WO2019163892A1 - Internal combustion engine control device and intake system - Google Patents

Internal combustion engine control device and intake system Download PDF

Info

Publication number
WO2019163892A1
WO2019163892A1 PCT/JP2019/006571 JP2019006571W WO2019163892A1 WO 2019163892 A1 WO2019163892 A1 WO 2019163892A1 JP 2019006571 W JP2019006571 W JP 2019006571W WO 2019163892 A1 WO2019163892 A1 WO 2019163892A1
Authority
WO
WIPO (PCT)
Prior art keywords
drift
airflow
internal combustion
combustion engine
intake
Prior art date
Application number
PCT/JP2019/006571
Other languages
French (fr)
Japanese (ja)
Inventor
真一 平岡
幸敏 信田
亀田 康寿
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018149776A external-priority patent/JP2019143619A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019163892A1 publication Critical patent/WO2019163892A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to a control device for an internal combustion engine and an intake system using the control device.
  • the present disclosure has been made in view of the above problems, and a main object thereof is to provide a control device for an internal combustion engine capable of performing stable ignition.
  • the inner peripheral surface has a circular shape, communicated with the intake port via two intake ports, and communicated with the exhaust port via the exhaust port, and the combustion chamber
  • a control device applied to an internal combustion engine comprising an ignition plug provided at a central portion of a ceiling portion covering the airflow and an airflow adjustment unit for adjusting an airflow generated in the combustion chamber, wherein the airflow at the position of the ignition plug is A drift determination unit that determines that the drift is generated by strengthening compared to the air flow at other positions, and the drift adjustment unit generates the drift when the drift determination unit determines that the drift is performed.
  • a control unit applied to an internal combustion engine comprising an ignition plug provided at a central portion of a ceiling portion covering the airflow and an airflow adjustment unit for adjusting an airflow generated in the combustion chamber, wherein the airflow at the position of the ignition plug is A drift determination unit that determines that the drift is generated by strengthening compared to the air flow at other positions, and the drift adjustment unit generates the drift when the drift determination unit determines that the drift is performed.
  • the airflow adjustment part is controlled so that a drift may be produced. In this way, by causing a drift in which the airflow at the position of the ignition plug in the combustion chamber is strengthened, the airflow at the position of the ignition plug first hits the inner peripheral wall of the combustion chamber and goes outward along its shape. Generation of turbulence at the spark plug position is suppressed.
  • the ignitability can be ensured while ensuring the airflow necessary for fuel promotion.
  • FIG. 1 is a schematic configuration diagram of a control system for an internal combustion engine according to a first embodiment.
  • FIG. 2 is a plan view of the intake port and the combustion chamber
  • FIG. 3 is a diagram for explaining the air flow in the combustion chamber.
  • FIG. 4 is a diagram for explaining the air flow at the spark plug position.
  • FIG. 5 is a perspective view of a rotary valve
  • FIG. 6 is a sectional view of the rotary valve
  • FIG. 7 is a diagram showing the open / close state of the rotary valve and the air flow
  • FIG. 1 is a schematic configuration diagram of a control system for an internal combustion engine according to a first embodiment.
  • FIG. 2 is a plan view of the intake port and the combustion chamber
  • FIG. 3 is a diagram for explaining the air flow in the combustion chamber.
  • FIG. 4 is a diagram for explaining the air flow at the spark plug position.
  • FIG. 5 is a perspective view of a rotary valve
  • FIG. 6 is a sectional view of the
  • FIG. 8 is a schematic cross-sectional view showing the air flow in the combustion chamber in a state where the flow is uneven
  • FIG. 9 is a flowchart executed by the control device.
  • FIG. 10 is a diagram showing the engine rotational speed, the load, and the degree of drift.
  • FIG. 11 is a flowchart for performing feedback control.
  • FIG. 12 is a diagram showing the relationship between in-cylinder flow and arc maintenance time
  • FIG. 13 is a diagram showing the relationship between arc maintenance time and ignition timing
  • FIG. 14 is a diagram showing the relationship between the in-cylinder flow and the main combustion period
  • FIG. 15 is a diagram showing the relationship between the ignition timing and the main combustion period
  • FIG. 16 is a perspective view of a rotary valve in the second embodiment
  • FIG. 17 is a diagram showing an open / close state of the rotary valve
  • FIG. 18 is a view for explaining the airflow in the intake port.
  • FIG. 19 is a view for explaining the airflow in the intake port in a state where the guide portion is provided in the third embodiment.
  • FIG. 20 is a front view of the guide portion and the rotary valve
  • FIG. 21 is a perspective view of a current plate
  • FIG. 22 shows a modified example of the guide portion.
  • FIG. 23 is a schematic view of a pinball type valve element in another embodiment
  • FIG. 24 is a schematic view of an airflow adjusting unit in another embodiment
  • FIG. 25 is a schematic diagram of an airflow adjusting unit in another embodiment.
  • an engine control system is constructed for an in-vehicle multi-cylinder four-cycle gasoline engine that is an internal combustion engine.
  • FIG. 1 shows a schematic configuration diagram of the entire engine control system, particularly an intake system. In the following drawings, only one cylinder among a plurality of cylinders provided in the engine 10 is illustrated.
  • the piston 11 is accommodated in each cylinder of the engine 10 so as to be able to reciprocate.
  • a combustion chamber 12 is provided on the top side of the piston 11 of each cylinder.
  • the inner peripheral surface of the combustion chamber 12 has a circular cross section (perfect circle or ellipse).
  • the combustion chamber 12 communicates with the intake port 20 via the two intake ports 21 and communicates with the exhaust port 14 via the two exhaust ports 13.
  • FIG. 2 is a plan view of the intake port 20 and the combustion chamber 12, and is a view of the configuration of the periphery of the combustion chamber 12 as seen from the cylinder head side in the cylinder axial direction.
  • the direction in which the intake side and the exhaust side are aligned is defined as the L1 direction
  • the direction orthogonal to the L1 direction is defined as the L2 direction.
  • the axial direction of the cylinder is the vertical direction.
  • the intake port 20 is an intake passage between the connection portion with the intake manifold and the intake port 21 of the combustion chamber 12 on the downstream side.
  • the intake port 20 is divided into two forks on the combustion chamber 12 side, and an intake port 21 is provided at each of the two ends.
  • the air inlets 21 are provided so as to be adjacent to each other in the L2 direction.
  • Two exhaust ports 13 are provided so as to be adjacent to each other in the L2 direction, similarly to the intake port 21.
  • the center positions of the two exhaust ports 13 in the L2 direction are provided on a center line CL that passes through the center position of the intake port 21 in the L2 direction and extends in the L1 direction.
  • the number of exhaust ports may be one instead of two. In that case, one exhaust port may be provided on the center line CL.
  • a spark plug 16 is provided at the center of the ceiling (cylinder head) of the combustion chamber 12.
  • the center part of the ceiling part where the spark plug 16 is provided may be within a predetermined range including the center point of the ceiling part.
  • the spark plug 16 is a line connecting the center position on the intake side of the combustion chamber 12 (center position of the two intake ports 21) and the center position on the exhaust side (center position of the two exhaust ports 13), That is, it is provided at a position on the center line CL (see FIG. 2).
  • the spark plug 16 should just be provided in the center part of the ceiling part, More preferably, it is good to be provided on the centerline CL of the center part.
  • a high voltage is applied to the ignition plug 16 at a desired ignition timing through an ignition device 17 including an ignition coil.
  • an arc discharge A is generated between the counter electrodes 16a (see FIG. 5), and the fuel in the combustion chamber 12 is ignited by the energy of the arc discharge A.
  • a fuel injection valve 18 that directly supplies fuel into the combustion chamber 12 is provided at the upper portion of each cylinder of the engine 10 and on the intake port 20 side.
  • the fuel injection valve 18 is provided on the center line CL shown in FIG.
  • the fuel injection valve 18 is connected to a fuel tank via a fuel pipe (not shown). The fuel in the fuel tank is supplied to the fuel injection valve 18 of each cylinder and injected from the fuel injection valve 18 into the combustion chamber 12.
  • the intake port 20 and the exhaust port 14 of the engine 10 are respectively provided with an intake valve 22 that closes the intake port 21 and an exhaust valve 15 that closes the exhaust port 13.
  • the air in the intake port 20 flows into the combustion chamber 12 by the opening operation of the intake valve 22, and the exhaust gas in the combustion chamber 12 is discharged to the exhaust port 14 by the opening operation of the exhaust valve 15.
  • the opening / closing timing (valve timing) of the intake valve 22 and the exhaust valve 15 is variably controlled by the variable valve timing device 23.
  • the intake port 20 is provided with a rotary valve 50 for adjusting the airflow generated in the combustion chamber 12.
  • the opening degree of the valve body 53 is adjusted by the rotary actuator 51.
  • the rotary actuator 51 incorporates a sensor for detecting the opening degree of the rotary valve 50.
  • the rotary valve 50 corresponds to an “air flow adjusting unit”, “flow path varying device”, and “open / close valve”.
  • the intake port 20 is connected to an intake pipe 31 including an intake manifold and a surge tank.
  • the intake pipe 31 is provided with a throttle valve 33 whose opening degree is adjusted by a throttle actuator 32 such as a DC motor.
  • the throttle actuator 32 incorporates a throttle opening sensor for detecting the throttle opening.
  • an independent throttle may be provided for each cylinder.
  • the rotary valve 50 may also function as an independent throttle provided in each cylinder.
  • An exhaust pipe 34 is connected to the exhaust port 14.
  • a turbocharger 35 is provided that compresses the gas in the intake pipe 31 using the exhaust from the exhaust pipe 34.
  • the turbocharger 35 includes an intake air compressor 36 disposed on the upstream side of the throttle valve 33 in the intake pipe 31 and an exhaust turbine 37 disposed on the upstream side of the three-way catalyst 39 that is an exhaust purification catalyst in the exhaust pipe 34. And.
  • the intake compressor 36 and the exhaust turbine 37 are connected by a rotating shaft 38. When the exhaust turbine 37 is rotated by the exhaust gas flowing in the exhaust pipe 34, the intake compressor 36 is rotated along with the rotation. At this time, the intake air is compressed into the intake pipe 31 by the centrifugal force generated by the rotation of the intake compressor 36.
  • the turbocharger 35 may not be used.
  • An air-fuel ratio sensor 40 is provided between the exhaust turbine 37 and the three-way catalyst 39.
  • the intake pipe 31 is provided with an intercooler 41 on the downstream side of the intake compressor 36.
  • the gas compressed (supercharged) by the turbocharger 35 (intake compressor 36) is cooled by the intercooler 41 and sent to the downstream side.
  • the intake pipe 31 is provided with an air cleaner 42 and an air flow meter 43 for detecting the intake air amount upstream of the intake compressor 36.
  • An EGR pipe 44 is provided so as to connect the downstream side of the three-way catalyst 39 of the exhaust pipe 34 and the downstream side of the air flow meter 43 of the intake pipe 31. A part of the exhaust gas in the exhaust pipe 34 can be introduced into the intake air by the EGR pipe 44, and a system called LPL-EGR (Low Pressure Loop Exhaust Gas Recirculation) is configured.
  • the EGR pipe 44 is provided with an EGR cooler 45 that cools the exhaust gas in the EGR pipe 44 and an EGR control valve 46.
  • the EGR control valve 46 is provided so as to be able to control the EGR rate (exhaust gas mixing ratio in the pre-combustion gas sucked into the combustion chamber 12) by the opening degree.
  • the EGR system may be HPL-EGR instead of LPL-EGR, or may not use the EGR system. Further, either the EGR cooler 45 or the EGR control valve 46 may be upstream and which may be downstream.
  • the engine 10 includes a crank angle sensor 47 that outputs a rectangular crank angle signal for each predetermined crank (for example, 30 ° CA cycle) as the engine 10 rotates, and a knock sensor that detects occurrence of knock in the engine 10. 48 is provided. Based on the detection of the crank angle sensor 47, the rotational speed NE of the engine 10 is calculated. An accelerator opening sensor 49 is provided for detecting the amount of accelerator depression by the driver (accelerator opening).
  • the engine control system includes an ECU 60.
  • the ECU 60 is mainly composed of a microcomputer including a CPU, a ROM, a RAM, and the like.
  • the ECU 60 calculates the operating status of the engine 10 based on outputs from various sensors such as the crank angle sensor 47. And according to the driving
  • the ECU 60 corresponds to a “control device”.
  • FIG. 3 is a schematic plan sectional view showing the combustion chamber 12 as viewed from the piston 11 side in the axial direction of the cylinder and showing the air flow in the combustion chamber 12.
  • the intake port 21 and the spark plug 16 are indicated by broken lines, and the airflow is indicated by arrows.
  • FIG. 4 is an enlarged view of the vicinity of the spark plug 16 (counter electrode 16a), and shows the airflow at the position of the spark plug 16.
  • the straight-ahead distance from the intake port 21 to the inner peripheral surface of the combustion chamber 12 is shorter than the distance from the intake port 21 toward the center position of the combustion chamber 12. Therefore, the airflow reaches the inner peripheral surface before the central position at the straight position from the air inlet 21. Then, the airflow that has arrived heads toward the center along the shape of the inner peripheral surface, and the airflows coming from both directions in the L2 direction collide with each other at the center position and return to the direction of the intake port 21. As a result, as shown in FIG. 3, at the center position, the air flow from the intake port 21 side to the exhaust port 13 side collides with the air flow returned to the inner peripheral surface.
  • FIG. 7 is a perspective view of the rotary valve 50
  • FIG. 6 is a cross-sectional view of the intake port 20 at a position where the rotary valve 50 is provided
  • FIG. It is a figure which shows an airflow.
  • the arrows in FIG. 7 indicate the airflow
  • the thickness of the arrow indicates the strength of the airflow
  • the thick arrow indicates a state where the airflow is stronger than the thin arrow.
  • the flow path cross section of the intake port 20 before bifurcating the rotary valve 50 has a rounded rectangular shape or an oval shape with a long L2 direction.
  • the rotary valve 50 is provided at a position before the intake port 20 branches into two forks. Further, at the position where the rotary valve 50 is provided, a part of the intake port 20 is enlarged in the vertical direction of the cylinder so that the rotary valve 50 can rotate.
  • the rotary valve 50 includes a shaft body 52 disposed in a direction extending in the L2 direction, and a valve body 53 supported by the shaft body 52, and the valve body 53 is pivoted about the shaft body 52.
  • the opening degree is adjusted by.
  • the valve body 53 has a notch 54 that extends in the direction perpendicular to the L1 direction (the circumferential direction of the valve body 53) at the center in the L2 direction, and depends on the rotational position of the valve body 53 in the intake port 20.
  • the in-port flow path is locally closed, limiting the air passage range within the intake port 20.
  • the position of the valve body 53 in the intake port 20 will be specifically described with reference to FIG.
  • all or substantially all of the valve body 53 is located outside the intake port 20, and the in-port flow path is in a fully open state.
  • the valve body 53 is moved into the intake port 20, and the in-port flow path is partially closed by the valve body 53. That is, the rotary valve 50 is in a partially open state by allowing the airflow to pass through the notch 54.
  • the air flow rate in the central portion in the L2 direction in the in-port flow path is greater than that on both sides.
  • the degree of drift of the airflow flowing into the cylinder is small
  • the degree of drift of the airflow flowing into the cylinder is large. The degree of drift indicates the intensity of drift (the magnitude of the bias).
  • FIG. 8 is a diagram of the combustion chamber 12 as viewed from the piston 11 side in the cylinder axial direction, and is a schematic cross-sectional view showing the air flow in the combustion chamber 12.
  • the intake port 21 and the spark plug 16 are indicated by broken lines, and the airflow is indicated by arrows.
  • the opening degree of the rotary valve 50 is adjusted so that the degree of drift is strong, that is, only the center position is open. That is, while the outside is not open and the outside airflow is weak, the airflow at the center position is strengthened, so that the airflow at the center side is relatively biased.
  • a strong airflow flows near the center of the intake port 20, and the airflow hits the valve head of the intake valve 22 so as to be further closer to the center side. Flows in.
  • the airflow on the central side which is the side close to each other in the two intake ports 21, is strengthened compared to the airflow on the outside thereof, thereby generating a drift.
  • the airflow that flows from the intake port 21 with a biased current has a relatively strong and faster speed of the airflow that travels straight through the central position than the other positions. Therefore, the airflow that travels through the central position reaches the inner peripheral surface of the combustion chamber 12 before the airflow at other positions. And the airflow which reached
  • FIG. 9 is a flowchart executed by the ECU 60, and this process is executed by the ECU 60 at a predetermined cycle.
  • FIG. 10 is a diagram showing the engine rotation speed, the load, and the degree of drift.
  • step S11 it is determined whether or not the engine 10 is in a starting state. For example, after the start of cranking associated with the start request of the engine 10, if the engine 10 is in a period from when the engine 10 starts to burn until the rotational speed NE of the engine 10 rises to a predetermined complete explosion speed, the start state It is determined that it is. It may be determined that the predetermined time elapses after the rotational speed NE of the engine 10 has increased to the complete explosion rotational speed. If it is determined that the engine is in the starting state, the process proceeds to step S14. If it is determined that the engine is not in the starting state, the process proceeds to step S12.
  • step S12 based on the detected value of the accelerator opening sensor 49 and the rotational speed NE of the engine 10, it is determined whether or not the engine is in an idle state. If it is determined that the accelerator opening is 0, the rotational speed NE is within the predetermined range, and the engine is in the idle state, the process proceeds to step S14. On the other hand, if it is not determined that the vehicle is in the idle state, the process proceeds to step S13.
  • step S13 it is determined whether or not the three-way catalyst 39 is warmed up early. Specifically, when the temperature of the three-way catalyst 39 estimated by a known method is lower than the activation temperature, it is determined that the three-way catalyst 39 is in a state of being warmed up early. When step S13 is affirmed (when the temperature of the three-way catalyst 39 is lower than the activation temperature), the process proceeds to step S14, and when negative, the process proceeds to step S15. Note that a sensor that detects the temperature of the three-way catalyst 39 may be provided, and the determination may be performed based on the detected temperature.
  • step S14 drift control is executed.
  • the opening of the rotary valve 50 is in a state where only the central portion is opened (FIG. 7C). In this state, the rotary actuator 51 is driven so as to execute the drift control, and the process is terminated.
  • step S15 it is determined whether the fuel ratio in the gas in the combustion chamber 12 is low. Specifically, it is determined whether the combustion chamber 12 is in a lean state or a state in which the EGR rate is higher than a predetermined value during combustion. If the operating condition of the engine 10 is a low fuel ratio, the process proceeds to step S17. If the fuel ratio is not low, the process proceeds to step S16.
  • step S16 it is determined whether or not the operating condition is likely to cause knock. Specifically, it is determined that there is a possibility that knocking may occur when the temperature in the combustion chamber 12 is high or when the compression ratio is high due to supercharging of the turbocharger 35. If it is determined in step S16 that the driving condition is likely to cause knock, the process proceeds to step S17. If it is determined that the driving condition is not likely to cause knock, the process is terminated.
  • step S17 the rotational speed NE of the engine 10 is acquired. Specifically, based on the crank angle signal detected by the crank angle sensor 47, the rotational speed NE of the engine 10 is calculated and obtained.
  • step S18 the engine load is acquired. Specifically, the engine load is calculated based on the accelerator opening detected by the accelerator opening sensor 49, and obtained.
  • step S19 it is determined whether the rotational speed NE and engine load acquired in step S17 and step S18 correspond to the non-operating region. Specifically, as shown in FIG. 10, when the rotational speed NE of the engine 10 is smaller than a predetermined value or when the engine load is smaller than a predetermined value, it is determined that the non-operating region is met. In this region, the drift control is not performed in order to suppress the power consumption due to the drift operation. If it is determined in step S19 that the region does not correspond to the non-operating region, the process is terminated. If it is determined that the region does not correspond to the non-operating region, the process proceeds to step S20.
  • step S20 it is determined whether the rotational speed NE and engine load acquired in step S17 and step S18 correspond to the priority area. Specifically, as shown in FIG. 10, when the rotational speed NE of the engine 10 is larger than a predetermined value or when the engine load is larger than a predetermined value, it is determined to fall within the priority area. In this region, drift control is not performed in order to give priority to output. If it is determined in step S20 that it corresponds to the priority area, the process is terminated, and if it is determined that it does not correspond to the priority area, the process proceeds to step S21.
  • step S21 the degree of drift is set based on the rotational speed NE and engine load acquired in step S17 and step S18. Specifically, as shown in FIG. 10, the greater the rotational speed NE of the engine 10, the greater the degree of drift. As the rotational speed NE of the engine 10 is higher, the in-cylinder flow velocity is higher and turbulence is more likely to occur. In such a case, the degree of drift is increased. Further, the smaller the engine load, the greater the degree of drift. When the load is low, the amount of air in the cylinder decreases. In this case, the necessary air flow rate can be ensured by increasing the degree of drift.
  • step S22 drift control is executed based on the drift degree set in step S21.
  • the drift control is executed, and the process ends.
  • step S11, step S12, step S13, step S15, step S16, step S19, and step S20 correspond to a “drift determination unit”.
  • Steps S14 and S22 correspond to a “control unit”.
  • Step S21 corresponds to a “drift setting unit”. Steps S11 to S13 are advanced to step S14 if any one of them is satisfied, but if at least two of steps S11 to S13 are satisfied, the flow proceeds to step S14 and drift may be performed. .
  • FIG. 11 is a flowchart for feedback control, and this process is performed by the ECU 60 at a predetermined cycle.
  • the control according to this flowchart corresponds to “feedback control by the control unit”.
  • step S51 it is determined whether or not drifting is being executed. If the drift is not executed, the process is terminated. On the other hand, if the drift is being executed, it is detected in step S52 whether an ignition abnormality has occurred in the combustion of the engine 10. Specifically, when misfire or the like due to an abnormal ignition occurs, an abnormality occurs in the rotational speed NE of the engine 10 detected by the crank angle sensor 47, and therefore an abnormal ignition occurs based on the value detected by the crank angle sensor 47. It is determined whether or not. If it is determined that an ignition abnormality has occurred, the process proceeds to step S54. Note that step S52 corresponds to a “parameter acquisition unit”, and the rotational speed NE of the engine 10 corresponds to a “parameter”. In step S52, the detection result of the air-fuel ratio sensor 40 may be used to determine that the ignition abnormality has occurred when there is unburned fuel, that is, when combustion failure has occurred.
  • step S53 If it is determined in step S52 that no ignition abnormality has occurred, it is determined in step S53 whether knock has occurred. Specifically, it is determined whether or not the knock sensor 48 detects the occurrence of the knock. If the occurrence of knocking is detected, the process proceeds to step S54. On the other hand, if the occurrence of knocking is not detected, the process is terminated.
  • step S54 the drift degree is changed so as to increase the drift degree.
  • step S55 the drift control is executed based on the drift degree set in step S54. By driving the rotary actuator 51 so that the opening degree of the rotary valve 50 matches the degree of drift, the drift control is executed, and the process ends.
  • FIGS. 12 is a diagram showing the relationship between the in-cylinder flow and the arc maintenance time
  • FIG. 13 is a diagram showing the relationship between the arc maintenance time and the ignition timing
  • FIG. 14 shows the relationship between the in-cylinder flow and the main combustion period
  • FIG. 15 is a diagram showing the relationship between the ignition timing and the main combustion period.
  • the arc maintenance time is a time during which the arc discharge A can be maintained at a desired discharge distance.
  • the conventional variation between combustion cycles is a variation between combustion cycles when drift is not performed, and is indicated by a broken line.
  • the arc maintenance time is shortened. As shown in FIG. 13, when the arc maintenance time is short, the time (ignition timing) required to ignite the fuel from the arc discharge A increases. On the other hand, when the arc maintenance time is long as in the present embodiment, the time taken to ignite the fuel from the arc discharge A is shortened and the variation is reduced. Therefore, it can contribute to the stability of ignition.
  • in-cylinder flow is weakened to ensure arc maintenance time.
  • the main combustion period becomes longer or the variation becomes larger.
  • the combustion is promoted, so that the main combustion time is shortened and variations in the time required for the main combustion can be suppressed.
  • the ignition timing is delayed, and the main combustion period has a large variation.
  • the time required for ignition is shortened (ignition timing is advanced), and the combustion is promoted by stable ignition and strong in-cylinder flow.
  • the time required for main combustion is shortened.
  • the ignition is stable and the time required for the main combustion can be shortened, an effect under various operating conditions is produced. For example, even if the driving condition may cause knocking, knocking is less likely to occur even if the ignition timing is advanced. Therefore, it is possible to improve fuel efficiency under driving conditions where knocking may occur. Further, even when the lean combustion or the EGR rate is high, the combustion can be improved. Therefore, the lean limit and the limit EGR rate can be increased, and fuel consumption can be improved. Even in the start state and the idle state, the time required for the main combustion is small and the combustion is stabilized, so that the generation of unburned HC can be suppressed.
  • the ignition timing can be retarded as compared with the prior art by stabilizing the ignition. Therefore, the temperature of the exhaust can be raised, and the activity of the three-way catalyst 39 can be accelerated.
  • the rotary valve 50 is controlled so that a drift may be produced. In this way, by generating a drift in which the airflow at the position of the ignition plug 16 in the combustion chamber 12 is strengthened, the airflow at the position of the ignition plug 16 first hits the inner peripheral wall of the combustion chamber 12 and follows its shape. Since it goes to the outside, the occurrence of turbulent flow at the position of the spark plug 16 is suppressed.
  • the ignitability can be ensured while ensuring the airflow necessary for fuel promotion.
  • the ignition timing can be advanced even if there is a possibility that knocking may occur by strengthening the flow in the cylinder and drifting to ensure ignitability.
  • the output of the internal combustion engine is suppressed by suppressing the drift. Can be prioritized.
  • combustion is likely to become unstable due to a small amount of air or a delayed ignition timing.
  • the ignitability can be improved by causing the engine 10 to drift even when the engine 10 is in an idle state, a starting state, or a state in which the three-way catalyst 39 is warmed up early.
  • the turbulence of the air flow in the combustion chamber 12 is suitably suppressed by opening the central portion of the center portion and both side portions in a plan view of the cylinder more than the both side portions to be in a partially open state. it can.
  • airflow reinforcement can be implemented while suppressing the generation of turbulent airflow in the vicinity of the spark plug 16.
  • FIG. 16 is a perspective view of the rotary valve 50
  • FIG. 17 is a cross-sectional view of the flow path showing a state where the intake port 20 is opened and closed by the rotary valve 50.
  • hatched portions indicate regions where the valve body 53 closes the intake port 20.
  • FIG. 18 shows the intake port 20 in a state in which the intake port 20 is partially open and a circulating air flow F2 is formed in the intake port 20 when the intake port 20 is viewed in a cylinder plan view (schematic closed sectional view of the intake port 20).
  • FIG. 18 shows the intake port 20 in a state in which the intake port 20 is partially open and a circulating air flow F2 is formed in the intake port 20 when the intake port 20 is viewed in a cylinder plan view (schematic closed sectional view of the intake port 20).
  • FIG. 18 shows the flow of an airflow.
  • an arrow indicates an air flow
  • the thickness of the arrow indicates the speed of the air flow
  • the thick arrow indicates a state where the
  • the airflow in the intake port is mainly restricted in the vertical direction. Therefore, even if a quick air flow is created by the tumble control valve, the air currents collide with each other in the intake port or collide with the wall of the intake port, turbulence occurs in the intake port, and the fast air flow is attenuated. It was spreading.
  • a partition wall reaching the vicinity of the intake port is provided in the intake port of Japanese Patent No. 4349156.
  • the partition wall is provided to the vicinity of the intake port, the partition wall is provided in the cylinder head, particularly to the passage after bifurcating, and the cylinder head needs to be modified. Therefore, the mountability is deteriorated.
  • the notch 54 is provided in the center of the rotary valve 50 to increase the drift of the central portion, thereby suppressing the turbulence of the air flow in the combustion chamber 12.
  • the rotary valve 50 is further improved in order to suppress turbulent flow in the intake port 20.
  • a rotary valve 50 according to the second embodiment will be described with reference to FIGS. 16 and 17.
  • the rotary valve 50 includes a shaft body 52 disposed in a direction extending in the L2 direction, and a valve body 53 supported by the shaft body 52, and the valve body 53 is pivoted about the shaft body 52. The opening degree is adjusted by.
  • the valve element 53 has a size corresponding to the entire area in the L2 direction, and reaches the port wall surface 24 in the L2 direction.
  • the valve body 53 has a shape obtained by cutting off a part of the circumferential surface of the cylinder.
  • the valve body 53a has a width dimension and a circumferential dimension that allow the intake port 20 to be fully closed, and a notch.
  • a shielding part 53 b provided on the side of the part 54.
  • the valve body 53 is provided with a notch 54 extending in the circumferential direction of the valve body 53 at the center in the L2 direction.
  • the cutout portion 54 has a semicircular portion 54a having a semicircular shape at one end, and an equal width portion 54b extending to be equal to the semicircular portion 54a so as to be continuous with the semicircular portion 54a.
  • the end portion of the valve body 53 from 54b is a widened portion 54c in which the equal width portion 54b widens to the dimension of the valve body 53 in the L2 direction.
  • the equal width portion 54b has a dimension in the circumferential direction that opens the entire length in the vertical direction (direction intersecting the direction in which the intake ports 21 are arranged) in a partially open state.
  • the ratio of the dimension in the L2 direction of the notch 54 and the dimension in the L2 direction of the shielding part 53b (the width dimension from the port wall surface 24 to the notch 54), that is, the ratio of a: b in FIG.
  • the desired circulation air flow F2 is formed in the intake port 20 while securing a necessary flow rate from 54.
  • the ratio of a: b is 0.85: 1 or less.
  • the dimension of the notch 54 in the L2 direction is, for example, one third or less of the dimension of the intake port 20 in the L2 direction.
  • the position of the valve body in the intake port 20 will be specifically described with reference to FIG.
  • all or substantially all of the valve body 53 is located outside the intake port 20, and the in-port flow path is in a fully open state.
  • the valve body 53 is moved into the intake port 20, and the in-port flow path is partially closed by the valve body 53.
  • a partially open state in which a circulating air flow F2 is formed in the intake port 20 is established.
  • the states shown in FIGS. 17C to 17E are states in which the drift control is performed in the first embodiment, and the state of FIG. 17D has a stronger drift degree than the state of FIG. 17C.
  • the degree of drift is stronger in the state of FIG. 17E than in FIG.
  • the central portion is formed by the equal width portion 54b.
  • the entire length in the vertical direction is open.
  • the shielding portion 53b extends from the notch portion 54 to the port wall surface 24, the intake passage through which the airflow can pass is narrowed toward the center side, and the airflow is accelerated at the center side.
  • the flow path resistance due to the narrowing of the opening in the notch 54 becomes very large. Therefore, in order to reduce the flow path resistance as much as possible, the end portion of the cutout portion 54 is a semicircular semicircular portion 54a. Thereby, generation
  • the flow velocity of the central airflow F1 that has passed through the notch 54 is also increased, and the central airflow F1 is generated in the intake port 20. It is the fastest.
  • the region A1 on the downstream side of the shielding part 53b an air flow from the region A1 to the center side is generated so as to be drawn into this fast airflow.
  • a negative pressure is generated in which the atmospheric pressure is lower than the surroundings.
  • the magnitude of the relative negative pressure is determined by the speed at the position where the central airflow F1 blows out from the notch 54, and the speed of the central airflow F1 is the amount of air passing through the notch 54. And the opening area.
  • the airflow flowing downstream from the shielding part 53b flows backward by being drawn into the negative pressure in the region A1.
  • an elliptical circulating air flow F ⁇ b> 2 is formed along the port wall surface 24. That is, the side area on the downstream side of the shielding portion 53b is a circulation area where the circulation airflow F2 is formed. Note that the downstream air flow F2 is determined depending on the relative magnitude of the negative pressure.
  • the elliptical circulation airflow F2 has a length c in the major axis direction to the branch passage 25 that branches toward each intake port 21 provided in the intake port 20, and the circulation airflow F2 is It is more desirable to have a length c in the long axis direction up to the vicinity of the intake valve 22 that closes the intake port 21. Further, since the circulating airflow F2 is formed, the airflow in the side region flows back along the port wall surface 24 and returns to the region A1, and therefore, the region A2 on the side of the intake port 21 enters the combustion chamber 12. Airflow becomes difficult to flow in. Therefore, the airflow at the side in the combustion chamber 12 becomes weaker than that at the center position.
  • turbulence of the air flow in the lateral regions on both sides of the notch 54 in the intake port 20 can be suppressed, and diffusion and attenuation of the central air flow F1 can be suppressed. Can be suppressed.
  • the airflow in the side region is not the entire airflow reaching the vicinity of the intake valve 22 and returning to the region A1, but the airflow returning from the middle is larger. The airflow reaching the vicinity of the intake valve 22 also flows backward toward the area A1, thereby forming a circulating airflow F2 as a whole.
  • the circulating air flow F2 may be split due to a minute disturbance. If the ratio of the length d in the minor axis direction to the length c in the major axis direction of the elliptical circulating air flow F2 exceeds a predetermined ratio, there is a risk of splitting due to minute disturbance. Specifically, when the length d in the minor axis direction is smaller than one third with respect to the length c in the major axis direction of the circulating air flow F2, there is a possibility of splitting due to minute disturbance.
  • the length d in the minor axis direction is the length from the port wall surface 24 to the central region through which the central airflow F1 flowing into each intake port 21 passes, and the length c in the major axis direction is the central airflow. This is the length from the area A1 on the side of the blowing position of F1 to the vicinity of the intake valve 22 (before the area A2).
  • the length D in the L2 direction from the port wall surface 24 of the shielding portion 53b to the cutout portion 54 is set so that the length d in the minor axis direction is 1/3 or more of the length c in the major axis direction of the circulating air flow F2.
  • a width dimension is defined.
  • the width dimension of the shielding part 53b is set to a predetermined size.
  • the length d in the minor axis direction of the circulating air flow F2 is determined. Therefore, the length d in the minor axis direction is more than one third of the length c in the major axis direction based on the assumed length c in the major axis direction of the circulating airflow F2 from the shape of the intake port 20.
  • the length d in the minor axis direction is assumed. Based on the assumed length d in the minor axis direction, the width dimension in the L2 direction from the port wall surface 24 of the shielding part 53b to the notch part 54 is determined.
  • the intake passage is restricted to the center side by the shielding portion 53b of the valve body 53.
  • the flow velocity of the central airflow F1 that has passed through the notch 54 is increased.
  • a negative pressure is generated in the region A1 in which the atmospheric pressure is lower than the surroundings.
  • a circulating air flow F2 is formed in the lateral region so as to be drawn into this negative pressure.
  • the width dimension of the shielding part 53b is determined so that the circulating air flow F2 is in a stable state, the circulating air flow F2 in the side region is stabilized without being divided. For this reason, the turbulent flow in the lateral region does not attenuate and diffuse the central airflow F1 and can generate a drift in the combustion chamber 12 with an enhanced central position.
  • the notch portion 54 has a uniform width portion 54b having a vertical dimension that opens the entire length of the intake port 20 in the vertical direction (direction intersecting the alignment direction), thereby rotating the rotary valve while increasing the drift.
  • the opening position of 50 is only the central portion. Therefore, it is easy to maintain the fast central airflow F1 in the central portion and the circulating airflow F2 on both sides while increasing the drift.
  • the opening shape is a semicircular shape. Therefore, the flow resistance when the air on the upstream side of the rotary valve 50 flows into the notch 54 can be reduced, and the turbulence of the air flow due to the flow resistance can be suppressed.
  • the intake passage is throttled to the center side by the shielding portion 53b of the valve body 53, and the airflow is increased at the center side.
  • a negative pressure is generated in the region A1 inside the shielding portion 53b and the port wall surface 24 on the downstream side of the shielding portion 53b.
  • the airflow flows backward along the port wall surface 24 toward the region A1 where the negative pressure is generated, and the circulating airflow F2 is generated. It is formed.
  • the circulating air flow F2 By forming the circulating air flow F2, turbulence of the air flow in the lateral regions on both sides of the notch 54 can be suppressed, and the air flow flowing into the combustion chamber 12 becomes a desired state.
  • the side regions on both sides of the notch 54 are vertically long along the port wall surface 24, and the length d in the short axis direction is 1/3 or more of the length c in the long axis direction.
  • the cutout portion 54 of the valve body 53 requires a size for securing a necessary amount of air.
  • the ratio of the length d in the minor axis direction to the length c in the major axis direction of the elliptical circulation air flow F2 is from 1: 3. May become unstable, become unstable due to minute disturbances, and split. In consideration of this point, it is desirable to adjust the width dimension from the port wall surface 24 to the cutout portion 54 of the shielding portion 53b.
  • the circulating air flow F ⁇ b> 2 in the lateral regions on both sides of the notch 54 has an elliptical shape because the air flow along the central high-speed air flow F ⁇ b> 1 returns to the valve body 53 side along the port wall surface 24.
  • the width dimension from the port wall surface 24 to the notch 54 is adjusted so that the elliptical airflow reaches the branch passage 25 that branches toward the air inlet 21. For this reason, the circulating air flow F2 is stabilized and turbulence of the air flow can be suppressed.
  • FIGS. 19-22 show the intake port 20 in a cylinder plan view (schematic closed sectional view of the intake port 20), with the intake port 20 in a partially open state and a rectifying plate 55 provided, and a circulating air flow F2 in the intake port 20. It is a figure which shows the flow of the airflow of the intake port 20 in the state which formed.
  • an arrow indicates an air current
  • an arrow thickness indicates the speed of the air current
  • a thick arrow indicates a state where the air current is faster than a thin arrow.
  • FIG. 20 is a channel cross-sectional view showing a state in which the intake port 20 is opened and closed by the rotary valve 50, and a rectifying plate 55 is provided on the downstream side of the valve body 53.
  • hatched portions indicate regions where the valve body 53 closes the intake port 20.
  • FIG. 21 is a perspective view of a state in which the rectifying plate 55 is provided integrally with the mounting plate 57.
  • FIG. 22 is a view showing a modification of the rectifying plate 55.
  • the rotary valve 50 is attached to the cylinder head 26 and includes a body 27 having an air passage 27a and a valve body 53 provided in the air passage 27a. That is, the rotary valve 50 is an assembly of the body 27 with the air passage 27a provided therein, the valve body 53, the shaft body 52, and the like, and can be attached to the existing cylinder head 26.
  • the intake port 20 includes a head passage 26 a provided in the cylinder head 26 and an air passage 27 a and is connected to the intake pipe 31.
  • the mountability is improved.
  • the length c in the long axis direction of the circulating air flow F2 that is, the region A1 on the side of the blowing position of the central air flow F1 is near the intake valve 22 (
  • the length to the front of the area A2 is increased, and the ratio of the length c in the major axis direction to the length d in the minor axis direction of the circulating air flow F2 is set within a predetermined range while ensuring a predetermined opening by the notch 54. It becomes difficult to do. Therefore, if the width dimension of the notch 54 is ensured, the circulating air flow F2 may be split.
  • a pair of rectifying plates 55 are provided in the head passage 26 a of the cylinder head 26.
  • the rectifying plate 55 extends from the upstream side toward the downstream side in the intake port 20 toward the downstream side of the valve body 53, and in the partially opened state, the end portion of the cutout portion 54 (the cutout portion 54 of the shielding portion 53b). It arrange
  • the rectifying plates 55 are parallel to each other, and the interval between the rectifying plates 55 is substantially the same as the dimension in the width direction of the notch portion 54.
  • the central airflow F1 can be prevented from diffusing and damped, and the rectifying plate 55 can be fastened at a high speed from the downstream end. Will blow out. And since the center side airflow F1 blows off from the downstream edge part of the baffle plate 55, the area
  • the length of the rectifying plate 55 in the L1 direction may be set so that the ratio of the length c in the major axis direction to the length d in the minor axis direction of the circulating airflow F2 can be within a predetermined range.
  • the rectifying plate 55 may be arranged not only in the head passage 26 a but also in the air passage 27 a to adjust the clearance between the rectifying plate 55 and the valve body 53.
  • the rectifying plate 55 is desirably provided from one wall surface in the vertical direction of the intake port 20 to the other wall surface.
  • the rectifying plate 55 extends from the wall surface on the side where the opening is formed (lower wall surface) to the other wall surface (upper wall surface) in the vertical direction of the intake port 20, and reaches the other wall surface. It does not have to be. That is, the vertical dimension of the rectifying plate 55 may be smaller than the vertical dimension of the flow path cross section of the intake port 20.
  • the rectifying plate 55 is provided with two upper and lower restricting portions 56 that restrict the airflow in the vertical direction (the direction orthogonal to the arrangement direction of the intake ports 21) in parallel with each other.
  • the vertical restriction 56 is provided in parallel with the vertical wall surface of the intake port 20. For example, as shown in FIGS. 17E and 17D, when the area of the opening formed by the notch 54 is very small, the opening is formed in the vertical direction of the intake ports 20 (perpendicular to the arrangement direction). The airflow that has passed through the notch 54 flows along the upper and lower wall surfaces of the intake port 20.
  • the vertical restriction part 56 partitions the current plate 55 in the vertical direction, so that the air current can be prevented from diffusing in the vertical direction.
  • the number of the upper and lower restriction units 56 may be one, or three or more.
  • the rectifying plate 55 is provided integrally with the mounting plate 57.
  • the mounting plate 57 is sandwiched between the cylinder head 26 and the body 27 and fixed, so that And 26 and the body 27.
  • An opening 57 a having the same size as or slightly larger than the flow path cross section of the intake port 20 passes through the mounting plate 57 in the plate thickness direction.
  • a rectifying plate 55 is provided over the hole edge in the vertical direction of the opening 57a.
  • the mounting plate 57 is sandwiched and fixed between the cylinder head 26 and the body 27, so that the rectifying plate 55 is disposed in the head passage 26 a of the cylinder head 26.
  • the rectifying plate 55 may be locked between the cylinder head 26 and the body 27 by other methods such as a locking claw.
  • the rectifying plate 55 can have other shapes as shown in FIG.
  • the rectifying plate 55 can have a blade cross-sectional shape. With such a shape, when the air passage range in the L2 direction in the intake port 20 is not limited by the valve body 53 (in the case shown in FIGS. 17A and 17B), the rectifying plate 55 has an air flow. Can be an obstacle to With the blade cross-sectional shape shown in FIG. 22A, the pressure loss of the rectifying plate 55 can be reduced.
  • the distance between the pair of rectifying plates 55 may be narrower on the downstream side than on the upstream side.
  • the rectifying plate 55 has an R shape.
  • the circulating airflow F2 returns along the port wall surface 24, when it hits the rectifying plate 55, it proceeds along the wall surface, so that it becomes easy to join the airflow along the central airflow F1. Therefore, the stability of the circulating air flow F2 can be improved.
  • the rotary valve 50 may be provided at a position away from the intake port 21 from the viewpoint of mountability.
  • the size (length c in the major axis direction) of the circulating air flow F2 from the upstream side to the downstream side increases, and the circulating air flow F2 is formed without being split. Becomes difficult. Therefore, in the partially open state, a pair of rectifying plates 55 extending from the upstream side toward the downstream side is provided at a position extending from the end portion of the notch portion 54 to the downstream side, and the downstream end portion of the rectifying plate 55 is It becomes the blowout position of the accelerated airflow.
  • the upstream position of the circulating air flow F2 is also lowered to the downstream end position of the rectifying plate 55, the size of the circulating air flow F2 from the upstream side to the downstream side can be reduced, and the stability of the circulating air flow F2 can be reduced. Can be improved.
  • the opening is formed along the wall surface of the intake port 20 in the vertical direction (direction perpendicular to the arrangement direction). It is not desirable that the airflow after passing through the cutout portion 54 is diffused in the vertical direction because it causes a decrease in the flow velocity. Therefore, the rectifying plate 55 is provided with a vertical restriction 56 that restricts the airflow in the vertical direction. This vertical restriction 56 partitions the current plate 55 in the vertical direction. Therefore, it is possible to suppress the airflow from diffusing in the vertical direction.
  • the rotary valve 50 Since the rotary valve 50 is provided outside the cylinder head 26, the distance from the rotary valve 50 to the intake port 21 is increased. Therefore, it is useful to provide a current plate 55. Further, since the rectifying plate 55 is locked between the cylinder head 26 and the body 27, the cylinder head 26 can be mounted without changing the design. Therefore, the mountability is improved.
  • the rectifying plate 55 is narrowed from the upstream side toward the downstream side, so that the airflow that has passed through the notch 54 is drawn to the central region. Further, when the circulating airflow F2 returns along the port wall surface 24, the airflow strikes the rectifying plate 55 and travels along the wall surface of the rectifying plate 55, so that the airflow directed toward the inlet 21 along the central airflow F1. It becomes easy to join. Therefore, the stability of the circulating air flow F2 can be improved.
  • the rotary valve 50 is assembled separately from the cylinder head 26, and the air passage in the body 27 attached to the cylinder head 26. It is desirable that the valve element 53 is arranged on the 27a.
  • the intake port 20 is preferably composed of a head passage 26a and an air passage 27a. In each embodiment, the rotary valve 50 may be provided in the cylinder head 26.
  • the rectifying plate 55 is separate from the cylinder head 26 and the rotary valve 50, but may be provided in the cylinder head 26 or the like in advance.
  • the rectifying plate 55 may be used not only when the rotary valve 50 is assembled, but also when the rotary valve 50 is provided in the cylinder head 26.
  • the airflow is adjusted by the rotary valve 50.
  • a pinball type valve body may be used as shown in FIG.
  • the circulating air flow F2 can be formed by adjusting the opening width.
  • the returned circulating airflow F2 collides with the pinball type valve body and travels along the wall surface of the valve body, thereby joining the airflow toward the intake port 21 along the central airflow F1. It becomes easy.
  • the on-off valve may have another configuration in addition to the rotary valve 50 and the pinball type valve body.
  • a butterfly valve whose valve rotates about a shaft body may be used, or as shown in FIG. 24 (b), a shutter valve may be used.
  • a louver type may be used as shown in FIG.
  • a valve body structure in which a central portion such as a hinge valve, a shutter valve, a poppet valve, a disk valve, or the like has a strong airflow may be used.
  • a compressed air introducing device 58 may be used as shown in FIG. Specifically, as shown in FIG. 25A, a compressed air introduction device 58 is provided on the cylinder peripheral wall portion, and the compressed air is introduced into the cylinder from the introduction device 58, so that a desired in-cylinder airflow is generated. It should be generated.
  • a compressed air introduction device 58 is provided in the intake port 20, and the compressed air is introduced into the intake port 20 from the introduction device 58, thereby generating a desired in-cylinder airflow. You may make it make it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

A combustion chamber (12) of an internal combustion engine (10) has a circular inner peripheral surface, and communicates with an intake port (20) via two intake openings (21) and with an exhaust port (14) via an exhaust opening (13). The internal combustion engine (10) is provided with: an ignition plug (16) disposed at the center of a ceiling portion covering the combustion chamber (12), and an airflow adjusting portion (50) for adjusting an airflow generated in the combustion chamber (12). This control device (60) for the internal combustion engine (10) is provided with: a drift current determination unit which determines that a drift current be generated by strengthening the airflow at the position of the ignition plug (16) compared to the airflow at other positions; and a control unit which causes the airflow adjusting portion (50) to generate a drift current if it is determined that a drift current be performed.

Description

内燃機関の制御装置及び吸気システムControl device and intake system for internal combustion engine 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年2月23日に出願された日本出願番号2018-031321号と、2018年8月8日に出願された日本出願番号2018-149776号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2018-031321 filed on Feb. 23, 2018 and Japanese Application No. 2018-149776 filed on Aug. 8, 2018. Is used.
 本開示は、内燃機関の制御装置及びこの制御装置を用いた吸気システムに関するものである。 The present disclosure relates to a control device for an internal combustion engine and an intake system using the control device.
 内燃機関では、燃焼促進のために、燃焼室内の気流を強くすることが行われている。燃焼室内の気流を強くすると、点火プラグでの点火時に、強い気流によってアーク放電が途切れてしまい、失火するおそれがある。そこで、特許文献1の技術では、気流が強い状態では、点火プラグが放電する際の放電エネルギを増加させることで、失火を抑制している。 In internal combustion engines, in order to promote combustion, the air flow in the combustion chamber is strengthened. If the airflow in the combustion chamber is increased, the arc discharge may be interrupted by the strong airflow when the ignition plug is ignited, and there is a risk of misfire. Therefore, in the technique of Patent Document 1, misfire is suppressed by increasing the discharge energy when the spark plug discharges in a state where the airflow is strong.
特開2010-116880号公報JP 2010-116880 A
 気流強化に起因する放電切れは、上記のとおり放電エネルギの増加により対処可能であるものの、気筒内での燃料着火性の悪化要因としては、上記以外に、点火プラグ周りに乱気流が発生することが考えられる。この点において、改善の余地があると考えられる。 Although the discharge interruption due to the air flow enhancement can be dealt with by increasing the discharge energy as described above, in addition to the above, turbulence may be generated around the spark plug as a cause of deterioration of the fuel ignitability in the cylinder. Conceivable. There is room for improvement in this regard.
 本開示は、上記課題に鑑みてなされたものであり、その主たる目的は、安定した着火を行うことができる内燃機関の制御装置を提供することにある。 The present disclosure has been made in view of the above problems, and a main object thereof is to provide a control device for an internal combustion engine capable of performing stable ignition.
 第1の手段では、内周面が円状をなしており、2つの吸気口を介して吸気ポートに連通されるとともに、排気口を介して排気ポートに連通される燃焼室と、前記燃焼室を覆う天井部の中央部に設けられる点火プラグと、前記燃焼室内に生じる気流を調整する気流調整部とを備える内燃機関に適用される制御装置であって、前記点火プラグの位置での気流を他の位置での気流に比べて強化して偏流を生じさせることを判定する偏流判定部と、前記偏流判定部によって偏流を行うと判定された場合に、前記気流調整部によって前記偏流を生じさせる制御部とを備える。 In the first means, the inner peripheral surface has a circular shape, communicated with the intake port via two intake ports, and communicated with the exhaust port via the exhaust port, and the combustion chamber A control device applied to an internal combustion engine comprising an ignition plug provided at a central portion of a ceiling portion covering the airflow and an airflow adjustment unit for adjusting an airflow generated in the combustion chamber, wherein the airflow at the position of the ignition plug is A drift determination unit that determines that the drift is generated by strengthening compared to the air flow at other positions, and the drift adjustment unit generates the drift when the drift determination unit determines that the drift is performed. And a control unit.
 2つの吸入口から燃焼室に向かって気流が流入すると、点火プラグの位置で乱流が発生する。この乱流によって、点火プラグのアーク放電が歪んだ状態で短絡が生じてしまい十分な放電距離を稼ぐことができなくなる。そのため、燃料への着火に支障が生じる。このような乱流の発生要因を分析したところ、吸入口から流入した気流が、燃焼室の内周壁面に当たりその形状に沿って中央部分に集まることで、点火プラグの近傍で、吸入側から排出側に向かう気流と、内周壁面に当って戻ってきた気流とがぶつかり合い乱流が生じている。 ¡When airflow flows into the combustion chamber from the two inlets, turbulence is generated at the position of the spark plug. This turbulent flow causes a short circuit in a state where the arc discharge of the spark plug is distorted, so that a sufficient discharge distance cannot be obtained. As a result, the fuel is ignited. As a result of analyzing the causes of such turbulent flow, the airflow flowing in from the suction port hits the inner peripheral wall surface of the combustion chamber and gathers in the center along the shape of the combustion chamber. A turbulent flow is generated by the collision of the airflow directed toward the side and the airflow returned to the inner peripheral wall surface.
 そこで、第1の手段では、吸気側から排気側への気流において、点火プラグの位置での気流を他の位置での気流に比べて強化して偏流を生じさせることを判定している。そして、偏流を生じさせると判定した場合には、偏流が生じさせられるように気流調整部を制御している。このように、燃焼室内の点火プラグの位置の気流が強化されている偏流を生じさせることで、点火プラグ位置の気流が最初に燃焼室の内周壁にあたり、その形状に沿って外側に向かうため、点火プラグの位置での乱流の発生が抑制される。そのため、着火性が不安定になりやすい状況であっても、点火プラグ近傍の気流が安定し、アーク放電の短絡を抑制することができ、着火性を確保できる。つまり、燃料促進に必要な気流を確保しつつ、着火性を確保できる。 Therefore, in the first means, in the airflow from the intake side to the exhaust side, it is determined that the airflow at the position of the spark plug is strengthened compared to the airflow at other positions to cause a drift. And when it determines with producing a drift, the airflow adjustment part is controlled so that a drift may be produced. In this way, by causing a drift in which the airflow at the position of the ignition plug in the combustion chamber is strengthened, the airflow at the position of the ignition plug first hits the inner peripheral wall of the combustion chamber and goes outward along its shape. Generation of turbulence at the spark plug position is suppressed. Therefore, even in a situation where the ignitability tends to become unstable, the airflow in the vicinity of the spark plug is stabilized, the short circuit of the arc discharge can be suppressed, and the ignitability can be ensured. That is, the ignitability can be ensured while ensuring the airflow necessary for fuel promotion.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態にかかる内燃機関の制御システムの概略構成図であり、 図2は、吸気ポート及び燃焼室の平面図であり、 図3は、燃焼室内の気流を説明するための図であり、 図4は、点火プラグ位置での気流を説明するための図であり、 図5は、ロータリ弁の斜視図であり、 図6は、ロータリ弁の断面図であり、 図7は、ロータリ弁の開閉状態と気流を示す図であり、 図8は、偏流させた状態での燃焼室内の気流を示す概略平断面図であり、 図9は、制御装置の実施するフローチャートであり、 図10は、エンジン回転速度及び負荷と偏流度合いを示す図であり、 図11は、フィードバック制御を実施するためのフローチャートであり、 図12は、筒内流動とアーク維持時間との関係を示す図であり、 図13は、アーク維持時間と着火時期との関係を示す図であり、 図14は、筒内流動と主燃焼期間との関係を示す図であり、 図15は、着火時期と主燃焼期間との関係を示す図であり、 図16は、第2実施形態でのロータリ弁の斜視図であり、 図17は、ロータリ弁の開閉状態を示す図であり、 図18は、吸気ポート内での気流を説明するための図であり、 図19は、第3実施形態でのガイド部を設けた状態での吸気ポート内での気流を説明するための図であり、 図20は、ガイド部及びロータリ弁の正面図であり、 図21は、整流板の斜視図であり、 図22は、ガイド部の変形例であり、 図23は、他の実施形態におけるピンボール式の弁体の概略図であり、 図24は、他の実施形態における気流調整部の概略図であり、 図25は、他の実施形態における気流調整部の概略図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a schematic configuration diagram of a control system for an internal combustion engine according to a first embodiment. FIG. 2 is a plan view of the intake port and the combustion chamber, FIG. 3 is a diagram for explaining the air flow in the combustion chamber. FIG. 4 is a diagram for explaining the air flow at the spark plug position. FIG. 5 is a perspective view of a rotary valve, FIG. 6 is a sectional view of the rotary valve, FIG. 7 is a diagram showing the open / close state of the rotary valve and the air flow, FIG. 8 is a schematic cross-sectional view showing the air flow in the combustion chamber in a state where the flow is uneven, FIG. 9 is a flowchart executed by the control device. FIG. 10 is a diagram showing the engine rotational speed, the load, and the degree of drift. FIG. 11 is a flowchart for performing feedback control. FIG. 12 is a diagram showing the relationship between in-cylinder flow and arc maintenance time, FIG. 13 is a diagram showing the relationship between arc maintenance time and ignition timing, FIG. 14 is a diagram showing the relationship between the in-cylinder flow and the main combustion period, FIG. 15 is a diagram showing the relationship between the ignition timing and the main combustion period, FIG. 16 is a perspective view of a rotary valve in the second embodiment, FIG. 17 is a diagram showing an open / close state of the rotary valve, FIG. 18 is a view for explaining the airflow in the intake port. FIG. 19 is a view for explaining the airflow in the intake port in a state where the guide portion is provided in the third embodiment. FIG. 20 is a front view of the guide portion and the rotary valve, FIG. 21 is a perspective view of a current plate, FIG. 22 shows a modified example of the guide portion. FIG. 23 is a schematic view of a pinball type valve element in another embodiment, FIG. 24 is a schematic view of an airflow adjusting unit in another embodiment, FIG. 25 is a schematic diagram of an airflow adjusting unit in another embodiment.
 <第1実施形態>
 以下、第1実施形態について、図1から図15を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一又は均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。
<First Embodiment>
Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 15. In the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals in the drawings, and the description of the same reference numerals is used.
 第1実施形態は、内燃機関である車載多気筒4サイクルガソリンエンジンを対象にエンジン制御システムを構築するものとしている。このエンジン制御システム全体、特に吸気システムの概略構成図を図1に示す。なお、以下の図においては、エンジン10が備える複数気筒のうちの1気筒のみを例示している。 In the first embodiment, an engine control system is constructed for an in-vehicle multi-cylinder four-cycle gasoline engine that is an internal combustion engine. FIG. 1 shows a schematic configuration diagram of the entire engine control system, particularly an intake system. In the following drawings, only one cylinder among a plurality of cylinders provided in the engine 10 is illustrated.
 エンジン10の各気筒の内部には、ピストン11が往復移動可能なように収容されている。そして、各気筒のピストン11の頂部側には、燃焼室12が設けられている。燃焼室12の内周面は、横断面形状が円状(真円状もしくは楕円状)となっている。燃焼室12は、2つの吸気口21を介して吸気ポート20に連通されるとともに、2つの排気口13を介して排気ポート14に連通されている。 The piston 11 is accommodated in each cylinder of the engine 10 so as to be able to reciprocate. A combustion chamber 12 is provided on the top side of the piston 11 of each cylinder. The inner peripheral surface of the combustion chamber 12 has a circular cross section (perfect circle or ellipse). The combustion chamber 12 communicates with the intake port 20 via the two intake ports 21 and communicates with the exhaust port 14 via the two exhaust ports 13.
 図2は、吸気ポート20と燃焼室12の平面図であって、燃焼室12の周辺部の構成を気筒の軸線方向においてシリンダヘッド側から見た図である。以下の説明において、図2に示すように、各気筒の平面視において、吸気側と排気側とが並ぶ方向をL1方向とし、L1方向と直交する方向をL2方向とする。また、L2に直交する方向で、気筒の軸線方向(ピストン11の往復方向)を上下方向とする。 FIG. 2 is a plan view of the intake port 20 and the combustion chamber 12, and is a view of the configuration of the periphery of the combustion chamber 12 as seen from the cylinder head side in the cylinder axial direction. In the following description, as shown in FIG. 2, in the plan view of each cylinder, the direction in which the intake side and the exhaust side are aligned is defined as the L1 direction, and the direction orthogonal to the L1 direction is defined as the L2 direction. Further, in the direction orthogonal to L2, the axial direction of the cylinder (the reciprocating direction of the piston 11) is the vertical direction.
 吸気ポート20は、インテークマニホールドとの接続部分より下流側で、燃焼室12の吸気口21までの間の吸気の通路である。吸気ポート20は、燃焼室12側で2股状に分かれており、2つに分かれた先端にそれぞれ吸気口21が設けられている。吸気口21は、L2方向に並んで隣り合うように設けられている。 The intake port 20 is an intake passage between the connection portion with the intake manifold and the intake port 21 of the combustion chamber 12 on the downstream side. The intake port 20 is divided into two forks on the combustion chamber 12 side, and an intake port 21 is provided at each of the two ends. The air inlets 21 are provided so as to be adjacent to each other in the L2 direction.
 排気口13は、吸気口21と同様に、L2方向に並んで隣り合うように2つ設けられている。2つの排気口13のL2方向の中心位置は、吸気口21のL2方向の中心位置を通りL1方向に延びる中心線CL上に設けられている。なお、排気口については、2つではなく1つであってもよい。その場合には、1つの排気口が中心線CL上に設けられているとよい。 Two exhaust ports 13 are provided so as to be adjacent to each other in the L2 direction, similarly to the intake port 21. The center positions of the two exhaust ports 13 in the L2 direction are provided on a center line CL that passes through the center position of the intake port 21 in the L2 direction and extends in the L1 direction. Note that the number of exhaust ports may be one instead of two. In that case, one exhaust port may be provided on the center line CL.
 図1を参照して、エンジン制御システムの説明を継続する。燃焼室12の天井部(シリンダヘッド)の中央部には、点火プラグ16が設けられている。点火プラグ16が設けられる天井部の中央部とは、その天井部の中心点を含む所定の範囲内であるとよい。具体的には、点火プラグ16は、燃焼室12の吸気側の中心位置(2つの吸気口21の中心位置)と排気側の中心位置(2つの排気口13の中心位置)とを繋ぐ線、つまり中心線CL上の位置に設けられている(図2参照)。なお、点火プラグ16は、天井部の中央部に設けられていればよく、より好ましくは、中央部の中心線CL上に設けられているとよい。そして、点火プラグ16は、点火コイル等よりなる点火装置17を通じて、所望とする点火時期に高電圧が印加される。点火プラグ16に対する高電圧の印加により、対向電極16a間にアーク放電Aが発生し(図5参照)、アーク放電Aのエネルギによって燃焼室12内の燃料が着火する。 Referring to FIG. 1, the description of the engine control system will be continued. A spark plug 16 is provided at the center of the ceiling (cylinder head) of the combustion chamber 12. The center part of the ceiling part where the spark plug 16 is provided may be within a predetermined range including the center point of the ceiling part. Specifically, the spark plug 16 is a line connecting the center position on the intake side of the combustion chamber 12 (center position of the two intake ports 21) and the center position on the exhaust side (center position of the two exhaust ports 13), That is, it is provided at a position on the center line CL (see FIG. 2). In addition, the spark plug 16 should just be provided in the center part of the ceiling part, More preferably, it is good to be provided on the centerline CL of the center part. A high voltage is applied to the ignition plug 16 at a desired ignition timing through an ignition device 17 including an ignition coil. By applying a high voltage to the spark plug 16, an arc discharge A is generated between the counter electrodes 16a (see FIG. 5), and the fuel in the combustion chamber 12 is ignited by the energy of the arc discharge A.
 エンジン10の各気筒の上部であって、吸気ポート20側には、燃焼室12内に燃料を直接供給する燃料噴射弁18が設けられている。燃料噴射弁18は、図2に示す中心線CL上に設けられている。燃料噴射弁18は、図示しない燃料配管を介して燃料タンクに接続されている。燃料タンク内の燃料は、各気筒の燃料噴射弁18に供給され、燃料噴射弁18から燃焼室12内に噴射される。 A fuel injection valve 18 that directly supplies fuel into the combustion chamber 12 is provided at the upper portion of each cylinder of the engine 10 and on the intake port 20 side. The fuel injection valve 18 is provided on the center line CL shown in FIG. The fuel injection valve 18 is connected to a fuel tank via a fuel pipe (not shown). The fuel in the fuel tank is supplied to the fuel injection valve 18 of each cylinder and injected from the fuel injection valve 18 into the combustion chamber 12.
 エンジン10の吸気ポート20と排気ポート14には、それぞれ吸気口21を塞ぐ吸気バルブ22と、排気口13を塞ぐ排気バルブ15とが設けられている。吸気バルブ22の開動作により吸気ポート20内の空気が燃焼室12内に流入し、排気バルブ15の開動作により燃焼室12内の排ガスが排気ポート14に排出される。吸気バルブ22及び排気バルブ15の開閉タイミング(バルブタイミング)は、可変バルブタイミング装置23によりそれぞれ可変制御される。 The intake port 20 and the exhaust port 14 of the engine 10 are respectively provided with an intake valve 22 that closes the intake port 21 and an exhaust valve 15 that closes the exhaust port 13. The air in the intake port 20 flows into the combustion chamber 12 by the opening operation of the intake valve 22, and the exhaust gas in the combustion chamber 12 is discharged to the exhaust port 14 by the opening operation of the exhaust valve 15. The opening / closing timing (valve timing) of the intake valve 22 and the exhaust valve 15 is variably controlled by the variable valve timing device 23.
 また、吸気ポート20には、燃焼室12内に生じる気流を調整するロータリ弁50が設けられている。ロータリ弁50では、ロータリアクチュエータ51によって弁体53の開度調節が行われる。ロータリアクチュエータ51には、ロータリ弁50の開度を検出するためのセンサが内蔵されている。なお、ロータリ弁50は、「気流調整部」「流路可変装置」「開閉弁」に相当する。 In addition, the intake port 20 is provided with a rotary valve 50 for adjusting the airflow generated in the combustion chamber 12. In the rotary valve 50, the opening degree of the valve body 53 is adjusted by the rotary actuator 51. The rotary actuator 51 incorporates a sensor for detecting the opening degree of the rotary valve 50. The rotary valve 50 corresponds to an “air flow adjusting unit”, “flow path varying device”, and “open / close valve”.
 吸気ポート20には、インテークマニホールド及びサージタンクを含む吸気管31が接続されている。吸気管31には、DCモータ等のスロットルアクチュエータ32によって開度調節されるスロットルバルブ33が設けられている。スロットルアクチュエータ32には、スロットル開度を検出するためのスロットル開度センサが内蔵されている。なお、スロットルバルブ33で吸気管31から流入する流量を調整するのではなく、各気筒に独立スロットルを設けてもよい。また、ロータリ弁50が、各気筒に設けられる独立スロットルの機能を兼ねていてもよい。 The intake port 20 is connected to an intake pipe 31 including an intake manifold and a surge tank. The intake pipe 31 is provided with a throttle valve 33 whose opening degree is adjusted by a throttle actuator 32 such as a DC motor. The throttle actuator 32 incorporates a throttle opening sensor for detecting the throttle opening. Instead of adjusting the flow rate flowing from the intake pipe 31 by the throttle valve 33, an independent throttle may be provided for each cylinder. The rotary valve 50 may also function as an independent throttle provided in each cylinder.
 排気ポート14には、排気管34が接続されている。そして、排気管34の排気を利用して吸気管31内の気体の圧縮を行うターボチャージャ35が設けられている。ターボチャージャ35には、吸気管31において、スロットルバルブ33の上流側に配置された吸気コンプレッサ36と、排気管34において、排気浄化触媒である三元触媒39の上流側に配置された排気タービン37とを備えている。吸気コンプレッサ36と排気タービン37とは回転軸38によって連結されている。排気管34内を流れる排気によって排気タービン37が回転されると、その回転に伴い吸気コンプレッサ36が回転される。このとき、吸気コンプレッサ36の回転により生じる遠心力によって吸気管31内に吸気が圧縮される。なお、ターボチャージャ35は用いなくてもよい。また、排気タービン37と三元触媒39との間には、空燃比センサ40が設けられている。 An exhaust pipe 34 is connected to the exhaust port 14. A turbocharger 35 is provided that compresses the gas in the intake pipe 31 using the exhaust from the exhaust pipe 34. The turbocharger 35 includes an intake air compressor 36 disposed on the upstream side of the throttle valve 33 in the intake pipe 31 and an exhaust turbine 37 disposed on the upstream side of the three-way catalyst 39 that is an exhaust purification catalyst in the exhaust pipe 34. And. The intake compressor 36 and the exhaust turbine 37 are connected by a rotating shaft 38. When the exhaust turbine 37 is rotated by the exhaust gas flowing in the exhaust pipe 34, the intake compressor 36 is rotated along with the rotation. At this time, the intake air is compressed into the intake pipe 31 by the centrifugal force generated by the rotation of the intake compressor 36. The turbocharger 35 may not be used. An air-fuel ratio sensor 40 is provided between the exhaust turbine 37 and the three-way catalyst 39.
 吸気管31には、吸気コンプレッサ36の下流側に、インタークーラ41が設けられている。ターボチャージャ35(吸気コンプレッサ36)にて圧縮された(過給された)気体は、インタークーラ41で冷却されて、その下流側に送られる。インタークーラ41で過給された気体が冷却されることで、気体の充填効率を高めることができる。また、吸気管31には、吸気コンプレッサ36の上流側に、エアクリーナ42と、吸入空気量を検出するエアフロメータ43が設けられている。 The intake pipe 31 is provided with an intercooler 41 on the downstream side of the intake compressor 36. The gas compressed (supercharged) by the turbocharger 35 (intake compressor 36) is cooled by the intercooler 41 and sent to the downstream side. By cooling the gas supercharged by the intercooler 41, the gas charging efficiency can be increased. The intake pipe 31 is provided with an air cleaner 42 and an air flow meter 43 for detecting the intake air amount upstream of the intake compressor 36.
 排気管34の三元触媒39の下流側と吸気管31のエアフロメータ43の下流側を繋ぐようにEGR管44が設けられている。EGR管44によって、排気管34内の排気の一部を吸気に導入可能となっており、LPL-EGR(Low Pressure Loop Exhaust Gas Recirculation)と呼ばれるシステムが構成されている。EGR管44には、EGR管44内の排気を冷却するEGRクーラ45と、EGR制御バルブ46が設けられている。EGR制御バルブ46は、その開度によってEGR率(燃焼室12内に吸入される燃焼前の気体における排気ガスの混入割合)を制御可能に設けられている。なお、EGRシステムは、LPL-EGRではなく、HPL-EGRであってもよいし、EGRシステムを用いなくてもよい。また、EGRクーラ45とEGR制御バルブ46とは、どちらが上流でどちらが下流であってもよい。 An EGR pipe 44 is provided so as to connect the downstream side of the three-way catalyst 39 of the exhaust pipe 34 and the downstream side of the air flow meter 43 of the intake pipe 31. A part of the exhaust gas in the exhaust pipe 34 can be introduced into the intake air by the EGR pipe 44, and a system called LPL-EGR (Low Pressure Loop Exhaust Gas Recirculation) is configured. The EGR pipe 44 is provided with an EGR cooler 45 that cools the exhaust gas in the EGR pipe 44 and an EGR control valve 46. The EGR control valve 46 is provided so as to be able to control the EGR rate (exhaust gas mixing ratio in the pre-combustion gas sucked into the combustion chamber 12) by the opening degree. The EGR system may be HPL-EGR instead of LPL-EGR, or may not use the EGR system. Further, either the EGR cooler 45 or the EGR control valve 46 may be upstream and which may be downstream.
 エンジン10には、エンジン10の回転に伴い所定クランク各毎(例えば30°CA周期)で矩形状のクランク角信号を出力するクランク角度センサ47と、エンジン10でのノックの発生を検出するノックセンサ48とが設けられている。クランク角度センサ47の検出に基づき、エンジン10の回転速度NEが算出される。そして、ドライバによるアクセルの踏み込み操作量(アクセル開度)を検出するアクセル開度センサ49が設けられている。 The engine 10 includes a crank angle sensor 47 that outputs a rectangular crank angle signal for each predetermined crank (for example, 30 ° CA cycle) as the engine 10 rotates, and a knock sensor that detects occurrence of knock in the engine 10. 48 is provided. Based on the detection of the crank angle sensor 47, the rotational speed NE of the engine 10 is calculated. An accelerator opening sensor 49 is provided for detecting the amount of accelerator depression by the driver (accelerator opening).
 また、本エンジン制御システムは、ECU60を備えている。ECU60は、周知のとおりCPU、ROM、RAM等からなるマイクロコンピュータを主体として構成されている。ECU60は、クランク角度センサ47等各種センサからの出力に基づいて、エンジン10の運転状況を算出する。そして、エンジン10の運転状況に応じて、点火装置17等各種装置を制御するための信号を出力する。なお、ECU60が「制御装置」に相当する。 The engine control system includes an ECU 60. As is well known, the ECU 60 is mainly composed of a microcomputer including a CPU, a ROM, a RAM, and the like. The ECU 60 calculates the operating status of the engine 10 based on outputs from various sensors such as the crank angle sensor 47. And according to the driving | running state of the engine 10, the signal for controlling various apparatuses, such as the ignition device 17, is output. The ECU 60 corresponds to a “control device”.
 次に、図3及び図4を用いて、ロータリ弁50によって気流の調整を行わない場合の気流の乱れについて説明する。図3は、燃焼室12を気筒の軸線方向においてピストン11側から見た図であって、燃焼室12の気流を示す概略平断面図である。図3では、吸気口21及び点火プラグ16を破線で示し、気流を矢印で示している。図4は、点火プラグ16(対向電極16a)の辺りの拡大図であって、点火プラグ16位置での気流を示している。 Next, the turbulence of the airflow when the airflow is not adjusted by the rotary valve 50 will be described with reference to FIGS. FIG. 3 is a schematic plan sectional view showing the combustion chamber 12 as viewed from the piston 11 side in the axial direction of the cylinder and showing the air flow in the combustion chamber 12. In FIG. 3, the intake port 21 and the spark plug 16 are indicated by broken lines, and the airflow is indicated by arrows. FIG. 4 is an enlarged view of the vicinity of the spark plug 16 (counter electrode 16a), and shows the airflow at the position of the spark plug 16.
 吸気口21から燃焼室12の内周面までの直進距離は、吸気口21から燃焼室12の中央位置に向かう距離よりも短い。そのため、吸気口21からの直進位置では、中央位置よりも先に気流が内周面に到達する。そして、到達した気流は、内周面の形状に沿って、中央側に向かい、中央位置でL2方向の両方向から来た気流が互いにぶつかって、吸気口21方向に戻ることになる。その結果、図3に示すように、中央位置では、吸気口21側から排気口13側に向かう気流と、内周面に当って戻ってきた気流とが衝突することになる。 The straight-ahead distance from the intake port 21 to the inner peripheral surface of the combustion chamber 12 is shorter than the distance from the intake port 21 toward the center position of the combustion chamber 12. Therefore, the airflow reaches the inner peripheral surface before the central position at the straight position from the air inlet 21. Then, the airflow that has arrived heads toward the center along the shape of the inner peripheral surface, and the airflows coming from both directions in the L2 direction collide with each other at the center position and return to the direction of the intake port 21. As a result, as shown in FIG. 3, at the center position, the air flow from the intake port 21 side to the exhaust port 13 side collides with the air flow returned to the inner peripheral surface.
 中央位置で気流同士が衝突すると、図4に示すように点火プラグ16の近傍で乱流が発生する。乱流が発生すると、点火プラグ16の対向電極16a間で生じるアーク放電Aが、二点鎖線で示すような、整った弧状にならず、実線のように歪んでしまう。アーク放電Aが歪んだ結果、部分的にアーク放電A間の距離が短くなり、そこが短絡して、破線に示すようにアーク放電Aの放電距離が短くなる。その結果、アーク放電Aの着火に必要な放電距離を確保することが困難になり、燃料への着火に支障が生じる。 When airflows collide at the central position, turbulent flow is generated in the vicinity of the spark plug 16 as shown in FIG. When the turbulent flow occurs, the arc discharge A generated between the counter electrodes 16a of the spark plug 16 does not become a regular arc shape as shown by a two-dot chain line, but is distorted as a solid line. As a result of the arc discharge A being distorted, the distance between the arc discharges A is partially shortened, short-circuited there, and the discharge distance of the arc discharge A is shortened as shown by the broken line. As a result, it becomes difficult to secure a discharge distance necessary for the ignition of the arc discharge A, and the ignition of the fuel is hindered.
 そこで、本実施形態では、吸気側から排気側の気流において、点火プラグ16の位置(中央位置)での気流が、他の位置での気流に比べて強化されている偏流を生じさせる構成を有している。そのための構成の一例であるロータリ弁50について、図2及び図5~図7を用いて説明する。図5は、ロータリ弁50の斜視図であって、図6は、吸気ポート20のロータリ弁50が設けられている位置での断面図であって、図7は、ロータリ弁50の開閉状態と気流を示す図である。図7中の矢印は気流を示し、矢印の太さは気流の強さを示し、太い矢印は細い矢印よりも気流が強い状態を示している。 Therefore, in the present embodiment, in the air flow from the intake side to the exhaust side, the air flow at the position (center position) of the spark plug 16 generates a biased current that is strengthened compared to the air flow at other positions. doing. A rotary valve 50 as an example of the configuration for that purpose will be described with reference to FIGS. 2 and 5 to 7. 5 is a perspective view of the rotary valve 50, FIG. 6 is a cross-sectional view of the intake port 20 at a position where the rotary valve 50 is provided, and FIG. It is a figure which shows an airflow. The arrows in FIG. 7 indicate the airflow, the thickness of the arrow indicates the strength of the airflow, and the thick arrow indicates a state where the airflow is stronger than the thin arrow.
 ロータリ弁50の2股に分岐する前の吸気ポート20の流路断面は、L2方向が長い角丸長方形状又は長円形状をしている。ロータリ弁50は、吸気ポート20が2股に分岐する前の位置に設けられている。また、ロータリ弁50の設けられている位置では、ロータリ弁50が回転可能なように、吸気ポート20の一部を気筒の上下方向に拡大させている。 The flow path cross section of the intake port 20 before bifurcating the rotary valve 50 has a rounded rectangular shape or an oval shape with a long L2 direction. The rotary valve 50 is provided at a position before the intake port 20 branches into two forks. Further, at the position where the rotary valve 50 is provided, a part of the intake port 20 is enlarged in the vertical direction of the cylinder so that the rotary valve 50 can rotate.
 ロータリ弁50は、L2方向に延びる向きで配置された軸体52と、軸体52に支持された弁体53とを有しており、軸体52を軸心とする弁体53の回動により開度調整されるようになっている。弁体53は、L2方向の中央部に、L1方向に直交する方向(弁体53の周方向)に延びる切欠部54を有しており、吸気ポート20内における弁体53の回動位置により、ポート内流路が局所的に閉鎖され、吸気ポート20内での空気通過範囲を制限する。 The rotary valve 50 includes a shaft body 52 disposed in a direction extending in the L2 direction, and a valve body 53 supported by the shaft body 52, and the valve body 53 is pivoted about the shaft body 52. The opening degree is adjusted by. The valve body 53 has a notch 54 that extends in the direction perpendicular to the L1 direction (the circumferential direction of the valve body 53) at the center in the L2 direction, and depends on the rotational position of the valve body 53 in the intake port 20. The in-port flow path is locally closed, limiting the air passage range within the intake port 20.
 吸気ポート20内における弁体53の位置を図7により具体的に説明する。図7(a)に示す状態では、弁体53の全て又は略全ての部分が吸気ポート20外に位置しており、ポート内流路は全面開放された状態となっている。これに対し、図7(b),(c)に示す状態では、弁体53が吸気ポート20内に移動しており、ポート内流路が弁体53により部分的に閉鎖されている。つまり、切欠部54を気流が通過する状態とすることで、ロータリ弁50を部分開放状態としている。この状態では、ポート内流路においてL2方向の中央部の空気流量がその両側に比べて多くなる。図7(b)の状態では、筒内流入する気流の偏流度合いが小さいのに対し、図7(c)の状態では、筒内流入する気流の偏流度合いが大きくなっている。なお、偏流度合いとは、偏流の強さ(偏りの大きさ)を示している。 The position of the valve body 53 in the intake port 20 will be specifically described with reference to FIG. In the state shown in FIG. 7A, all or substantially all of the valve body 53 is located outside the intake port 20, and the in-port flow path is in a fully open state. In contrast, in the state shown in FIGS. 7B and 7C, the valve body 53 is moved into the intake port 20, and the in-port flow path is partially closed by the valve body 53. That is, the rotary valve 50 is in a partially open state by allowing the airflow to pass through the notch 54. In this state, the air flow rate in the central portion in the L2 direction in the in-port flow path is greater than that on both sides. In the state of FIG. 7B, the degree of drift of the airflow flowing into the cylinder is small, whereas in the state of FIG. 7C, the degree of drift of the airflow flowing into the cylinder is large. The degree of drift indicates the intensity of drift (the magnitude of the bias).
 このように、偏流度合いを強くして、タンブル流を発生させた場合の燃焼室12内の気流の流れを説明する。図8は、燃焼室12を気筒の軸線方向においてピストン11側から見た図であって、燃焼室12の気流を示す概略平断面図である。なお、図8では、吸気口21及び点火プラグ16を破線で示し、気流を矢印で示している。 In this way, the flow of the air flow in the combustion chamber 12 in the case where the tumble flow is generated by increasing the degree of drift is described. FIG. 8 is a diagram of the combustion chamber 12 as viewed from the piston 11 side in the cylinder axial direction, and is a schematic cross-sectional view showing the air flow in the combustion chamber 12. In FIG. 8, the intake port 21 and the spark plug 16 are indicated by broken lines, and the airflow is indicated by arrows.
 ロータリ弁50の開度を調整して、偏流度合いが強い状態、つまり中央位置のみが開口している状態とする。つまり、外側が開口しておらず外側の気流が弱い状態となる一方で、中央位置での気流を強くすることで、相対的に中央側の気流が強くなるように偏流をしている。この状態で、2つの吸気口21が開放されると、吸気ポート20の中央付近に強い気流が流れ、その気流が吸気バルブ22のバルブヘッドにあたりさらに中央側に寄せられるようにして吸気口21から流れ込む。そして、燃焼室12内で、2つの吸気口21において互いに近接する側となる中央側の気流をその外側の気流に比べて強化して偏流を生じさせる。 The opening degree of the rotary valve 50 is adjusted so that the degree of drift is strong, that is, only the center position is open. That is, while the outside is not open and the outside airflow is weak, the airflow at the center position is strengthened, so that the airflow at the center side is relatively biased. In this state, when the two intake ports 21 are opened, a strong airflow flows near the center of the intake port 20, and the airflow hits the valve head of the intake valve 22 so as to be further closer to the center side. Flows in. Then, in the combustion chamber 12, the airflow on the central side, which is the side close to each other in the two intake ports 21, is strengthened compared to the airflow on the outside thereof, thereby generating a drift.
 そして、偏流をかけて吸気口21から流れ込んだ気流は、中央位置を直進する気流の速度が他の位置よりも比較的勢いが強く速くなる。そのため、中央位置を進む気流が、他の位置の気流よりも先に燃焼室12の内周面に到達する。そして、到達した気流は、内周面の形状に沿って、外側に向かうことになる。その結果、中央位置では、吸気口21から流れ込む気流と内周面に当たって戻ってくる気流とがぶつかり合うことがなくなり、乱流の発生が抑制される。また、仮に点火プラグ16に当たる等して小さな乱流が発生したとしても、中央位置の気流は強いことから、その強い流れに乱流が消されることになる。そのため、点火プラグ16位置での気流が安定し、アーク放電Aの短絡を抑制でき、着火性を確保できる。 And, the airflow that flows from the intake port 21 with a biased current has a relatively strong and faster speed of the airflow that travels straight through the central position than the other positions. Therefore, the airflow that travels through the central position reaches the inner peripheral surface of the combustion chamber 12 before the airflow at other positions. And the airflow which reached | attained goes outside along the shape of an internal peripheral surface. As a result, at the central position, the airflow flowing from the air inlet 21 and the airflow returning to the inner peripheral surface do not collide, and the occurrence of turbulence is suppressed. Further, even if a small turbulent flow is generated by hitting the spark plug 16 or the like, the airflow at the center position is strong, so the turbulent flow is extinguished by the strong flow. Therefore, the airflow at the position of the spark plug 16 is stabilized, the short circuit of the arc discharge A can be suppressed, and the ignitability can be ensured.
 次に、このような偏流をどのような場合に行うかについて、図9及び図10に基づいて、説明する。図9は、ECU60の実施するフローチャートであって、本処理は、所定の周期で、ECU60により実施される。図10は、エンジン回転速度及び負荷と偏流度合いを示す図である。 Next, the case where such drift is performed will be described with reference to FIGS. FIG. 9 is a flowchart executed by the ECU 60, and this process is executed by the ECU 60 at a predetermined cycle. FIG. 10 is a diagram showing the engine rotation speed, the load, and the degree of drift.
 図9において、ステップS11では、エンジン10が始動状態かどうかを判定する。例えば、エンジン10の始動要求に伴うクランキングの開始後において、エンジン10の燃焼が開始されてエンジン10の回転速度NEが所定の完爆回転速度に上昇するまでの期間内であれば、始動状態である旨を判定する。なお、エンジン10の回転速度NEが完爆回転速度に上昇した後、所定時間が経過するまでを、始動状態として判定してもよい。始動状態であると判定した場合には、ステップS14に進む一方、始動状態ではないと判定した場合には、ステップS12に進む。 In FIG. 9, in step S11, it is determined whether or not the engine 10 is in a starting state. For example, after the start of cranking associated with the start request of the engine 10, if the engine 10 is in a period from when the engine 10 starts to burn until the rotational speed NE of the engine 10 rises to a predetermined complete explosion speed, the start state It is determined that it is. It may be determined that the predetermined time elapses after the rotational speed NE of the engine 10 has increased to the complete explosion rotational speed. If it is determined that the engine is in the starting state, the process proceeds to step S14. If it is determined that the engine is not in the starting state, the process proceeds to step S12.
 ステップS12では、アクセル開度センサ49の検出値及びエンジン10の回転速度NEに基づいて、アイドル状態かどうかを判定する。アクセル開度が0で回転速度NEが所定範囲内にあり、アイドル状態であると判定した場合、ステップS14に進む。一方、アイドル状態であると判定されていない場合には、ステップS13に進む。 In step S12, based on the detected value of the accelerator opening sensor 49 and the rotational speed NE of the engine 10, it is determined whether or not the engine is in an idle state. If it is determined that the accelerator opening is 0, the rotational speed NE is within the predetermined range, and the engine is in the idle state, the process proceeds to step S14. On the other hand, if it is not determined that the vehicle is in the idle state, the process proceeds to step S13.
 ステップS13では、三元触媒39を早期暖機させる状態かどうか判定する。具体的には、周知の方法で推定された三元触媒39の温度が活性温度未満の場合には、三元触媒39を早期暖機させる状態であると判定する。ステップS13が肯定される場合(三元触媒39の温度が活性温度未満の場合)には、ステップS14に進み、否定される場合には、ステップS15に進む。なお、三元触媒39の温度を検出するセンサを設けて、検出された温度に基づいて判定を行ってもよい。 In step S13, it is determined whether or not the three-way catalyst 39 is warmed up early. Specifically, when the temperature of the three-way catalyst 39 estimated by a known method is lower than the activation temperature, it is determined that the three-way catalyst 39 is in a state of being warmed up early. When step S13 is affirmed (when the temperature of the three-way catalyst 39 is lower than the activation temperature), the process proceeds to step S14, and when negative, the process proceeds to step S15. Note that a sensor that detects the temperature of the three-way catalyst 39 may be provided, and the determination may be performed based on the detected temperature.
 ステップS14では、偏流制御を実行する。エンジン10の運転条件がアイドル状態、始動状態、又は三元触媒39を早期暖機させる状態である場合には、ロータリ弁50の開度を中央部分のみが開いた状態(図7(c)の状態)になるように、ロータリアクチュエータ51を駆動させることで、偏流制御を実行し、処理を終了する。 In step S14, drift control is executed. When the operating condition of the engine 10 is an idle state, a starting state, or a state in which the three-way catalyst 39 is warmed up early, the opening of the rotary valve 50 is in a state where only the central portion is opened (FIG. 7C). In this state, the rotary actuator 51 is driven so as to execute the drift control, and the process is terminated.
 ステップS15では、燃焼室12内における気体中の燃料比率が低い状態かどうかを判定する。具体的には、燃焼時に燃焼室12内がリーン状態又は所定値よりもEGR率が高い状態かどうかを判定する。エンジン10の運転条件が、燃料比率の低い状態の場合には、ステップS17に進み、燃料比率が低い状態ではない場合には、ステップS16に進む。 In step S15, it is determined whether the fuel ratio in the gas in the combustion chamber 12 is low. Specifically, it is determined whether the combustion chamber 12 is in a lean state or a state in which the EGR rate is higher than a predetermined value during combustion. If the operating condition of the engine 10 is a low fuel ratio, the process proceeds to step S17. If the fuel ratio is not low, the process proceeds to step S16.
 ステップS16では、ノックが生じるおそれがある運転条件かどうか判定する。具体的には、燃焼室12内の温度が高い場合や、ターボチャージャ35の過給により圧縮比率が高い場合等に、ノックが生じるおそれがある場合であると判定する。ステップS16で、ノックが生じるおそれがある運転条件であると判定されると、ステップS17に進み、ノックが生じるおそれがある運転条件ではないと判定されると、処理を終了する。 In step S16, it is determined whether or not the operating condition is likely to cause knock. Specifically, it is determined that there is a possibility that knocking may occur when the temperature in the combustion chamber 12 is high or when the compression ratio is high due to supercharging of the turbocharger 35. If it is determined in step S16 that the driving condition is likely to cause knock, the process proceeds to step S17. If it is determined that the driving condition is not likely to cause knock, the process is terminated.
 ステップS17で、エンジン10の回転速度NEを取得する。具体的には、クランク角度センサ47が検出したクランク角信号に基づいて、エンジン10の回転速度NEを算出し、それを取得する。 In step S17, the rotational speed NE of the engine 10 is acquired. Specifically, based on the crank angle signal detected by the crank angle sensor 47, the rotational speed NE of the engine 10 is calculated and obtained.
 ステップS18で、エンジン負荷を取得する。具体的には、アクセル開度センサ49によって検出したアクセル開度等に基づいて、エンジン負荷を算出し、それを取得する。 In step S18, the engine load is acquired. Specifically, the engine load is calculated based on the accelerator opening detected by the accelerator opening sensor 49, and obtained.
 ステップS19では、ステップS17及びステップS18で取得した回転速度NE及びエンジン負荷が非作動領域に該当するか判定する。具体的には、図10に示すように、エンジン10の回転速度NEが所定の値より小さい場合又はエンジン負荷が所定の値よりも小さい場合には、非作動領域に該当すると判定される。この領域においては、偏流作動による消費電力を抑制するために偏流制御を実施しない。ステップS19で、非作動領域に該当すると判定した場合には、処理を終了し、非作動領域に該当しないと判定した場合には、ステップS20に進む。 In step S19, it is determined whether the rotational speed NE and engine load acquired in step S17 and step S18 correspond to the non-operating region. Specifically, as shown in FIG. 10, when the rotational speed NE of the engine 10 is smaller than a predetermined value or when the engine load is smaller than a predetermined value, it is determined that the non-operating region is met. In this region, the drift control is not performed in order to suppress the power consumption due to the drift operation. If it is determined in step S19 that the region does not correspond to the non-operating region, the process is terminated. If it is determined that the region does not correspond to the non-operating region, the process proceeds to step S20.
 ステップS20では、ステップS17及びステップS18で取得した回転速度NE及びエンジン負荷が優先領域に該当するか判定する。具体的には、図10に示すように、エンジン10の回転速度NEが所定の値より大きい場合又はエンジン負荷が所定の値よりも大きい場合には、優先領域に該当すると判定される。この領域においては、出力を優先するために、偏流制御を実施しない。ステップS20で、優先領域に該当すると判定した場合には、処理を終了し、優先領域に該当しないと判定した場合には、ステップS21に進む。 In step S20, it is determined whether the rotational speed NE and engine load acquired in step S17 and step S18 correspond to the priority area. Specifically, as shown in FIG. 10, when the rotational speed NE of the engine 10 is larger than a predetermined value or when the engine load is larger than a predetermined value, it is determined to fall within the priority area. In this region, drift control is not performed in order to give priority to output. If it is determined in step S20 that it corresponds to the priority area, the process is terminated, and if it is determined that it does not correspond to the priority area, the process proceeds to step S21.
 ステップS21では、ステップS17及びステップS18で取得した回転速度NE及びエンジン負荷に基づいて、偏流度合いを設定する。具体的には、図10に示すように、エンジン10の回転速度NEが大きいほど、偏流度合いを大きくする。エンジン10の回転速度NEが高いほど、筒内流速が速くなり、乱流が生じやすくなるため、このような場合には、偏流度合いを大きくする。また、エンジン負荷が小さいほど、偏流度合いを大きくする。低負荷の際には、筒内の空気量が少なくなるため、この場合に偏流度合いを大きくすることで、必要な空気流量を確保することができる。 In step S21, the degree of drift is set based on the rotational speed NE and engine load acquired in step S17 and step S18. Specifically, as shown in FIG. 10, the greater the rotational speed NE of the engine 10, the greater the degree of drift. As the rotational speed NE of the engine 10 is higher, the in-cylinder flow velocity is higher and turbulence is more likely to occur. In such a case, the degree of drift is increased. Further, the smaller the engine load, the greater the degree of drift. When the load is low, the amount of air in the cylinder decreases. In this case, the necessary air flow rate can be ensured by increasing the degree of drift.
 ステップS22では、ステップS21で設定した偏流度合いに基づいて、偏流制御を実行する。偏流度合いに合わせたロータリ弁50の開度になるように、ロータリアクチュエータ51を駆動させることで、偏流制御を実行し、処理を終了する。 In step S22, drift control is executed based on the drift degree set in step S21. By driving the rotary actuator 51 so that the opening degree of the rotary valve 50 matches the degree of drift, the drift control is executed, and the process ends.
 なお、ステップS11、ステップS12、ステップS13、ステップS15、ステップS16、ステップS19、及びステップS20が「偏流判定部」に相当する。また、ステップS14及びステップS22が「制御部」に相当する。ステップS21が「偏流設定部」に相当する。また、ステップS11~ステップS13については、いずれかが成立すればステップS14に進んでいるが、ステップS11~ステップS13の少なくとも2つが成立した場合に、ステップS14に進み、偏流を実施してもよい。 In addition, step S11, step S12, step S13, step S15, step S16, step S19, and step S20 correspond to a “drift determination unit”. Steps S14 and S22 correspond to a “control unit”. Step S21 corresponds to a “drift setting unit”. Steps S11 to S13 are advanced to step S14 if any one of them is satisfied, but if at least two of steps S11 to S13 are satisfied, the flow proceeds to step S14 and drift may be performed. .
 また、このような運転条件、エンジン10の回転速度NE及びエンジン負荷による偏流の制御に加えて、フィードバック制御を行うことができる。図9で設定した偏流を実施している場合に、エンジン10の燃焼状況等を確認して、それに基づいて、図11に示すようなフィードバック制御を行う。図11は、フィードバック制御のためのフローチャートであって、本処理は、所定の周期で、ECU60により実施される。なお、本フローチャートによる制御が「制御部によるフィードバック制御」に相当する。 Further, feedback control can be performed in addition to the control of the drift due to the operating condition, the rotational speed NE of the engine 10 and the engine load. When the drift set in FIG. 9 is performed, the combustion state of the engine 10 is confirmed, and feedback control as shown in FIG. 11 is performed based on the confirmation. FIG. 11 is a flowchart for feedback control, and this process is performed by the ECU 60 at a predetermined cycle. The control according to this flowchart corresponds to “feedback control by the control unit”.
 ステップS51で、偏流を実行しているかどうかを判定する。偏流を実行していない場合には、処理を終了する。一方偏流を実行している場合には、ステップS52で、エンジン10の燃焼において、着火異常が生じていないか検出する。具体的には、着火異常による失火等が発生すると、クランク角度センサ47により検出されるエンジン10の回転速度NEに異常が出るため、クランク角度センサ47で検出した値を基に着火異常が生じているかを判定する。着火異常が生じていると判定した場合には、ステップS54に進む。なお、ステップS52が「パラメータ取得部」に相当し、エンジン10の回転速度NEが「パラメータ」に相当する。また、ステップS52において、空燃比センサ40での検出結果を用いて、未燃燃料がある場合、つまり燃焼不良が生じている場合には着火異常が生じていると判定してもよい。 In step S51, it is determined whether or not drifting is being executed. If the drift is not executed, the process is terminated. On the other hand, if the drift is being executed, it is detected in step S52 whether an ignition abnormality has occurred in the combustion of the engine 10. Specifically, when misfire or the like due to an abnormal ignition occurs, an abnormality occurs in the rotational speed NE of the engine 10 detected by the crank angle sensor 47, and therefore an abnormal ignition occurs based on the value detected by the crank angle sensor 47. It is determined whether or not. If it is determined that an ignition abnormality has occurred, the process proceeds to step S54. Note that step S52 corresponds to a “parameter acquisition unit”, and the rotational speed NE of the engine 10 corresponds to a “parameter”. In step S52, the detection result of the air-fuel ratio sensor 40 may be used to determine that the ignition abnormality has occurred when there is unburned fuel, that is, when combustion failure has occurred.
 ステップS52で、着火異常が生じていないと判定した場合には、ステップS53で、ノックが発生しているかを判定する。具体的には、ノックセンサ48によってノックの発生を検知しているか判定する。ノックの発生を検知している場合には、ステップS54に進む。一方、ノックの発生を検知していない場合には、処理を終了する。 If it is determined in step S52 that no ignition abnormality has occurred, it is determined in step S53 whether knock has occurred. Specifically, it is determined whether or not the knock sensor 48 detects the occurrence of the knock. If the occurrence of knocking is detected, the process proceeds to step S54. On the other hand, if the occurrence of knocking is not detected, the process is terminated.
 ステップS54では、偏流度合いを大きくするように偏流度合いを変更する。そして、ステップS55で、ステップS54で設定した偏流度合いに基づいて、偏流制御を実行する。偏流度合いに合わせたロータリ弁50の開度になるように、ロータリアクチュエータ51を駆動させることで、偏流制御を実行し、処理を終了する。 In step S54, the drift degree is changed so as to increase the drift degree. In step S55, the drift control is executed based on the drift degree set in step S54. By driving the rotary actuator 51 so that the opening degree of the rotary valve 50 matches the degree of drift, the drift control is executed, and the process ends.
 次に、上記に説明したように、偏流を行うことによる効果について、図12~図15を用いて説明する。図12は、筒内流動とアーク維持時間との関係を示す図で、図13は、アーク維持時間と着火時期との関係を示す図で、図14は、筒内流動と主燃焼期間との関係を示す図で、図15は着火時期と主燃焼期間との関係を示す図である。なお、図12~図15において、アーク維持時間とは、アーク放電Aを所望の放電距離で保つことができる時間である。また、従来の燃焼サイクル間ばらつきとは、偏流を行わない場合の燃焼サイクル間でのばらつきで、破線で示している。 Next, as described above, the effect of performing the drift will be described with reference to FIGS. 12 is a diagram showing the relationship between the in-cylinder flow and the arc maintenance time, FIG. 13 is a diagram showing the relationship between the arc maintenance time and the ignition timing, and FIG. 14 shows the relationship between the in-cylinder flow and the main combustion period. FIG. 15 is a diagram showing the relationship between the ignition timing and the main combustion period. In FIG. 12 to FIG. 15, the arc maintenance time is a time during which the arc discharge A can be maintained at a desired discharge distance. Further, the conventional variation between combustion cycles is a variation between combustion cycles when drift is not performed, and is indicated by a broken line.
 図12に示すように、筒内流動が弱い場合には、点火プラグ16近傍での乱流が生じにくいため、アーク維持時間は長く、燃焼サイクル間でのアーク維持時間のばらつきは小さい。一方、従来のように、偏流をかけずに筒内流動を強くすると、点火プラグ16近傍での乱流が生じる。そのため、アーク維持時間は短くなりやすく、燃焼サイクル間でのアーク維持時間のばらつきが大きくなる。そこで、本実施形態のように偏流を行うと、点火プラグ16近傍での乱流の発生が抑制される。そのため、筒内流動が弱い場合と同じように、筒内流動が強い場合であっても、アーク維持時間は長く、燃焼サイクル間でのアーク維持時間のばらつきが小さくなる。その結果、着火の安定と筒内流動を強くすることでの燃焼促進を両立できるようになる。 As shown in FIG. 12, when the in-cylinder flow is weak, turbulent flow is unlikely to occur in the vicinity of the spark plug 16, so the arc maintenance time is long and the variation in arc maintenance time between combustion cycles is small. On the other hand, if the in-cylinder flow is strengthened without applying a drift as in the prior art, turbulent flow in the vicinity of the spark plug 16 occurs. For this reason, the arc maintenance time tends to be short, and the variation in arc maintenance time between combustion cycles becomes large. Therefore, when drifting is performed as in the present embodiment, generation of turbulent flow in the vicinity of the spark plug 16 is suppressed. Therefore, as in the case where the in-cylinder flow is weak, even when the in-cylinder flow is strong, the arc maintenance time is long and the variation in the arc maintenance time between combustion cycles is small. As a result, it is possible to achieve both stable ignition and combustion promotion by strengthening in-cylinder flow.
 従来のように偏流を実施しない状態で筒内流動を強くすると、アーク維持時間が短くなっている。図13に示すように、アーク維持時間が短い場合には、アーク放電Aから燃料に着火するためにかかる時間(着火時期)にばらつきが大きくなる。一方、本実施形態のように、アーク維持時間が長い場合には、アーク放電Aから燃料に着火するためにかかる時間が短くなり、またばらつきが小さくなる。そのため、着火の安定性に貢献できる。 When the in-cylinder flow is strengthened in the state where no drift is performed as in the conventional case, the arc maintenance time is shortened. As shown in FIG. 13, when the arc maintenance time is short, the time (ignition timing) required to ignite the fuel from the arc discharge A increases. On the other hand, when the arc maintenance time is long as in the present embodiment, the time taken to ignite the fuel from the arc discharge A is shortened and the variation is reduced. Therefore, it can contribute to the stability of ignition.
 また、従来では、アーク維持時間を確保するために、筒内流動を弱くしている。この場合には、図14に示すように、主燃焼期間が長くなったり、ばらつきが大きくなったりする。一方、本実施形態のように偏流を行って筒内流動を強くすると、燃焼が促進されるため、主燃焼時間が短くなり、主燃焼にかかる時間のばらつきを抑制することができる。 Also, conventionally, in-cylinder flow is weakened to ensure arc maintenance time. In this case, as shown in FIG. 14, the main combustion period becomes longer or the variation becomes larger. On the other hand, when the drift is performed and the in-cylinder flow is strengthened as in the present embodiment, the combustion is promoted, so that the main combustion time is shortened and variations in the time required for the main combustion can be suppressed.
 また、図15に示すように、従来では、着火時期が遅くなり、主燃焼期間にばらつきが大きくなっている。それに対し、本実施形態のように偏流を行って筒内流動を強くすると、着火にかかる時間が短くなり(着火時期が早くなり)、着火の安定及び筒内流動が強いことによる燃焼促進により、主燃焼にかかる時間が短くなる。 Further, as shown in FIG. 15, conventionally, the ignition timing is delayed, and the main combustion period has a large variation. On the other hand, when drifting is performed and the in-cylinder flow is strengthened as in the present embodiment, the time required for ignition is shortened (ignition timing is advanced), and the combustion is promoted by stable ignition and strong in-cylinder flow. The time required for main combustion is shortened.
 このように、着火が安定し、主燃焼にかかる時間を短くすることができることで、種々の運転条件での効果が生まれる。例えば、ノックが生じるおそれがある運転条件であっても、点火時期を進角しても、ノックが発生しにくくなる。そのため、ノックが生じるおそれがある運転条件での燃費を改善できる。また、リーン燃焼やEGR率が高い場合であっても、燃焼を改善することができる。そのため、リーン限界及び限界EGR率を上げることができ、燃費を改善できる。そして、始動状態及びアイドル状態であっても、主燃焼にかかる時間のばらつきが少なく、燃焼が安定するため、未燃HCの発生を抑制できる。さらに、三元触媒39を早期暖機させる状態であっても、着火が安定することにより、点火時期を従来より遅角することができる。そのため、排気の温度を上げることができ、三元触媒39の活性を早期化することができる。 As described above, since the ignition is stable and the time required for the main combustion can be shortened, an effect under various operating conditions is produced. For example, even if the driving condition may cause knocking, knocking is less likely to occur even if the ignition timing is advanced. Therefore, it is possible to improve fuel efficiency under driving conditions where knocking may occur. Further, even when the lean combustion or the EGR rate is high, the combustion can be improved. Therefore, the lean limit and the limit EGR rate can be increased, and fuel consumption can be improved. Even in the start state and the idle state, the time required for the main combustion is small and the combustion is stabilized, so that the generation of unburned HC can be suppressed. Furthermore, even in a state where the three-way catalyst 39 is warmed up early, the ignition timing can be retarded as compared with the prior art by stabilizing the ignition. Therefore, the temperature of the exhaust can be raised, and the activity of the three-way catalyst 39 can be accelerated.
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。 According to the embodiment described above in detail, the following excellent effects can be obtained.
 吸気側から排気側への気流において、点火プラグ16の位置での気流が他の位置での気流に比べて強化されている偏流を生じさせるかを判定している。そして、偏流を生じさせると判定した場合には、偏流が生じさせられるようにロータリ弁50を制御している。このように、燃焼室12内の点火プラグ16の位置の気流が強化されている偏流を生じさせることで、点火プラグ16位置の気流が最初に燃焼室12の内周壁にあたり、その形状に沿って外側に向かうため、点火プラグ16の位置での乱流の発生が抑制される。そのため、着火性が不安定になりやすい状況であっても、点火プラグ16近傍の気流が安定し、アーク放電Aの短絡を抑制することができ、着火性を確保できる。つまり、燃料促進に必要な気流を確保しつつ、着火性を確保できる。 In the airflow from the intake side to the exhaust side, it is determined whether or not the airflow at the position of the spark plug 16 causes a stronger drift than the airflow at other positions. And when it determines with producing a drift, the rotary valve 50 is controlled so that a drift may be produced. In this way, by generating a drift in which the airflow at the position of the ignition plug 16 in the combustion chamber 12 is strengthened, the airflow at the position of the ignition plug 16 first hits the inner peripheral wall of the combustion chamber 12 and follows its shape. Since it goes to the outside, the occurrence of turbulent flow at the position of the spark plug 16 is suppressed. Therefore, even in a situation where the ignitability tends to become unstable, the airflow in the vicinity of the spark plug 16 is stabilized, the short circuit of the arc discharge A can be suppressed, and the ignitability can be ensured. That is, the ignitability can be ensured while ensuring the airflow necessary for fuel promotion.
 内燃機関の運転条件に基づいて、必要な時に偏流させることができる。例えば、燃焼時に燃焼室12内がリーン状態にある場合又はEGR率が高い場合、つまり燃焼室12内における気体中の燃料比率が低い場合には、点火プラグ16のアーク放電Aから燃料への着火できる条件が厳しくなっている。また、燃焼促進のために強い気流が求められている。このような場合に、燃料促進に必要な気流を確保しつつ、偏流させて着火性を確保することで、低い燃料比率であっても着火性を確保でき、燃費を向上させることができる。 It can be made to drift when necessary based on the operating conditions of the internal combustion engine. For example, when the combustion chamber 12 is in a lean state during combustion or when the EGR rate is high, that is, when the fuel ratio in the gas in the combustion chamber 12 is low, ignition from the arc discharge A of the spark plug 16 to the fuel is performed. The conditions that can be done are becoming stricter. In addition, a strong airflow is required to promote combustion. In such a case, by ensuring the ignitability by drifting while ensuring the airflow necessary for fuel promotion, the ignitability can be ensured even at a low fuel ratio, and the fuel efficiency can be improved.
 また、燃焼室12内でノックが生じるおそれがある場合には、一般的には、着火タイミングを遅角することで抑制している。ノックの発生を抑制するためには、筒内の流動を強くして、燃焼を素早く広げる方法もある。しかし、筒内の流動を強くすると、着火タイミングを進角させることができる一方で、乱流が生じて着火しにくくなる。そこで、本実施形態では、筒内の流動を強くしつつ、偏流させて着火性を確保することで、ノックが生じるおそれがある場合であっても、着火タイミングを進角させることができる。 Further, when there is a possibility that knocking may occur in the combustion chamber 12, in general, it is suppressed by retarding the ignition timing. In order to suppress the occurrence of knocking, there is a method in which the flow in the cylinder is strengthened and the combustion is spread quickly. However, if the flow in the cylinder is strengthened, the ignition timing can be advanced, while turbulent flow is generated and ignition is difficult. Therefore, in the present embodiment, the ignition timing can be advanced even if there is a possibility that knocking may occur by strengthening the flow in the cylinder and drifting to ensure ignitability.
 エンジン10の回転速度NEが速いほど、燃焼室12内の気流の流速が速くなり、点火プラグ16近傍で乱流が生じやすくなる。そのため、回転速度NEが高いほど、偏流の強さを強化することで、乱流を抑制することができる。 As the rotational speed NE of the engine 10 increases, the flow velocity of the airflow in the combustion chamber 12 increases, and turbulence is likely to occur near the spark plug 16. Therefore, turbulent flow can be suppressed by increasing the strength of drift as the rotational speed NE is higher.
 エンジン負荷が低負荷の場合には、空気通過範囲が小さく流速が大きくなるため乱流が生じやすくなる。そのため、低負荷の場合ほど、偏流の強さを強化することで、乱流を抑制することができる。 When the engine load is low, turbulent flow is likely to occur because the air passage range is small and the flow velocity is large. Therefore, the turbulent flow can be suppressed by increasing the strength of the drift as the load is lower.
 負荷が所定よりも低く吸気ポート20から流入する気体の量が少ない場合及びエンジン10の回転速度NEが所定よりも遅い場合の少なくとも一方の場合には、偏流を生じさせないことで、偏流作動による消費電力を抑制することができる。 When at least one of the case where the load is lower than the predetermined amount and the amount of gas flowing from the intake port 20 is small and the rotational speed NE of the engine 10 is lower than the predetermined amount, the consumption due to the drift operation is not caused by causing no drift. Electric power can be suppressed.
 負荷が所定よりも高く吸気ポート20から流入する気体の量が多い場合及びエンジン10の回転速度NEが所定よりも速い場合の少なくとも一方の場合には、偏流を抑制することで、内燃機関の出力を優先することができる。 In at least one of the case where the load is higher than the predetermined amount and the amount of gas flowing in from the intake port 20 is large and the rotational speed NE of the engine 10 is higher than the predetermined value, the output of the internal combustion engine is suppressed by suppressing the drift. Can be prioritized.
 エンジン10がアイドル状態、始動状態、又は三元触媒39を早期暖機させる状態では、空気量が少なかったり、着火タイミングが遅角になったりすることで、燃焼が不安定になりやすい。このような場合に、偏流させることで、エンジン10がアイドル状態、始動状態、又は三元触媒39を早期暖機させる状態であっても、着火性を向上できる。 When the engine 10 is in an idling state, a starting state, or a state in which the three-way catalyst 39 is warmed up early, combustion is likely to become unstable due to a small amount of air or a delayed ignition timing. In such a case, the ignitability can be improved by causing the engine 10 to drift even when the engine 10 is in an idle state, a starting state, or a state in which the three-way catalyst 39 is warmed up early.
 フィードバック制御をおこなうことで、点火プラグ16の着火状況が悪い場合に、偏流させることで、着火性を向上させることができる。 フ ィ ー ド バ ッ ク By performing feedback control, when the ignition condition of the spark plug 16 is poor, the ignitability can be improved by drifting.
 吸気ポート20内に、空気通過範囲を制限して偏流させるロータリ弁50を設けることで、燃焼室12内に偏流させる構造を設ける必要がなくなり、燃焼室12の設計を行いやすくなる。 By providing the rotary valve 50 that drifts while restricting the air passage range in the intake port 20, it is not necessary to provide a structure for drifting in the combustion chamber 12, and the combustion chamber 12 can be easily designed.
 吸気ポート20内において、気筒平面視での中央部分と両側部分とのうち中央部分を両側部分よりも開放させて部分開放状態にすることにより、燃焼室12内での気流の乱れを好適に抑制できる。この場合、点火プラグ16付近での乱気流の発生を抑制しつつ、気流強化を実施することができる。 In the intake port 20, the turbulence of the air flow in the combustion chamber 12 is suitably suppressed by opening the central portion of the center portion and both side portions in a plan view of the cylinder more than the both side portions to be in a partially open state. it can. In this case, airflow reinforcement can be implemented while suppressing the generation of turbulent airflow in the vicinity of the spark plug 16.
 <第2実施形態>
 第2実施形態では、吸気ポート内の乱流を抑制するための構成について、図16から図18を用いて説明する。図16は、ロータリ弁50の斜視図であって、図17は、ロータリ弁50によって吸気ポート20が開閉されている状態を示す流路断面図である。図17において、ハッチングの部分は、弁体53が吸気ポート20を閉鎖している領域を示している。図18は、吸気ポート20を気筒平面視(吸気ポート20の概略閉断面図)において、吸気ポート20が部分開放状態で、吸気ポート20内に循環気流F2を形成した状態での吸気ポート20の気流の流れを示す図である。図18において、矢印は気流を示し、矢印の太さは気流の速さを示し、太い矢印は細い矢印よりも気流が速い状態を示している。
Second Embodiment
In the second embodiment, a configuration for suppressing turbulent flow in the intake port will be described with reference to FIGS. 16 to 18. FIG. 16 is a perspective view of the rotary valve 50, and FIG. 17 is a cross-sectional view of the flow path showing a state where the intake port 20 is opened and closed by the rotary valve 50. In FIG. 17, hatched portions indicate regions where the valve body 53 closes the intake port 20. FIG. 18 shows the intake port 20 in a state in which the intake port 20 is partially open and a circulating air flow F2 is formed in the intake port 20 when the intake port 20 is viewed in a cylinder plan view (schematic closed sectional view of the intake port 20). It is a figure which shows the flow of an airflow. In FIG. 18, an arrow indicates an air flow, the thickness of the arrow indicates the speed of the air flow, and the thick arrow indicates a state where the air flow is faster than the thin arrow.
 従来のタンブル制御弁では、吸気ポート内の気流を主として上下方向に制限していた。そのため、タンブル制御弁によって、速い気流を作りこんでも、吸気ポート内で気流同士がぶつかったり、吸気ポートの壁部にぶつかったりして、吸気ポート内で乱流が生じて、速い気流が減衰、拡散していた。このような課題を解決するため、例えば、特許第4349156号公報の吸気ポートには、吸気口の近傍に至る仕切り壁を設けていた。しかしながら、吸気口の近傍まで仕切り壁を設けると、シリンダヘッド内に、特に二股に分岐した後の通路まで仕切り壁を設けることになり、シリンダヘッドの改造が必要となる。そのため、搭載性が悪くなってしまう。 In the conventional tumble control valve, the airflow in the intake port is mainly restricted in the vertical direction. Therefore, even if a quick air flow is created by the tumble control valve, the air currents collide with each other in the intake port or collide with the wall of the intake port, turbulence occurs in the intake port, and the fast air flow is attenuated. It was spreading. In order to solve such a problem, for example, a partition wall reaching the vicinity of the intake port is provided in the intake port of Japanese Patent No. 4349156. However, if the partition wall is provided to the vicinity of the intake port, the partition wall is provided in the cylinder head, particularly to the passage after bifurcating, and the cylinder head needs to be modified. Therefore, the mountability is deteriorated.
 そこで、第1実施形態では、ロータリ弁50の中央に切欠部54を設けることで、中央部分の偏流を強くすることで、燃焼室12内での気流の乱れを抑制している。第2実施形態では、吸気ポート20内での乱流を抑制するために、ロータリ弁50をさらに改良している。 Therefore, in the first embodiment, the notch 54 is provided in the center of the rotary valve 50 to increase the drift of the central portion, thereby suppressing the turbulence of the air flow in the combustion chamber 12. In the second embodiment, the rotary valve 50 is further improved in order to suppress turbulent flow in the intake port 20.
 第2実施形態のロータリ弁50について、図16及び図17を用いて説明する。ロータリ弁50は、L2方向に延びる向きで配置された軸体52と、軸体52に支持された弁体53とを有しており、軸体52を軸心とする弁体53の回動により開度調整されるようになっている。 A rotary valve 50 according to the second embodiment will be described with reference to FIGS. 16 and 17. The rotary valve 50 includes a shaft body 52 disposed in a direction extending in the L2 direction, and a valve body 53 supported by the shaft body 52, and the valve body 53 is pivoted about the shaft body 52. The opening degree is adjusted by.
 弁体53は、L2方向の全域分の大きさを有しており、L2方向のポート壁面24に至っている。弁体53は、円筒の円周面の一部を切り取ったような形状をしており、吸気ポート20を全閉鎖状態にできる幅寸法と周方向の寸法を有した弁本体部53aと、切欠部54の側方に設けられた遮蔽部53bとを備えている。 The valve element 53 has a size corresponding to the entire area in the L2 direction, and reaches the port wall surface 24 in the L2 direction. The valve body 53 has a shape obtained by cutting off a part of the circumferential surface of the cylinder. The valve body 53a has a width dimension and a circumferential dimension that allow the intake port 20 to be fully closed, and a notch. And a shielding part 53 b provided on the side of the part 54.
 弁体53には、そのL2方向の中央部に、弁体53の周方向に延びる切欠部54が設けられている。切欠部54は、その一端が半円形状をなす半円部54aとなっており、半円部54aに連なるように半円部54aと等幅に等幅部54bが延びており、等幅部54bから弁体53の端部は、等幅部54bが弁体53のL2方向の寸法まで拡幅する拡幅部54cとなっている。等幅部54bは、図17(c)に示すような、部分開放状態で、上下方向(吸気口21の並び方向に交差する方向)の全長を開口させる周方向の寸法を有している。 The valve body 53 is provided with a notch 54 extending in the circumferential direction of the valve body 53 at the center in the L2 direction. The cutout portion 54 has a semicircular portion 54a having a semicircular shape at one end, and an equal width portion 54b extending to be equal to the semicircular portion 54a so as to be continuous with the semicircular portion 54a. The end portion of the valve body 53 from 54b is a widened portion 54c in which the equal width portion 54b widens to the dimension of the valve body 53 in the L2 direction. As shown in FIG. 17C, the equal width portion 54b has a dimension in the circumferential direction that opens the entire length in the vertical direction (direction intersecting the direction in which the intake ports 21 are arranged) in a partially open state.
 切欠部54のL2方向の寸法と、遮蔽部53bのL2方向の寸法(ポート壁面24から切欠部54までの幅寸法)の比率、つまり図17(e)におけるa:bの比率は、切欠部54から必要な流量を確保しつつ、吸気ポート20内に所望の循環気流F2が形成される大きさとなっている。例えば、a:bの比率は、0.85:1以下になっている。切欠部54のL2方向の寸法は、例えば、吸気ポート20のL2方向の寸法の3分の1以下になっている。 The ratio of the dimension in the L2 direction of the notch 54 and the dimension in the L2 direction of the shielding part 53b (the width dimension from the port wall surface 24 to the notch 54), that is, the ratio of a: b in FIG. The desired circulation air flow F2 is formed in the intake port 20 while securing a necessary flow rate from 54. For example, the ratio of a: b is 0.85: 1 or less. The dimension of the notch 54 in the L2 direction is, for example, one third or less of the dimension of the intake port 20 in the L2 direction.
 吸気ポート20内における弁体位置を図17により具体的に説明する。図17(a)に示す状態では、弁体53の全て又は略全ての部分が吸気ポート20外に位置しており、ポート内流路は全面開放された状態となっている。これに対し、図17(b)~(e)に示す状態では、弁体53が吸気ポート20内に移動しており、ポート内流路が弁体53により部分的に閉鎖されている。特に、図17(c)~(e)の状態では、吸気ポート20内に循環気流F2が形成される部分開放状態となっている。図17(c)~(e)に示す状態が、第1実施形態において、偏流制御を行っている状態であり、図17(c)より図17(d)の状態の方が偏流度合いが強くなっており、図17(d)より図17(e)の状態の方が偏流度合いが強くなっている。 The position of the valve body in the intake port 20 will be specifically described with reference to FIG. In the state shown in FIG. 17A, all or substantially all of the valve body 53 is located outside the intake port 20, and the in-port flow path is in a fully open state. On the other hand, in the state shown in FIGS. 17B to 17E, the valve body 53 is moved into the intake port 20, and the in-port flow path is partially closed by the valve body 53. In particular, in the states shown in FIGS. 17C to 17E, a partially open state in which a circulating air flow F2 is formed in the intake port 20 is established. The states shown in FIGS. 17C to 17E are states in which the drift control is performed in the first embodiment, and the state of FIG. 17D has a stronger drift degree than the state of FIG. 17C. Thus, the degree of drift is stronger in the state of FIG. 17E than in FIG.
 図17(c)のように、開口率(吸気ポート20の流路断面積において、気流が通過できる開口の部分の率)が30%程度の状態では、等幅部54bによって、その中央部分の上下方向の全長が開口している。一方で、遮蔽部53bが切欠部54からポート壁面24まで延びていることで、気流が通過可能な吸気通路が中央側に絞られることになり、中央側で気流が増速される。 As shown in FIG. 17C, in the state where the aperture ratio (the ratio of the portion of the opening through which the airflow can pass in the flow path cross-sectional area of the intake port 20) is about 30%, the central portion is formed by the equal width portion 54b. The entire length in the vertical direction is open. On the other hand, since the shielding portion 53b extends from the notch portion 54 to the port wall surface 24, the intake passage through which the airflow can pass is narrowed toward the center side, and the airflow is accelerated at the center side.
 図17(e)のように、開口率が3%程度まで制限されている状態では、切欠部54に開口を絞ることによる流路抵抗が非常に大きくなる。そのため、流路抵抗を少しでも軽減するために、切欠部54の端部が半円形状の半円部54aとなっている。これにより、開口率(開口面積)が小さい場合の流路抵抗による乱流の発生を抑制することができる。 As shown in FIG. 17E, in the state where the opening ratio is limited to about 3%, the flow path resistance due to the narrowing of the opening in the notch 54 becomes very large. Therefore, in order to reduce the flow path resistance as much as possible, the end portion of the cutout portion 54 is a semicircular semicircular portion 54a. Thereby, generation | occurrence | production of the turbulent flow by flow-path resistance when an aperture ratio (opening area) is small can be suppressed.
 図17(c)~(e)に示す部分開放状態では、吸気通路が中央側に絞られることで、切欠部54を通過した中央側気流F1が増速される。このように増速された中央側気流F1を形成した場合の吸気ポート20内の気流の流れを、図18を用いて説明する。 In the partially open state shown in FIGS. 17 (c) to 17 (e), the airflow passage F1 passing through the notch 54 is accelerated by the intake passage being throttled toward the center. The flow of the airflow in the intake port 20 when the central airflow F1 thus accelerated is formed will be described with reference to FIG.
 部分開放状態では、切欠部54のL2方向の寸法(開口幅)を絞ることで、切欠部54を通過した中央側気流F1の流速も増速され、中央側気流F1が、吸気ポート20内で最も速くなっている。この速い気流に引き込まれるように、遮蔽部53bの下流側の領域A1では、その領域A1から中央側への空気の流れが生じる。その結果、領域A1では、周辺よりも気圧が下がる負圧が生じる。なお、相対的な負圧の大きさは、切欠部54から中央側気流F1が吹き出す位置での速さ等によって決まっており、中央側気流F1の速さは、切欠部54を通過する通気量と開口面積等によって決まっている。 In the partially open state, by reducing the dimension (opening width) of the notch 54 in the L2 direction, the flow velocity of the central airflow F1 that has passed through the notch 54 is also increased, and the central airflow F1 is generated in the intake port 20. It is the fastest. In the region A1 on the downstream side of the shielding part 53b, an air flow from the region A1 to the center side is generated so as to be drawn into this fast airflow. As a result, in the region A1, a negative pressure is generated in which the atmospheric pressure is lower than the surroundings. The magnitude of the relative negative pressure is determined by the speed at the position where the central airflow F1 blows out from the notch 54, and the speed of the central airflow F1 is the amount of air passing through the notch 54. And the opening area.
 この場合、遮蔽部53bよりも下流側に流れる気流は、領域A1の負圧に引き込まれることにより逆流する。そして、これにより、ポート壁面24に沿うようにして、楕円状の循環気流F2が形成される。つまり、遮蔽部53bの下流側である側方領域が、循環気流F2が形成される循環領域となる。なお、負圧の相対的な大きさによって、下流側のどの位置まで循環気流F2が形成されるかが決まっている。 In this case, the airflow flowing downstream from the shielding part 53b flows backward by being drawn into the negative pressure in the region A1. As a result, an elliptical circulating air flow F <b> 2 is formed along the port wall surface 24. That is, the side area on the downstream side of the shielding portion 53b is a circulation area where the circulation airflow F2 is formed. Note that the downstream air flow F2 is determined depending on the relative magnitude of the negative pressure.
 この楕円状の循環気流F2は、吸気ポート20に設けられた各吸気口21に向けて分岐する分岐通路25に至るまでの長軸方向の長さcを有しており、循環気流F2は、吸気口21を塞ぐ吸気バルブ22の近傍にまで至るまでの長軸方向の長さcを有していることがより望ましい。また、循環気流F2が形成されることで、側方領域の気流がポート壁面24に沿って逆流して領域A1に戻るため、吸気口21の側方の領域A2からは、燃焼室12内に気流が流れ込みにくくなる。そのため、燃焼室12内での側方での気流が中央位置に比べて弱くなる。また、このような循環気流F2が形成されることで、吸気ポート20内の切欠部54の両側の側方領域での気流の乱れを抑制することができ、中央側気流F1の拡散や減衰を抑制することができる。なお、側方領域の気流は、全ての気流が吸気バルブ22の近傍まで至って領域A1に戻るのではなく、途中から戻る気流の方が多くなっている。吸気バルブ22の近傍に至る気流も領域A1に向かって逆流することで、全体として循環気流F2が形成される。 The elliptical circulation airflow F2 has a length c in the major axis direction to the branch passage 25 that branches toward each intake port 21 provided in the intake port 20, and the circulation airflow F2 is It is more desirable to have a length c in the long axis direction up to the vicinity of the intake valve 22 that closes the intake port 21. Further, since the circulating airflow F2 is formed, the airflow in the side region flows back along the port wall surface 24 and returns to the region A1, and therefore, the region A2 on the side of the intake port 21 enters the combustion chamber 12. Airflow becomes difficult to flow in. Therefore, the airflow at the side in the combustion chamber 12 becomes weaker than that at the center position. Further, by forming such a circulating air flow F2, turbulence of the air flow in the lateral regions on both sides of the notch 54 in the intake port 20 can be suppressed, and diffusion and attenuation of the central air flow F1 can be suppressed. Can be suppressed. Note that the airflow in the side region is not the entire airflow reaching the vicinity of the intake valve 22 and returning to the region A1, but the airflow returning from the middle is larger. The airflow reaching the vicinity of the intake valve 22 also flows backward toward the area A1, thereby forming a circulating airflow F2 as a whole.
 しかしながら、側方領域において、循環気流F2が微小擾乱によって分裂するおそれがある。楕円形状の循環気流F2の短軸方向の長さdと長軸方向の長さcとの比率が所定の割合を超えると、微小擾乱によって分裂するおそれがある。具体的には、循環気流F2の長軸方向の長さcに対して短軸方向の長さdが3分の1より小さくなると、微小擾乱によって分裂するおそれがある。なお、短軸方向の長さdは、ポート壁面24から各吸気口21に流れ込む中央側気流F1が通過する中央領域に至る長さであって、長軸方向の長さcは、中央側気流F1の吹き出し位置の側方の領域A1から吸気バルブ22の近傍(領域A2の手前)に至る長さである。 However, in the lateral region, the circulating air flow F2 may be split due to a minute disturbance. If the ratio of the length d in the minor axis direction to the length c in the major axis direction of the elliptical circulating air flow F2 exceeds a predetermined ratio, there is a risk of splitting due to minute disturbance. Specifically, when the length d in the minor axis direction is smaller than one third with respect to the length c in the major axis direction of the circulating air flow F2, there is a possibility of splitting due to minute disturbance. The length d in the minor axis direction is the length from the port wall surface 24 to the central region through which the central airflow F1 flowing into each intake port 21 passes, and the length c in the major axis direction is the central airflow. This is the length from the area A1 on the side of the blowing position of F1 to the vicinity of the intake valve 22 (before the area A2).
 そこで、循環気流F2の長軸方向の長さcに対して短軸方向の長さdが3分の1以上になるように、遮蔽部53bのポート壁面24から切欠部54までのL2方向の幅寸法が定められている。遮蔽部53bの幅寸法を所定の大きさとすることで、循環気流F2の短軸方向の長さdが定まる。そのため、吸気ポート20の形状から循環気流F2の想定される長軸方向の長さcに基づいて、長軸方向の長さcに対して短軸方向の長さdが3分の1以上になるように短軸方向の長さdを想定する。想定された短軸方向の長さdに基づいて、遮蔽部53bのポート壁面24から切欠部54までのL2方向の幅寸法を定めている。 Therefore, the length D in the L2 direction from the port wall surface 24 of the shielding portion 53b to the cutout portion 54 is set so that the length d in the minor axis direction is 1/3 or more of the length c in the major axis direction of the circulating air flow F2. A width dimension is defined. By setting the width dimension of the shielding part 53b to a predetermined size, the length d in the minor axis direction of the circulating air flow F2 is determined. Therefore, the length d in the minor axis direction is more than one third of the length c in the major axis direction based on the assumed length c in the major axis direction of the circulating airflow F2 from the shape of the intake port 20. Thus, the length d in the minor axis direction is assumed. Based on the assumed length d in the minor axis direction, the width dimension in the L2 direction from the port wall surface 24 of the shielding part 53b to the notch part 54 is determined.
 このように、ロータリ弁50による部分開放状態(弁体53の位置が、図17(c)~(e)に示す状態)では、弁体53の遮蔽部53bにより吸気通路が中央側に絞られることで、切欠部54を通過した中央側気流F1の流速が増速される。この増速された気流に引き込まれることで、領域A1において、周辺よりも気圧が下がる負圧が生じる。この負圧に引き込まれるようにして、側方領域では、循環気流F2が形成される。また、循環気流F2が安定した状態となるように、遮蔽部53bの幅寸法が定められていることから、側方領域の循環気流F2が分裂しないで安定する。そのため、側方領域での乱流により、中央側気流F1が減衰、拡散させられず、燃焼室12内に中央位置が強化された偏流を生じさせることができる。 As described above, in the partially opened state by the rotary valve 50 (the position of the valve body 53 is the state shown in FIGS. 17C to 17E), the intake passage is restricted to the center side by the shielding portion 53b of the valve body 53. Thus, the flow velocity of the central airflow F1 that has passed through the notch 54 is increased. By being drawn into the increased airflow, a negative pressure is generated in the region A1 in which the atmospheric pressure is lower than the surroundings. A circulating air flow F2 is formed in the lateral region so as to be drawn into this negative pressure. Moreover, since the width dimension of the shielding part 53b is determined so that the circulating air flow F2 is in a stable state, the circulating air flow F2 in the side region is stabilized without being divided. For this reason, the turbulent flow in the lateral region does not attenuate and diffuse the central airflow F1 and can generate a drift in the combustion chamber 12 with an enhanced central position.
 以上詳述した第2実施形態によれば、第1実施形態の効果に加えて、以下の優れた効果が得られる。 According to the second embodiment described in detail above, the following excellent effects can be obtained in addition to the effects of the first embodiment.
 切欠部54は、吸気ポート20の上下方向(並び方向に交差する方向)の全長を開口させる上下寸法を有する等幅部54bを有していることで、偏流を強くしている間のロータリ弁50の開口位置は、中央部分のみになる。そのため、偏流を強くしている間は、中央部分の速い中央側気流F1とその両側方の循環気流F2を維持しやすくなる。一方で、極めて開口率の小さい場合、つまり切欠部54の端部である半円部54aしか開口していない場合には、その開口形状が半円形になっている。そのため、ロータリ弁50の上流側の空気が切欠部54に流れ込む際の流路抵抗を減少させることができ、流路抵抗による気流の乱れを抑制できる。 The notch portion 54 has a uniform width portion 54b having a vertical dimension that opens the entire length of the intake port 20 in the vertical direction (direction intersecting the alignment direction), thereby rotating the rotary valve while increasing the drift. The opening position of 50 is only the central portion. Therefore, it is easy to maintain the fast central airflow F1 in the central portion and the circulating airflow F2 on both sides while increasing the drift. On the other hand, when the aperture ratio is extremely small, that is, when only the semicircular portion 54a that is the end portion of the notch 54 is opened, the opening shape is a semicircular shape. Therefore, the flow resistance when the air on the upstream side of the rotary valve 50 flows into the notch 54 can be reduced, and the turbulence of the air flow due to the flow resistance can be suppressed.
 ロータリ弁50による部分開放状態では、弁体53の遮蔽部53bにより吸気通路が中央側に絞られることで、その中央側で気流が増速される。この増速された中央側気流F1に引き込まれることで、遮蔽部53bの下流側において、遮蔽部53b及びポート壁面24の内側となる領域A1で、周辺よりも気圧が下がる負圧が生じる。 In the partially opened state by the rotary valve 50, the intake passage is throttled to the center side by the shielding portion 53b of the valve body 53, and the airflow is increased at the center side. By being drawn into the increased central airflow F1, a negative pressure is generated in the region A1 inside the shielding portion 53b and the port wall surface 24 on the downstream side of the shielding portion 53b.
 この場合、遮蔽部53bの下流側であり、かつポート壁面24の内側となる領域において、負圧の生じている領域A1に向かってポート壁面24に沿って気流が逆流して、循環気流F2が形成される。循環気流F2が形成されることで、切欠部54の両側の側方領域での気流の乱れを抑制することができ、燃焼室12に流れ込む気流が所望の状態になる。 In this case, in the region downstream of the shielding portion 53b and inside the port wall surface 24, the airflow flows backward along the port wall surface 24 toward the region A1 where the negative pressure is generated, and the circulating airflow F2 is generated. It is formed. By forming the circulating air flow F2, turbulence of the air flow in the lateral regions on both sides of the notch 54 can be suppressed, and the air flow flowing into the combustion chamber 12 becomes a desired state.
 部分開放状態では、切欠部54の両側の側方領域に、ポート壁面24に沿って縦長となり、長軸方向の長さcに対して短軸方向の長さdが3分の1以上となる楕円状の循環気流F2が形成されるようにすることで、乱流の発生を抑えつつ、切欠部54を通過した気流が燃焼室12に所望の状態で流れ込むようにできる。この場合、弁体53の切欠部54は、必要量の空気を確保するための大きさを要する。一方で、切欠部54が大きくなることで、遮蔽部53bが小さくなりすぎると、楕円形状の循環気流F2の短軸方向の長さdと長軸方向の長さcの比率が1対3よりも大きくなり、微小擾乱により不安定になり、分裂するおそれがある。この点を考慮して、遮蔽部53bのポート壁面24から切欠部54までの幅寸法を調整することが望ましい。 In the partially open state, the side regions on both sides of the notch 54 are vertically long along the port wall surface 24, and the length d in the short axis direction is 1/3 or more of the length c in the long axis direction. By forming the elliptical circulating airflow F2, the airflow that has passed through the notch 54 can flow into the combustion chamber 12 in a desired state while suppressing the generation of turbulent flow. In this case, the cutout portion 54 of the valve body 53 requires a size for securing a necessary amount of air. On the other hand, if the shielding part 53b becomes too small because the notch part 54 becomes large, the ratio of the length d in the minor axis direction to the length c in the major axis direction of the elliptical circulation air flow F2 is from 1: 3. May become unstable, become unstable due to minute disturbances, and split. In consideration of this point, it is desirable to adjust the width dimension from the port wall surface 24 to the cutout portion 54 of the shielding portion 53b.
 切欠部54の両側の側方領域の循環気流F2は、中央の高速な中央側気流F1に沿う気流がポート壁面24に沿うように弁体53側に戻ることで、楕円形状になっている。この楕円形状の気流が吸気口21に向けて分岐する分岐通路25にまで至るように、ポート壁面24から切欠部54までの幅寸法を調整する。そのため、循環気流F2が安定し、気流の乱れを抑制できる。 The circulating air flow F <b> 2 in the lateral regions on both sides of the notch 54 has an elliptical shape because the air flow along the central high-speed air flow F <b> 1 returns to the valve body 53 side along the port wall surface 24. The width dimension from the port wall surface 24 to the notch 54 is adjusted so that the elliptical airflow reaches the branch passage 25 that branches toward the air inlet 21. For this reason, the circulating air flow F2 is stabilized and turbulence of the air flow can be suppressed.
 <第3実施形態>
 第3実施形態では、第2実施形態に、整流板を備えた構成について、図19から図22を用いて説明する。図19は、吸気ポート20を気筒平面視(吸気ポート20の概略閉断面図)において、吸気ポート20が部分開放状態で、整流板55が設けられた状態で、吸気ポート20内に循環気流F2を形成した状態での吸気ポート20の気流の流れを示す図である。図19において、矢印は気流を示し、矢印の太さは気流の速さを示し、太い矢印は細い矢印よりも気流が速い状態を示している。図20は、ロータリ弁50によって吸気ポート20が開閉されている状態を示す流路断面図であって、整流板55が弁体53の下流側に設けられている。図20において、ハッチングの部分は、弁体53が吸気ポート20を閉鎖している領域を示している。図21は、整流板55が取付板57と一体に設けられた状態の斜視図である。図22は、整流板55の変形例を示す図である。
<Third Embodiment>
In 3rd Embodiment, the structure provided with the baffle plate in 2nd Embodiment is demonstrated using FIGS. 19-22. 19 shows the intake port 20 in a cylinder plan view (schematic closed sectional view of the intake port 20), with the intake port 20 in a partially open state and a rectifying plate 55 provided, and a circulating air flow F2 in the intake port 20. It is a figure which shows the flow of the airflow of the intake port 20 in the state which formed. In FIG. 19, an arrow indicates an air current, an arrow thickness indicates the speed of the air current, and a thick arrow indicates a state where the air current is faster than a thin arrow. FIG. 20 is a channel cross-sectional view showing a state in which the intake port 20 is opened and closed by the rotary valve 50, and a rectifying plate 55 is provided on the downstream side of the valve body 53. In FIG. 20, hatched portions indicate regions where the valve body 53 closes the intake port 20. FIG. 21 is a perspective view of a state in which the rectifying plate 55 is provided integrally with the mounting plate 57. FIG. 22 is a view showing a modification of the rectifying plate 55.
 図19に示すように、ロータリ弁50は、シリンダヘッド26に取り付けられ、空気通路27aを有するボディ27と、空気通路27aに設けられる弁体53とを有している。つまり、ロータリ弁50は、空気通路27aが内部に設けられたボディ27と、弁体53と、軸体52等がアセンブリ化されており、既存のシリンダヘッド26に取り付け可能となっている。そして、吸気ポート20は、シリンダヘッド26内に設けられたヘッド通路26aと、空気通路27aとからなり、吸気管31に接続されている。 19, the rotary valve 50 is attached to the cylinder head 26 and includes a body 27 having an air passage 27a and a valve body 53 provided in the air passage 27a. That is, the rotary valve 50 is an assembly of the body 27 with the air passage 27a provided therein, the valve body 53, the shaft body 52, and the like, and can be attached to the existing cylinder head 26. The intake port 20 includes a head passage 26 a provided in the cylinder head 26 and an air passage 27 a and is connected to the intake pipe 31.
 ロータリ弁50が、シリンダヘッド26と別体になって、アセンブリ化されると、搭載性が向上する。一方で、吸気口21から弁体53までの距離が離れると、循環気流F2の長軸方向の長さc、つまり中央側気流F1の吹き出し位置の側方の領域A1から吸気バルブ22の近傍(領域A2の手前)に至る長さが大きくなり、切欠部54によって所定の開口を確保しつつ、循環気流F2の長軸方向の長さcと短軸方向の長さdの比率を所定の範囲とすることが困難になる。そのため、切欠部54の幅寸法を確保すると、循環気流F2が分裂するおそれがある。 When the rotary valve 50 is separated from the cylinder head 26 and assembled, the mountability is improved. On the other hand, when the distance from the intake port 21 to the valve body 53 is increased, the length c in the long axis direction of the circulating air flow F2, that is, the region A1 on the side of the blowing position of the central air flow F1 is near the intake valve 22 ( The length to the front of the area A2 is increased, and the ratio of the length c in the major axis direction to the length d in the minor axis direction of the circulating air flow F2 is set within a predetermined range while ensuring a predetermined opening by the notch 54. It becomes difficult to do. Therefore, if the width dimension of the notch 54 is ensured, the circulating air flow F2 may be split.
 そこで、シリンダヘッド26のヘッド通路26a内には、一対の整流板55が設けられている。整流板55は、吸気ポート20内において弁体53の下流側に、上流側から下流側に向けて延びており、かつ部分開放状態において、切欠部54の端部(遮蔽部53bの切欠部54側端部)から下流側に延びるように配置されている。整流板55は、互いに平行になっており、整流板55の間の間隔は、切欠部54の幅方向の寸法とほぼ同じになっている。整流板55の間の間隔が、切欠部54の幅寸法と同じだと、中央側気流F1が拡散、減衰することを抑制することができ、整流板55の下流側の端部から速い速度で吹き出すことになる。そして、整流板55の下流側の端部から中央側気流F1が吹き出すことで、整流板55の下流側の側方の領域A1が、負圧が生じる領域になる。そのため、循環気流F2の長軸方向の長さcが、整流板55がない場合に比べて短くなり、開口幅を確保しつつ、循環気流F2を安定化させることができる。なお、整流板55のL1方向の長さは、循環気流F2の長軸方向の長さcと短軸方向の長さdの比率を所定の範囲にできる長さにすればよい。 Therefore, a pair of rectifying plates 55 are provided in the head passage 26 a of the cylinder head 26. The rectifying plate 55 extends from the upstream side toward the downstream side in the intake port 20 toward the downstream side of the valve body 53, and in the partially opened state, the end portion of the cutout portion 54 (the cutout portion 54 of the shielding portion 53b). It arrange | positions so that it may extend downstream from a side edge part. The rectifying plates 55 are parallel to each other, and the interval between the rectifying plates 55 is substantially the same as the dimension in the width direction of the notch portion 54. If the distance between the rectifying plates 55 is the same as the width dimension of the notch portion 54, the central airflow F1 can be prevented from diffusing and damped, and the rectifying plate 55 can be fastened at a high speed from the downstream end. Will blow out. And since the center side airflow F1 blows off from the downstream edge part of the baffle plate 55, the area | region A1 of the downstream side of the baffle plate 55 becomes an area | region where a negative pressure produces. Therefore, the length c in the major axis direction of the circulating airflow F2 is shorter than that without the rectifying plate 55, and the circulating airflow F2 can be stabilized while ensuring the opening width. Note that the length of the rectifying plate 55 in the L1 direction may be set so that the ratio of the length c in the major axis direction to the length d in the minor axis direction of the circulating airflow F2 can be within a predetermined range.
 また、整流板55と弁体53との間には、弁体53と整流板55が摺動しない程度のクリアランスを設けるとよい。弁体53と整流板55の間のクリアランスが大きくなりすぎると、切欠部54を通過した気流が整流板55の間に至るまでに乱れることがあるが、クリアランスの大きさが所定以下であれば、クリアランスがあっても、気流への影響はない。なお、整流板55は、ヘッド通路26aだけでなく、空気通路27aにも配されて、整流板55と弁体53との間のクリアランスを調整してもよい。 Further, it is preferable to provide a clearance between the rectifying plate 55 and the valve body 53 so that the valve body 53 and the rectifying plate 55 do not slide. If the clearance between the valve body 53 and the rectifying plate 55 becomes too large, the airflow that has passed through the notch 54 may be disturbed before reaching the rectifying plate 55, but if the clearance is less than a predetermined value Even if there is clearance, there is no effect on the airflow. The rectifying plate 55 may be arranged not only in the head passage 26 a but also in the air passage 27 a to adjust the clearance between the rectifying plate 55 and the valve body 53.
 図20に示すように、整流板55は、吸気ポート20の上下方向の一方の壁面から他方の壁面に亘って設けられていることが望ましい。なお、整流板55は、吸気ポート20における上下方向において、開口が形成される側の壁面(下側の壁面)から他方側の壁面(上側の壁面)に延びており、他方側の壁面に至っていなくてもよい。つまり、整流板55の上下方向の寸法は、吸気ポート20の流路断面の上下方向の寸法よりも小さくてもよい。 As shown in FIG. 20, the rectifying plate 55 is desirably provided from one wall surface in the vertical direction of the intake port 20 to the other wall surface. The rectifying plate 55 extends from the wall surface on the side where the opening is formed (lower wall surface) to the other wall surface (upper wall surface) in the vertical direction of the intake port 20, and reaches the other wall surface. It does not have to be. That is, the vertical dimension of the rectifying plate 55 may be smaller than the vertical dimension of the flow path cross section of the intake port 20.
 また、整流板55には、上下方向(吸気口21の並び方向に直交する方向)の気流を制限する上下制限部56が2つ互いに平行に設けられている。上下制限部56は、吸気ポート20の上下方向の壁面に平行に設けられている。例えば、図17(e)や図17(d)に示すように、切欠部54により形成された開口の面積が非常に小さい場合には、開口は、吸気ポート20の上下方向(並び方向に直交する方向)の壁面に沿って形成されており、切欠部54を通過した気流は、吸気ポート20の上下の壁面に沿って流れている。整流板55の間を通過する間に、切欠部54を通過した後の気流が上下方向に拡散してしまうことは、吹き出し位置での流速が下がる一因となり、領域A1の負圧の相対的な大きさが小さくなるため望ましくない。そこで、上下制限部56によって、整流板55の間を上下方向に仕切ることで、気流が上下方向に拡散するのを抑制することができる。なお、上下制限部56は、1つであってもよいし、3つ以上であってもよい。 The rectifying plate 55 is provided with two upper and lower restricting portions 56 that restrict the airflow in the vertical direction (the direction orthogonal to the arrangement direction of the intake ports 21) in parallel with each other. The vertical restriction 56 is provided in parallel with the vertical wall surface of the intake port 20. For example, as shown in FIGS. 17E and 17D, when the area of the opening formed by the notch 54 is very small, the opening is formed in the vertical direction of the intake ports 20 (perpendicular to the arrangement direction). The airflow that has passed through the notch 54 flows along the upper and lower wall surfaces of the intake port 20. The fact that the airflow after passing through the notch 54 diffuses in the vertical direction while passing between the rectifying plates 55 contributes to a decrease in the flow velocity at the blowing position, and the relative negative pressure in the region A1. This is not desirable because of the small size. Therefore, the vertical restriction part 56 partitions the current plate 55 in the vertical direction, so that the air current can be prevented from diffusing in the vertical direction. Note that the number of the upper and lower restriction units 56 may be one, or three or more.
 整流板55は、図19及び図21に示すように、取付板57と一体に設けられ、取付板57がシリンダヘッド26とボディ27との間に挟み込まれて固定されることで、シリンダへっと26とボディ27の間に係止されている。取付板57には、吸気ポート20の流路断面と同じ大きさもしくはそれより若干大きい大きさの開口部57aが、板厚方向に貫通している。この開口部57aの上下方向の孔縁に亘って整流板55が設けられている。そして、取付板57がシリンダヘッド26とボディ27との間に挟み込まれて固定されることで、整流板55がシリンダヘッド26のヘッド通路26a内に配されている。なお、係止爪など他の方法によって、整流板55をシリンダヘッド26とボディ27の間に係止してもよい。 As shown in FIGS. 19 and 21, the rectifying plate 55 is provided integrally with the mounting plate 57. The mounting plate 57 is sandwiched between the cylinder head 26 and the body 27 and fixed, so that And 26 and the body 27. An opening 57 a having the same size as or slightly larger than the flow path cross section of the intake port 20 passes through the mounting plate 57 in the plate thickness direction. A rectifying plate 55 is provided over the hole edge in the vertical direction of the opening 57a. The mounting plate 57 is sandwiched and fixed between the cylinder head 26 and the body 27, so that the rectifying plate 55 is disposed in the head passage 26 a of the cylinder head 26. The rectifying plate 55 may be locked between the cylinder head 26 and the body 27 by other methods such as a locking claw.
 整流板55は、図22に示すように、他の形状とすることができる。例えば、図22(a)に示すように、整流板55を翼断面形状とすることができる。このような形状では、弁体53によって吸気ポート20内でのL2方向の空気通過範囲が制限されていない場合(図17(a),(b)に示す場合)には、整流板55が気流に対する障害物となり得る。図22(a)にしめすような翼断面形状では、整流板55の圧損を小さくすることができる。 The rectifying plate 55 can have other shapes as shown in FIG. For example, as shown in FIG. 22A, the rectifying plate 55 can have a blade cross-sectional shape. With such a shape, when the air passage range in the L2 direction in the intake port 20 is not limited by the valve body 53 (in the case shown in FIGS. 17A and 17B), the rectifying plate 55 has an air flow. Can be an obstacle to With the blade cross-sectional shape shown in FIG. 22A, the pressure loss of the rectifying plate 55 can be reduced.
 また、図22(b)に示すように、一対の整流板55の間の間隔は、上流側に比べて下流側が幅狭になっていてもよい。また、この場合整流板55は、R形状となっていることが望ましい。このように、整流板55が上流側から下流側に向かって幅狭になっていることで、切欠部54を通過した気流が中央側に寄せられることになる。また、循環気流F2がポート壁面24に沿って戻ってきた際に、整流板55にぶつかると、その壁面に沿って進むことで、中央側気流F1に沿う気流に合流しやすくなる。そのため、循環気流F2の安定性を向上することができる。 Further, as shown in FIG. 22B, the distance between the pair of rectifying plates 55 may be narrower on the downstream side than on the upstream side. In this case, it is desirable that the rectifying plate 55 has an R shape. As described above, since the rectifying plate 55 becomes narrower from the upstream side toward the downstream side, the airflow that has passed through the notch 54 is drawn toward the center side. Further, when the circulating airflow F2 returns along the port wall surface 24, when it hits the rectifying plate 55, it proceeds along the wall surface, so that it becomes easy to join the airflow along the central airflow F1. Therefore, the stability of the circulating air flow F2 can be improved.
 以上詳述した第3実施形態によれば、第2実施形態の効果に加えて、以下の優れた効果が得られる。 According to the third embodiment described in detail above, the following excellent effects can be obtained in addition to the effects of the second embodiment.
 ロータリ弁50は、搭載性の観点から、吸気口21からの距離が離れた位置に設けられることがある。このようにロータリ弁50が吸気口21から遠ざけられると、上流側から下流側の循環気流F2の寸法(長軸方向の長さc)が大きくなり、循環気流F2を分裂させずに形成させることが困難になる。そこで、部分開放状態では、切欠部54の端部から下流側に延びる位置に、上流側から下流側に向けて延びる一対の整流板55を設けており、整流板55の下流側の端部が増速された気流の吹き出し位置となる。そのため、循環気流F2の上流位置も整流板55の下流側の端部位置まで下がることになることから、上流側から下流側の循環気流F2の寸法を小さくすることができ、循環気流F2の安定性を向上させることができる。 The rotary valve 50 may be provided at a position away from the intake port 21 from the viewpoint of mountability. When the rotary valve 50 is moved away from the intake port 21 in this way, the size (length c in the major axis direction) of the circulating air flow F2 from the upstream side to the downstream side increases, and the circulating air flow F2 is formed without being split. Becomes difficult. Therefore, in the partially open state, a pair of rectifying plates 55 extending from the upstream side toward the downstream side is provided at a position extending from the end portion of the notch portion 54 to the downstream side, and the downstream end portion of the rectifying plate 55 is It becomes the blowout position of the accelerated airflow. Therefore, since the upstream position of the circulating air flow F2 is also lowered to the downstream end position of the rectifying plate 55, the size of the circulating air flow F2 from the upstream side to the downstream side can be reduced, and the stability of the circulating air flow F2 can be reduced. Can be improved.
 また、例えば、切欠部54により形成された開口の面積が非常に小さい場合には、開口は、吸気ポート20の上下方向(並び方向に直交する方向)の壁面に沿って形成されている。切欠部54を通った後の気流が上下方向に拡散してしまうことは、流速が下がる一因となるため、望ましくない。そこで、整流板55には、上下方向の気流を制限する上下制限部56が設けられている。この上下制限部56が、整流板55の間を上下方向に仕切っている。そのため、気流が上下方向に拡散するのを抑制することができる。 Further, for example, when the area of the opening formed by the notch 54 is very small, the opening is formed along the wall surface of the intake port 20 in the vertical direction (direction perpendicular to the arrangement direction). It is not desirable that the airflow after passing through the cutout portion 54 is diffused in the vertical direction because it causes a decrease in the flow velocity. Therefore, the rectifying plate 55 is provided with a vertical restriction 56 that restricts the airflow in the vertical direction. This vertical restriction 56 partitions the current plate 55 in the vertical direction. Therefore, it is possible to suppress the airflow from diffusing in the vertical direction.
 ロータリ弁50がシリンダヘッド26の外側に設けられていることで、ロータリ弁50から吸気口21までの距離が長くなる。そのため、整流板55を設けることが有用である。また、整流板55がシリンダヘッド26とボディ27との間に係止されていることで、シリンダヘッド26の設計変更をすることなく搭載することができる。そのため、搭載性が向上する。 Since the rotary valve 50 is provided outside the cylinder head 26, the distance from the rotary valve 50 to the intake port 21 is increased. Therefore, it is useful to provide a current plate 55. Further, since the rectifying plate 55 is locked between the cylinder head 26 and the body 27, the cylinder head 26 can be mounted without changing the design. Therefore, the mountability is improved.
 また、変形例のように、整流板55は、上流側から下流側に向かって幅狭になっていることで、切欠部54を通過した気流が中央領域に寄せられることになる。また、循環気流F2がポート壁面24に沿って戻ってきた際に、整流板55にぶつかり、整流板55の壁面に沿って進むことで、中央側気流F1に沿って吸気口21側に向かう気流に合流しやすくなる。そのため、循環気流F2の安定性を向上することができる。 Further, as in the modification, the rectifying plate 55 is narrowed from the upstream side toward the downstream side, so that the airflow that has passed through the notch 54 is drawn to the central region. Further, when the circulating airflow F2 returns along the port wall surface 24, the airflow strikes the rectifying plate 55 and travels along the wall surface of the rectifying plate 55, so that the airflow directed toward the inlet 21 along the central airflow F1. It becomes easy to join. Therefore, the stability of the circulating air flow F2 can be improved.
 <他の実施形態>
 本開示は、上記実施形態に限定されず、例えば以下のように実施してもよい。ちなみに、以下の別例の構成を、上記実施形態の構成に対して、個別に適用してもよく、また、任意に組み合わせて適用してもよい。
<Other embodiments>
This indication is not limited to the above-mentioned embodiment, for example, may be carried out as follows. Incidentally, the configuration of another example below may be applied individually to the configuration of the above embodiment, or may be applied in any combination.
 ・第1実施形態及び第2実施形態において、第3実施形態と同様に、ロータリ弁50は、シリンダヘッド26と別体でアセンブリ化されており、シリンダヘッド26に取り付けられるボディ27内の空気通路27aに弁体53が配されるようになっていることが望ましい。そして、吸気ポート20は、ヘッド通路26aと空気通路27aとからなっているとよい。なお、各実施形態において、ロータリ弁50は、シリンダヘッド26内に設けられていてもよい。 In the first embodiment and the second embodiment, as in the third embodiment, the rotary valve 50 is assembled separately from the cylinder head 26, and the air passage in the body 27 attached to the cylinder head 26. It is desirable that the valve element 53 is arranged on the 27a. The intake port 20 is preferably composed of a head passage 26a and an air passage 27a. In each embodiment, the rotary valve 50 may be provided in the cylinder head 26.
 ・第3実施形態において、整流板55は、シリンダヘッド26及びロータリ弁50とは、別体となっていたが、予めシリンダヘッド26内等に設けられていてもよい。また、整流板55は、ロータリ弁50がアセンブリ化されている場合だけではなく、シリンダヘッド26内にロータリ弁50が設けられている場合に用いてもよい。 In the third embodiment, the rectifying plate 55 is separate from the cylinder head 26 and the rotary valve 50, but may be provided in the cylinder head 26 or the like in advance. The rectifying plate 55 may be used not only when the rotary valve 50 is assembled, but also when the rotary valve 50 is provided in the cylinder head 26.
 ・上記各実施形態では、ロータリ弁50によって気流の調整を行っていたが、第1実施形態~第3実施形態では、図23に示すように、ピンボール式の弁体であってもよい。ピンボール式の弁体では、開口幅を調整することで、循環気流F2を形成させることができる。なお、この際に、戻ってきた循環気流F2がピンボール式の弁体にぶつかり、弁体の壁面に沿って進むことで、中央側気流F1に沿って吸気口21側に向かう気流に合流しやすくなる。 In the above embodiments, the airflow is adjusted by the rotary valve 50. However, in the first to third embodiments, a pinball type valve body may be used as shown in FIG. In the pinball type valve body, the circulating air flow F2 can be formed by adjusting the opening width. At this time, the returned circulating airflow F2 collides with the pinball type valve body and travels along the wall surface of the valve body, thereby joining the airflow toward the intake port 21 along the central airflow F1. It becomes easy.
 ・また、図24に示すように、開閉弁は、ロータリ弁50やピンボール式の弁体の他、他の構成であってもよい。例えば、図24(a)に示すように、軸体を中心に弁が回転するバタフライ弁であってもよいし、図24(b)に示すように、シャッター弁であってもよい。さらに、図24(c)に示すように、ルーバー式であってもよい。その他、ヒンジ弁や、シャッター弁、ポペット弁、ディスク弁、などの中央部分が強い気流になるような弁体構造であってもよい。なお、第2実施形態及び第3実施形態では、L2方向の切欠部54の両側方には、遮蔽部53bが設けられることが望ましい。 Further, as shown in FIG. 24, the on-off valve may have another configuration in addition to the rotary valve 50 and the pinball type valve body. For example, as shown in FIG. 24 (a), a butterfly valve whose valve rotates about a shaft body may be used, or as shown in FIG. 24 (b), a shutter valve may be used. Furthermore, a louver type may be used as shown in FIG. In addition, a valve body structure in which a central portion such as a hinge valve, a shutter valve, a poppet valve, a disk valve, or the like has a strong airflow may be used. In the second embodiment and the third embodiment, it is desirable that the shielding portions 53b be provided on both sides of the L2 direction cutout portion 54.
 ・気流調整部として、吸気ポート20に設けたロータリ弁50を用いることに代えて、図25に示すように、圧縮空気導入装置58を用いるようにしてもよい。具体的には、図25(a)に示すように、シリンダ周壁部に圧縮空気導入装置58を設け、その導入装置58から気筒内に圧縮空気を導入することで、所望とする筒内気流を生じさせるとよい。又は、図25(b)に示すように、吸気ポート20に圧縮空気導入装置58を設け、その導入装置58から吸気ポート20内に圧縮空気を導入することで、所望とする筒内気流を生じさせるようにしてもよい。 As the air flow adjusting unit, instead of using the rotary valve 50 provided in the intake port 20, a compressed air introducing device 58 may be used as shown in FIG. Specifically, as shown in FIG. 25A, a compressed air introduction device 58 is provided on the cylinder peripheral wall portion, and the compressed air is introduced into the cylinder from the introduction device 58, so that a desired in-cylinder airflow is generated. It should be generated. Alternatively, as shown in FIG. 25B, a compressed air introduction device 58 is provided in the intake port 20, and the compressed air is introduced into the intake port 20 from the introduction device 58, thereby generating a desired in-cylinder airflow. You may make it make it.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (21)

  1.  内周面が円状をなしており、2つの吸気口(21)を介して吸気ポート(20)に連通されるとともに、排気口(13)を介して排気ポート(14)に連通される燃焼室(12)と、
     前記燃焼室を覆う天井部の中央部に設けられる点火プラグ(16)と、
     前記燃焼室内に生じる気流を調整する気流調整部(50)とを備える内燃機関(10)に適用される制御装置(60)であって、
     前記点火プラグの位置での気流を他の位置での気流に比べて強化して偏流を生じさせることを判定する偏流判定部と、
     前記偏流判定部によって偏流を行うと判定された場合に、前記気流調整部によって前記偏流を生じさせる制御部とを備える内燃機関の制御装置。
    Combustion in which the inner peripheral surface is circular and communicates with the intake port (20) via the two intake ports (21) and also communicates with the exhaust port (14) via the exhaust port (13). Room (12),
    A spark plug (16) provided at the center of the ceiling covering the combustion chamber;
    A control device (60) applied to an internal combustion engine (10) comprising an airflow adjusting section (50) for adjusting an airflow generated in the combustion chamber,
    A drift determination unit that determines that the airflow at the position of the spark plug is strengthened compared to the airflow at other positions to cause a drift;
    A control device for an internal combustion engine, comprising: a controller that causes the airflow adjusting unit to cause the drift when the drift determining unit determines that drift is to be performed.
  2.  前記偏流判定部は、燃焼時に前記燃焼室内がリーン状態にある場合又はEGR率が所定値よりも高い場合に、前記偏流を生じさせると判定する請求項1に記載の内燃機関の制御装置。 2. The control apparatus for an internal combustion engine according to claim 1, wherein the drift determination unit determines that the drift occurs when the combustion chamber is in a lean state during combustion or when an EGR rate is higher than a predetermined value.
  3.  前記偏流判定部は、前記内燃機関でノックが生じるおそれがある場合に、前記偏流判定部は、前記偏流を生じさせると判定する請求項1又は請求項2に記載の内燃機関の制御装置。 The control apparatus for an internal combustion engine according to claim 1 or 2, wherein the drift determination unit determines that the drift is caused when there is a risk of knocking in the internal combustion engine.
  4.  前記偏流の強さを設定する偏流設定部を備えており、
     前記偏流設定部は、前記内燃機関の回転速度が高いほど、又は、前記内燃機関が低負荷になるほど、前記偏流の強さを強化する請求項1から請求項3のいずれか一項に記載の内燃機関の制御装置。
    A drift setting unit for setting the strength of the drift,
    The said drift setting part strengthens the intensity | strength of the said drift, so that the rotational speed of the said internal combustion engine is high, or the said internal combustion engine becomes a low load. Control device for internal combustion engine.
  5.  前記偏流判定部は、前記内燃機関の負荷が所定よりも低い場合及び前記内燃機関の回転速度が所定よりも低い場合の少なくとも一方の場合には、前記偏流を生じさせないと判定する請求項1から請求項4のいずれか一項に記載の内燃機関の制御装置。 2. The drift determination unit determines that the drift does not occur in at least one of a case where a load of the internal combustion engine is lower than a predetermined value and a case where a rotation speed of the internal combustion engine is lower than a predetermined value. The control device for an internal combustion engine according to claim 4.
  6.  前記偏流判定部は、前記内燃機関の負荷が所定よりも高い場合及び前記内燃機関の回転速度が所定よりも高い場合の少なくとも一方の場合には、前記偏流を生じさせないと判定する請求項1から請求項5のいずれか一項に記載の内燃機関の制御装置。 The drift determination unit determines that the drift does not occur in at least one of a case where a load of the internal combustion engine is higher than a predetermined value and a case where a rotation speed of the internal combustion engine is higher than a predetermined value. The control device for an internal combustion engine according to claim 5.
  7.  前記偏流判定部は、前記内燃機関が始動状態、アイドル状態、又は排気浄化触媒を早期暖機させる状態である場合に、前記偏流を生じさせると判定する請求項1から請求項3のいずれか一項に記載の内燃機関の制御装置。 4. The method according to claim 1, wherein the drift determination unit determines that the drift occurs when the internal combustion engine is in a start state, an idle state, or a state in which the exhaust purification catalyst is warmed up early. The control apparatus for an internal combustion engine according to the item.
  8.  前記気流調整部により前記偏流を生じさせている状況で、前記燃焼室内における着火状況を示すパラメータを取得するパラメータ取得部を備え、
     前記制御部は、前記パラメータに基づいて、前記偏流の状況をフィードバック制御する請求項1から請求項7のいずれか一項に記載の内燃機関の制御装置。
    In a situation where the drift is caused by the air flow adjustment unit, a parameter acquisition unit that acquires a parameter indicating an ignition state in the combustion chamber,
    The control device for an internal combustion engine according to any one of claims 1 to 7, wherein the control unit feedback-controls the state of the drift based on the parameter.
  9.  前記気流調整部は、前記偏流を生じさせるべく前記吸気ポート内での空気通過範囲を制限する流路可変装置であり、
     前記制御部は、前記流路可変装置により前記吸気ポート内での空気通過範囲を制限することで、前記偏流を生じさせる請求項1から請求項8のいずれか一項に記載の内燃機関の制御装置。
    The airflow adjustment unit is a flow path variable device that restricts an air passage range in the intake port to cause the drift.
    The control of the internal combustion engine according to any one of claims 1 to 8, wherein the control unit generates the drift by restricting an air passage range in the intake port by the flow passage variable device. apparatus.
  10.  請求項1~請求項9のいずれか一項に記載の内燃機関の制御装置と、前記気流調整部とを備える吸気システムであって、
     前記気流調整部は、前記吸気ポート内において、前記内燃機関の気筒平面視で中央となる中央部分とその両側となる両側部分とのうち前記中央部分を前記両側部分よりも開放させて、部分開放状態にすることを可能にする開閉弁であり、
     前記制御部は、前記開閉弁を前記部分開放状態にすることで、前記偏流を生じさせる吸気システム。
    An intake system comprising: the control device for an internal combustion engine according to any one of claims 1 to 9; and the airflow adjustment unit,
    The air flow adjusting portion is partially opened by opening the central portion of the intake port between the central portion that is the center in the cylinder plan view of the internal combustion engine and the both side portions that are both sides thereof, than the both side portions. An on-off valve that makes it possible to
    The said control part is an intake system which produces the said drift by making the said on-off valve into the said partial open state.
  11.  前記開閉弁は、前記吸気ポートが前記2つの吸気口に分岐する位置よりも上流側に設けられている請求項10に記載の吸気システム。 The intake system according to claim 10, wherein the on-off valve is provided upstream of a position where the intake port branches to the two intake ports.
  12.  前記開閉弁は、前記中央部分と前記両側部分との並び方向における全域分の大きさを有する弁体(53)を具備し、
     前記弁体には、前記中央部分となる部位に、前記並び方向に直交する方向に延びる切欠部(54)が形成されており、
     前記切欠部に気流を通過させる状態とすることで、前記部分開放状態とする請求項11に記載の吸気システム。
    The on-off valve comprises a valve body (53) having a size corresponding to the entire region in the alignment direction of the central portion and the both side portions,
    In the valve body, a cutout portion (54) extending in a direction orthogonal to the arrangement direction is formed at a portion to be the central portion,
    The intake system according to claim 11, wherein the partially opened state is obtained by allowing the airflow to pass through the notch.
  13.  前記弁体は、前記両側部分となる部位に、前記2つの吸気口の並び方向におけるポート壁面(24)まで延びる遮蔽部(53b)を有しており、
     前記部分開放状態において、前記遮蔽部よりも下流側であり、かつ前記ポート壁面に沿う側方領域が、前記ポート壁面に沿って前記吸気口側から気流が逆流して循環気流(F2)が形成される循環領域となっている請求項12に記載の吸気システム。
    The valve body has a shielding portion (53b) that extends to the port wall surface (24) in the direction in which the two intake ports are arranged at the portions that are the both side portions,
    In the partially open state, the airflow is made to flow backward from the inlet side along the port wall surface in the side region that is downstream of the shielding portion and along the port wall surface to form a circulating airflow (F2). The intake system according to claim 12, wherein the intake system is a circulating region.
  14.  前記吸気ポートにおける前記遮蔽部の下流側に、前記ポート壁面に沿って縦長となり、長軸方向の長さ(c)に対して短軸方向の長さ(d)が3分の1以上となる楕円状の前記循環気流が形成されるように、前記ポート壁面から前記切欠部までの幅寸法が定められている請求項13に記載の吸気システム。 In the intake port, on the downstream side of the shielding portion, the port is vertically long along the wall surface of the port, and the length (d) in the minor axis direction is 1/3 or more of the length (c) in the major axis direction. The intake system according to claim 13, wherein a width dimension from the port wall surface to the notch is determined so that the elliptical circulating airflow is formed.
  15.  前記吸気ポートに、前記各吸気口に向けて分岐する分岐通路(25)が設けられており、
     少なくとも前記遮蔽部から前記分岐通路に至るまでの長軸方向の長さを有する楕円状の前記循環気流が形成されるように前記遮蔽部において前記ポート壁面から前記切欠部までの幅寸法が定められている請求項13に記載の吸気システム。
    The intake port is provided with a branch passage (25) that branches toward each of the intake ports,
    A width dimension from the wall surface of the port to the notch is defined in the shielding portion so that the elliptical circulation airflow having a length in the major axis direction from at least the shielding portion to the branch passage is formed. The intake system of claim 13.
  16.  前記吸気ポート内において前記弁体の下流側に、上流側から下流側に向けて延び、かつ前記部分開放状態において、前記切欠部の端部から下流側に延びるように配置された一対の整流板(55)が設けられている請求項12から請求項15のいずれか一項に記載の吸気システム。 In the intake port, a pair of rectifying plates are arranged so as to extend from the upstream side toward the downstream side of the valve body and to extend downstream from the end of the notch in the partially open state. The intake system according to any one of claims 12 to 15, wherein (55) is provided.
  17.  前記気流調整部は、前記内燃機関のシリンダヘッド(26)に取り付けられ空気通路(27a)を有するボディ(27)と、前記ボディに支持された前記弁体とを有し、
     前記吸気ポートは、前記空気通路と、前記シリンダヘッドに設けられたヘッド通路(26a)とからなり、
     前記整流板は、前記シリンダヘッドに係止された状態で、前記ヘッド通路内に設けられている請求項16に記載の吸気システム。
    The air flow adjusting unit includes a body (27) attached to a cylinder head (26) of the internal combustion engine and having an air passage (27a), and the valve body supported by the body,
    The intake port includes the air passage and a head passage (26a) provided in the cylinder head.
    The intake system according to claim 16, wherein the rectifying plate is provided in the head passage in a state of being locked to the cylinder head.
  18.  前記一対の整流板の間の間隔は、上流側に比べて下流側が幅狭になっている請求項16又は請求項17に記載の吸気システム。 The intake system according to claim 16 or claim 17, wherein the distance between the pair of rectifying plates is narrower on the downstream side than on the upstream side.
  19.  前記整流板には、前記吸気口の並び方向に直交する方向の気流を制限する上下制限部(56)が設けられている請求項16から請求項18のいずれか一項に記載の吸気システム。 The intake system according to any one of claims 16 to 18, wherein the rectifying plate is provided with a vertical restriction (56) for restricting an air flow in a direction orthogonal to the direction in which the intake ports are arranged.
  20.  前記切欠部は、その一端に半円形状をなす半円部(54a)と、前記並び方向に交差する方向に延び、該半円部の直径と等幅な等幅部(54b)とを備えており、
     前記等幅部は、前記部分開放状態で、前記吸気ポートにおいて前記並び方向に交差する方向の全長を開口させる寸法を有している請求項12から請求項19のいずれか一項に記載の吸気システム。
    The notch includes a semicircular part (54a) having a semicircular shape at one end thereof, and a constant width part (54b) extending in a direction intersecting the arrangement direction and having the same width as the diameter of the semicircular part. And
    20. The intake air according to claim 12, wherein the equal-width portion has a dimension that opens a full length in a direction intersecting the alignment direction in the intake port in the partially opened state. system.
  21.  前記気流調整部は、前記燃焼室内に前記偏流を生じさせるべく圧縮空気を前記吸気ポート内又は前記燃焼室内に導入する圧縮空気導入装置(58)であり、
     前記制御部は、前記圧縮空気導入装置により圧縮空気導入を行わせることで、前記偏流を生じさせる請求項1から請求項8のいずれか一項に記載の内燃機関の制御装置。
    The air flow adjusting unit is a compressed air introduction device (58) for introducing compressed air into the intake port or the combustion chamber so as to cause the drift in the combustion chamber.
    The control device for an internal combustion engine according to any one of claims 1 to 8, wherein the control unit causes the drift by causing the compressed air introduction device to introduce compressed air.
PCT/JP2019/006571 2018-02-23 2019-02-21 Internal combustion engine control device and intake system WO2019163892A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-031321 2018-02-23
JP2018031321 2018-02-23
JP2018-149776 2018-08-08
JP2018149776A JP2019143619A (en) 2018-02-23 2018-08-08 Control device of internal combustion engine, and intake system

Publications (1)

Publication Number Publication Date
WO2019163892A1 true WO2019163892A1 (en) 2019-08-29

Family

ID=67687712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006571 WO2019163892A1 (en) 2018-02-23 2019-02-21 Internal combustion engine control device and intake system

Country Status (1)

Country Link
WO (1) WO2019163892A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179965A (en) * 1991-12-27 1993-07-20 Yamaha Motor Co Ltd Intake air control device for engine
JPH07293401A (en) * 1994-04-28 1995-11-07 Hitachi Ltd Intake device for interval combustion engine
JP2010090795A (en) * 2008-10-08 2010-04-22 Nissan Motor Co Ltd Spark ignition internal combustion engine
JP2011231688A (en) * 2010-04-28 2011-11-17 Nippon Soken Inc Intake device for internal combustion engine
JP2013231428A (en) * 2012-04-06 2013-11-14 Nippon Soken Inc Air intake system for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179965A (en) * 1991-12-27 1993-07-20 Yamaha Motor Co Ltd Intake air control device for engine
JPH07293401A (en) * 1994-04-28 1995-11-07 Hitachi Ltd Intake device for interval combustion engine
JP2010090795A (en) * 2008-10-08 2010-04-22 Nissan Motor Co Ltd Spark ignition internal combustion engine
JP2011231688A (en) * 2010-04-28 2011-11-17 Nippon Soken Inc Intake device for internal combustion engine
JP2013231428A (en) * 2012-04-06 2013-11-14 Nippon Soken Inc Air intake system for internal combustion engine

Similar Documents

Publication Publication Date Title
US11208968B2 (en) Engine system
CN103299052B (en) The control device of multi-cylinder internal-combustion engine
JP4054223B2 (en) In-cylinder injection engine and control method for in-cylinder injection engine
US9897022B2 (en) Control apparatus for internal combustion engine
JP6206158B2 (en) Control system for spark ignition internal combustion engine
US20160273475A1 (en) Control system for spark-ignition internal combustion engine
JP6825553B2 (en) Internal combustion engine control device
JP2017190704A (en) Engine control method and engine
WO2019163892A1 (en) Internal combustion engine control device and intake system
JP4747553B2 (en) Compression ignition internal combustion engine
JP2019143619A (en) Control device of internal combustion engine, and intake system
JP6772901B2 (en) Internal combustion engine exhaust system
JP6712363B2 (en) Control method for direct injection type internal combustion engine in cylinder
JPS5922251Y2 (en) internal combustion engine
JP5679776B2 (en) Exhaust gas recirculation control method for internal combustion engine
JP2002004903A (en) Engine with supercharger
JP5310951B2 (en) Control device for internal combustion engine
JP2002188522A (en) Egr control device for engine with turbocharger
JPH0348334B2 (en)
JP3557314B2 (en) Intake device for internal combustion engine
JP2019183791A (en) Control device for internal combustion engine
JP2013160182A (en) Internal combustion engine control device
JPS6364616B2 (en)
JP5536526B2 (en) Intake device for internal combustion engine
JP2015212532A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757741

Country of ref document: EP

Kind code of ref document: A1