JP5365394B2 - Manufacturing method of high-pressure gas tank - Google Patents

Manufacturing method of high-pressure gas tank Download PDF

Info

Publication number
JP5365394B2
JP5365394B2 JP2009172902A JP2009172902A JP5365394B2 JP 5365394 B2 JP5365394 B2 JP 5365394B2 JP 2009172902 A JP2009172902 A JP 2009172902A JP 2009172902 A JP2009172902 A JP 2009172902A JP 5365394 B2 JP5365394 B2 JP 5365394B2
Authority
JP
Japan
Prior art keywords
layer
thermosetting
resin
fiber
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009172902A
Other languages
Japanese (ja)
Other versions
JP2011025497A (en
Inventor
友陽 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009172902A priority Critical patent/JP5365394B2/en
Publication of JP2011025497A publication Critical patent/JP2011025497A/en
Application granted granted Critical
Publication of JP5365394B2 publication Critical patent/JP5365394B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

<P>PROBLEM TO BE SOLVED: To restrain the occurrence of noise when high pressure gas permeates a high pressure gas tank. <P>SOLUTION: Fiber is wound around a liner outer peripheral part of a resin-made container by an FW (filament winding) method to form a fiber-reinforced resin layer impregnated with thermosetting resin. The thermosetting resin is then heated and thermally set by a thermosetting device. Shot blasting treatment using an abrasive B is then performed to a resin thermosetting layer formed by thermosetting at an outermost peripheral part of the fiber-reinforced resin layer. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、高圧ガスタンクの製造方法に関するものである。   The present invention relates to a method for manufacturing a high-pressure gas tank.

従来、高圧ガスタンクの製造方法について、種々の技術が提案されている。例えば、下記特許文献1には、ライナーとしての金属製タンクの外面に帯状の炭素繊維強化プラスチック材を複数層にわたって巻き付けてなる複合高圧タンクの製作方法が記載されている。   Conventionally, various techniques have been proposed for manufacturing a high-pressure gas tank. For example, Patent Document 1 described below describes a method for manufacturing a composite high-pressure tank in which a belt-like carbon fiber reinforced plastic material is wound around a plurality of layers on the outer surface of a metal tank as a liner.

近年では、燃料ガスの燃焼エネルギや、燃料ガスの電気化学反応によって発電された電気エネルギによって駆動する車両が開発されており、高圧ガスタンクには、天然ガスや水素等の燃料ガスが貯蔵され、車両に搭載される場合がある。このため、高圧ガスタンクの軽量化が求められており、炭素繊維強化プラスチックや、ガラス繊維強化プラスチック(以下、これらを総称して、繊維強化樹脂層と呼ぶ)で被覆するライナーとして、樹脂製容器を用いることが検討されている。   In recent years, vehicles that are driven by combustion energy of fuel gas or electric energy generated by electrochemical reaction of fuel gas have been developed. Fuel gas such as natural gas or hydrogen is stored in the high-pressure gas tank, and the vehicle May be installed. For this reason, weight reduction of a high-pressure gas tank is required, and a resin container is used as a liner for covering with carbon fiber reinforced plastic or glass fiber reinforced plastic (hereinafter collectively referred to as a fiber reinforced resin layer). Use is under consideration.

一般に、このような高圧ガスタンクは、エポキシ樹脂等の熱硬化性樹脂を含浸した繊維強化樹脂層をライナー外周に形成する。こうした繊維強化樹脂層の形成に際しては、熱硬化性樹脂を含浸した繊維を樹脂製容器の外周に繰り返し巻き付けて繊維強化樹脂層とし、その後に、当該樹脂層に含まれる熱硬化樹脂を熱硬化させる。これにより、樹脂製容器のライナーを繊維強化樹脂層で被覆した高圧ガスタンクが製造される。   In general, such a high-pressure gas tank has a fiber reinforced resin layer impregnated with a thermosetting resin such as an epoxy resin formed on the outer periphery of the liner. When forming such a fiber reinforced resin layer, a fiber impregnated with a thermosetting resin is repeatedly wound around the outer periphery of a resin container to form a fiber reinforced resin layer, and then the thermosetting resin contained in the resin layer is thermally cured. . Thus, a high-pressure gas tank in which the liner of the resin container is covered with the fiber reinforced resin layer is manufactured.

特開平9−203497号公報JP-A-9-203497 特開平7−276538号公報JP-A-7-276538 特開平6−254974号公報JP-A-6-254974

ところで、ライナー外周への上述した繊維強化樹脂層の形成のための繊維巻き付けの際には、繊維にテンションを掛けてライナーに繊維を重ねて巻き付けることから、過剰な熱硬化性樹脂が表面に浮き出す。このため、熱硬化性樹脂層の最外層部では、浮き出した熱硬化性樹脂がリッチとなる。こうした熱硬化性樹脂層の最外層部での熱硬化性樹脂のリッチ化は、その後の熱硬化の過程でも起きる。つまり、熱硬化の過程では、熱硬化性樹脂は、加熱により粘度が低下して流動性が高まった状態で、高圧ガスタンクの均等加熱用のタンク回転に伴う遠心力を受けるので、熱硬化性樹脂層の最外層部に留まりやすくなる。このため、製造された高圧タンクでは、ライナーを被覆する熱硬化性樹脂層の最外層部に、熱硬化性樹脂が熱硬化した樹脂熱硬化層が形成されることになる。   By the way, when winding the fiber for forming the above-described fiber reinforced resin layer on the outer periphery of the liner, tension is applied to the fiber and the fiber is wound around the liner so that excessive thermosetting resin is raised on the surface. The For this reason, the raised thermosetting resin becomes rich in the outermost layer portion of the thermosetting resin layer. Such enrichment of the thermosetting resin in the outermost layer portion of the thermosetting resin layer also occurs in the subsequent thermosetting process. In other words, in the thermosetting process, the thermosetting resin is subjected to centrifugal force accompanying the rotation of the tank for uniform heating of the high-pressure gas tank in a state in which the viscosity is lowered and the fluidity is increased by heating. It becomes easy to stay in the outermost layer part of the layer. For this reason, in the manufactured high-pressure tank, a resin thermosetting layer obtained by thermosetting the thermosetting resin is formed in the outermost layer portion of the thermosetting resin layer covering the liner.

こうした高圧ガスタンクにおいて、軽量化のために樹脂製容器をライナーとして用いた場合、高圧ガスタンク内に貯蔵されたガスが、高圧充填を受けているがために、わずかながらライナーを透過することがある。特に、高圧ガスタンク内に貯蔵されたガスが、水素等の分子量が小さいガスである場合には、樹脂製容器のライナーを透過しやすくなる。そして、ライナーを透過したガスは、繊維強化樹脂層も透過し、繊維強化樹脂層と樹脂熱硬化層との界面に滞留して、この界面を剥離させ、さらに、滞留したガスの圧力によって、樹脂熱硬化層に亀裂を生じさせる。このような樹脂熱硬化層に生じた亀裂は、高圧ガスタンクの性能を直接的に低下させるものではないが、樹脂熱硬化層に亀裂が生じる際に異音が生じることがあるため、高圧ガスタンクのユーザに、違和感や、不快感を与える場合があった。   In such a high-pressure gas tank, when a resin container is used as a liner for weight reduction, the gas stored in the high-pressure gas tank may be slightly permeated through the liner because it is filled with high pressure. In particular, when the gas stored in the high-pressure gas tank is a gas having a low molecular weight such as hydrogen, the gas can easily pass through the liner of the resin container. The gas that has passed through the liner also passes through the fiber reinforced resin layer, stays at the interface between the fiber reinforced resin layer and the resin thermosetting layer, peels off the interface, and further, the resin pressure is increased by the pressure of the retained gas. Cracks in the thermoset layer. Such cracks in the resin thermosetting layer do not directly reduce the performance of the high-pressure gas tank, but abnormal noise may occur when the resin thermosetting layer cracks. In some cases, the user feels uncomfortable or uncomfortable.

本発明は、上述の課題を解決するためになされたものであり、樹脂製容器の外周部に熱硬化性樹脂を含浸した繊維強化樹脂層を有する高圧ガスタンクにおいて、高圧ガスが高圧ガスタンクを透過する際の異音の発生を抑制することを目的とする。   The present invention has been made to solve the above-described problems, and in a high-pressure gas tank having a fiber-reinforced resin layer impregnated with a thermosetting resin on the outer periphery of a resin container, the high-pressure gas permeates the high-pressure gas tank. The purpose is to suppress the occurrence of abnormal noise.

上記した目的の少なくとも一部を達成するために、本発明では、以下の構成を採用した。   In order to achieve at least a part of the above object, the present invention adopts the following configuration.

[適用1:高圧ガスタンクの製造方法]
高圧ガスタンクの製造方法であって、
樹脂製容器をライナーとして用意する工程と、
前記ライナーの外周に、熱硬化性樹脂を含浸した繊維強化樹脂層を形成する繊維強化樹脂層形成工程と、
前記繊維強化樹脂層を熱硬化する熱硬化工程と、
前記繊維強化樹脂層に含まれる前記熱硬化性樹脂が前記熱硬化工程を経て前記繊維強化樹脂層の最外周部で熱硬化して形成された樹脂熱硬化層に、層の厚みを薄くする薄肉化処理を施す薄肉化工程とを備える
ことを要旨とする。
[Application 1: Manufacturing method of high-pressure gas tank]
A method for manufacturing a high-pressure gas tank, comprising:
Preparing a resin container as a liner;
A fiber reinforced resin layer forming step for forming a fiber reinforced resin layer impregnated with a thermosetting resin on the outer periphery of the liner;
A thermosetting step for thermosetting the fiber reinforced resin layer;
A thin-walled material that reduces the thickness of the thermosetting resin contained in the fiber-reinforced resin layer to the resin thermoset layer formed by thermosetting the outermost peripheral portion of the fiber-reinforced resin layer through the thermosetting step. And a thinning process for applying a thinning process.

上記構成を備える高圧ガスタンクの製造方法では、樹脂性容器のライナー外周部への繊維強化樹脂層の形成と、その後の熱硬化を経ることで、繊維強化樹脂層の最外周部には、繊維強化樹脂層に含まれる熱硬化性樹脂が熱硬化した樹脂熱硬化層が残ることになる。そして、この樹脂熱硬化層は、薄肉化処理、例えば、微小な研磨材を高圧気流に乗せて噴出するブラスト処理や、水を高圧噴出するウォータブラスト処理、或いはサンドペーパー等の研磨用ペーパーを用いた研磨処理などを受けることになるので、樹脂熱硬化層の厚みは薄くなる。このため、樹脂製容器のライナーおよび繊維強化樹脂層を透過した高圧ガスタンク内のガスは、樹脂熱硬化層をも透過しやすくなるので、樹脂熱硬化層の亀裂や、亀裂が生じる際の大きな異音の発生を抑制することがきる。   In the manufacturing method of the high-pressure gas tank having the above configuration, the fiber reinforced resin layer is formed in the outermost peripheral portion of the fiber reinforced resin layer through the formation of the fiber reinforced resin layer on the outer peripheral portion of the liner of the resinous container and the subsequent thermosetting. The resin thermosetting layer in which the thermosetting resin contained in the resin layer is thermoset remains. And this resin thermosetting layer uses a thinning process, for example, a blasting process in which a fine abrasive material is put on a high-pressure air stream, a water blasting process in which water is jetted in high pressure, or a polishing paper such as sandpaper. Therefore, the thickness of the resin thermosetting layer is reduced. For this reason, the gas in the high-pressure gas tank that has passed through the liner of the resin container and the fiber reinforced resin layer is likely to pass through the resin thermosetting layer. The generation of sound can be suppressed.

この場合、樹脂熱硬化層は、できるだけ薄くなるように薄肉化することが好ましい。ところが、繊維強化樹脂層ではその形成に炭素繊維やガラス繊維等の繊維を用いている都合上、繊維強化樹脂層の表層には棘状の毛羽が多数存在する。このため、高圧ガスタンクの取扱性確保の観点から、上記毛羽が樹脂熱硬化層の内部に埋め込まれ、樹脂熱硬化層の表面から突出しない程度に薄くすることが好ましい。   In this case, the resin thermosetting layer is preferably thinned so as to be as thin as possible. However, since the fiber reinforced resin layer uses fibers such as carbon fiber and glass fiber for its formation, there are many spiny fluffs on the surface layer of the fiber reinforced resin layer. For this reason, from the viewpoint of ensuring the handleability of the high-pressure gas tank, it is preferable that the fluff is embedded in the resin thermosetting layer and thinned so as not to protrude from the surface of the resin thermosetting layer.

また、薄肉化処理としてのブラスト処理を施す場合には、繊維強化樹脂層を薄肉の状態で覆う樹脂熱硬化層には、微小研磨材や高圧の水の衝突の衝撃により繊維強化樹脂層の表層に達する亀裂を予め残しておくことができる。よって、ライナーおよび繊維強化樹脂層を透過したガスは、樹脂熱硬化層においては当該層に予め残された亀裂を通過するので、ガス透過に伴う異音をより確実に抑制できる。   In addition, when performing blasting as a thinning process, the resin thermoset layer covering the fiber reinforced resin layer in a thin state is applied to the surface layer of the fiber reinforced resin layer by the impact of a fine abrasive or high-pressure water collision. It is possible to leave a crack that reaches Therefore, the gas that has permeated through the liner and the fiber reinforced resin layer passes through the cracks left in the layer in the resin thermosetting layer, so that the noise caused by the gas permeation can be more reliably suppressed.

この他、薄肉化処理としてのブラスト処理を、樹脂熱硬化層を除去するまで行うようにすれば、ガス透過に伴う異音発生自体を回避できる。そして、ブラスト処理による樹脂熱硬化層除去に伴い、微小研磨材や高圧の水は、その衝突により繊維強化樹脂層の表層の毛羽を取り除くので、タンク取扱の上でも支障はない。   In addition, if the blasting process as the thinning process is performed until the resin thermosetting layer is removed, it is possible to avoid the generation of abnormal noise accompanying gas permeation. As the resin thermosetting layer is removed by the blast treatment, the fine abrasive or high-pressure water removes the fluff on the surface of the fiber-reinforced resin layer due to the collision, so there is no problem in handling the tank.

本発明は、上述した高圧ガスタンクの製造方法としての構成の他、この製造方法によって製造された高圧ガスタンクの発明として構成することもできる。   The present invention can be configured as an invention of a high-pressure gas tank manufactured by this manufacturing method in addition to the above-described configuration as a manufacturing method of a high-pressure gas tank.

本発明の一実施例としての高圧ガスタンクの製造工程を模式的に示す説明図である。It is explanatory drawing which shows typically the manufacturing process of the high pressure gas tank as one Example of this invention. ショットブラスト処理による薄肉化の様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode of thickness reduction by shot blasting. 研磨材Bを用いたショットブラスト処理の変形例を示す説明図である。It is explanatory drawing which shows the modification of the shot blasting process using the abrasives B. また別のショットブラスト処理の変形例を示す説明図である。It is explanatory drawing which shows the modification of another shot blast process.

以下、本発明の実施の形態について、その実施例を図面に基づき説明する。図1は本発明の一実施例としての高圧ガスタンクの製造工程を模式的に示す説明図である。本実施例では、高圧ガスタンクを、高圧水素を貯蔵する高圧水素タンクとした。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view schematically showing a manufacturing process of a high-pressure gas tank as an embodiment of the present invention. In this embodiment, the high-pressure gas tank is a high-pressure hydrogen tank that stores high-pressure hydrogen.

本実施例のタンク製造工程では、まず、図1(a)に示したように、樹脂製容器をライナーとして用意する。本実施例では、樹脂容器として、ナイロン系樹脂からなる樹脂製容器を用いるものとした。樹脂容器として、他の樹脂からなる樹脂容器を用いるものとしてもよい。   In the tank manufacturing process of the present embodiment, first, as shown in FIG. 1A, a resin container is prepared as a liner. In this embodiment, a resin container made of a nylon resin is used as the resin container. As the resin container, a resin container made of another resin may be used.

次に、図1(b)に示したように、ライナーの外周部に、繊維強化樹脂層を形成する(繊維強化樹脂層形成工程)。本実施例では、繊維強化樹脂層形成工程として、ライナーの外周部に、フィラメント・ワインディング法(FW法)によって、熱硬化性樹脂としてのエポキシ樹脂を含浸したカーボン繊維を繰り返し巻き付けることにより、カーボン繊維層を形成する(図1(b−1))。その後、カーボン繊維層外周部に、さらに、フィラメント・ワインディング法(FW法)によって、熱硬化性樹脂としてのエポキシ樹脂を含浸したガラス繊維を繰り返し巻き付けることにより、ガラス繊維層をカーボン繊維層に重ねて形成する(図1(b−2))。こうして重なったカーボン繊維層とガラス繊維層が、繊維強化樹脂層となる。ガラス繊維層はカーボン繊維層よりも機械的強度が高いため、高圧水素タンクの機械的強度を高くすることができる。なお、本実施例では、繊維強化樹脂層形成工程において、カーボン繊維やガラス繊維に含浸された過剰なエポキシ樹脂を、これらの繊維に機械的なダメージが加わらない程度の力でしごいて除去しつつ、各繊維を巻き付けるものとした。こうすることによって、ガラス繊維層の表面に浮き出して形成されるエポキシ樹脂層の厚さを、予めある程度薄くすることができる。エポキシ樹脂に代えて、ポリエステル樹脂やポリアミド樹脂等の熱硬化性樹脂を用いることもできる。また、後述の熱硬化工程での加熱を受けて硬化する樹脂であればよく、熱硬化後において更に熱を受けた場合は変形し、その熱が取り除かれるとその時の形状を保持できる性状の樹脂でもよい。   Next, as shown in FIG.1 (b), a fiber reinforced resin layer is formed in the outer peripheral part of a liner (fiber reinforced resin layer formation process). In this embodiment, as a fiber reinforced resin layer forming step, carbon fibers impregnated with an epoxy resin as a thermosetting resin are repeatedly wound around the outer periphery of a liner by a filament winding method (FW method). A layer is formed (FIG. 1B-1). Thereafter, the glass fiber layer is overlapped on the carbon fiber layer by repeatedly winding the glass fiber impregnated with an epoxy resin as a thermosetting resin by the filament winding method (FW method) around the outer periphery of the carbon fiber layer. It forms (FIG.1 (b-2)). The overlapped carbon fiber layer and glass fiber layer become a fiber reinforced resin layer. Since the glass fiber layer has higher mechanical strength than the carbon fiber layer, the mechanical strength of the high-pressure hydrogen tank can be increased. In this example, in the fiber reinforced resin layer forming step, excess epoxy resin impregnated in the carbon fiber or glass fiber is removed by squeezing with a force that does not cause mechanical damage to these fibers. Meanwhile, each fiber was wound. By carrying out like this, the thickness of the epoxy resin layer which is raised and formed on the surface of the glass fiber layer can be reduced to some extent in advance. Instead of the epoxy resin, a thermosetting resin such as a polyester resin or a polyamide resin can be used. Also, any resin that can be cured by receiving heat in the thermosetting process described below can be used. If the resin is further heated after thermosetting, the resin can be deformed and retain its shape when the heat is removed. But you can.

上述した繊維強化樹脂層形成工程では、過剰なエポキシ樹脂を除去しつつ、ライナーに、カーボン繊維とガラス繊維を重ねて繰り返し巻き付けて、カーボン繊維層とガラス繊維層を形成するが、その際に、ガラス繊維層の表面には、なおも過剰なエポキシ樹脂が浮き出す。この浮き出したエポキシ樹脂は、後述の熱硬化工程を経て繊維強化樹脂層の最外周部で熱硬化して樹脂熱硬化層(エポキシ樹脂硬化層)となる。そして、樹脂浮き出しの程度は、FW法により繊維巻き付けの条件、例えば、巻き取り速度や樹脂含浸の程度等によって定まり、通常は1〜2mmと想定され、この厚みで樹脂熱硬化層(エポキシ樹脂硬化層)が形成されることになる。なお、本実施例では、カーボン繊維とこれに重なるガラス繊維とで繊維強化樹脂層を形成したが、カーボン繊維での繊維強化樹脂層形成、ガラス繊維での繊維強化樹脂層形成とすることもできる。また、アラミド繊維での繊維強化樹脂層形成を行うようにすることもできる。   In the fiber reinforced resin layer forming step described above, while removing excess epoxy resin, the carbon fiber and the glass fiber are repeatedly wound around the liner to form the carbon fiber layer and the glass fiber layer. Excess epoxy resin still stands out on the surface of the glass fiber layer. This raised epoxy resin is thermally cured at the outermost peripheral portion of the fiber reinforced resin layer through a thermosetting process described later to become a resin thermosetting layer (epoxy resin cured layer). The degree of the resin protrusion is determined by the fiber winding condition by the FW method, for example, the winding speed and the degree of resin impregnation, and is normally assumed to be 1 to 2 mm. With this thickness, the resin thermosetting layer (epoxy resin curing) Layer) will be formed. In this embodiment, the fiber reinforced resin layer is formed of carbon fibers and glass fibers overlapping with the carbon fibers. However, the fiber reinforced resin layer may be formed of carbon fibers or the fiber reinforced resin layer may be formed of glass fibers. . Moreover, the fiber reinforced resin layer formation with an aramid fiber can also be performed.

繊維強化樹脂層の形成に続いては、図1(c)に示すように、樹脂層形成済みの中間生成品タンクを熱硬化炉(図示略)に搬入して、エポキシ樹脂の硬化温度まで中間生成品タンクを回転させながら加熱する(熱硬化工程)。この加熱により、繊維強化樹脂層に含まれるエポキシ樹脂は熱硬化して、繊維を相互に接着して繊維強化樹脂層を熱硬化形成する。上記したFW法による繊維巻き取りの際に繊維強化樹脂層から浮き出したエポキシ樹脂と、上記加熱の際のタンク回転に伴う遠心力を受けて繊維強化樹脂層から浮き出したエポキシ樹脂とは、繊維強化樹脂層の最外周部において熱硬化して、繊維強化樹脂層の最外周部に樹脂熱硬化層(エポキシ樹脂硬化層)を形成する。熱硬化炉は、加熱源をタンク軸方向の複数箇所に備え、タンク外表をタンク軸方向において均等に加熱する。   Following the formation of the fiber reinforced resin layer, as shown in FIG. 1 (c), the intermediate product tank with the resin layer formed is carried into a thermosetting furnace (not shown), and the intermediate temperature up to the curing temperature of the epoxy resin is reached. Heat while rotating the product tank (thermosetting process). By this heating, the epoxy resin contained in the fiber reinforced resin layer is thermoset, and the fibers are bonded to each other to form the fiber reinforced resin layer by thermosetting. The epoxy resin that is raised from the fiber reinforced resin layer when the fiber is wound by the FW method and the epoxy resin that is raised from the fiber reinforced resin layer due to the centrifugal force accompanying the tank rotation during the heating are fiber reinforced. A resin thermosetting layer (epoxy resin cured layer) is formed on the outermost peripheral portion of the fiber reinforced resin layer by thermosetting at the outermost peripheral portion of the resin layer. The thermosetting furnace includes heating sources at a plurality of locations in the tank axial direction and heats the outer surface of the tank evenly in the tank axial direction.

上記した熱硬化工程に続いては、冷却養生を経てから中間生成品タンクをショットブラスト装置に搬入し、図1(d)に示すように、研磨材Bを噴出部BSから高圧エアー流に乗せて噴出し、研磨材Bを中間生成品タンクの表面に衝突させる。この際、中間生成品タンクは、回転しながら研磨材Bの噴出を受ける。研磨材Bは、アルミナ、炭化珪素、ガラスビーズ、鉄粉、スチール粉、ポリアミド樹脂粒、ポリカーボネイト樹脂粒等の微小粒状の研磨材であり、研磨材Bの噴出条件、例えばエアー噴出圧や噴出時間(ブラスト処理時間)、研磨材選択等は、繊維強化樹脂層の最外周部に熱硬化して形成された樹脂熱硬化層(エポキシ樹脂硬化層)の薄肉化の程度に応じて定められる。例えば、この樹脂熱硬化層(エポキシ樹脂硬化層)を、既述した形成時の厚み(1〜2mm)から0.2mm程度とする場合には、この薄肉化程度に応じて、エアー噴出圧と噴出時間(ブラスト処理時間)の設定と、研磨材選択などを行う。樹脂熱硬化層(エポキシ樹脂硬化層)の薄肉化の程度は、上記した0.2mmに限られるものではなく、タンク容量や内圧等に応じて適宜設定される。以上の工程によって、本実施例の高圧水素タンクが製造される。   Subsequent to the above-described thermosetting process, after passing through cooling curing, the intermediate product tank is carried into a shot blasting apparatus, and as shown in FIG. 1 (d), the abrasive B is placed on the high-pressure air stream from the ejection part BS. The abrasive B is made to collide with the surface of the intermediate product tank. At this time, the intermediate product tank receives the ejection of the abrasive B while rotating. The abrasive B is a fine-grained abrasive such as alumina, silicon carbide, glass beads, iron powder, steel powder, polyamide resin particles, polycarbonate resin particles, etc., and the ejection conditions of the abrasive B, such as air ejection pressure and ejection time (Blast treatment time), selection of abrasive, etc. are determined according to the degree of thinning of the resin thermosetting layer (epoxy resin cured layer) formed by thermosetting on the outermost peripheral portion of the fiber reinforced resin layer. For example, when this resin thermosetting layer (epoxy resin curing layer) is about 0.2 mm from the thickness (1-2 mm) at the time of formation as described above, depending on the degree of thinning, Set the ejection time (blasting time) and select the abrasive. The degree of thinning of the resin thermosetting layer (epoxy resin curing layer) is not limited to 0.2 mm as described above, and is appropriately set according to the tank capacity, internal pressure, and the like. Through the above steps, the high-pressure hydrogen tank of this example is manufactured.

以上説明したように、本実施例の製造方法では、繊維強化樹脂層の最外周部に熱硬化して形成された樹脂熱硬化層(エポキシ樹脂硬化層)に、研磨材Bを用いたショットブラスト処理を施す。図2はショットブラスト処理による薄肉化の様子を模式的に示す説明図である。図示するように、高圧水素タンク100は、樹脂製容器のライナー110の外周にカーボン繊維とガラス繊維にて強化した繊維強化樹脂層120を備え、当該樹脂層の外側にエポキシ樹脂硬化層130を備える。このエポキシ樹脂硬化層130は、図1の熱硬化工程(c)では、FW法による繊維巻き付けを経て硬化形成された繊維強化樹脂層120の最外周部に熱硬化して残されているが、ショットブラスト処理による薄肉化を経ることで、繊維強化樹脂層120の厚みを0.2mm程度まで薄くした。このため、本実施例の製造方法を経て得られた高圧水素タンク100では、ライナー110およびその周囲の繊維強化樹脂層120を透過したタンク内の水素ガスは、0.2mm程度という薄肉なエポキシ樹脂硬化層130をも透過しやすくなる。よって、本実施例の製造方法によれば、エポキシ樹脂硬化層130の亀裂発生や亀裂が生じる際の大きな異音発生を抑制した高圧水素タンク100を容易に製造することがきる。   As described above, in the manufacturing method of the present embodiment, shot blasting using the abrasive B for the resin thermosetting layer (epoxy resin curing layer) formed by thermosetting the outermost peripheral portion of the fiber reinforced resin layer. Apply processing. FIG. 2 is an explanatory view schematically showing a state of thinning by shot blasting. As shown in the figure, the high-pressure hydrogen tank 100 includes a fiber reinforced resin layer 120 reinforced with carbon fibers and glass fibers on the outer periphery of a liner 110 of a resin container, and includes an epoxy resin cured layer 130 outside the resin layer. . This epoxy resin cured layer 130 remains in the outermost peripheral portion of the fiber reinforced resin layer 120 that is cured and formed through fiber winding by the FW method in the thermosetting step (c) of FIG. The thickness of the fiber reinforced resin layer 120 was reduced to about 0.2 mm through thinning by shot blasting. For this reason, in the high-pressure hydrogen tank 100 obtained through the manufacturing method of the present embodiment, the hydrogen gas in the tank that has permeated the liner 110 and the fiber reinforced resin layer 120 around the liner 110 is a thin epoxy resin having a thickness of about 0.2 mm. The cured layer 130 is easily transmitted. Therefore, according to the manufacturing method of the present embodiment, it is possible to easily manufacture the high-pressure hydrogen tank 100 that suppresses generation of cracks in the cured epoxy resin layer 130 and generation of large abnormal noise when cracks occur.

また、0.2mmという薄肉であってもエポキシ樹脂硬化層130を残すので、繊維強化樹脂層120の表層の毛羽をエポキシ樹脂硬化層130の内部に埋め込んでエポキシ樹脂硬化層130の表面から突出しないようにできる。このため、高圧ガスタンクの取扱性が損なわれず、好ましい。   Moreover, since the epoxy resin cured layer 130 is left even if it is as thin as 0.2 mm, the fluff on the surface layer of the fiber reinforced resin layer 120 is embedded in the epoxy resin cured layer 130 and does not protrude from the surface of the epoxy resin cured layer 130. You can For this reason, the handleability of the high-pressure gas tank is not impaired, which is preferable.

また、研磨材Bを用いたショットブラスト処理により、繊維強化樹脂層120の外側の薄肉のエポキシ樹脂硬化層130には、噴出された研磨材Bの衝突の衝撃により繊維強化樹脂層120の表層に達する亀裂を予め残しておくことができる。よって、ライナー110および繊維強化樹脂層120を透過したガスは、エポキシ樹脂硬化層130においては当該層に予め残された亀裂を通過するので、ガス透過に伴う異音をより確実に抑制できる。   Further, the thin epoxy resin cured layer 130 outside the fiber reinforced resin layer 120 is formed on the surface layer of the fiber reinforced resin layer 120 by the impact of the blown abrasive B by the shot blasting process using the abrasive B. The reaching crack can be left in advance. Therefore, the gas that has permeated through the liner 110 and the fiber reinforced resin layer 120 passes through the cracks left in advance in the epoxy resin cured layer 130, so that it is possible to more reliably suppress abnormal noise associated with gas permeation.

以上、本発明の実施の形態について説明したが、本発明はこのような実施の形態になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々なる態様での実施が可能である。例えば、以下のような変形が可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to such embodiments, and can be implemented in various modes without departing from the scope of the present invention. For example, the following modifications are possible.

図3は研磨材Bを用いたショットブラスト処理の変形例を示す説明図である。図示するように、この変形例では、噴出部BSを中間生成品タンクの上下および左右に配置し、それぞれの噴出部BSから研磨材Bを中間生成品タンクに向けて噴出する。この場合には、中間生成品タンクを回転させる必要はない。   FIG. 3 is an explanatory view showing a modification of the shot blasting process using the abrasive B. As shown in the drawing, in this modification, the ejection parts BS are arranged on the upper and lower sides and the left and right sides of the intermediate product tank, and the abrasive B is ejected from the respective ejection parts BS toward the intermediate product tank. In this case, it is not necessary to rotate the intermediate product tank.

図4はまた別のショットブラスト処理の変形例を示す説明図である。図示するように、この変形例では、中間生成品タンクのストレート部とその両端のドーム部に対応付けて噴出部BSと噴出部BSDを設置し、それぞれの噴出部から研磨材Bを噴出する。この変形例によれば、それぞれの噴出部はタンク外表からほぼ同じ距離だけ隔たっていることから、中間生成品タンクのストレート部における研磨材Bの衝突状況とドーム部における研磨材Bの衝突状況とをほぼ同じにできる。このため、エポキシ樹脂硬化層130の薄肉化の程度をタンクのストレート部とドーム部とでほぼ同じにできる。   FIG. 4 is an explanatory view showing another modified example of the shot blasting process. As shown in the figure, in this modified example, the ejection part BS and the ejection part BSD are installed in association with the straight part of the intermediate product tank and the dome parts at both ends thereof, and the abrasive B is ejected from the respective ejection parts. According to this modification, since each ejection part is separated from the outer surface of the tank by substantially the same distance, the collision situation of the abrasive B in the straight part of the intermediate product tank and the collision situation of the abrasive B in the dome part Can be almost the same. For this reason, the thickness of the epoxy resin cured layer 130 can be made substantially the same between the straight portion and the dome portion of the tank.

上記実施例では、高圧水素タンク100の製造工程の繊維強化樹脂層形成工程(図1(b))において、カーボン繊維とガラス繊維とをそれぞれフィラメント・ワインディング法によってライナー110に繰り返し巻き付けて繊維強化樹脂層120を形成するものとしたが、本発明は、これに限られない。この繊維強化樹脂層形成工程において、例えば、エポキシ樹脂等の熱硬化性樹脂を含浸させた繊維(糸)の代わりに、エポキシ樹脂等の熱硬化性樹脂を含浸させた織布をライナー110の外周に重ねて巻き付けるようにしてもよい。   In the above embodiment, in the fiber reinforced resin layer forming step (FIG. 1 (b)) of the manufacturing process of the high-pressure hydrogen tank 100, the carbon fiber and the glass fiber are repeatedly wound around the liner 110 by the filament winding method, respectively. Although the layer 120 is formed, the present invention is not limited to this. In this fiber reinforced resin layer forming step, for example, a woven fabric impregnated with a thermosetting resin such as an epoxy resin is used instead of a fiber (thread) impregnated with a thermosetting resin such as an epoxy resin. You may make it wrap around and wind.

上記実施例では、高圧水素タンク100の製造工程の繊維強化樹脂層形成工程において、カーボン繊維やガラス繊維に含浸された過剰なエポキシ樹脂を、これらの繊維に機械的なダメージが加わらない程度の力でしごいて除去しつつ、各繊維を巻き付けるものとしたが、本発明は、これに限られない。カーボン繊維やガラス繊維に含浸された過剰なエポキシ樹脂をしごいて除去する工程を省略するようにしてもよい。ただし、この工程を経ることによって、エポキシ樹脂硬化層130の厚さを予めある程度薄くすることができるため、ショットブラスト処理による薄肉化の程度を小さくすることができ、ブラスト処理の短縮が可能となる。   In the above embodiment, in the fiber reinforced resin layer forming step of the manufacturing process of the high-pressure hydrogen tank 100, the excess epoxy resin impregnated in the carbon fiber or the glass fiber is used with a force that does not cause mechanical damage to these fibers. While each fiber is wound while being removed by squeezing, the present invention is not limited to this. You may make it abbreviate | omit the process of squeezing and removing the excess epoxy resin impregnated in carbon fiber or glass fiber. However, through this process, the thickness of the epoxy resin cured layer 130 can be reduced to some extent in advance, so that the degree of thinning by the shot blasting process can be reduced, and the blasting process can be shortened. .

上記実施例では、熱硬化性樹脂として、エポキシ樹脂を用いるものとしたが、他の熱硬化性樹脂を用いるものとしてもよい。   In the said Example, although the epoxy resin was used as a thermosetting resin, it is good also as what uses another thermosetting resin.

上記実施例では、高圧ガスタンクは、高圧水素タンク100であるものとしたが、本発明は、これに限られない。例えば、天然ガス等、他の高圧ガスを貯蔵する高圧ガスタンクとしてもよい。   In the above embodiment, the high-pressure gas tank is the high-pressure hydrogen tank 100, but the present invention is not limited to this. For example, a high-pressure gas tank that stores other high-pressure gas such as natural gas may be used.

また、研磨材Bを用いたショットブラスト処理に代わり、水を高圧噴出するウォータブラスト処理をエポキシ樹脂硬化層130(図2参照)に施すこともできる。この他、サンドペーパー等の研磨用ペーパーを回転する高圧水素タンク100の外表面に押し当てつつ、その押し当て箇所をタンク軸方向に移動させる研磨処理をエポキシ樹脂硬化層130に施すこともできる。こうすれば、エポキシ樹脂硬化層130を、研磨用ペーパーによる研磨を経て薄肉化できる。   Further, instead of the shot blasting process using the abrasive B, a water blasting process for jetting water at a high pressure can be applied to the epoxy resin cured layer 130 (see FIG. 2). In addition, the epoxy resin cured layer 130 may be subjected to a polishing process in which polishing paper such as sandpaper is pressed against the outer surface of the rotating high-pressure hydrogen tank 100 and the pressed portion is moved in the tank axial direction. If it carries out like this, the epoxy resin hardened layer 130 can be thinned through grinding | polishing by the paper for grinding | polishing.

100…高圧水素タンク
110…ライナー
120…繊維強化樹脂層
130…エポキシ樹脂硬化層
B…研磨材
BS…噴出部
BSD…噴出部
DESCRIPTION OF SYMBOLS 100 ... High pressure hydrogen tank 110 ... Liner 120 ... Fiber reinforced resin layer 130 ... Epoxy resin hardened layer B ... Abrasive material BS ... Spout part BSD ... Spout part

Claims (1)

高圧ガスタンクの製造方法であって、
樹脂製容器をライナーとして用意する工程と、
前記ライナーの外周に、熱硬化性樹脂を含浸した繊維強化樹脂層を形成する繊維強化樹脂層形成工程と、
前記繊維強化樹脂層を熱硬化する熱硬化工程と、
前記繊維強化樹脂層に含まれる前記熱硬化性樹脂が前記熱硬化工程を経て前記繊維強化樹脂層の最外周部で熱硬化して形成された樹脂熱硬化層に、層の厚みを薄くする薄肉化処理を施す薄肉化工程とを備える
製造方法。
A method for manufacturing a high-pressure gas tank, comprising:
Preparing a resin container as a liner;
A fiber reinforced resin layer forming step for forming a fiber reinforced resin layer impregnated with a thermosetting resin on the outer periphery of the liner;
A thermosetting step for thermosetting the fiber reinforced resin layer;
A thin-walled material that reduces the thickness of the thermosetting resin contained in the fiber-reinforced resin layer to the resin thermoset layer formed by thermosetting the outermost peripheral portion of the fiber-reinforced resin layer through the thermosetting step. And a thinning process for performing the crystallization treatment.
JP2009172902A 2009-07-24 2009-07-24 Manufacturing method of high-pressure gas tank Expired - Fee Related JP5365394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009172902A JP5365394B2 (en) 2009-07-24 2009-07-24 Manufacturing method of high-pressure gas tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009172902A JP5365394B2 (en) 2009-07-24 2009-07-24 Manufacturing method of high-pressure gas tank

Publications (2)

Publication Number Publication Date
JP2011025497A JP2011025497A (en) 2011-02-10
JP5365394B2 true JP5365394B2 (en) 2013-12-11

Family

ID=43634828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009172902A Expired - Fee Related JP5365394B2 (en) 2009-07-24 2009-07-24 Manufacturing method of high-pressure gas tank

Country Status (1)

Country Link
JP (1) JP5365394B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053244A1 (en) * 2008-10-25 2010-04-29 Daimler Ag Pressure vessel for storing gaseous media under pressure
JP5864146B2 (en) 2011-06-29 2016-02-17 株式会社日本自動車部品総合研究所 High-pressure gas tank and method for producing high-pressure gas tank
KR101334668B1 (en) * 2011-10-21 2013-11-29 (재)대구기계부품연구원 High pressure home vessel manufacturing method use utilizing deep drawing and manufacturing method
KR102029858B1 (en) 2017-04-12 2019-10-08 박동철 Method for selling a used car
JP7120128B2 (en) * 2019-04-01 2022-08-17 トヨタ自動車株式会社 High-pressure tank manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167032A (en) * 1986-01-17 1987-07-23 Sumitomo Electric Ind Ltd Manufacture of fiber reinforced plastic cylinder
JP4578068B2 (en) * 2003-06-18 2010-11-10 株式会社Ihiエアロスペース Laminated body for shell and pressure vessel using the same

Also Published As

Publication number Publication date
JP2011025497A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
JP5365394B2 (en) Manufacturing method of high-pressure gas tank
JP5238577B2 (en) Composite container and method for manufacturing composite container
JP6241450B2 (en) Tank manufacturing method
JP5531040B2 (en) Manufacturing method of high-pressure gas tank
JP7098261B2 (en) Polar cap reinforced pressure vessel
KR20180114152A (en) High pressure gas storage vessel and method for manufacturing high pressure gas storage vessel
JP2012042032A (en) High pressure gas tank, its manufacturing method and manufacturing device
JP7259734B2 (en) High-pressure tank manufacturing method
CN1734154A (en) High pressure gas cylinder made from carbon fiber composite material and manufacturing method thereof
JP2014083792A (en) Cylindrical case and method for manufacturing cylindrical case
CN1749632A (en) Method for producing carbon fiber composite material high pressure gas cylinder
JP5609249B2 (en) High pressure tank manufacturing method, high pressure tank manufacturing apparatus, and high pressure tank
JP6337398B2 (en) Manufacturing method of composite container and composite container
EP1440785B1 (en) Process for producing resin roll
JP5257736B2 (en) Tank manufacturing method and tank manufacturing equipment
JP2004263827A (en) Pressure container, and method for manufacturing the same
JP2009191927A (en) Manufacturing method of tank and retainer member
JP2010249147A (en) Frp tank and method for manufacturing the same
JP2017217787A (en) Manufacturing method of gas tank
CN111664348A (en) Method for manufacturing can
JP2011231900A (en) High pressure tank and method of manufacturing the same
JP4848238B2 (en) Manufacturing method of fiber reinforced resin tubular body
JP2009191904A (en) Method for manufacturing high-pressure gas tank
US20190247978A1 (en) Manufacturing method for high pressure tank
JP2008295940A (en) Manufacturing method of golf club shaft and golf club shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R151 Written notification of patent or utility model registration

Ref document number: 5365394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees