JP5369045B2 - Intake device for internal combustion engine - Google Patents

Intake device for internal combustion engine Download PDF

Info

Publication number
JP5369045B2
JP5369045B2 JP2010102882A JP2010102882A JP5369045B2 JP 5369045 B2 JP5369045 B2 JP 5369045B2 JP 2010102882 A JP2010102882 A JP 2010102882A JP 2010102882 A JP2010102882 A JP 2010102882A JP 5369045 B2 JP5369045 B2 JP 5369045B2
Authority
JP
Japan
Prior art keywords
intake
internal combustion
combustion engine
control valve
intake passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010102882A
Other languages
Japanese (ja)
Other versions
JP2011231688A (en
Inventor
文明 青木
潤 山田
一人 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2010102882A priority Critical patent/JP5369045B2/en
Publication of JP2011231688A publication Critical patent/JP2011231688A/en
Application granted granted Critical
Publication of JP5369045B2 publication Critical patent/JP5369045B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

この発明は、吸気流の流れ方向および流速を制御することにより、燃焼室内での縦渦(ダンブル)流を強化した内燃機関の吸気装置に関する。   The present invention relates to an intake device for an internal combustion engine in which a longitudinal vortex (dumble) flow in a combustion chamber is enhanced by controlling the flow direction and flow velocity of the intake flow.

特許文献1には、吸気ポート内に気流制御弁および仕切り板を備えた内燃機関の吸気装置が提案されている。この発明の気流制御弁は、中央部に切欠きを有し、運転条件により吸気ポートの閉制御を行う。この閉制御により、吸気ポート内で偏流を発生させ、燃焼室(気筒)内でダンブル流を発生させる。このとき気流制御弁を通過する気流が切欠きに集中するため、切欠きがない場合に比べ偏流が促進され、さらにダンブル流を強化できる。   Patent Document 1 proposes an intake device for an internal combustion engine that includes an airflow control valve and a partition plate in an intake port. The airflow control valve according to the present invention has a notch in the center, and controls the closing of the intake port according to operating conditions. By this closing control, a drift flow is generated in the intake port, and a dumble flow is generated in the combustion chamber (cylinder). At this time, since the airflow passing through the airflow control valve concentrates on the notch, the drift is promoted compared to the case where there is no notch, and the dumble flow can be further strengthened.

また、特許文献2には、吸気通路の中央近傍に支軸をもつ気流制御弁を備えた内燃機関の吸気装置が開示されている。この気流制御弁は、運転条件により回転制御され、その回転方向に従い吸気ポート内に所定の流路を形成し、吸気ポート内に偏流を発生させ、燃焼室内でダンブル流を発生させる。このとき支軸が気流制御弁の中央近傍にあるため、支軸の回転方向にかかるトルクが相殺されるため小さい。この結果、角度保持および回転駆動に必要な駆動モータにかかる負荷を小さくできるとともに角度制御の信頼性が高くなる。   Patent Document 2 discloses an intake device for an internal combustion engine including an airflow control valve having a support shaft in the vicinity of the center of the intake passage. The airflow control valve is rotationally controlled according to operating conditions, forms a predetermined flow path in the intake port according to the rotation direction, generates a drift in the intake port, and generates a dumble flow in the combustion chamber. At this time, since the support shaft is in the vicinity of the center of the airflow control valve, the torque applied in the rotation direction of the support shaft is canceled out, so that it is small. As a result, it is possible to reduce the load applied to the drive motor necessary for the angle holding and rotation driving, and the angle control reliability is increased.

特開2006−283696号公報JP 2006-283696 A 特開2007−135840号公報JP 2007-135840 A

特許文献1に記載の発明では、気流制御弁の回転を端の支軸で支持しているため、支軸に回転トルクが発生しアクチュエータの負荷が高くなり、信頼性確保のためのコストが上がる。また、切欠きにより偏流を中央部に集中させる構成であるが、開口率が大きい制御の場合は効果を発揮しにくくなる。
特許文献2に記載の発明では、アクチュエータの負荷は軽いが、全開、略全閉、半開の3種類の開度制御しかできない。このため、運転条件に見合った無段階の開度が設定できず、燃焼室内でダンブル流を発生させる性能が劣る。
また、いずれの発明でも、気流制御弁の周りは、弁の移動範囲の吸気通路の側面が平らである必要があるため、最も一般的な横長の長円形断面のインポートを備えた内燃機関では、大きな設計変更を必要とする。
In the invention described in Patent Document 1, since the rotation of the airflow control valve is supported by the support shaft at the end, rotational torque is generated on the support shaft, the load on the actuator increases, and the cost for ensuring reliability increases. . Moreover, although it is the structure which concentrates a drift in a center part by a notch, in the case of control with a large aperture ratio, it becomes difficult to exhibit an effect.
In the invention described in Patent Document 2, the load on the actuator is light, but only three types of opening control, full open, substantially full close, and half open, can be performed. For this reason, a stepless opening corresponding to the operating conditions cannot be set, and the performance of generating a dumble flow in the combustion chamber is inferior.
In any invention, since the side of the intake passage in the range of movement of the valve needs to be flat around the airflow control valve, in an internal combustion engine equipped with the most common oblong oval cross section import, Requires major design changes.

この発明の目的は、一般的な横長の長円形断面の吸気ポートを有する内燃機関においても、連続的に開度制御ができ、全ての開口率にて最適な偏流を形成できる吸気装置の提供にある。すなわち、この発明では、気流制御弁の形状を適正に設定することにより、性能とコストとを両立させ、吸気流の流れ方向および流速を最適に制御し、燃焼室内での縦渦(ダンブル)流を強化する。これにより、広範囲の運転条件において、燃焼室内の燃料、空気およびEGRガスの混合を均一化でき、大量のEGRを実現しても機関の安定した運転が可能となる。この結果、内燃機関の燃費が向上できる。   An object of the present invention is to provide an intake device capable of continuously controlling the opening degree even in an internal combustion engine having a general oblong intake port having an oblong cross section and capable of forming an optimal drift at all opening ratios. is there. That is, according to the present invention, by appropriately setting the shape of the air flow control valve, both performance and cost are achieved, the flow direction and flow velocity of the intake air flow are optimally controlled, and the vertical vortex (dumble) flow in the combustion chamber is achieved. To strengthen. As a result, the fuel, air, and EGR gas in the combustion chamber can be uniformly mixed in a wide range of operating conditions, and the engine can be stably operated even when a large amount of EGR is realized. As a result, the fuel efficiency of the internal combustion engine can be improved.

請求項1に記載の発明では、断面が横長の略長円形をしている吸気ポートを有する内燃機関の吸気装置であって、吸気ポートの上流側に、吸気ポートの入口と略同一の断面形状を有する吸気通路と、左右両側が回転支軸により、吸気通路の縦方向の略中央位置において支持された気流制御弁とを備える吸気制御機構を付設した内燃機関の吸気装置において、気流制御弁は、吸気通路の下半分の内周壁に倣った断面を有するとともに、先端(下流側端部)に向かって高さ漸減する左右の側壁部と、先端部に切欠きを有する底板部とを備えた弁板と、左右の側壁部の基端部(上流側端部)に連結された前記左右の回転支軸とからなり、内燃機関の運転条件に応じて、弁板を、底板部が吸気通路の底壁に当接する位置から先端部が吸気通路の天井壁に近接する位置まで回動させることを第1の特徴とする。
そして、気流制御弁の上記基端部の外側と、吸気通路の内壁との間に、基端部の断面外形に沿った略U字形の補助板を左右の回転支軸に連結して配するとともに、気流制御弁と連動させ、気流制御弁と吸気通路の内壁との隙間を塞いだことを第2の特徴とする。
According to the first aspect of the present invention, there is provided an intake device for an internal combustion engine having an intake port having a substantially oblong shape with a cross-section that is substantially the same cross-sectional shape as the intake port inlet on the upstream side of the intake port. The air flow control valve is provided with an intake air control mechanism including an air intake passage having a left and right air flow control valves that are supported at approximately the center position in the vertical direction of the air intake passage by rotation support shafts. The left and right side walls have a cross section that follows the inner peripheral wall of the lower half of the intake passage, and gradually decrease in height toward the tip (downstream end), and a bottom plate that has a notch at the tip. It consists of a valve plate and the left and right rotating support shafts connected to the base end portions (upstream end portions) of the left and right side wall portions, and the bottom plate portion is an intake passage according to the operating conditions of the internal combustion engine. From the position where it contacts the bottom wall of the ceiling of the intake passage That is positioned rotated to close the first feature.
And between the outside of the base end portion of the airflow control valve and the inner wall of the intake passage, a substantially U-shaped auxiliary plate along the cross-sectional outline of the base end portion is connected to the left and right rotation support shafts. In addition, the second feature is that the gap between the air flow control valve and the inner wall of the intake passage is closed in conjunction with the air flow control valve.

この発明では、吸気通路の下半分の内周壁に倣った断面を有し、先端部に切欠きを有する気流制御弁を、内燃機関の運転条件に応じて回動させている。吸入空気は、この半ノズル形状の気流制御弁により、吸気ポートの上側に絞られて増速し吸入空気流を形成する。この増速された吸入空気流は、吸気口から燃焼室に吸引され、吸気口と反対側のシリンダライナ(燃焼室側壁)に衝突して下降し、吸入行程で下位に位置するピストンの上面で燃焼室の中心側に偏向してタンブル流が形成される。気流制御弁を、内燃機関の運転条件に応じて連続的に制御することで、全ての運転条件に応じて、強力なタンブル流が形成でき、希薄燃焼においても安定した運転を確保でき、燃費の向上、エミッションの改善が可能となる。   In the present invention, the airflow control valve having a cross section following the inner peripheral wall of the lower half of the intake passage and having a notch at the tip is rotated in accordance with the operating conditions of the internal combustion engine. The intake air is throttled to the upper side of the intake port by the half-nozzle-shaped air flow control valve to increase the speed and form an intake air flow. This accelerated intake air flow is sucked into the combustion chamber from the intake port, collides with the cylinder liner (combustion chamber side wall) opposite to the intake port and descends, and on the upper surface of the piston positioned lower in the intake stroke A tumble flow is formed by deflecting toward the center of the combustion chamber. By continuously controlling the airflow control valve according to the operating conditions of the internal combustion engine, a strong tumble flow can be formed according to all operating conditions, stable operation can be ensured even in lean combustion, and fuel efficiency can be secured. Improvement and emission improvement are possible.

以上のように、本発明は、吸気通路の下半分の内周壁に沿った断面を有した場合を例に説明しているが、吸気通路の上半分の内周壁に沿った断面を有する気流制御弁であって、吸気通路を吸気ポートの下側に絞る構成でも効果に違いはない。なお、吸気通路の絞り部を下側にするか上側にするかは、エンジン毎によって異なる設計因子である。以下の実施例では、吸気通路の上側を絞る構成を例に説明する。   As described above, the present invention has been described by taking as an example the case of having a cross section along the inner peripheral wall of the lower half of the intake passage, but the air flow control having a cross section along the inner peripheral wall of the upper half of the intake passage Even if it is a valve and the structure which restrict | squeezes an intake passage to the lower side of an intake port, there is no difference in an effect. Whether the throttle part of the intake passage is on the lower side or the upper side is a design factor that differs depending on the engine. In the following embodiments, a configuration in which the upper side of the intake passage is restricted will be described as an example.

内燃機関の燃焼室の概略断面図である。It is a schematic sectional drawing of the combustion chamber of an internal combustion engine. 吸気制御機構の断面図および気流制御弁の斜視図である。It is sectional drawing of an intake control mechanism, and a perspective view of an airflow control valve. 吸気制御機構の正面図である。It is a front view of an intake control mechanism. 内燃機関の燃焼室の概略断面図である。It is a schematic sectional drawing of the combustion chamber of an internal combustion engine. 内燃機関の燃焼室の概略断面図である。It is a schematic sectional drawing of the combustion chamber of an internal combustion engine. 実施例2の気流制御弁の斜視図および側面図である。It is the perspective view and side view of an airflow control valve of Example 2. 実施例3の気流制御弁の斜視図および平面断面図である。It is the perspective view and top sectional drawing of the airflow control valve of Example 3. FIG.

発明を実施するための形態を、図に示す実施例とともに説明する。ただし、実施例1、3は、本発明が適用されていない例を示す参考例であり、実施例2は、本発明が適用された例を示す。 A mode for carrying out the invention will be described together with embodiments shown in the drawings. However, Examples 1 and 3 are reference examples showing an example to which the present invention is not applied, and Example 2 shows an example to which the present invention is applied.

図1は、この発明の実施例1にかかる内燃機関の吸気装置の概略断面を示し、Cはシリンダボディ、CHはシリンダヘッド、Pはピストンである。シリンダヘッドCHには、吸気口21を介して燃焼室(気筒)1に連通する吸気ポート2、および排気口31を介して燃焼室1に連通する排気ポート3が設けられている。吸気口21および排気口31には、それぞれ吸気バルブ22および排気バルブ32が設置され、内燃機関の吸入行程、圧縮行程、着火、燃焼行程、排気行程などの運転に応じた所定のタイミングで開閉される。燃焼室1の天井部には略中央に点火装置11が取り付けられている。   FIG. 1 shows a schematic cross section of an intake device for an internal combustion engine according to Embodiment 1 of the present invention, in which C is a cylinder body, CH is a cylinder head, and P is a piston. The cylinder head CH is provided with an intake port 2 communicating with the combustion chamber (cylinder) 1 via the intake port 21 and an exhaust port 3 communicating with the combustion chamber 1 via the exhaust port 31. An intake valve 22 and an exhaust valve 32 are installed in the intake port 21 and the exhaust port 31, respectively, and are opened and closed at a predetermined timing according to operations such as an intake stroke, a compression stroke, an ignition stroke, a combustion stroke, and an exhaust stroke of the internal combustion engine. The An ignition device 11 is attached to the ceiling portion of the combustion chamber 1 substantially at the center.

この内燃機関には、排気路33からEGRガスを吸気ポート2に供給するためのEGR通路4が付設されている。EGR通路4の吹出口41は、吸気ポート2の上側壁面23に開口しており、EGR通路4にはEGRバルブ42が介装されている。EGRバルブ42は、内燃機関の運転条件に応じて開閉される。   The internal combustion engine is provided with an EGR passage 4 for supplying EGR gas from the exhaust passage 33 to the intake port 2. The outlet 41 of the EGR passage 4 opens to the upper wall surface 23 of the intake port 2, and an EGR valve 42 is interposed in the EGR passage 4. The EGR valve 42 is opened and closed according to the operating conditions of the internal combustion engine.

吸気ポート2は、この実施例では、横長で略長円形断面を有する(図3参照)。この吸気ポート2は、各燃焼室1毎に2つの吸気バルブ22を備えた内燃機関で多く採用されている。吸気ポート2と、吸気マニホールド12との間には、この発明の要旨である吸気制御機構5が介装されている。   In this embodiment, the intake port 2 has a horizontally long and substantially oval cross section (see FIG. 3). The intake port 2 is often used in an internal combustion engine provided with two intake valves 22 for each combustion chamber 1. Between the intake port 2 and the intake manifold 12, an intake control mechanism 5 which is the gist of the present invention is interposed.

吸気制御機構5は、図1、図2の(イ)、図3に示す如く、内部が吸気通路51となっているダクト52、およびアクチュエータ57を備える。ダクト52(吸気通路51)は、吸気ポート2の入口断面と略同一の横長で略長円形断面を有する。すなわち、吸気通路51の断面は、縦(図示上下)方向の略中間位置が最大幅となている。   The intake control mechanism 5 includes a duct 52 having an intake passage 51 therein, and an actuator 57, as shown in FIGS. The duct 52 (intake passage 51) has a substantially oblong and substantially oval cross section that is substantially the same as the inlet cross section of the intake port 2. That is, the cross-section of the intake passage 51 has a maximum width at a substantially middle position in the vertical (upper and lower directions) direction.

ダクト52内には、吸入空気を偏向、増速させるための気流制御弁6が回動自在に設置されている。ダクト52は左右対象的であり、略円筒面となっている左右の両側壁53、53、略平坦な底壁54、および略平坦な天井壁55を有し、長手方向(吸気通路51方向)には締結用のフランジ56、56が設けられている。   In the duct 52, an airflow control valve 6 for deflecting and increasing the intake air is rotatably installed. The duct 52 is intended for right and left, and has left and right side walls 53 and 53 that are substantially cylindrical surfaces, a substantially flat bottom wall 54, and a substantially flat ceiling wall 55, and is arranged in the longitudinal direction (in the direction of the intake passage 51). Are provided with fastening flanges 56, 56.

気流制御弁6は、図2の(イ)、(ロ)に示す如く、ダクト52の縦(図示上下)方向の略中間位置を貫通して配された左右の両回転支軸(支軸)61、61と、両支軸61、61に連結された弁板62とを有する。弁板62は、ダクト52の左右の両側壁53、53に倣って湾曲した略三角板状の左右の側板部63、63と、ダクト52の底壁54に倣って平板状を呈する底板部64からなる。図2の(イ)に示す如く、底壁54の両端部を除く部分は、底板部64の厚さ(高さ)と略同等分だけ吸気ポート2(図1参照)の入口の下端(底壁54の両端部)より下位に設定されている。   As shown in FIGS. 2A and 2B, the air flow control valve 6 has both left and right rotating support shafts (support shafts) disposed through substantially the middle position of the duct 52 in the vertical (upper and lower directions) direction. 61, 61 and a valve plate 62 connected to both the support shafts 61, 61. The valve plate 62 includes left and right side plate portions 63 and 63 each having a substantially triangular plate shape that is curved along the left and right side walls 53 and 53 of the duct 52, and a bottom plate portion 64 that has a flat plate shape following the bottom wall 54 of the duct 52. Become. As shown in FIG. 2 (a), the portion excluding both ends of the bottom wall 54 is the lower end (bottom) of the inlet of the intake port 2 (see FIG. 1) by an amount substantially equal to the thickness (height) of the bottom plate portion 64. It is set lower than both ends of the wall 54.

側板部63、63は、図2の(ロ)に示す如く略円筒面板であるとともに、図2の(イ)に示す如く側面形状が略三角形状を呈する。側板部63、63の一つ頂点である基部65、65が両支軸61、61に連結されている。側板部63、63は、基部65、65から下方に延び、長さが両支軸61、61から底壁54までの高さと同等の上流側辺66、66を有する。側板部63、63は、下流側に延長した長辺67、67を有し、長辺67、67は下流にいくに従って底板部64に漸近している。側板部63、63の側面形状は、基部65の頂角αは、90度〜110度、先端角βは15度〜45度の範囲が実用的である。   The side plate portions 63 and 63 are substantially cylindrical face plates as shown in FIG. 2B, and the side shapes are substantially triangular as shown in FIG. A base portion 65, 65 that is one vertex of the side plate portions 63, 63 is connected to both support shafts 61, 61. The side plate parts 63, 63 extend downward from the base parts 65, 65, and have upstream side edges 66, 66 having a length equal to the height from both the support shafts 61, 61 to the bottom wall 54. The side plate parts 63 and 63 have long sides 67 and 67 extending downstream, and the long sides 67 and 67 gradually approach the bottom plate part 64 as going downstream. As for the side surface shape of the side plate portions 63, 63, the apex angle α of the base portion 65 is practically in the range of 90 to 110 degrees and the tip angle β is in the range of 15 to 45 degrees.

底板部64には、上流側辺66、66から下流側に両支軸61、61と同一中心を有数する円筒面部68が設けられている。円筒面部68は、ダクト52の底壁54に接触ないし近接するように設定されており、弁板62の回動位置にかかわらず、底壁54と弁板62(円筒面部68)との隙間から吸気が洩れることを阻止している。なお、底板部64が円筒面部68を備えず、平板である場合は、弁板62の回動により、底壁54と弁板62との隙間から吸気が洩れる不具合が生じる。   The bottom plate portion 64 is provided with a cylindrical surface portion 68 having the same center as the both support shafts 61, 61 on the downstream side from the upstream sides 66, 66. The cylindrical surface portion 68 is set so as to be in contact with or close to the bottom wall 54 of the duct 52, regardless of the rotational position of the valve plate 62, and from the gap between the bottom wall 54 and the valve plate 62 (cylindrical surface portion 68). The intake air is prevented from leaking. In addition, when the bottom plate portion 64 is not provided with the cylindrical surface portion 68 and is a flat plate, the valve plate 62 is rotated to cause a problem that intake air leaks from the gap between the bottom wall 54 and the valve plate 62.

底板部64の先端部(下流側端)69には、中央部に切欠き60が設けられている。切欠き60は、この実施例では、横長のスリット上であるが、底板部64の先端部69に矩形、円形など他の形状の切欠きを設けてもよく、底板部64の先端部69以外の先端部にスリット、矩形、円形などの穴を開けた構造であってもよい。   A notch 60 is provided at the center of the tip (downstream end) 69 of the bottom plate 64. In this embodiment, the notch 60 is a horizontally long slit. However, a notch having another shape such as a rectangle or a circle may be provided at the distal end portion 69 of the bottom plate portion 64, and other than the distal end portion 69 of the bottom plate portion 64. A structure in which a hole such as a slit, a rectangle, or a circle is formed at the tip of the substrate may be used.

図4、図5とともに、作用を説明する。図4、図5は、いずれも吸入行程にある内燃機関の吸気装置を示す。支軸61には、アクチュエータ57が連結され、エンジン制御装置(ECU)により内燃機関の運転条件にあわせて支軸61が回転する。支軸61の回転により、気流制御弁6が回動して吸気通路51の開度調整が行われる。この実施例では、支軸61の回転にともない、弁板62は、底板部64が底壁54に当接した全開位置から、先端部69が天井壁55に近接する最強絞り位置まで回動する。   The operation will be described with reference to FIGS. 4 and 5 each show an intake device for an internal combustion engine in the intake stroke. An actuator 57 is connected to the support shaft 61, and the support shaft 61 is rotated by an engine control unit (ECU) in accordance with the operating conditions of the internal combustion engine. The airflow control valve 6 is rotated by the rotation of the support shaft 61, and the opening degree of the intake passage 51 is adjusted. In this embodiment, as the support shaft 61 rotates, the valve plate 62 rotates from the fully open position where the bottom plate portion 64 contacts the bottom wall 54 to the strongest throttle position where the tip portion 69 is close to the ceiling wall 55. .

気流制御弁6は、内燃機関の高負荷、高速運転時には、図示二点鎖線の全開位置に設定されている。この状態では、弁板62は、ダクト52の底壁54に埋没しているため、吸気抵抗になる不具合が防止されている。これは、底壁54が底板部64の厚さ(高さ)分だけ吸気ポート2の入口の下端より下位に設定されていることにより達成される。   The airflow control valve 6 is set at the fully open position of the two-dot chain line in the figure when the internal combustion engine is operated at high load and high speed. In this state, since the valve plate 62 is buried in the bottom wall 54 of the duct 52, the problem of intake resistance is prevented. This is achieved by the bottom wall 54 being set lower than the lower end of the inlet of the intake port 2 by the thickness (height) of the bottom plate portion 64.

内燃機関が予め決められた運転条件になると、ECUからの信号によりアクチュエータ57が作動し、支軸61を右回転させ、弁板62は、図示実線の如く吸気通路51を狭める位置に回動する。低負荷、低速運転など、吸気の流速が小さく、点火装置による着火条件の悪い運転条件のときは、図4に実線で示す如く、弁板62は先端部69が天井壁55に近接する位置に設定される。   When the internal combustion engine reaches predetermined operating conditions, the actuator 57 is actuated by a signal from the ECU, the support shaft 61 is rotated clockwise, and the valve plate 62 is rotated to a position where the intake passage 51 is narrowed as shown by the solid line in the figure. . When the intake air flow rate is low and the ignition condition by the ignition device is poor, such as low load and low speed operation, the valve plate 62 is positioned at the position where the tip 69 is close to the ceiling wall 55 as shown by the solid line in FIG. Is set.

これにより、吸気流Fは白抜き矢印の如く、弁板62の先端部69の切欠き60を通過して燃焼室1に吸引される。吸気流Fは、底板部64の上面に沿って流れ、流路の断面積が漸減するため徐々に増速される。切欠き60の位置で流路の断面積が最小となるため、吸気流Fの流速はこの位置で最大となり、吸気ポート2の上側壁23に沿った流速の早い噴流状態となる。   As a result, the intake air flow F is sucked into the combustion chamber 1 through the notch 60 in the front end portion 69 of the valve plate 62 as indicated by a white arrow. The intake air flow F flows along the upper surface of the bottom plate portion 64 and is gradually increased because the cross-sectional area of the flow path gradually decreases. Since the cross-sectional area of the flow path is minimized at the position of the notch 60, the flow velocity of the intake flow F is maximized at this position, and a jet flow state having a high flow velocity along the upper wall 23 of the intake port 2 is obtained.

この際に、気流制御弁6には、吸入空気流から通気抵抗が加わる。弁板62は、両支軸61、61により、縦方向の略中間位置で支持している。このため、弁板62に加わる外力は支軸61の上下で相殺され、両支軸61、61に大きな回転トルクTが大きくなることは阻止される。この結果、弁板62の姿勢の保持および回動に要するアクチュエータ57の負荷が高くなる不具合は、確実に低減される。   At this time, ventilation resistance is applied to the airflow control valve 6 from the intake airflow. The valve plate 62 is supported at a substantially intermediate position in the vertical direction by both support shafts 61 and 61. For this reason, the external force applied to the valve plate 62 is canceled by the upper and lower sides of the support shaft 61, and a large rotational torque T is prevented from increasing on both the support shafts 61, 61. As a result, the problem that the load of the actuator 57 required for maintaining and rotating the posture of the valve plate 62 is reliably reduced.

この増速された吸気流Fは、吸気口21を通過し、燃焼室1の中央部に吸引される。燃焼室1に吸引された吸気流Fは、燃焼室1の左側側壁13に沿って下降し、さらにピストンPに衝突して中心方向に変更する。この結果、燃焼室1内には、全体に虚力なタンブル(縦渦)流Dが形成される。また、内燃機関が予め決められた運転条件になると、EGRバルブ42が開き、EGR通路4にEGRガスが流れ、吹出口41から吸気ポート2へEGRガスが流入する。これにより、燃焼室1内は、吸気(新気)、EGRガス、噴射された燃料の混合が均一になり、点火装置11による着火性が向上し、内燃機関の安定した運転が確保できる。   The accelerated intake air flow F passes through the intake port 21 and is sucked into the central portion of the combustion chamber 1. The intake air flow F sucked into the combustion chamber 1 descends along the left side wall 13 of the combustion chamber 1, further collides with the piston P, and changes in the central direction. As a result, an imaginary tumble (longitudinal vortex) flow D is formed in the combustion chamber 1 as a whole. Further, when the internal combustion engine is in a predetermined operating condition, the EGR valve 42 is opened, EGR gas flows into the EGR passage 4, and EGR gas flows into the intake port 2 from the outlet 41. Thereby, in the combustion chamber 1, the mixture of intake air (fresh air), EGR gas, and injected fuel becomes uniform, the ignitability by the ignition device 11 is improved, and stable operation of the internal combustion engine can be ensured.

図5は、内燃機関が中負荷、中速運転されている状態の、吸気装置を示す。燃焼室1は吸気行程にあり、吸気流Fの流速は中程度である。気流制御弁6は、弁板62の先端部69が吸気通路51の中央付近に設定されている。この運転条件においても、吸気流Fは板62に沿って吸気通路51の上半に集中し、増速されて吸気ポート2の上側に噴流となっって流入し、燃焼室1内に吸引されてタンブル流Dを形成する。このため大量のEGRを行っても、出力が維持され、燃費の向上が実現する。なお、この場合も、弁板62に加わる外力は支軸61の上下である程度相殺され、両支軸61、61に大きな回転トルクTが生じることは阻止される。   FIG. 5 shows the intake device in a state where the internal combustion engine is operated at medium load and medium speed. The combustion chamber 1 is in the intake stroke, and the flow velocity of the intake flow F is medium. In the airflow control valve 6, the tip portion 69 of the valve plate 62 is set near the center of the intake passage 51. Even under this operating condition, the intake air flow F is concentrated along the plate 62 in the upper half of the intake passage 51, is accelerated, flows into the upper side of the intake port 2, flows in, and is sucked into the combustion chamber 1. To form a tumble flow D. For this reason, even if a large amount of EGR is performed, the output is maintained and fuel consumption is improved. In this case as well, the external force applied to the valve plate 62 is offset to some extent above and below the support shaft 61, and a large rotational torque T is prevented from being generated on both support shafts 61, 61.

図6は、実施例2にかかる気流制御弁7を示し、気流制御弁7は主弁板71と、吸気流の漏れを防止するための補助弁板72、73、74からなる。主弁板71は、弁板62(図1参照)と略同一の構造を有する。図6の(イ)および(ロ)に示す如く、補助弁板72、73、74は、ダクト52の左右の両側壁53、53に倣って湾曲した略左右の側板部72a〜74aと、ダクト52の底壁54に倣って平板状の底板部72b〜74bとを有し、主弁板71の基部75とダクト52の内壁との間に重ねて配されている。   FIG. 6 shows an airflow control valve 7 according to the second embodiment, and the airflow control valve 7 includes a main valve plate 71 and auxiliary valve plates 72, 73, 74 for preventing leakage of intake air flow. The main valve plate 71 has substantially the same structure as the valve plate 62 (see FIG. 1). As shown in FIGS. 6A and 6B, the auxiliary valve plates 72, 73, and 74 include substantially left and right side plate portions 72 a to 74 a that are curved along the left and right side walls 53 and 53 of the duct 52, and the duct. The bottom plate 54 has flat plate portions 72 b to 74 b that follow the bottom wall 54 of the main plate 52, and is disposed so as to overlap between the base 75 of the main valve plate 71 and the inner wall of the duct 52.

補助弁板72、73は、主弁板71の回動に伴い、遅れて従動して回動し、図6の(ロ)に示す如く、主弁板71の基端75と、底壁54との隙間を塞ぎ、吸気の漏れを阻止する。この構成では、実施例1の弁板62(図1参照)の如く、底板部64(図1参照)に円筒面部68(図1参照)を設ける必要はなく、気流制御弁6(図1参照)が図2の(イ)に示す如く全開状態において、底板部64の後端が通気流路51内にでぱって通気抵抗が増大する不具合が低減できる。   As the main valve plate 71 rotates, the auxiliary valve plates 72 and 73 rotate with a delay, and as shown in FIG. 6B, the base valve 75 and the bottom wall 54 of the main valve plate 71. To prevent intake air leakage. In this configuration, unlike the valve plate 62 (see FIG. 1) of the first embodiment, it is not necessary to provide the cylindrical surface portion 68 (see FIG. 1) on the bottom plate portion 64 (see FIG. 1), and the airflow control valve 6 (see FIG. 1). 2) in the fully open state as shown in FIG. 2 (a), it is possible to reduce the problem that the rear end of the bottom plate portion 64 extends into the ventilation channel 51 and the ventilation resistance increases.

図7の(イ)は、実施例3にかかる気流制御弁8を示し、気流制御弁8は、実施例1の気流制御弁6と略同一構造を有するが、弁板82の先端部に2つの切欠き80、80を備える。図7の(ロ)に示す如く、2つの切欠き80、80は、燃焼室1のシリンダヘッドCHに設けられた2つの吸気口21、21に指向している。2つの切欠き80、80を通過した吸気の噴流F1、F2は、それぞれ独立的に2つの吸気穴21、21へ吸引される。この結果、2つの吸気口21、21を備えた内燃機関おいて、燃焼室内でのタンブルをより強力に形成できる。   FIG. 7A shows an airflow control valve 8 according to the third embodiment. The airflow control valve 8 has substantially the same structure as the airflow control valve 6 of the first embodiment, but 2 at the tip of the valve plate 82. Two notches 80, 80 are provided. As shown in FIG. 7B, the two notches 80 and 80 are directed to the two intake ports 21 and 21 provided in the cylinder head CH of the combustion chamber 1. The intake jets F1 and F2 that have passed through the two notches 80 and 80 are independently sucked into the two intake holes 21 and 21, respectively. As a result, in the internal combustion engine provided with the two intake ports 21, the tumble in the combustion chamber can be formed more strongly.

この発明の内燃機関の吸気装置では、広範囲の運転条件において、燃焼室内に強力なタンブル流を確実に形成できる。このため、アイドリング運転など低負荷、低速運転においても、安定した着火、燃焼を実現することが可能で、EGRを最大限まで増大でき、燃費が向上する。   In the intake device for an internal combustion engine of the present invention, a strong tumble flow can be reliably formed in the combustion chamber under a wide range of operating conditions. For this reason, stable ignition and combustion can be realized even in low load and low speed operation such as idling operation, EGR can be increased to the maximum, and fuel efficiency is improved.

C シリンダボディ
CH シリンダヘッド
1 燃焼室
2 吸気ポート
21 吸気口
22 吸気バルブ
3 排気ポート
4 EGR通路
41 吹出口
42 EGRバルブ
5 吸気制御機構
6、7、8 気流制御弁
C Cylinder body CH Cylinder head 1 Combustion chamber 2 Intake port 21 Intake port 22 Intake valve 3 Exhaust port 4 EGR passage 41 Outlet 42 EGR valve 5 Intake control mechanism 6, 7, 8 Airflow control valve

Claims (1)

断面が横長の略長円形をしている吸気ポートを有する内燃機関の吸気装置であって、
前記吸気ポートの上流側に、該吸気ポートの入口と略同一の断面形状を有する吸気通路と、左右両側が回転支軸により、前記吸気通路の縦方向の略中央位置において支持された気流制御弁とを備える吸気制御機構を付設した内燃機関の吸気装置において、
前記気流制御弁は、前記吸気通路の下半分の内周壁に倣った断面を有するとともに、先端(下流側端)に向かって高さ漸減する左右の側壁部と、先端部に切欠きを有する底板部とを備えた弁板と、前記左右の側壁部の基端部(上流側端部)に連結された前記左右の回転支軸とからなり、
内燃機関の運転条件に応じて、前記弁板を、前記底板部が前記吸気通路の底壁に当接する位置から前記先端部が前記吸気通路の天井壁に近接する位置まで回動させるものであり、
前記気流制御弁の前記基端部の外側と、前記吸気通路の内壁との間に、該基端部の断面外形に沿った略U字形の補助板を前記左右の回転支軸に連結して配するとともに、前記気流制御弁と連動させ、前記気流制御弁と前記吸気通路の内壁との隙間を塞いだことを特徴とする内燃機関の吸気装置。
An intake device for an internal combustion engine having an intake port having a substantially oblong cross section in cross section,
An intake passage having substantially the same cross-sectional shape as the inlet of the intake port on the upstream side of the intake port, and an airflow control valve supported on the left and right sides by a rotation support shaft at a substantially central position in the vertical direction of the intake passage In an intake device for an internal combustion engine provided with an intake control mechanism comprising:
The air flow control valve has a cross-section that follows the inner peripheral wall of the lower half of the intake passage, a left and right side wall that gradually decreases in height toward the tip (downstream end), and a bottom plate that has a notch in the tip. A valve plate provided with a portion, and the left and right rotating support shafts connected to the base end portion (upstream end portion) of the left and right side wall portions,
According to the operating conditions of the internal combustion engine, the valve plate is rotated from a position where the bottom plate portion comes into contact with the bottom wall of the intake passage to a position where the tip portion is close to the ceiling wall of the intake passage . ,
Between the outer side of the base end portion of the airflow control valve and the inner wall of the intake passage, a substantially U-shaped auxiliary plate along the cross-sectional outline of the base end portion is connected to the left and right rotation support shafts. An intake device for an internal combustion engine characterized by being arranged and interlocking with the airflow control valve to close a gap between the airflow control valve and the inner wall of the intake passage .
JP2010102882A 2010-04-28 2010-04-28 Intake device for internal combustion engine Expired - Fee Related JP5369045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010102882A JP5369045B2 (en) 2010-04-28 2010-04-28 Intake device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010102882A JP5369045B2 (en) 2010-04-28 2010-04-28 Intake device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011231688A JP2011231688A (en) 2011-11-17
JP5369045B2 true JP5369045B2 (en) 2013-12-18

Family

ID=45321258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010102882A Expired - Fee Related JP5369045B2 (en) 2010-04-28 2010-04-28 Intake device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5369045B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016000425A1 (en) * 2016-01-19 2017-07-20 Mann+Hummel Gmbh Suction tube for an internal combustion engine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5842737B2 (en) 2012-06-11 2016-01-13 アイシン精機株式会社 Intake control device
EP2772623B1 (en) * 2013-02-28 2017-08-23 MAHLE Filter Systems Japan Corporation Air intake system for internal combustion engine
JP6338824B2 (en) * 2013-05-21 2018-06-06 株式会社マーレ フィルターシステムズ Intake device for internal combustion engine
JP2016200042A (en) * 2015-04-09 2016-12-01 日産自動車株式会社 engine
KR20160134905A (en) 2015-05-13 2016-11-24 현대자동차주식회사 Apparatus for improving engine air flow
WO2019163892A1 (en) * 2018-02-23 2019-08-29 株式会社デンソー Internal combustion engine control device and intake system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000320415A (en) * 1999-05-08 2000-11-21 Fujio Inoue Fuel supply device of prime mover and sectional area continuously variable mechanism in suction pipe of prime mover intake system
JP4151297B2 (en) * 2002-04-05 2008-09-17 トヨタ自動車株式会社 Intake device for internal combustion engine
JP4485541B2 (en) * 2007-03-06 2010-06-23 トヨタ自動車株式会社 Intake device for internal combustion engine
JP2010014055A (en) * 2008-07-04 2010-01-21 Toyota Boshoku Corp Integrated valve device for intake manifold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016000425A1 (en) * 2016-01-19 2017-07-20 Mann+Hummel Gmbh Suction tube for an internal combustion engine

Also Published As

Publication number Publication date
JP2011231688A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
JP5369045B2 (en) Intake device for internal combustion engine
JP4755034B2 (en) Spark ignition multi-cylinder engine
JP4419095B2 (en) Intake device for internal combustion engine
EP1607601A1 (en) Engine with primary and secondary intake passages
JPS5932656B2 (en) engine intake system
JP4485541B2 (en) Intake device for internal combustion engine
JP4345724B2 (en) Intake method and intake structure of internal combustion engine
JP2017089511A (en) Intake device of internal combustion engine and intake airflow control valve
JP6357848B2 (en) Intake device for internal combustion engine
JP4971242B2 (en) Intake device for internal combustion engine
JP2007182832A (en) Intake device for internal combustion engine
JP6481410B2 (en) Intake device for internal combustion engine
JPH08135455A (en) Intake control device for engine
JP3551572B2 (en) Intake device for internal combustion engine
JP2007016657A (en) Intake device for internal combustion engine
JP3617691B2 (en) Engine intake control device
JP2002221036A (en) Intake system for engine
JP2012102623A (en) Variable intake system
JP4375060B2 (en) Intake device for internal combustion engine
JP3506769B2 (en) Engine intake control device
JP4513720B2 (en) Intake port structure of internal combustion engine
JP4048814B2 (en) Intake device for spark ignition engine
JP2004011442A (en) Inlet device for internal combustion engine
JP5536526B2 (en) Intake device for internal combustion engine
JP2020012437A (en) Intake device of internal combustion engine and intake flow control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130913

R150 Certificate of patent or registration of utility model

Ref document number: 5369045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees