することもできる。
[hydrogen]
Hydrogen (hydrogen gas) used in the reduction step of the method for producing an unsaturated alcohol of the present invention can be used in a state of substantially only hydrogen, or by an inert gas such as nitrogen, argon or helium. It can also be used in a diluted state. In addition, hydrogen recovered from the reaction mixture obtained as a result of the reduction reaction (unreacted hydrogen) can be reused.

[還元工程]
本発明の不飽和アルコールの製造方法の還元工程における不飽和カルボニル化合物の水素による還元反応は、上記触媒(特に、本発明の触媒)の存在下で進行させるものであればよく、特に限定されないが、不飽和カルボニル化合物、上記触媒、及び水素を、連続的又は回分式で接触させることにより反応させる不均一反応であることが好ましい。より詳しくは、上記還元反応は、液状の不飽和カルボニル化合物又は不飽和カルボニル化合物を含む溶液を水素(水素ガス)と接触させることにより行う気液固三相系の反応であってもよいし、気体状の(気化させた)不飽和カルボニル化合物と水素とを反応させる気固二相系の反応であってもよい。特に、不飽和カルボニル化合物における炭素−炭素結合の開裂等による副生成物の生成を抑制する観点からは、上記還元反応を比較的低い温度で実施することができる気液固三相系で進行させることが好ましく、特に、上記触媒(特に、本発明の触媒)の存在下で不飽和カルボニル化合物を含む溶液と水素とを接触させることにより進行させることが好ましい。
[Reduction process]
The reduction reaction of the unsaturated carbonyl compound with hydrogen in the reduction step of the method for producing an unsaturated alcohol of the present invention is not particularly limited as long as it proceeds in the presence of the catalyst (particularly the catalyst of the present invention). The reaction is preferably a heterogeneous reaction in which the unsaturated carbonyl compound, the catalyst, and hydrogen are reacted continuously or batchwise. More specifically, the reduction reaction may be a gas-liquid solid three-phase reaction performed by bringing a liquid unsaturated carbonyl compound or a solution containing an unsaturated carbonyl compound into contact with hydrogen (hydrogen gas), It may be a gas-solid two-phase reaction in which a gaseous (vaporized) unsaturated carbonyl compound and hydrogen are reacted. In particular, from the viewpoint of suppressing the formation of by-products due to carbon-carbon bond cleavage in unsaturated carbonyl compounds, the reduction reaction proceeds in a gas-liquid solid three-phase system that can be carried out at a relatively low temperature. In particular, it is preferable to proceed by bringing hydrogen into contact with a solution containing an unsaturated carbonyl compound in the presence of the catalyst (particularly the catalyst of the present invention).

上記還元反応は溶媒(溶剤)の存在下で進行させることもできるし、溶媒の非存在下で進行させることもできる。溶媒は、使用する不飽和カルボニル化合物の種類に応じて適宜選択することができ、特に限定されないが、例えば、水;メタノール、エタノール、イソプロパノール、n−ブタノール、2−ブタノール等のアルコール;ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素;シクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;クロロホルム、塩化メチレン、1,2−ジクロロエタン等のハロゲン化炭化水素;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル等が挙げられる。なお、溶媒としては、カルボニル結合を有しないものを使用することが好ましいが、還元されたとしても容易に生成物から除去できるものであれば、カルボニル結合を有する溶媒(ケトン、エステル、アミド等)を使用することも可能である。なお、溶媒は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。溶媒の使用量は、特に限定されないが、例えば、還元反応前に不飽和カルボニル化合物を溶解させた場合の該不飽和カルボニル化合物の濃度が5〜80重量%となるような範囲から適宜選択できる。   The reduction reaction can be allowed to proceed in the presence of a solvent (solvent) or can be allowed to proceed in the absence of a solvent. The solvent can be appropriately selected according to the type of unsaturated carbonyl compound to be used, and is not particularly limited. For example, water; alcohols such as methanol, ethanol, isopropanol, n-butanol, 2-butanol; hexane, heptane Aliphatic hydrocarbons such as cyclohexane, cycloaliphatic hydrocarbons; aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene; halogenated hydrocarbons such as chloroform, methylene chloride, and 1,2-dichloroethane; acetonitrile And nitriles such as propionitrile and benzonitrile. In addition, it is preferable to use a solvent having no carbonyl bond as a solvent, but a solvent having a carbonyl bond (ketone, ester, amide, etc.) as long as it can be easily removed from the product even if it is reduced. Can also be used. In addition, a solvent can also be used individually by 1 type and can also be used in combination of 2 or more type. Although the usage-amount of a solvent is not specifically limited, For example, it can select suitably from the range in which the density | concentration of this unsaturated carbonyl compound when dissolving an unsaturated carbonyl compound before a reductive reaction will be 5 to 80 weight%.

上記還元反応においては、本発明の効果を阻害しない範囲で、不飽和カルボニル化合物、触媒、及び水素以外のその他の成分を共存させることもできる。   In the above reduction reaction, an unsaturated carbonyl compound, a catalyst, and other components other than hydrogen can be allowed to coexist within a range not impairing the effects of the present invention.

上記還元反応に付す水素と不飽和カルボニル化合物の割合は、特に限定されず、採用する反応形式等に応じて適宜設定できる。   The ratio of hydrogen and unsaturated carbonyl compound to be subjected to the reduction reaction is not particularly limited, and can be appropriately set according to the reaction format to be employed.

上記還元反応における反応温度は、特に限定されないが、0〜200℃が好ましく、より好ましくは10〜150℃、さらに好ましくは15〜100℃である。特に、本発明の不飽和アルコールの製造方法における上記還元反応は、15〜50℃といった温和な条件(低温)でも優れた反応速度で高選択率かつ高収率で不飽和アルコールが生成する点で、非常に有用である。従来は、このような低温の条件で不飽和カルボニル化合物の水素による還元反応を進行させ、対応する不飽和アルコールを効率的に生成させることができる技術は存在しなかった。反応温度を0℃以上とすることにより、いっそう優れた反応速度で還元反応を進行させることができる傾向がある。一方、反応温度を200℃以下とすることにより、いっそう高い選択率で不飽和アルコールを生成させることができる傾向がある。なお、反応温度は、還元反応において常に一定(実質的に一定)となるように制御されていてもよいし、段階的又は連続的に変化するように制御されていてもよい。   Although the reaction temperature in the said reduction reaction is not specifically limited, 0-200 degreeC is preferable, More preferably, it is 10-150 degreeC, More preferably, it is 15-100 degreeC. In particular, the reduction reaction in the method for producing an unsaturated alcohol of the present invention is that the unsaturated alcohol is produced with a high selectivity and a high yield at an excellent reaction rate even under mild conditions (low temperature) such as 15 to 50 ° C. Is very useful. Conventionally, there has been no technique capable of efficiently producing a corresponding unsaturated alcohol by proceeding a reduction reaction of an unsaturated carbonyl compound with hydrogen under such a low temperature condition. By setting the reaction temperature to 0 ° C. or higher, there is a tendency that the reduction reaction can proceed at a more excellent reaction rate. On the other hand, by setting the reaction temperature to 200 ° C. or lower, there is a tendency that an unsaturated alcohol can be generated with a higher selectivity. The reaction temperature may be controlled to be always constant (substantially constant) in the reduction reaction, or may be controlled to change stepwise or continuously.

上記還元反応における反応時間は、特に限定されず、採用する反応形式等に応じて適宜設定できる。   The reaction time in the above reduction reaction is not particularly limited, and can be appropriately set according to the reaction format to be employed.

上記還元反応における反応圧力(上記還元反応における水素圧)は、特に限定されないが、0.1MPa以上(例えば、0.1〜20MPa)が好ましく、より好ましくは0.2〜18MPaである。特に、本発明の不飽和アルコールの製造方法における上記還元反応は、0.1〜2MPa(例えば、1MPa未満)といった温和な条件(低圧)でも優れた反応速度で高選択率かつ高収率で不飽和アルコールが生成する点で、非常に有用である。従来は、このような低圧の条件で不飽和カルボニル化合物の水素による還元反応を進行させ、対応する不飽和アルコールを効率的に生成させることができる技術は存在しなかった。反応圧力を0.1MPa以上とすることにより、いっそう優れた反応速度で還元反応を進行させることができる傾向がある。一方、反応圧力を20MPa以下とすることにより、高度な耐圧性を備えた特殊な反応器を使用する必要がなく、製造コストの削減に寄与する傾向がある。なお、反応圧力は、還元反応において常に一定(実質的に一定)となるように制御されていてもよいし、段階的又は連続的に変化するように制御されていてもよい。   The reaction pressure in the reduction reaction (hydrogen pressure in the reduction reaction) is not particularly limited, but is preferably 0.1 MPa or more (for example, 0.1 to 20 MPa), more preferably 0.2 to 18 MPa. In particular, the above reduction reaction in the method for producing an unsaturated alcohol of the present invention is not highly effective at a high reaction rate and a high yield even under mild conditions (low pressure) such as 0.1 to 2 MPa (for example, less than 1 MPa). This is very useful in that saturated alcohol is produced. Conventionally, there has been no technique capable of efficiently producing a corresponding unsaturated alcohol by proceeding a reduction reaction of an unsaturated carbonyl compound with hydrogen under such a low pressure condition. By setting the reaction pressure to 0.1 MPa or more, there is a tendency that the reduction reaction can proceed at a more excellent reaction rate. On the other hand, by setting the reaction pressure to 20 MPa or less, there is no need to use a special reactor having a high pressure resistance, and there is a tendency to contribute to a reduction in manufacturing cost. The reaction pressure may be controlled so as to be always constant (substantially constant) in the reduction reaction, or may be controlled so as to change stepwise or continuously.

上記還元反応は、回分式、半回分式、連続式(連続流通式)等の任意の形式により実施することができる。また、所定量の不飽和カルボニル化合物から得られる不飽和アルコールの量を増加させたい場合には、上記還元反応を実施後の未反応の不飽和カルボニル化合物を分離回収してリサイクルするプロセスを採用してもよい。   The reduction reaction can be carried out in any form such as a batch system, a semi-batch system, and a continuous system (continuous flow system). In addition, when it is desired to increase the amount of unsaturated alcohol obtained from a predetermined amount of unsaturated carbonyl compound, a process of separating and recovering and recycling the unreacted unsaturated carbonyl compound after carrying out the above reduction reaction is adopted. May be.

上記還元反応においては、反応器として公知乃至慣用の反応器を使用することができ、例えば、回分式反応器、流動床反応器、固定床反応器等が使用できる。   In the reduction reaction, a known or conventional reactor can be used as the reactor, and for example, a batch reactor, a fluidized bed reactor, a fixed bed reactor, or the like can be used.

本発明の不飽和アルコールの製造方法は、上記還元工程以外にも、必要に応じてその他の工程を含んでいてもよい。その他の工程としては、例えば、原料である不飽和カルボニル化合物の溶液を調製・精製する工程、反応器から排出(流出)された反応混合物(例えば、不飽和アルコール、水素、及び不飽和カルボニル化合物や副生成物等を含む混合物)を分離・生成物を精製する工程、触媒の再生処理(例えば、上述の再生処理等)を行う工程等が挙げられる。なお、これらの工程は、上記還元工程とは別ラインで実施してもよいし、一連の工程として(インラインで)実施してもよい。   The method for producing an unsaturated alcohol of the present invention may include other steps as necessary in addition to the reduction step. Other steps include, for example, a step of preparing and purifying a solution of an unsaturated carbonyl compound as a raw material, a reaction mixture discharged (outflowed) from the reactor (for example, an unsaturated alcohol, hydrogen, an unsaturated carbonyl compound, Examples include a step of separating a mixture containing a by-product and the like and purifying the product, a step of performing a catalyst regeneration process (for example, the above-described regeneration process and the like), and the like. In addition, these processes may be implemented in a line different from the above reduction process, or may be implemented as a series of processes (in-line).

本発明の不飽和アルコールの製造方法により得られた不飽和アルコールは、公知乃至慣用の方法(例えば、蒸留、吸着、イオン交換、晶析、抽出等)により精製することができる。   The unsaturated alcohol obtained by the method for producing an unsaturated alcohol of the present invention can be purified by a known or conventional method (for example, distillation, adsorption, ion exchange, crystallization, extraction, etc.).

以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited by these Examples.

製造例1
[Ir−Re触媒(Ir−ReOX/SiO2−1)の調製]
二酸化ケイ素(SiO2)(商品名「G−6」、富士シリシア化学(株)製、BET表面積:535m2/g)を触媒の担体として使用した。上記担体に、イリジウム(Ir)濃度が4.47重量%となるように調製した塩化イリジウム酸(H2IrCl6)水溶液を滴下して、上記担体全体を湿潤させた後、該担体を110℃で3時間乾燥させた。そして、このような塩化イリジウム酸水溶液の滴下と乾燥を繰り返して、イリジウムがSiO2に対して4重量%となるように担持させた。
次に、上記担体(イリジウムを担持させた担体)に、レニウム(Re)濃度が3重量%となるように調製した過レニウム酸アンモニウム(NH4ReO4)水溶液の滴下と乾燥を、先の塩化イリジウム酸水溶液の滴下と乾燥と同様に繰り返して、レニウムとイリジウムのモル比が1[=レニウム/イリジウム]となるようにレニウムを担持させた。その後、乾燥後の担体を、空気雰囲気下(大気中)、500℃、3時間の条件で焼成して、Ir−Re触媒[Ir−ReOX/SiO2−1]を調製した。
Production Example 1
[Preparation of Ir-Re catalyst (Ir-ReO x / SiO 2 -1)]
Silicon dioxide (SiO 2 ) (trade name “G-6”, manufactured by Fuji Silysia Chemical Ltd., BET surface area: 535 m 2 / g) was used as a catalyst support. To the carrier, an aqueous solution of chloroiridate (H 2 IrCl 6 ) prepared so that the iridium (Ir) concentration is 4.47% by weight is added dropwise to wet the entire carrier, and then the carrier is cooled to 110 ° C. And dried for 3 hours. Then, the dropping and drying of the chloroiridium acid aqueous solution were repeated and the iridium was supported so as to be 4% by weight with respect to SiO 2 .
Next, an aqueous solution of ammonium perrhenate (NH 4 ReO 4 ) prepared so as to have a rhenium (Re) concentration of 3% by weight on the above carrier (a carrier on which iridium is supported) is dropped and dried. Rhenium was supported so that the molar ratio of rhenium to iridium was 1 [= rhenium / iridium] by repeating in the same manner as dropping and drying of the iridium acid aqueous solution. Thereafter, the dried support was calcined under an air atmosphere (in the air) at 500 ° C. for 3 hours to prepare an Ir—Re catalyst [Ir—ReO x / SiO 2 −1].

なお、本明細書においてIr−Re触媒を「Ir−ReOX/SiO2−X」と表記するが、この中のXは、触媒におけるレニウムとイリジウムのモル比[=レニウム/イリジウム]を示すものとする。イリジウムが他の金属(ルテニウム、白金)である場合も同様とする。 In this specification, the Ir—Re catalyst is expressed as “Ir—ReO x / SiO 2 —X”, where X represents the molar ratio of rhenium to iridium in the catalyst [= rhenium / iridium]. And The same applies when iridium is another metal (ruthenium, platinum).

製造例2
[Ir−Re触媒(Ir−ReOX/SiO2−0.5)の調製]
過レニウム酸アンモニウム水溶液の滴下量を、レニウムとイリジウムのモル比が0.5[=レニウム/イリジウム]となるように変更したこと以外は、製造例1と同様にして、Ir−Re触媒[Ir−ReOX/SiO2−0.5]を調製した。
Production Example 2
Preparation of Ir-Re catalyst (Ir-ReO X / SiO 2 -0.5)]
The Ir—Re catalyst [Ir] was changed in the same manner as in Production Example 1 except that the dropping amount of the aqueous ammonium perrhenate solution was changed so that the molar ratio of rhenium to iridium was 0.5 [= rhenium / iridium]. -ReO X / SiO 2 -0.5] was prepared.

製造例3
[Ir−Re触媒(Ir−ReOX/SiO2−2)の調製]
過レニウム酸アンモニウム水溶液の滴下量を、レニウムとイリジウムのモル比が2[=レニウム/イリジウム]となるように変更したこと以外は、製造例1と同様にして、Ir−Re触媒[Ir−ReOX/SiO2−2]を調製した。
Production Example 3
[Preparation of Ir-Re catalyst (Ir-ReO x / SiO 2 -2)]
An Ir-Re catalyst [Ir-ReO] was prepared in the same manner as in Production Example 1 except that the dropping amount of the aqueous ammonium perrhenate solution was changed so that the molar ratio of rhenium to iridium was 2 [= rhenium / iridium]. X / SiO 2 -2] was prepared.

製造例4
[Ir−Re触媒(Ir−ReOX/SiO2−3)の調製]
過レニウム酸アンモニウム水溶液の滴下量を、レニウムとイリジウムのモル比が3[=レニウム/イリジウム]となるように変更したこと以外は、製造例1と同様にして、Ir−Re触媒[Ir−ReOX/SiO2−3]を調製した。
Production Example 4
Preparation of Ir-Re catalyst (Ir-ReO X / SiO 2 -3)]
An Ir-Re catalyst [Ir-ReO] was prepared in the same manner as in Production Example 1, except that the dropping amount of the aqueous ammonium perrhenate solution was changed so that the molar ratio of rhenium to iridium was 3 [= rhenium / iridium]. X / the SiO 2 -3] was prepared.

製造例5
[Ru−Re触媒(Ru−ReOX/SiO2−0.5)の調製]
塩化イリジウム酸水溶液の代わりに塩化ルテニウム(RuCl3・nH2O)水溶液を使用し、レニウムとルテニウムのモル比が0.5[=レニウム/ルテニウム]となるようにしたこと以外は、製造例2と同様にして、Ru−Re触媒[Ru−ReOX/SiO2−0.5]を調製した。
Production Example 5
Preparation of Ru-Re catalyst (Ru-ReO X / SiO 2 -0.5)]
Production Example 2 except that a ruthenium chloride (RuCl 3 .nH 2 O) aqueous solution was used instead of the chloroiridic acid aqueous solution and the molar ratio of rhenium to ruthenium was 0.5 [= rhenium / ruthenium]. In the same manner as above, a Ru—Re catalyst [Ru—ReO x / SiO 2 −0.5] was prepared.

製造例6
[Pt−Re触媒(Pt−ReOX/SiO2−0.5)の調製]
塩化イリジウム酸水溶液の代わりに塩化白金酸(H2PtCl6)水溶液を使用し、レニウムと白金のモル比が0.5[=レニウム/白金]となるようにしたこと以外は、製造例2と同様にして、Pt−Re触媒[Pt−ReOX/SiO2−0.5]を調製した。
Production Example 6
[Preparation of Pt—Re catalyst (Pt—ReO x / SiO 2 −0.5)]
Production Example 2 except that a chloroplatinic acid (H 2 PtCl 6 ) aqueous solution was used instead of the chloroiridic acid aqueous solution and the molar ratio of rhenium to platinum was 0.5 [= rhenium / platinum]. Similarly, a Pt—Re catalyst [Pt—ReO x / SiO 2 −0.5] was prepared.

製造例7
[Re触媒(3.6% Re/SiO2)の調製]
二酸化ケイ素(SiO2)(商品名「G−6」、富士シリシア化学(株)製、BET表面積:535m2/g)を触媒の担体として使用した。上記担体に、レニウム(Re)濃度が3重量%となるように調製した過レニウム酸アンモニウム(NH4ReO4)水溶液を滴下して、上記担体全体を湿潤させた後、該担体を110℃で3時間乾燥させた。そして、このような過レニウム酸アンモニウム水溶液の滴下と乾燥を繰り返して、レニウムがSiO2に対して3.6重量%となるように担持させた。その後、乾燥後の担体を、空気雰囲気下(大気中)、500℃、3時間の条件で焼成して、Re触媒[3.6% Re/SiO2]を調製した。
Production Example 7
[Preparation of Re catalyst (3.6% Re / SiO 2 )]
Silicon dioxide (SiO 2 ) (trade name “G-6”, manufactured by Fuji Silysia Chemical Ltd., BET surface area: 535 m 2 / g) was used as a catalyst support. An ammonium perrhenate (NH 4 ReO 4 ) aqueous solution prepared so as to have a rhenium (Re) concentration of 3% by weight was dropped onto the carrier to wet the entire carrier, and the carrier was then heated at 110 ° C. Dry for 3 hours. Then, dropping and drying of the aqueous ammonium perrhenate solution were repeated, and the rhenium was supported at 3.6% by weight with respect to SiO 2 . Thereafter, the dried support was calcined under an air atmosphere (in the air) at 500 ° C. for 3 hours to prepare a Re catalyst [3.6% Re / SiO 2 ].

なお、表1に示す触媒のうち、5% Rh/C、5% Ru/C、及び5% Pt/Cは、和光純薬工業(株)製の製品を使用した。また、表1に示す触媒のうち、5% Pd/Cは、エヌ・イー ケムキャット(株)製の製品を使用した。   Of the catalysts shown in Table 1, 5% Rh / C, 5% Ru / C, and 5% Pt / C were products manufactured by Wako Pure Chemical Industries, Ltd. Further, among the catalysts shown in Table 1, 5% Pd / C was a product manufactured by N.E. Chemcat Co., Ltd.

実施例1
反応器としては、SUS316製オートクレーブ(内容量190ml)と、該オートクレーブ内のガラス製の内筒容器とを用いた。まず、表1に示すように、ガラス製の内筒容器の中に、製造例2で得られたIr−Re触媒[Ir−ReOX/SiO2−0.5]0.050g及び水3.0gを入れ、反応器を密閉し、反応器内を水素で置換した後に200℃まで昇温し、8MPaで1時間加熱してIr−Re触媒を還元した。還元終了後、オートクレーブを冷却・開放し、クロトンアルデヒド0.21gを加えて、再度反応器を密閉して水素で置換した。続いて、反応器を30℃になるように温度制御し、圧力が8MPaとなるように水素を張り込み、攪拌回転数500rpmにて0.1時間反応を行った。
なお、反応終了後、得られた反応液についてガスクロマトグラフィー(GC)又はNMR測定を行い、定量分析を行った。反応結果を表1に示す。
Example 1
As the reactor, an SUS316 autoclave (internal volume 190 ml) and a glass inner cylinder container in the autoclave were used. First, as shown in Table 1, 0.050 g of Ir—Re catalyst [Ir—ReO x / SiO 2 −0.5] obtained in Production Example 2 and water 3 in a glass inner cylinder container. 0 g was added, the reactor was sealed, the inside of the reactor was replaced with hydrogen, the temperature was raised to 200 ° C., and the mixture was heated at 8 MPa for 1 hour to reduce the Ir—Re catalyst. After completion of the reduction, the autoclave was cooled and opened, 0.21 g of crotonaldehyde was added, and the reactor was sealed again and replaced with hydrogen. Subsequently, the temperature of the reactor was controlled so as to be 30 ° C., hydrogen was charged so that the pressure became 8 MPa, and the reaction was performed at a stirring rotation speed of 500 rpm for 0.1 hour.
In addition, after completion | finish of reaction, the gas chromatography (GC) or NMR measurement was performed about the obtained reaction liquid, and the quantitative analysis was performed. The reaction results are shown in Table 1.

上記ガスクロマトグラフィーは、ガスクロマトグラフ装置:「GC−2014」((株)島津製作所製)、GCカラム:TC−WAX、DB−FFAP、検出器:FIDを用いて算出した。   The gas chromatography was calculated using a gas chromatograph apparatus: “GC-2014” (manufactured by Shimadzu Corporation), GC column: TC-WAX, DB-FFAP, and detector: FID.

実施例2〜6、比較例1〜6
使用する触媒の種類及び量を表1に示すように変更したこと以外は実施例1と同様にして、クロトンアルデヒドの水素による還元反応を実施した。反応結果を表1に示す。
Examples 2-6, Comparative Examples 1-6
A reduction reaction of crotonaldehyde with hydrogen was carried out in the same manner as in Example 1 except that the type and amount of the catalyst used were changed as shown in Table 1. The reaction results are shown in Table 1.

Figure 0006074858
Figure 0006074858

実施例7
反応器としては、SUS316製オートクレーブ(内容量190ml)と、該オートクレーブ内のガラス製の内筒容器とを用いた。まず、ガラス製の内筒容器の中に、製造例1で得られたIr−Re触媒[Ir−ReOX/SiO2−1]0.150g及び水30gを入れ、反応器を密閉し、反応器内を水素で置換した後に200℃まで昇温し、8MPaで1時間加熱してIr−Re触媒を還元した。還元終了後、オートクレーブを冷却・開放し、クロトンアルデヒド2.1gを加えて、再度反応器を密閉して水素で置換した。続いて、反応器を70℃になるように温度制御し、圧力が8MPaとなるように水素を張り込み、攪拌回転数500rpmにて3時間反応を行った。
なお、反応終了後、得られた反応液についてガスクロマトグラフィー(GC)又はNMR測定を行い、定量分析を行った。その結果、クロトンアルデヒドの転化率は92%であり、クロチルアルコール、ブタナール、及び1−ブタノールの生成が確認された。また、クロチルアルコールの選択率は90%であり、その収率は83%であった。また、触媒中のIrの総量に基づくターンオーバー数(TON)と初期の触媒回転頻度(TOF)を計算したところ、それぞれ880、2016h-1であった。このように、グラムスケールでも、優れた反応速度で、高選択率かつ高収率でクロチルアルコールが生成することが確認された。
Example 7
As the reactor, an SUS316 autoclave (internal volume 190 ml) and a glass inner cylinder container in the autoclave were used. First, 0.150 g of Ir—Re catalyst [Ir—ReO x / SiO 2 −1] obtained in Production Example 1 and 30 g of water were put in a glass inner tube container, the reactor was sealed, and the reaction was performed. After the inside of the vessel was replaced with hydrogen, the temperature was raised to 200 ° C. and heated at 8 MPa for 1 hour to reduce the Ir-Re catalyst. After completion of the reduction, the autoclave was cooled and opened, 2.1 g of crotonaldehyde was added, and the reactor was sealed again and replaced with hydrogen. Subsequently, the temperature of the reactor was controlled so as to be 70 ° C., hydrogen was charged so that the pressure became 8 MPa, and the reaction was performed at a stirring rotational speed of 500 rpm for 3 hours.
In addition, after completion | finish of reaction, the gas chromatography (GC) or NMR measurement was performed about the obtained reaction liquid, and the quantitative analysis was performed. As a result, the conversion of crotonaldehyde was 92%, and the production of crotyl alcohol, butanal, and 1-butanol was confirmed. The selectivity for crotyl alcohol was 90%, and the yield was 83%. The turnover number (TON) and initial catalyst rotation frequency (TOF) based on the total amount of Ir in the catalyst were calculated to be 880 and 2016 h −1 , respectively. Thus, it was confirmed that crotyl alcohol was produced with high selectivity and high yield at an excellent reaction rate even on a gram scale.

実施例8〜11
還元反応における水素圧及び反応時間を表2に示すように変更したこと以外は実施例2と同様にして、クロトンアルデヒドの水素による還元反応を実施した。反応結果を、実施例2の結果とともに表2に示す。
Examples 8-11
A reduction reaction of crotonaldehyde with hydrogen was carried out in the same manner as in Example 2 except that the hydrogen pressure and reaction time in the reduction reaction were changed as shown in Table 2. The reaction results are shown in Table 2 together with the results of Example 2.

Figure 0006074858
Figure 0006074858

実施例12
反応器としては、SUS316製オートクレーブ(内容量190ml)と、該オートクレーブ内のガラス製の内筒容器とを用いた。まず、表3に示すように、ガラス製の内筒容器の中に、製造例1で得られたIr−Re触媒[Ir−ReOX/SiO2−1]0.050g及び水3.0gを入れ、反応器を密閉し、反応器内を水素で置換した後に200℃まで昇温し、8MPaで1時間加熱してIr−Re触媒を還元した。還元終了後、オートクレーブを冷却・開放し、クロトンアルデヒド0.21gを加えて、再度反応器を密閉して水素で置換した。続いて、反応器を30℃になるように温度制御し、圧力が0.8MPaとなるように水素を張り込み、攪拌回転数500rpmにて8時間反応を行った。
なお、反応終了後、得られた反応液についてガスクロマトグラフィー(GC)又はNMR測定を行い、定量分析を行った。反応結果を表3に示す。
Example 12
As the reactor, an SUS316 autoclave (internal volume 190 ml) and a glass inner cylinder container in the autoclave were used. First, as shown in Table 3, 0.050 g of Ir—Re catalyst [Ir—ReO x / SiO 2 −1] obtained in Production Example 1 and 3.0 g of water were placed in a glass inner tube container. The reactor was sealed, and the interior of the reactor was replaced with hydrogen, and then the temperature was raised to 200 ° C. and heated at 8 MPa for 1 hour to reduce the Ir—Re catalyst. After completion of the reduction, the autoclave was cooled and opened, 0.21 g of crotonaldehyde was added, and the reactor was sealed again and replaced with hydrogen. Subsequently, the temperature of the reactor was controlled to 30 ° C., hydrogen was added so that the pressure became 0.8 MPa, and the reaction was performed at a stirring rotation speed of 500 rpm for 8 hours.
In addition, after completion | finish of reaction, the gas chromatography (GC) or NMR measurement was performed about the obtained reaction liquid, and the quantitative analysis was performed. The reaction results are shown in Table 3.

実施例13〜22
基質及び反応時間を表3に示すように変更したこと以外は実施例12と同様にして、各基質(不飽和カルボニル化合物)の水素による還元反応を実施した。反応結果を表3に示す。
Examples 13-22
A reduction reaction of each substrate (unsaturated carbonyl compound) with hydrogen was carried out in the same manner as in Example 12 except that the substrate and reaction time were changed as shown in Table 3. The reaction results are shown in Table 3.

Figure 0006074858
Figure 0006074858

表3に示すように、本発明の不飽和カルボニル化合物の還元反応用触媒は、幅広い基質に対して適用できることが確認された。   As shown in Table 3, it was confirmed that the catalyst for the reduction reaction of the unsaturated carbonyl compound of the present invention can be applied to a wide range of substrates.

実施例23
反応器としては、SUS316製オートクレーブ(内容量190ml)と、該オートクレーブ内のガラス製の内筒容器とを用いた。まず、ガラス製の内筒容器の中に、製造例1で得られたIr−Re触媒[Ir−ReOX/SiO2−1]0.050g及び水3.0gを入れ、反応器を密閉し、反応器内を水素で置換した後に200℃まで昇温し、8MPaで1時間加熱してIr−Re触媒を還元した。還元終了後、オートクレーブを冷却・開放し、クロトンアルデヒド0.21gを加えて、再度反応器を密閉して水素で置換した。続いて、反応器を30℃になるように温度制御し、圧力が0.8MPaとなるように水素を張り込み、攪拌回転数500rpmにて8時間反応を行った。
上記還元反応(1回目)により得られた反応混合物からIr−Re触媒をろ過により回収し、水で3回洗浄して生成物を除去した。続いて、洗浄後のIr−Re触媒を110℃で12時間乾燥させ、その後、空気中で500℃、1時間の条件で焼成した。
洗浄、乾燥、及び焼成(本実施例において「再生処理」と総称する)後のIr−Re触媒を使用して、上記還元反応(1回目)と同条件でクロトンアルデヒドの水素による還元反応(2回目)を行い、その後に上記と同じ再生処理を行い、さらに同様の手順で3回目の還元反応及び再生処理と4回目の還元反応とを実施した。その結果、2〜4回目の還元反応においても、触媒活性の低下を伴うことなく、クロトンアルデヒドの還元反応を進行させることができ、本発明の触媒が再使用可能であることが確認された。図1には、1回目の還元反応(Fresh)、2〜4回目の還元反応(Recycle time 1〜3)におけるクロトンアルデヒドの転化率とクロチルアルコールの選択率を表したグラフを示す。
Example 23
As the reactor, an SUS316 autoclave (internal volume 190 ml) and a glass inner cylinder container in the autoclave were used. First, 0.050 g of Ir—Re catalyst [Ir—ReO x / SiO 2 −1] obtained in Production Example 1 and 3.0 g of water were put in a glass inner tube container, and the reactor was sealed. After replacing the inside of the reactor with hydrogen, the temperature was raised to 200 ° C., and the Ir-Re catalyst was reduced by heating at 8 MPa for 1 hour. After completion of the reduction, the autoclave was cooled and opened, 0.21 g of crotonaldehyde was added, and the reactor was sealed again and replaced with hydrogen. Subsequently, the temperature of the reactor was controlled to 30 ° C., hydrogen was added so that the pressure became 0.8 MPa, and the reaction was performed at a stirring rotation speed of 500 rpm for 8 hours.
The Ir-Re catalyst was recovered by filtration from the reaction mixture obtained by the above reduction reaction (first time), and washed with water three times to remove the product. Subsequently, the washed Ir—Re catalyst was dried at 110 ° C. for 12 hours, and then calcined in air at 500 ° C. for 1 hour.
Using an Ir-Re catalyst after washing, drying, and calcination (collectively referred to as “regeneration treatment” in this example), a reduction reaction of crotonaldehyde with hydrogen under the same conditions as the above reduction reaction (first time) (2 After that, the same regeneration treatment as described above was performed, and the third reduction reaction and regeneration treatment and the fourth reduction reaction were performed in the same procedure. As a result, even in the second to fourth reduction reactions, it was confirmed that the reduction reaction of crotonaldehyde can proceed without lowering the catalytic activity, and the catalyst of the present invention can be reused. FIG. 1 shows a graph showing the conversion rate of crotonaldehyde and the selectivity of crotyl alcohol in the first reduction reaction (Fresh) and in the second to fourth reduction reactions (Recycle times 1 to 3).

Claims (4)

担体である無機酸化物と、担体に担持された、ルテニウム、イリジウム、及び白金からなる群より選択される少なくとも一種の金属の単体、並びに、担体に担持されたレニウムの酸化物を含む触媒の存在下、分子内に炭素−炭素不飽和結合を1以上有する炭素数が3以上の不飽和カルボニル化合物の水素による還元反応を進行させ、対応する不飽和アルコールを生成させる工程を含むことを特徴とする不飽和アルコールの製造方法。 And an inorganic oxide as a carrier, which is supported on a carrier, ruthenium, Lee Rijiumu, and single at least one metal selected from the group consisting of platinum, as well as, of a catalyst comprising an oxide of rhenium supported on a carrier Characterized in that it comprises a step of proceeding a reduction reaction of an unsaturated carbonyl compound having 1 or more carbon-carbon unsaturated bonds in the molecule with 3 or more carbon atoms with hydrogen to produce a corresponding unsaturated alcohol. A method for producing unsaturated alcohol. 前記還元反応が、前記不飽和カルボニル化合物、前記触媒、及び水素を、連続的又は回分式で接触させることにより反応させる不均一反応である請求項1に記載の不飽和アルコールの製造方法。   The method for producing an unsaturated alcohol according to claim 1, wherein the reduction reaction is a heterogeneous reaction in which the unsaturated carbonyl compound, the catalyst, and hydrogen are reacted in contact with each other continuously or batchwise. 前記還元反応における水素圧が0.1MPa以上である請求項1又は2に記載の不飽和アルコールの製造方法。   The method for producing an unsaturated alcohol according to claim 1 or 2, wherein a hydrogen pressure in the reduction reaction is 0.1 MPa or more. 分子内に炭素−炭素不飽和結合を1以上有する炭素数が3以上の不飽和カルボニル化合物の水素による還元反応を進行させ、対応する不飽和アルコールを生成させる反応において使用される触媒であって、
担体である無機酸化物と、担体に担持された、ルテニウム、イリジウム、及び白金からなる群より選択される少なくとも一種の金属の単体、並びに、担体に担持されたレニウムの酸化物を含むことを特徴とする不飽和カルボニル化合物の還元反応用触媒。
A catalyst used in a reaction in which a reduction reaction of an unsaturated carbonyl compound having 1 or more carbon-carbon unsaturated bonds in a molecule with 3 or more carbon atoms by hydrogen proceeds to produce a corresponding unsaturated alcohol,
And an inorganic oxide as a carrier, which is supported on a carrier, ruthenium, Lee Rijiumu, and single at least one metal selected from the group consisting of platinum, as well as to include an oxide of rhenium supported on a carrier A catalyst for reducing an unsaturated carbonyl compound.
JP2013182985A 2013-09-04 2013-09-04 Process for producing unsaturated alcohol Active JP6074858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013182985A JP6074858B2 (en) 2013-09-04 2013-09-04 Process for producing unsaturated alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013182985A JP6074858B2 (en) 2013-09-04 2013-09-04 Process for producing unsaturated alcohol

Publications (2)

Publication Number Publication Date
JP2015048349A JP2015048349A (en) 2015-03-16
JP6074858B2 true JP6074858B2 (en) 2017-02-08

Family

ID=52698645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013182985A Active JP6074858B2 (en) 2013-09-04 2013-09-04 Process for producing unsaturated alcohol

Country Status (1)

Country Link
JP (1) JP6074858B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105944719B (en) * 2016-03-29 2018-06-26 浙江师范大学 It is a kind of for catalyst of crotonaldehyde selective hydrogenation crotyl alcohol preparation and preparation method thereof
GB201610149D0 (en) * 2016-06-10 2016-07-27 Givaudan Sa Process
CN106631691A (en) * 2016-12-08 2017-05-10 上海华谊(集团)公司 Method for preparing methallyl alcohol through acrylaldehyde selective hydrogenization
EP3828157A4 (en) * 2018-07-23 2021-08-18 Mitsubishi Chemical Corporation Alcohol production method and catalyst
CN110743567B (en) * 2019-11-07 2023-03-10 西安凯立新材料股份有限公司 Iridium-carbon catalyst for selective hydrogenation of alpha, beta-unsaturated aldehyde and preparation method and application thereof
CN111018666B (en) * 2019-12-12 2022-11-04 万华化学集团股份有限公司 Improved process for preparing nerol leaf alcohol and catalytic system therefor
CN113181969B (en) * 2021-05-12 2022-07-12 中山大学 Preparation method and application of Ir @ MIL-101(Fe) catalyst with high hydrogenation selectivity
CN113248345B (en) * 2021-06-11 2021-10-26 江苏华盛锂电材料股份有限公司 Preparation method of 2-butenol
CN116003217A (en) * 2022-12-27 2023-04-25 湖北荆洪生物科技股份有限公司 Synthesis method of trans-2-hexenol

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3130805A1 (en) * 1981-08-04 1983-02-24 Basf Ag, 6700 Ludwigshafen NEW RUTHENIUM / COAL HYDRATING CATALYSTS, THEIR PRODUCTION AND USE FOR THE SELECTIVE HYDROGENATION OF UNSATURATED CARBONYL COMPOUNDS
JPS5995227A (en) * 1982-11-19 1984-06-01 Kao Corp Preparation of unsaturated alcohol
JPS61230741A (en) * 1985-04-05 1986-10-15 Agency Of Ind Science & Technol Aldehyde hydrogenating catalyst
JPS61230739A (en) * 1985-04-05 1986-10-15 Agency Of Ind Science & Technol Catalyst for hydrogenating aldehyde
JPH10236995A (en) * 1997-02-24 1998-09-08 Chisso Corp Production of unsaturated alcohol by alumina-supported cobalt catalyst
US7994347B2 (en) * 2006-06-09 2011-08-09 Battelle Memorial Institute Hydroxymethylfurfural reduction methods and methods of producing furandimethanol

Also Published As

Publication number Publication date
JP2015048349A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JP6074858B2 (en) Process for producing unsaturated alcohol
US7709688B2 (en) Method for the production of menthol
Mallat et al. Selectivity enhancement in heterogeneous catalysis induced by reaction modifiers
JP5864572B2 (en) One-step process for producing butadiene
Stolle et al. Hydrogenation of citral: a wide-spread model reaction for selective reduction of α, β-unsaturated aldehydes
EP3257831B1 (en) Circular economy methods of preparing unsaturated compounds
JP5824056B2 (en) Process for preparing ketones, especially macrocyclic ketones
WO2012078384A1 (en) Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
JP2013121939A (en) Method of manufacturing butadiene
JP6345654B2 (en) Method for producing tetrahydrofuran
JP5469607B2 (en) Catalyst used for hydrogen transfer reaction of alcohol, process for producing the same, and process for producing carbonyl group-containing compound
JP3781721B2 (en) Process for producing the corresponding alcohol by selective liquid phase hydrogenation of a carbonyl compound in the presence of a Pt / ZnO catalyst
JP6942738B2 (en) Method for producing catalyst for reduction reaction of 3,4-dihydroxytetrahydrofuran and reduced product of 3,4-dihydroxytetrahydrofuran
JPWO2013133208A1 (en) Method for producing tetrahydrofuran compound
US6331624B1 (en) Process for preparing 6-aminocaproamide
JP2007519517A (en) Catalytically active compositions and their use in dehydrogenation processes
US5929261A (en) Process for the selective hydration of vinyloxirane to 1,2-butylene oxide of heterogeneous catalysts
EP2269971B1 (en) Process for producing a 2-alkyl-2-cycloalkene-1-one
CN114644551B (en) Benzoic acid hydrogenation reaction method
JPH1171315A (en) Production of aldehyde and ketone or its derivative, production of x-ray amorphous zinc silicate or cadmium silicate and x-ray amorphous zinc silicate or cadmium silicate catalyst
JP2010173965A (en) Method for producing 2-alkyl-2-cycloalkenone
JP2017218404A (en) Production method of 3,4-dihydro-2h-pyran
JP2021126639A (en) Catalyst for reduction reaction of 3,4-dihydroxytetrahydrofuran
KR100528839B1 (en) Preparation of phthalide from phthalic anhydride
KR20030095115A (en) A continuous process for the production of pure 2,3-dihydrobenzofuran

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20150508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161222

R150 Certificate of patent or registration of utility model

Ref document number: 6074858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250