JP2010090795A - Spark ignition internal combustion engine - Google Patents

Spark ignition internal combustion engine Download PDF

Info

Publication number
JP2010090795A
JP2010090795A JP2008261191A JP2008261191A JP2010090795A JP 2010090795 A JP2010090795 A JP 2010090795A JP 2008261191 A JP2008261191 A JP 2008261191A JP 2008261191 A JP2008261191 A JP 2008261191A JP 2010090795 A JP2010090795 A JP 2010090795A
Authority
JP
Japan
Prior art keywords
ignition
spark
internal combustion
combustion engine
tumble flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008261191A
Other languages
Japanese (ja)
Other versions
JP5239720B2 (en
Inventor
Atsushi Terachi
淳 寺地
Toyoki Iguchi
豊樹 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008261191A priority Critical patent/JP5239720B2/en
Publication of JP2010090795A publication Critical patent/JP2010090795A/en
Application granted granted Critical
Publication of JP5239720B2 publication Critical patent/JP5239720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To surely prevent knocking in a spark ignition internal combustion engine and improve thermal efficiency. <P>SOLUTION: This internal combustion engine includes a pair of exhaust valves 8 and a pair of intake valves 7, a first spark plug 9 at roughly the center of a combustion chamber 1, and a tumble control valve variably controlling the intensity of tumble flow. Although ignition with the first ignition plug 9 is done at prescribed ignition timing, flame propagation 21 after spark ignition is distorted with a pair of vortexes T1, T2 due to a tumble flow, and an end gas zone 22 remains near the intake valve 7 of the combustion chamber 1. A second ignition plug 12 is arranged to correspond the end gas zone 22, and spark ignition combustion is done before knocking occurs by igniting at a suitable delay in phase difference with the first spark plug 9. Knocking is surely avoided by actively forming the end gas zone 22. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、ガソリン機関に代表される火花点火内燃機関に関し、特に、そのノッキング回避技術に関する。   The present invention relates to a spark ignition internal combustion engine represented by a gasoline engine, and more particularly to a knocking avoidance technique thereof.

例えばガソリンを燃料とする火花点火内燃機関では、よく知られているように、熱効率を高めるべく圧縮比を高く設定すると、高負荷域においてノッキングが発生しやすくなる。このノッキングの回避は、一般に、点火時期の遅角によってなされるが、点火時期を遅角すると、圧縮比を高く設定したことによる熱効率向上が損なわれ、結果的に燃費の向上を達成することができない。   For example, in a spark ignition internal combustion engine that uses gasoline as fuel, as is well known, if the compression ratio is set high to increase the thermal efficiency, knocking is likely to occur in a high load range. In general, this knocking is avoided by retarding the ignition timing. However, if the ignition timing is retarded, the improvement in thermal efficiency due to the high compression ratio is impaired, and as a result, an improvement in fuel consumption can be achieved. Can not.

なお、特許文献1は、タンブル流を利用したリーン燃焼での失火を防止するために燃焼室内に2つの点火プラグを配置し、一方の点火プラグは常時点火させ、他方の点火プラグは、失火しやすい運転条件のときにのみ点火させるようにした2点点火式の火花点火内燃機関を開示している。
実開平4−125627号公報
In Patent Document 1, two spark plugs are arranged in the combustion chamber to prevent misfire in lean combustion using a tumble flow, one spark plug is always ignited, and the other spark plug is misfired. A two-point ignition type spark ignition internal combustion engine is disclosed which is ignited only under easy operating conditions.
Japanese Utility Model Publication No. 4-125627

特許文献1の技術は、2箇所で同時に点火するため火炎伝播距離が短くなる利点はあるものの、高負荷域で発生するノッキングを確実に回避できるものではない。特に、燃焼室でノッキングが生じる箇所は必ずしも一定ではなく、ノッキング発生箇所が変動するので、ノッキングを十分に抑制することができない。   Although the technique of Patent Document 1 has the advantage of shortening the flame propagation distance because ignition is simultaneously performed at two locations, knocking that occurs in a high load region cannot be avoided reliably. In particular, the location where knocking occurs in the combustion chamber is not necessarily constant, and the location where knocking occurs varies, so knocking cannot be sufficiently suppressed.

この発明の火花点火内燃機関は、少なくとも1つの排気弁および一対の吸気弁を備えるとともに、燃焼室のほぼ中心位置に第1の点火プラグを備えており、上記吸気弁から流入する吸気流により燃焼室内に一対のタンブル流が生成されるようになっている。   The spark-ignition internal combustion engine of the present invention includes at least one exhaust valve and a pair of intake valves, and includes a first ignition plug at a substantially central position of the combustion chamber, and is combusted by the intake air flowing from the intake valve. A pair of tumble flows is generated in the room.

そして、上記タンブル流によって上記点火プラグによる火花点火後の火炎伝播を歪ませて、燃焼室の吸気弁寄りの周縁部にエンドガス領域を残存させるように構成されているとともに、このエンドガス領域に対応して第2の点火プラグを備えている。この第2の点火プラグは、基本的に上記第1の点火プラグから遅れて点火され、上記エンドガス領域をノッキング前に火花点火する。   The tumble flow is configured to distort flame propagation after spark ignition by the spark plug so as to leave an end gas region at the peripheral portion near the intake valve of the combustion chamber, and correspond to the end gas region. And a second spark plug. The second spark plug is basically ignited with a delay from the first spark plug, and sparks the end gas region before knocking.

すなわち、この火花点火内燃機関では、燃焼室のほぼ中心に位置する第1の点火プラグによる点火によって燃焼が開始する。点火後、燃焼室のほぼ中心から外周側へと火炎が伝播していくが、一対の吸気弁を介して燃焼室内に生成される一対のタンブル流によって、この火炎伝播が真円形とならずに歪んだ形のものとなる。燃焼室内に生成されたタンブル流は、ピストンの上昇により燃焼室が偏平になるに伴って、燃焼室の平面視において一対の大きな対称の渦となり、この2つの渦の合流点となる吸気弁寄りの燃焼室外周部で火炎伝播が遅れ、ここに未燃のエンドガス領域が残存する。このエンドガス領域の大きさは、タンブル流の強度によって制御可能であり、タンブル流を強くするとエンドガス領域が拡大し、タンブル流を弱くするとエンドガス領域は縮小する。   That is, in this spark ignition internal combustion engine, combustion is started by ignition by the first spark plug located substantially at the center of the combustion chamber. After ignition, the flame propagates from approximately the center of the combustion chamber to the outer peripheral side, but this flame propagation does not become a perfect circle due to a pair of tumble flows generated in the combustion chamber via a pair of intake valves. It will be distorted. The tumble flow generated in the combustion chamber becomes a pair of large symmetric vortices in a plan view of the combustion chamber as the combustion chamber becomes flat as the piston rises. The flame propagation is delayed at the outer periphery of the combustion chamber, and an unburned end gas region remains here. The size of the end gas region can be controlled by the strength of the tumble flow. When the tumble flow is increased, the end gas region is expanded, and when the tumble flow is decreased, the end gas region is reduced.

このように残存した未燃のエンドガス領域は、圧縮自己着火によるノッキングとなる前に、第2の点火プラグの火花によって着火燃焼に至る。これにより、ノッキングが確実に回避されるとともに、燃焼期間が短くなって、熱効率に優れたものとなる。   The remaining unburned end gas region is ignited and burned by the spark of the second spark plug before knocking due to compression self-ignition. As a result, knocking is reliably avoided, the combustion period is shortened, and the thermal efficiency is excellent.

この発明によれば、タンブル流を用いて燃焼室の特定の部位にエンドガス領域を積極的に残存させ、これがノッキングに至る前に強制的に火花点火することにより、サイクル変動に影響されずに常にノッキングを確実に回避でき、かつ熱効率の向上が図れる。   According to the present invention, the end gas region is actively left in a specific part of the combustion chamber using the tumble flow, and the spark ignition is forcibly performed before the end of the knocking. Knocking can be avoided reliably and thermal efficiency can be improved.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は本発明に係る火花点火内燃機関の一実施例を示しており、この内燃機関は、シリンダヘッド2とシリンダブロック3とピストン4とによって燃焼室1が形成されているとともに、吸気ポート5を開閉する一対の吸気弁7と、排気ポート6を開閉する一対の排気弁8と、を備えている。そして、これらの4つの弁に囲まれた燃焼室1の中心位置に、第1点火プラグ9が配置されている。   FIG. 1 shows an embodiment of a spark ignition internal combustion engine according to the present invention. In this internal combustion engine, a combustion chamber 1 is formed by a cylinder head 2, a cylinder block 3, and a piston 4, and an intake port 5 is formed. And a pair of exhaust valves 8 that open and close the exhaust port 6. A first spark plug 9 is disposed at the center position of the combustion chamber 1 surrounded by these four valves.

上記吸気ポート5は、燃焼室1内での順タンブル流の生成に適した傾斜角度でもってほぼ直線状に構成されており、さらに、該吸気ポート5内を上下の通路に区画するように断面の中央に沿って整流板11が設けられているとともに、その下方の通路を上流側で開閉するタンブル制御弁10を備えている。周知のように、このタンブル制御弁10を閉じると、吸気は整流板11上方の通路のみを通して燃焼室1に流入するので、図の矢印Tのように上下方向に旋回するタンブル流(順タンブル流)の強度が高くなり、逆にタンブル制御弁10を開くと、タンブル流の強度が低くなり、タンブル制御弁10の開度に応じてタンブル流の強度を連続的に可変制御することが可能である。ピストン4の頂面には、タンブル流を阻害しないように、緩く湾曲した凹部4aが形成されている。   The intake port 5 is substantially linear with an inclination angle suitable for generating a forward tumble flow in the combustion chamber 1, and has a cross section so that the intake port 5 is partitioned into upper and lower passages. A rectifying plate 11 is provided along the center of the tumble control valve 10, and a tumble control valve 10 that opens and closes a lower passage on the upstream side is provided. As is well known, when the tumble control valve 10 is closed, the intake air flows into the combustion chamber 1 only through the passage above the rectifying plate 11, so that the tumble flow (forward tumble flow) swirling in the vertical direction as shown by the arrow T in the figure. When the tumble control valve 10 is opened, the strength of the tumble flow decreases, and the strength of the tumble flow can be continuously variably controlled according to the opening degree of the tumble control valve 10. is there. On the top surface of the piston 4, a gently curved recess 4 a is formed so as not to disturb the tumble flow.

また、燃焼室1の吸気弁7側の周縁部、詳しくは一対の吸気弁7に挟まれた位置でかつ吸気ポート5の下方となる位置に、第2点火プラグ12が配置されている。   A second spark plug 12 is disposed at the peripheral edge of the combustion chamber 1 on the intake valve 7 side, specifically, at a position between the pair of intake valves 7 and below the intake port 5.

なお、燃料噴射弁は図示していないが、本発明では、吸気ポート5内で燃料を噴射供給してもよく、あるいは、筒内に直接燃料を噴射するようにしてもよい。この燃料としては、通常のガソリン燃料が用いられる。   Although the fuel injection valve is not shown, in the present invention, the fuel may be injected and supplied in the intake port 5 or the fuel may be directly injected into the cylinder. As this fuel, ordinary gasoline fuel is used.

次に、上記のように構成された本発明の火花点火内燃機関における作用について説明する。   Next, the operation of the spark ignition internal combustion engine of the present invention configured as described above will be described.

上記タンブル制御弁10によって可変制御されるタンブル流の強度は、基本的に、図2に示すように、機関の負荷の増加に伴ってタンブル流が強くなるように制御され、特に、ノッキングが問題となる高負荷域では、強いタンブル流が与えられる。   The strength of the tumble flow that is variably controlled by the tumble control valve 10 is basically controlled so that the tumble flow becomes stronger as the engine load increases, as shown in FIG. In the high load range, a strong tumble flow is given.

図3は、燃焼室1内で第1点火プラグ9により点火された混合気の火炎伝播の様子を示しており、燃焼室1内の燃料の一定割合、例えば50パーセントの燃料が火炎伝播燃焼により燃焼した段階での火炎伝播の周縁21の位置を示している。図3の(a)図は、タンブル流の強度が比較的高いときの状態を示しているが、一対の吸気弁7を介して燃焼室1内に生成される一対の順タンブル流によって、この火炎伝播が真円形とならずに歪んだ形のものとなる。つまり燃焼室1内の一対のタンブル流によって、ピストン4の上昇により燃焼室1が偏平になるに伴って、燃焼室1の平面視において矢印T1,T2で示すようなシリンダ外周に沿う一対の大きな渦が対称に生じる。火炎は、この渦T1,T2に沿って進行しやすいため、この2つの渦T1,T2の合流点となる吸気弁7寄りの燃焼室1外周部で相対的に火炎伝播が遅れ、ここに未燃のエンドガス領域22が残存する。このエンドガス領域22の大きさは、タンブル流の強度によって制御可能であり、タンブル流を強くすると図3(a)図のようにエンドガス領域22が拡大し、タンブル流を弱くすると(b)図のようにエンドガス領域22は縮小する。上記のようにタンブル流強度は負荷に応じて制御されるので、従って、図3(a)は、ノッキングが問題となる高負荷域に相当する。   FIG. 3 shows a state of flame propagation of the air-fuel mixture ignited by the first spark plug 9 in the combustion chamber 1, and a certain percentage of the fuel in the combustion chamber 1, for example, 50% of the fuel is produced by the flame propagation combustion. The position of the peripheral edge 21 of the flame propagation at the stage of combustion is shown. FIG. 3 (a) shows a state when the strength of the tumble flow is relatively high, but this is caused by a pair of forward tumble flows generated in the combustion chamber 1 via the pair of intake valves 7. The flame propagation is not a perfect circle but a distorted shape. That is, as a result of the pair of tumble flows in the combustion chamber 1, the combustion chamber 1 becomes flat as the piston 4 rises, and a pair of large along the cylinder outer circumference as indicated by arrows T 1 and T 2 in plan view of the combustion chamber 1. A vortex is generated symmetrically. Since the flame is likely to travel along the vortices T1 and T2, the flame propagation is relatively delayed at the outer peripheral portion of the combustion chamber 1 near the intake valve 7 where the two vortices T1 and T2 meet. The end gas region 22 of the fuel remains. The size of the end gas region 22 can be controlled by the strength of the tumble flow. When the tumble flow is strengthened, the end gas region 22 is enlarged as shown in FIG. 3A, and when the tumble flow is weakened, the size of FIG. Thus, the end gas region 22 is reduced. As described above, since the tumble flow intensity is controlled according to the load, FIG. 3A corresponds to a high load region where knocking is a problem.

図3(a)のように特定の部位にまとまって残存した未燃のエンドガス領域22は、ピストン4の上昇に伴って不正着火つまりノッキングとなる前に、第1点火プラグ9から遅れて点火する第2点火プラグ12によって強制的に点火され、速やかに着火燃焼する。従って、不正着火によるノッキングが確実に回避され、かつ熱効率が向上する。なお、エンドガス領域22は、ヒートスポットとなる排気弁8から離れて吸気弁7寄りに形成されるので、自己着火によるノッキングが発生しにくい。   The unburned end gas region 22 remaining in a specific region as shown in FIG. 3A is ignited with a delay from the first spark plug 9 before being ignited, that is, knocked as the piston 4 rises. The second spark plug 12 is forcibly ignited and ignited and burned quickly. Therefore, knocking due to unauthorized ignition is reliably avoided, and the thermal efficiency is improved. Since the end gas region 22 is formed away from the exhaust valve 8 serving as a heat spot and close to the intake valve 7, knocking due to self-ignition hardly occurs.

図4は、本発明の1サイクル中の燃焼における熱発生を一般的な火花点火式内燃機関の熱発生(一点鎖線)と比較して示したものであり、図(a)は、高負荷域での熱発生を、図(b)は、低負荷域での熱発生を、それぞれ示す。図(a)に一点鎖線で示すように、高負荷域では、一般に、エンドガスとして燃焼室の種々の位置に残った未燃燃料が火炎伝播による燃焼の前に急激に自己着火燃焼することによって、ノッキングとなる。本発明では、タンブル流を利用して第2点火プラグ12が配置された特定の部位にエンドガス領域22を積極的に形成し、このエンドガス領域22を火花点火するので、サイクル毎に不安定なノッキングが発生することがなく、確実にノッキング回避が図れる。   FIG. 4 shows heat generation in combustion in one cycle of the present invention compared with heat generation (a chain line) of a general spark ignition type internal combustion engine, and FIG. (B) shows the heat generation in the low load region. As indicated by the alternate long and short dash line in FIG. 1 (a), in a high load region, generally, unburned fuel remaining at various positions in the combustion chamber as end gas undergoes rapid self-ignition combustion before combustion by flame propagation, It becomes knocking. In the present invention, the end gas region 22 is positively formed at a specific portion where the second spark plug 12 is disposed by using the tumble flow, and the end gas region 22 is spark-ignited. No knocking occurs and knocking can be avoided reliably.

一方、ノッキングが問題とならない低負荷域では、第2点火プラグ12は第1点火プラグ9と実質的に同時に点火される。なお、このとき、タンブル流は弱く、前述した図3(b)のように明確なエンドガス領域22は形成されない。従って、第1点火プラグ9および第2点火プラグ12の双方で同時に点火することにより火炎伝播距離が短くなるため、図4(b)のように燃焼期間が短縮される。一般的な火花点火式内燃機関では、低負荷域で特にリーン条件の燃焼を行うと、燃焼が緩慢となり、一点鎖線で示すように燃焼期間が長くなって、未燃HCの増加を招くが、本発明では、上記のように2点点火として燃焼期間を短くすることで、未燃HCが少なくなるとともに、熱発生期間が短縮することによる熱効率向上が得られる。   On the other hand, the second spark plug 12 is ignited substantially simultaneously with the first spark plug 9 in a low load region where knocking is not a problem. At this time, the tumble flow is weak and the clear end gas region 22 is not formed as shown in FIG. Therefore, since the flame propagation distance is shortened by simultaneously igniting both the first spark plug 9 and the second spark plug 12, the combustion period is shortened as shown in FIG. In a general spark ignition type internal combustion engine, when combustion is performed particularly in a lean condition in a low load range, the combustion becomes slow and the combustion period becomes longer as shown by the one-dot chain line, which causes an increase in unburned HC. In the present invention, by shortening the combustion period as two-point ignition as described above, unburned HC is reduced, and thermal efficiency is improved by shortening the heat generation period.

図5は、第1点火プラグ9の点火時期と第2点火プラグ12の点火時期との位相差の特性を示したものであり、図(a)は、この位相差と負荷との関係を、図(b)は、この位相差とタンブル流強度(タンブル比)との関係を、それぞれ示している。なお、第1点火プラグ9の点火時期は、基本的に一般的なMBT点に沿うように設定され、第2点火プラグ12は、これよりも位相差分だけ遅れた点火時期となる。図(a)に示すように、点火時期の位相差は、負荷が高いほど大きく与えられ、高負荷域では、前述したエンドガス領域22がノッキングに至る直前に火花点火されるように十分に大きな位相差となる一方、低負荷域では極小ないし0となり、実質的に2点で同時に点火される。また、タンブル流強度に対しては、図(b)のように、タンブル流強度が高いほど、大きな位相差が与えられる。   FIG. 5 shows the characteristics of the phase difference between the ignition timing of the first spark plug 9 and the ignition timing of the second spark plug 12, and FIG. 5 (a) shows the relationship between the phase difference and the load. FIG. (B) shows the relationship between the phase difference and the tumble flow intensity (tumble ratio). Note that the ignition timing of the first spark plug 9 is basically set along a general MBT point, and the second spark plug 12 has an ignition timing delayed by a phase difference from this. As shown in FIG. 1A, the phase difference of the ignition timing is increased as the load is higher. In the high load region, the ignition timing phase difference 22 is sufficiently large so that the end gas region 22 is sparked immediately before knocking. On the other hand, the phase difference becomes minimum or zero in the low load range, and is ignited at two points at the same time. As for the tumble flow strength, as the tumble flow strength is higher, a larger phase difference is given as shown in FIG.

図1には図示していないが、本発明では、ノッキングを検出する公知のセンサを設け、ノッキング発生が検出されたときにタンブル流の強度を高めるように制御することができる。このようにタンブル流強度を高めることで、図3(a)のようにエンドガス領域22を一箇所にまとめて確実に火花点火燃焼させることができ、ノッキングを抑制できる。また、同じくノッキング発生が検出されたときには、第1点火プラグ9の点火時期と第2点火プラグ12の点火時期との位相差を小さくすることで、エンドガス領域22の不正着火をより確実に回避できる。   Although not shown in FIG. 1, in the present invention, a known sensor for detecting knocking can be provided, and control can be performed to increase the strength of the tumble flow when the occurrence of knocking is detected. By increasing the tumble flow strength in this way, the end gas region 22 can be brought together in one place as shown in FIG. 3A and can be reliably ignited and burned, and knocking can be suppressed. Similarly, when occurrence of knocking is detected, unauthorized ignition of the end gas region 22 can be more reliably avoided by reducing the phase difference between the ignition timing of the first spark plug 9 and the ignition timing of the second spark plug 12. .

また本発明では、供給される燃料のオクタン価(換言すれば自着火性)に応じた補正を行うこともできる。なお、燃料のオクタン価を検出する装置は公知であり、このような装置を用いて燃料のオクタン価を自動的に判別することも可能であり、あるいは、いわゆるハイオクガソリンであるかレギュラーガソリンであるかを運転者が入力するようにしてもよい。図6は、燃料の自着火性に対する補正の例を示したものであり、タンブル流強度は、前述したように基本的に負荷に応じて高くなるが、燃料の自着火性が高いほど、タンブル流強度が高くなるように補正する。これにより、例えば低オクタン価ガソリンを用いた際のノッキングが確実に回避される。   In the present invention, correction according to the octane number (in other words, self-ignitability) of the supplied fuel can also be performed. It is to be noted that a device for detecting the octane number of the fuel is known, and it is possible to automatically determine the octane number of the fuel using such a device, or whether so-called high-octane gasoline or regular gasoline is used. The driver may input. FIG. 6 shows an example of correction for the self-ignitability of the fuel. The tumble flow intensity basically increases according to the load as described above. However, the higher the fuel self-ignitability, the more the tumble flow intensity becomes. Correct the flow strength to be higher. Thereby, for example, knocking when using low octane gasoline is reliably avoided.

図7は、タンブル流生成手段の異なる実施例を示すもので、前述したタンブル制御弁10および整流板11に代えて、タンブル流生成用の副吸気通路31が吸気ポート5に付加されている。この副吸気通路31は、先端が一対の吸気弁7の近傍に開口しており、かつ上流側に、タンブル流強度を連続的に変化させるべく副吸気通路31の流量を連続的に変化させうる流量制御弁32が設けられている。   FIG. 7 shows a different embodiment of the tumble flow generating means. A sub-intake passage 31 for generating a tumble flow is added to the intake port 5 in place of the tumble control valve 10 and the rectifying plate 11 described above. The auxiliary intake passage 31 is open at the front end in the vicinity of the pair of intake valves 7, and the flow rate of the auxiliary intake passage 31 can be continuously changed upstream in order to continuously change the tumble flow intensity. A flow control valve 32 is provided.

なお、図1および図7の例では、タンブル流強度を可変制御しているが、高負荷域でのノッキング回避のためには、タンブル流強度の可変制御は必ずしも必須ではなく、少なくともノッキングが問題となる高負荷域において十分な強度のタンブル流が存在すれば足りる。   In the examples of FIGS. 1 and 7, the tumble flow strength is variably controlled. However, in order to avoid knocking in a high load range, variable control of the tumble flow strength is not always essential, and at least knocking is a problem. It is sufficient that a tumble flow with sufficient strength exists in the high load range.

また図8は、前述したタンブル流によるシリンダ外周に沿う一対の大きな渦T1,T2がより確実に生じるように、ピストン4頂面の凹部4aの形状を変更した例を示している。図示するように、ピストン4の凹部4aは、2つの対称の渦T1,T2を円滑に案内するように2つの楕円をつなぎ合わせたような平面形状を有し、2つの渦T1,T2を分岐および合流させるための頂点部51,52が、一対の吸気弁7の間および一対の排気弁8の間に設けられている。   FIG. 8 shows an example in which the shape of the concave portion 4a on the top surface of the piston 4 is changed so that the pair of large vortices T1 and T2 along the outer periphery of the cylinder due to the tumble flow are generated more reliably. As shown in the drawing, the concave portion 4a of the piston 4 has a planar shape in which two ellipses are connected so as to smoothly guide the two symmetric vortices T1 and T2, and the two vortices T1 and T2 are branched. Further, apex portions 51 and 52 for merging are provided between the pair of intake valves 7 and between the pair of exhaust valves 8.

本発明に係る火花点火内燃機関の一実施例を示す断面図。1 is a cross-sectional view showing an embodiment of a spark ignition internal combustion engine according to the present invention. 負荷とタンブル流強度との関係を示す特性図。The characteristic view which shows the relationship between load and tumble flow strength. (a)タンブル流強度が高いとき、および(b)タンブル流強度が低いとき、の燃焼室内の火炎伝播の様子を示す説明図。Explanatory drawing which shows the mode of flame propagation in a combustion chamber when (a) tumble flow intensity | strength is high and (b) tumble flow intensity | strength is low. サイクル中の熱発生を、(a)高負荷および(b)低負荷について示した特性図。The characteristic view which showed the heat generation in a cycle about (a) high load and (b) low load. 点火時期位相差と(a)負荷との関係および(b)タンブル比との関係を示した特性図。The characteristic view which showed the relationship between ignition timing phase difference, (a) load, and (b) tumble ratio. 燃料の自着火性と負荷とタンブル流強度との関係を示した特性図。The characteristic view which showed the relationship between the self-ignition property of fuel, load, and tumble flow intensity. タンブル流生成用の副吸気通路を設けた実施例を示す断面図。Sectional drawing which shows the Example which provided the sub intake passage for tumble flow production | generation. ピストンの凹部の一例を示す(a)平面図および(b)断面図。The (a) top view and (b) sectional view showing an example of the crevice of a piston.

符号の説明Explanation of symbols

1…燃焼室
4…ピストン
5…吸気ポート
7…吸気弁
8…排気弁
9…第1点火プラグ
10…タンブル制御弁
12…第2点火プラグ
DESCRIPTION OF SYMBOLS 1 ... Combustion chamber 4 ... Piston 5 ... Intake port 7 ... Intake valve 8 ... Exhaust valve 9 ... 1st spark plug 10 ... Tumble control valve 12 ... 2nd spark plug

Claims (6)

少なくとも1つの排気弁および一対の吸気弁を備えるとともに、燃焼室のほぼ中心位置に第1の点火プラグを備え、かつ上記吸気弁から流入する吸気流により燃焼室内に一対のタンブル流が生成される火花点火内燃機関であって、
上記タンブル流によって上記点火プラグによる火花点火後の火炎伝播を歪ませて、燃焼室の吸気弁寄りの周縁部にエンドガス領域を残存させるようにするとともに、このエンドガス領域に対応して第2の点火プラグを備え、
この第2の点火プラグを上記第1の点火プラグから遅れて点火し、上記エンドガス領域をノッキング前に火花点火することを特徴とする火花点火内燃機関。
At least one exhaust valve and a pair of intake valves are provided, a first spark plug is provided at a substantially central position of the combustion chamber, and a pair of tumble flows are generated in the combustion chamber by the intake air flowing from the intake valve. A spark ignition internal combustion engine,
The tumble flow distorts the flame propagation after the spark ignition by the spark plug so that the end gas region remains in the peripheral portion near the intake valve of the combustion chamber, and the second ignition corresponding to the end gas region. With a plug,
A spark ignition internal combustion engine characterized in that the second ignition plug is ignited with a delay from the first ignition plug, and the end gas region is ignited before knocking.
タンブル流の強度を可変制御する手段を有し、高負荷域では中負荷域に比べて強いタンブル流を与えることを特徴とする請求項1に記載の火花点火内燃機関。   2. The spark ignition internal combustion engine according to claim 1, further comprising means for variably controlling the intensity of the tumble flow, and providing a stronger tumble flow in a high load region than in a middle load region. タンブル流の強度を可変制御する手段およびノッキング検出手段を有し、ノッキング発生が検出されたときにタンブル流の強度を高めることを特徴とする請求項1に記載の火花点火内燃機関。   2. The spark ignition internal combustion engine according to claim 1, further comprising means for variably controlling the strength of the tumble flow and a knocking detection means, wherein the strength of the tumble flow is increased when occurrence of knocking is detected. 負荷が高いほど上記第1の点火プラグの点火時期と上記第2の点火プラグの点火時期との位相差を大きく与えることを特徴とする請求項1〜3のいずれかに記載の火花点火内燃機関。   The spark ignition internal combustion engine according to any one of claims 1 to 3, wherein the higher the load, the larger the phase difference between the ignition timing of the first spark plug and the ignition timing of the second spark plug. . 低負荷域では、第1の点火プラグと第2の点火プラグとが同時に点火することを特徴とする請求項4に記載の火花点火内燃機関。   The spark ignition internal combustion engine according to claim 4, wherein the first spark plug and the second spark plug ignite simultaneously in the low load range. ノッキング検出手段を有し、ノッキング発生が検出されたときに、上記第1の点火プラグの点火時期と上記第2の点火プラグの点火時期との位相差を小さくすることを特徴とする請求項1〜5のいずれかに記載の火花点火内燃機関。   2. A knock detection means is provided, and the phase difference between the ignition timing of the first spark plug and the ignition timing of the second spark plug is reduced when the occurrence of knocking is detected. The spark ignition internal combustion engine in any one of -5.
JP2008261191A 2008-10-08 2008-10-08 Spark ignition internal combustion engine Active JP5239720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008261191A JP5239720B2 (en) 2008-10-08 2008-10-08 Spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008261191A JP5239720B2 (en) 2008-10-08 2008-10-08 Spark ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010090795A true JP2010090795A (en) 2010-04-22
JP5239720B2 JP5239720B2 (en) 2013-07-17

Family

ID=42253761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008261191A Active JP5239720B2 (en) 2008-10-08 2008-10-08 Spark ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP5239720B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040490A (en) * 2013-08-21 2015-03-02 三菱自動車工業株式会社 Control device of engine
JP2017166381A (en) * 2016-03-15 2017-09-21 株式会社豊田中央研究所 Ignition device of internal combustion engine
WO2019163892A1 (en) * 2018-02-23 2019-08-29 株式会社デンソー Internal combustion engine control device and intake system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124676A (en) * 1980-03-05 1981-09-30 Nissan Motor Co Ltd Ignition timing controlling apparatus
JPH04125627U (en) * 1991-05-08 1992-11-16 三菱自動車工業株式会社 Engine combustion chamber structure
JP2002122025A (en) * 2000-08-07 2002-04-26 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2002266739A (en) * 2001-03-12 2002-09-18 Mazda Motor Corp Engine ignition timing control device
JP2006161633A (en) * 2004-12-06 2006-06-22 Toyota Motor Corp Control device for internal combustion engine
JP2006250106A (en) * 2005-03-14 2006-09-21 Nissan Motor Co Ltd Peripheral plug arrangement structure and ignition method for multipoint ignition engine
JP2006307691A (en) * 2005-04-27 2006-11-09 Nissan Motor Co Ltd Cylinder injection internal combustion engine and its combustion method
JP2007085220A (en) * 2005-09-21 2007-04-05 Mazda Motor Corp Combustion chamber structure for spark ignition engine
JP2007278131A (en) * 2006-04-04 2007-10-25 Toyota Motor Corp Ignition timing control device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124676A (en) * 1980-03-05 1981-09-30 Nissan Motor Co Ltd Ignition timing controlling apparatus
JPH04125627U (en) * 1991-05-08 1992-11-16 三菱自動車工業株式会社 Engine combustion chamber structure
JP2002122025A (en) * 2000-08-07 2002-04-26 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2002266739A (en) * 2001-03-12 2002-09-18 Mazda Motor Corp Engine ignition timing control device
JP2006161633A (en) * 2004-12-06 2006-06-22 Toyota Motor Corp Control device for internal combustion engine
JP2006250106A (en) * 2005-03-14 2006-09-21 Nissan Motor Co Ltd Peripheral plug arrangement structure and ignition method for multipoint ignition engine
JP2006307691A (en) * 2005-04-27 2006-11-09 Nissan Motor Co Ltd Cylinder injection internal combustion engine and its combustion method
JP2007085220A (en) * 2005-09-21 2007-04-05 Mazda Motor Corp Combustion chamber structure for spark ignition engine
JP2007278131A (en) * 2006-04-04 2007-10-25 Toyota Motor Corp Ignition timing control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040490A (en) * 2013-08-21 2015-03-02 三菱自動車工業株式会社 Control device of engine
JP2017166381A (en) * 2016-03-15 2017-09-21 株式会社豊田中央研究所 Ignition device of internal combustion engine
WO2019163892A1 (en) * 2018-02-23 2019-08-29 株式会社デンソー Internal combustion engine control device and intake system

Also Published As

Publication number Publication date
JP5239720B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP7312362B2 (en) engine system
JP5565364B2 (en) Method for detecting abnormal combustion in spark ignition engine and spark ignition engine
JP6555309B2 (en) Engine fuel injector
JP2019039359A (en) Fuel injection device for engine
JP2010090794A (en) Internal combustion engine and combustion control method therefor
US7234441B2 (en) Spark plug system in an internal combustion engine
JP2009041397A (en) Combustion chamber structure of multiple ignition engine
JP2008303798A (en) Internal combustion engine and control device of internal combustion engine
JP5239720B2 (en) Spark ignition internal combustion engine
US7207312B2 (en) Internal combustion engine
JP6123712B2 (en) Control device for internal combustion engine
JP2007002800A (en) Structure of engine combustion chamber
JP2020020307A (en) Engine control device
JP4438726B2 (en) Combustion chamber structure of spark ignition engine
JP2010025039A (en) Combustion abnormal state discriminating device
JP4158779B2 (en) Multi-point ignition engine
JP4618067B2 (en) Spark ignition engine
JP2010144624A (en) Spark ignition internal combustion engine
JP4501743B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2020020306A (en) Engine control device
JP2015121164A (en) Control system for spark ignition type internal combustion engine
JP2011117325A (en) Control device of internal combustion engine
KR102113032B1 (en) System and method for controlling gas flow in combustion chamber of engine that burns dual fuel
JPH11182249A (en) Direct injection spark-ignition type internal combustion engine
JP2019039358A (en) Control device for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5239720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150