JP5364477B2 - Electrochemical cell - Google Patents

Electrochemical cell Download PDF

Info

Publication number
JP5364477B2
JP5364477B2 JP2009162736A JP2009162736A JP5364477B2 JP 5364477 B2 JP5364477 B2 JP 5364477B2 JP 2009162736 A JP2009162736 A JP 2009162736A JP 2009162736 A JP2009162736 A JP 2009162736A JP 5364477 B2 JP5364477 B2 JP 5364477B2
Authority
JP
Japan
Prior art keywords
electrochemical cell
porosity
porous electrode
electrode layer
porous support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009162736A
Other languages
Japanese (ja)
Other versions
JP2011017055A (en
Inventor
英二 帆足
健太郎 松永
斉二 藤原
正人 吉野
新一 牧野
和矢 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009162736A priority Critical patent/JP5364477B2/en
Publication of JP2011017055A publication Critical patent/JP2011017055A/en
Application granted granted Critical
Publication of JP5364477B2 publication Critical patent/JP5364477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、電気化学セルに関し、特に固体酸化物形燃料電池、水蒸気電解セル、硫酸分解セル、及び合成ガス(一酸化炭素と水素)生成セルなどに使用可能な電気化学セルに関する。   The present invention relates to an electrochemical cell, and more particularly to an electrochemical cell that can be used for a solid oxide fuel cell, a steam electrolysis cell, a sulfuric acid decomposition cell, a synthesis gas (carbon monoxide and hydrogen) production cell, and the like.

一般に、電気化学セルを用いた水素製造方法としては、燃料電池の逆反応を利用する方法がある。その中でも、固体酸化物形燃料電池(Solid Oxide Fuel Cell、以下SOFCと称す。)の逆反応を利用した水素製造方法では、電気化学セルとして固体酸化物形電解セル(Solid Oxide Electrolysis Cell、以下SOECと称す。)が用いられ、SOECを用いた水素製造方法は、一般に高温水蒸気電解(High Temperature Electrolysis、以下HTEと称す。)と呼ばれている。   In general, as a method for producing hydrogen using an electrochemical cell, there is a method utilizing a reverse reaction of a fuel cell. Among them, in the hydrogen production method using the reverse reaction of a solid oxide fuel cell (hereinafter referred to as SOFC), a solid oxide electrolysis cell (hereinafter referred to as SOEC) is used as an electrochemical cell. The hydrogen production method using SOEC is generally called high temperature steam electrolysis (hereinafter referred to as HTE).

このようなSOFC及びSOECは、イオン伝導性の固体電解質と多孔質電極(空気極及び水素極)からなる。多孔質電極は、厚さ数10μm程度のものが最も効率が高く(例えば、特許文献1参照。)、固体電解質もイオンの透過ロスを小さくするために一般的には数10μm程度の厚さとされる。そのため、ガス拡散層を兼ねた導電性多孔質支持体によって、全体の強度を維持するよう構成されたものが多い。   Such SOFC and SOEC are composed of an ion conductive solid electrolyte and a porous electrode (air electrode and hydrogen electrode). A porous electrode having a thickness of about several tens of μm has the highest efficiency (see, for example, Patent Document 1), and a solid electrolyte is generally set to a thickness of about several tens of μm in order to reduce ion transmission loss. The For this reason, many are configured to maintain the overall strength by a conductive porous support that also serves as a gas diffusion layer.

近年、上記のSOFC及びSOECの電気化学特性を把握するため、その解析手法が提案されている(例えば非特許文献1、2参照。)。これらの解析手法は、熱流動解析と電気化学解析を連成させたものであり、その妥当性も検証されている。   In recent years, in order to grasp the electrochemical characteristics of the above SOFC and SOEC, analysis methods thereof have been proposed (for example, see Non-Patent Documents 1 and 2). These analysis methods are a combination of heat flow analysis and electrochemical analysis, and their validity has been verified.

特開2004−265746号公報JP 2004-265746 A

E. Hoashi, T. Ogawa, K. Matsunaga, K. Nakada, S. Fujiwara and S. Kasai,” Simulation Modeling of a Tubular-type Solid Oxide Electrolysis Cell for Hydrogen Production on Nuclear Power Plant”, Proceedings of 2006 International Congress on Advances in Nuclear Power Plants (ICAPP ’06), ANS, Reno, Nevada, pp2287-2294, June 6-10, 2006.E. Hoashi, T. Ogawa, K. Matsunaga, K. Nakada, S. Fujiwara and S. Kasai, “Simulation Modeling of a Tubular-type Solid Oxide Electrolysis Cell for Hydrogen Production on Nuclear Power Plant”, Proceedings of 2006 International Congress on Advances in Nuclear Power Plants (ICAPP '06), ANS, Reno, Nevada, pp2287-2294, June 6-10, 2006. E. Hoashi, T. Ogawa, K. Matsunaga, K. Nakada, S. Fujiwara, H. Yamauchi, S. Kasai, K. Yamada, Y. Hirata "Development of simulation method for thermo-fluid-electrochemical coupled phenomena related to hydrogen production technology using nuclear energy", Proceedings of 2007 ANS Annual Meeting, Embedded Topical Meeting: Safety and Technology of Nuclear Hydrogen Production, Control and Management (ST-NH2), ANS, Boston, MA, pp61-68, June 25-28, 2007.E. Hoashi, T. Ogawa, K. Matsunaga, K. Nakada, S. Fujiwara, H. Yamauchi, S. Kasai, K. Yamada, Y. Hirata "Development of simulation method for thermo-fluid-electrochemical coupled phenomena related to hydrogen production technology using nuclear energy ", Proceedings of 2007 ANS Annual Meeting, Embedded Topical Meeting: Safety and Technology of Nuclear Hydrogen Production, Control and Management (ST-NH2), ANS, Boston, MA, pp61-68, June 25-28 , 2007.

上述した電気化学セルにおいては、さらに高性能化及び高効率化を図ることが求められている。   The above-described electrochemical cell is required to have higher performance and higher efficiency.

本発明は上述した課題を解決するためになされたものであり、従来に比べて高性能化及び高効率化を図ることのできる電気化学セルを提供しようとするものである。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide an electrochemical cell that can achieve higher performance and higher efficiency than conventional ones.

本発明の電気化学セルの一態様は、イオン伝導体である固体電解質層と、前記固体電解質層の一方の面に形成された第1多孔質電極層と、前記固体電解質層の他方の面に形成された第2多孔質電極層と、前記固体電解質層、第1多孔質電極層、第2多孔質電極層を支持するための導電性多孔質支持体を備え、前記導電性多孔質支持体の表面とガスが接触した状態で流通するガス流通路が設けられた電気化学セルであって、前記導電性多孔質支持体が気孔率の異なる部分を有し、かつ、前記気孔率の異なる部分が、前記ガス流通路のガス流通方向の上流側で気孔率が低く下流側で気孔率が高くなっていることを特徴とする。   One aspect of the electrochemical cell of the present invention includes a solid electrolyte layer that is an ionic conductor, a first porous electrode layer formed on one surface of the solid electrolyte layer, and the other surface of the solid electrolyte layer. A conductive porous support for supporting the formed second porous electrode layer and the solid electrolyte layer, the first porous electrode layer, and the second porous electrode layer; and the conductive porous support. An electrochemical cell provided with a gas flow passage that circulates in a state where the surface is in contact with gas, wherein the conductive porous support has portions with different porosity, and the portions with different porosity However, the porosity is low on the upstream side in the gas flow direction of the gas flow passage, and the porosity is high on the downstream side.

本発明によれば、従来に比べて高性能化及び高効率化を図ることのできる電気化学セルを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrochemical cell which can achieve high performance and high efficiency compared with the past can be provided.

本発明の第1実施形態に係る電気化学セルの要部概略構成を模式的に示す図。The figure which shows typically the principal part schematic structure of the electrochemical cell which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る電気化学セルの要部概略構成を模式的に示す図。The figure which shows typically the principal part schematic structure of the electrochemical cell which concerns on 2nd Embodiment of this invention. 電流密度と流れ方向位置との関係を示すグラフ。The graph which shows the relationship between an electric current density and a flow direction position. 平均電流密度と標準偏差とを示すグラフ。The graph which shows an average current density and a standard deviation. 一般的な平板型の電気化学セルの概略構成を示す図。The figure which shows schematic structure of a general flat plate type electrochemical cell. 一般的な円筒型の電気化学セルの概略構成を示す図。The figure which shows schematic structure of a general cylindrical electrochemical cell. 参考例に係る電気化学セルの要部概略構成を模式的に示す図。The figure which shows typically the principal part schematic structure of the electrochemical cell which concerns on a reference example. 多孔質電極層の気孔率による特性の相違を示すグラフ。The graph which shows the difference in the characteristic by the porosity of a porous electrode layer. 多孔質支持体の気孔率による特性の相違を示すグラフ。The graph which shows the difference in the characteristic by the porosity of a porous support body.

以下、本発明の電気化学セルの実施形態について説明する。電気化学セルにおいては、ガスの拡散がその性能に大きく寄与する。本実施形態では、多孔質媒体(多孔質電極と導電性多孔質支持体)ごとに異なる気孔率を持つ構造である電気化学セルの気孔率の組合せと発電(電解)特性を明確にして、電気化学セルの高性能化及び高効率化を図ったものである。   Hereinafter, embodiments of the electrochemical cell of the present invention will be described. In electrochemical cells, gas diffusion contributes greatly to its performance. In this embodiment, the combination of the porosity and the power generation (electrolysis) characteristics of the electrochemical cell having a different porosity for each porous medium (porous electrode and conductive porous support) is clarified, and It is intended to improve the performance and efficiency of chemical cells.

図5,6は、一般的な電気化学セルの概略構成を示す図であり、図5は平板型の電気化学セル、図6は円筒型の電気化学セルの構成を示している。図5,6において、点線の矢印は空気の流れを示しており、実線の矢印は水蒸気+水素の流れを示している。そして、点線の矢印で示すように空気が流れる空気流路と、実線の矢印で示すように水蒸気+水素が流れる水蒸気+水素の流路との間には、空気極側の多孔質電極層、固体電解質層、水素極側の多孔質電極層、及びこれらを支持するための導電性多孔質支持体が設けられている。本発明は、図5に示す平板型の電気化学セル及び図6に示す円筒型の電気化学セルのいずれに対しても適用することができる。   5 and 6 are diagrams showing a schematic configuration of a general electrochemical cell. FIG. 5 shows a configuration of a flat plate electrochemical cell, and FIG. 6 shows a configuration of a cylindrical electrochemical cell. 5 and 6, dotted arrows indicate the flow of air, and solid arrows indicate the flow of water vapor + hydrogen. A porous electrode layer on the air electrode side, between an air flow path through which air flows as indicated by a dotted arrow and a water vapor + hydrogen flow path through which water vapor + hydrogen flows as indicated by a solid arrow, A solid electrolyte layer, a porous electrode layer on the hydrogen electrode side, and a conductive porous support for supporting them are provided. The present invention can be applied to both the flat plate electrochemical cell shown in FIG. 5 and the cylindrical electrochemical cell shown in FIG.

図7は、参考例に係る電気化学セル(SOEC)の要部断面概略構成を拡大して示すものである。同図に示すように、電気化学セル300は、イオン伝導性の固体電解質層1と、この固体電解質層1の両側に形成された多孔質電極層2,3とを具備している。多孔質電極層2は、空気極を構成するものであり、多孔質電極層3は、水素極を構成するものである。   FIG. 7 is an enlarged view showing a schematic cross-sectional configuration of a main part of an electrochemical cell (SOEC) according to a reference example. As shown in the figure, the electrochemical cell 300 includes an ion conductive solid electrolyte layer 1 and porous electrode layers 2 and 3 formed on both sides of the solid electrolyte layer 1. The porous electrode layer 2 constitutes an air electrode, and the porous electrode layer 3 constitutes a hydrogen electrode.

多孔質電極層2,3は、厚さ数10μm程度とされ、固体電解質層1も同様に厚さ数10μm程度とされている。また、多孔質電極層3は、導電性多孔質支持体4上に形成されている。導電性多孔質支持体4は電気化学セル300の強度を維持するとともに、ガス拡散層として作用する。導電性多孔質支持体4は、例えば、Ni−YSZ(酸化ニッケル含有イットリア安定ジルコニア)等を使用することができる。多孔質電極層3には、例えば、導電性多孔質支持体4より多くの酸化ニッケルを含むNi−YSZ等を使用することができる。固体電解質層1には、例えば、YSZ電解質等を使用することができる。また、多孔質電極層2には、例えば、ペロブスカイト系セラミックス等を使用することができる。   The porous electrode layers 2 and 3 have a thickness of about several tens of μm, and the solid electrolyte layer 1 has a thickness of about several tens of μm as well. The porous electrode layer 3 is formed on the conductive porous support 4. The conductive porous support 4 maintains the strength of the electrochemical cell 300 and acts as a gas diffusion layer. For example, Ni—YSZ (nickel oxide-containing yttria stable zirconia) or the like can be used for the conductive porous support 4. For the porous electrode layer 3, for example, Ni—YSZ containing more nickel oxide than the conductive porous support 4 can be used. For the solid electrolyte layer 1, for example, a YSZ electrolyte or the like can be used. For the porous electrode layer 2, for example, perovskite ceramics can be used.

次に、上記の構造を有する電気化学セル300について、前記した非特許文献1、非特許文献2等に記載された流動解析と電気化学解析を組み合わせた手法を用いてその特性を解析した参考例について説明する。   Next, with respect to the electrochemical cell 300 having the above-described structure, a reference example in which the characteristics are analyzed using a technique combining flow analysis and electrochemical analysis described in Non-Patent Document 1, Non-Patent Document 2, and the like described above. Will be described.

まず、解析方法について簡単に説明する。基本的に電解セルは電池の逆反応を利用し、水蒸気を分解して水素を生成する。解析においては、連続の式(1)、運動量保存式(2)、エネルギー保存式(3)、化学種の輸送方程式(4)を解くことで水蒸気、水素、酸素の挙動を解析する。   First, the analysis method will be briefly described. Basically, the electrolytic cell uses the reverse reaction of the battery to decompose water vapor and generate hydrogen. In the analysis, the behavior of water vapor, hydrogen, and oxygen is analyzed by solving the continuous equation (1), momentum conservation equation (2), energy conservation equation (3), and chemical species transport equation (4).

∂ρ/∂t+(∂/∂x)(ρu)=s (1) ∂ρ / ∂t + (∂ / ∂x j ) (ρu j ) = s m (1)

(∂/∂t)(ρu)+(∂/∂x)(ρu−τij
=−(∂P/∂x)+S (2)
(∂ / ∂t) (ρu j ) + (∂ / ∂x j) (ρu j u i -τ ij)
= − (∂P / ∂x j ) + S i (2)

(∂/∂t)(ρh)+(∂/∂x)(ρuh−Fhj
=∂P/∂t+ (∂/∂x)(uP)−P(∂u/∂x
+τij(∂u/∂x)+S (3)
(∂ / ∂t) (ρh) + (∂ / ∂x j ) (ρu j h−F hj )
= ∂P / ∂t + (∂ / ∂x j ) (u j P) −P (∂u j / ∂x j )
+ Τ ij (∂u j / ∂x j ) + S h (3)

(∂/∂t)(ρm)+(∂/∂x)(ρu−Fmj)=S (4) (∂ / ∂t) (ρm m ) + (∂ / ∂x j ) (ρu j mm −F mj ) = S c (4)

加えて、電位ポテンシャルφの保存式(5)を解いた結果として得られる電位ポテンシャル差が電解セルの電圧Vとして得られる。   In addition, the potential potential difference obtained as a result of solving the conservation equation (5) of the potential potential φ is obtained as the voltage V of the electrolytic cell.

(∂/∂x)[σ(∂φ/∂x)]+s=0 (5) (∂ / ∂x i ) [σ e (∂φ / ∂x i )] + s e = 0 (5)

このとき、(5)式の結果として計算された電解セルの電圧を用いて(6)式より電極過電圧ηと電流iを得ることができる。   At this time, the electrode overvoltage η and the current i can be obtained from the equation (6) using the voltage of the electrolytic cell calculated as a result of the equation (5).

V=E+iRt+ηca+ηan (6) V = E + iRt + η ca + η an (6)

得られた電流より電極反応速度rがそれぞれ以下のアノード(7)式、カソード(8)式で決まる。   The electrode reaction rate r is determined by the following anode (7) equation and cathode (8) equation from the obtained current.

アノード:ran=i/(4F) (7)
カソード:rca=i/(2F) (8)
Anode: r an = i / (4F) (7)
Cathode: r ca = i / (2F) (8)

得られた反応速度が化学種の輸送拡散方程式(4)のソース項S、電流iが電位ポテンシャル保存式(5)のソース項Sの中で得られ、それぞれの挙動、および分布を再計算する。 Source term S c of the reaction rate obtained was species transport diffusion equation (4), the current i is obtained in the source term S e of electric potential conservation equation (5), each of the behaviors, and the distribution re calculate.

表1に、参考例1〜3について解析した多孔質電極層2,3の気孔率と導電性多孔質支持体4の気孔率について示す。   Table 1 shows the porosity of the porous electrode layers 2 and 3 analyzed for Reference Examples 1 to 3 and the porosity of the conductive porous support 4.

Figure 0005364477
Figure 0005364477

表1に示すように、参考例1〜3では、導電性多孔質支持体4の気孔率を40%で一定とした状態で、多孔質電極層2,3の気孔率を20%、15%、10%と変化させた。この解析結果を、縦軸を電解電圧、横軸を電流密度とした図8のグラフに示す。この図8に示されるように、多孔質電極層2,3の気孔率が10%と小さい参考例3が、気孔率の大きい参考例2(気孔率15%)、参考例1(気孔率20%)と比べてグラフ上の傾きが小さくなっており、低い電解電圧で高い電流密度が得られ、電解効率が良くなっている。   As shown in Table 1, in Reference Examples 1 to 3, with the porosity of the conductive porous support 4 being constant at 40%, the porosity of the porous electrode layers 2 and 3 was 20% and 15%. It was changed to 10%. The analysis results are shown in the graph of FIG. 8 with the vertical axis representing the electrolysis voltage and the horizontal axis representing the current density. As shown in FIG. 8, Reference Example 3 in which the porosity of the porous electrode layers 2 and 3 is as small as 10% is different from Reference Example 2 in which the porosity is high (Porosity 15%), Reference Example 1 (Porosity 20) %), The slope on the graph is small, a high current density is obtained at a low electrolysis voltage, and the electrolysis efficiency is improved.

上記のように、導電性多孔質支持体4の気孔率が一定の場合、多孔質電極層2,3の気孔率が小さい方が電解効率が良くなる傾向がある(電解においては傾きが小さい方がよい)。したがって、多孔質電極層2,3の気孔率は、10〜20%程度とすることが好ましく、略10%程度とすることがさらに好ましい。これによって、高効率な電気化学セルを実現することができる。   As described above, when the porosity of the conductive porous support 4 is constant, the smaller the porosity of the porous electrode layers 2 and 3, the better the electrolysis efficiency (the smaller the slope in electrolysis). Is good). Therefore, the porosity of the porous electrode layers 2 and 3 is preferably about 10 to 20%, and more preferably about 10%. Thereby, a highly efficient electrochemical cell can be realized.

表2に、参考例4〜6について解析した多孔質電極層2,3の気孔率と導電性多孔質支持体4の気孔率について示す。   Table 2 shows the porosity of the porous electrode layers 2 and 3 analyzed for Reference Examples 4 to 6 and the porosity of the conductive porous support 4.

Figure 0005364477
Figure 0005364477

表2に示すように、参考例4〜6では、多孔質電極層2,3の気孔率を10%で一定とした状態で、導電性多孔質支持体4の気孔率を、20%、30%、50%と変化させた。この解析結果を、縦軸を電解電圧、横軸を電流密度とした図9のグラフに示す。なお、図9のグラフには、多孔質電極層2,3の気孔率が10%で、導電性多孔質支持体4の気孔率が40%である前述した参考例3についても記載してある。   As shown in Table 2, in Reference Examples 4 to 6, with the porosity of the porous electrode layers 2 and 3 being constant at 10%, the porosity of the conductive porous support 4 was 20%, 30 % And 50%. The analysis results are shown in the graph of FIG. 9 with the vertical axis representing the electrolytic voltage and the horizontal axis representing the current density. In addition, the graph of FIG. 9 also describes the above-described Reference Example 3 in which the porous electrode layers 2 and 3 have a porosity of 10% and the conductive porous support 4 has a porosity of 40%. .

図9に示されるように、多孔質電極層2,3の気孔率が一定の場合、導電性多孔質支持体4の気孔率が高い方がグラフ上の傾きが小さくなっており、低い電解電圧で高い電流密度が得られ、電解効率が良くなっている。したがって、導電性多孔質支持体4の気孔率は、30〜50%程度とすることが好ましい。これによって、高効率な電気化学セルを実現することができる。   As shown in FIG. 9, when the porosity of the porous electrode layers 2 and 3 is constant, the higher the porosity of the conductive porous support 4 is, the smaller the slope on the graph is, and the lower the electrolysis voltage is. A high current density is obtained, and the electrolysis efficiency is improved. Therefore, the porosity of the conductive porous support 4 is preferably about 30 to 50%. Thereby, a highly efficient electrochemical cell can be realized.

次に、本発明の実施形態について説明する。第1実施形態の電気化学セル100では、図1に示すように、導電性多孔質支持体4が、水蒸気+水素(SOFCの場合は水素)の流れ方向(図中矢印で示す。)に沿って、気孔率の異なる導電性多孔質支持体4a、4b、4cから構成されている。これらの導電性多孔質支持体4a、4b、4cは、蒸気の流れ方向の上流側の気孔率が低く、下流側の気孔率が高くなるように配列されている。本実施形態の場合、最も上流側の導電性多孔質支持体4aの気孔率が30%、中間部の導電性多孔質支持体4bの気孔率が40%、最も下流側の導電性多孔質支持体4cの気孔率が50%となっている。   Next, an embodiment of the present invention will be described. In the electrochemical cell 100 of 1st Embodiment, as shown in FIG. 1, the electroconductive porous support body 4 follows the flow direction (it shows with the arrow in a figure) of water vapor | steam + hydrogen (in the case of SOFC). The conductive porous supports 4a, 4b, and 4c having different porosity. These conductive porous supports 4a, 4b, and 4c are arranged such that the upstream porosity in the steam flow direction is low and the downstream porosity is high. In the case of this embodiment, the porosity of the conductive porous support 4a at the most upstream side is 30%, the porosity of the conductive porous support 4b at the intermediate portion is 40%, and the conductive porous support at the most downstream side. The porosity of the body 4c is 50%.

なお、他の部分の構成及び材料等については、前述した図7に示した電気化学セル300と同様であるので、対応する部分に同一符号を付して重複した説明は省略する。また、図1では、空気の流れ方向が、水蒸気+水素の流れ方向と同一方向となるよう示してあるが、空気の流れ方向は、逆方向であっても、直交する方向であってもよい。これらの点は、後述する第2実施形態においても同様である。   In addition, since it is the same as that of the electrochemical cell 300 shown in FIG. 7 mentioned above about the structure and material of another part, the same code | symbol is attached | subjected to a corresponding part and the overlapping description is abbreviate | omitted. In FIG. 1, the air flow direction is shown to be the same as the water vapor + hydrogen flow direction. However, the air flow direction may be the reverse direction or the orthogonal direction. . These points are the same in the second embodiment described later.

なお、図1(及び後述する図2)は、電気化学セル100(200)の構造を模式的に示しているものであり、その厚さ方向の寸法とガスの流れ方向の寸法の比率等は、実際の比率を示すものではない。すなわち、例えば、固体電解質層1及び多孔質電極2,3の厚さ方向の寸法は、実際には、10〜50μm程度であり、導電性多孔質支持体4は、実際の厚さ方向の寸法が数ミリ程度、ガスの流れ方向の寸法が数十ミリ程度(例えば40mm程度)である。   FIG. 1 (and FIG. 2 described later) schematically shows the structure of the electrochemical cell 100 (200). The ratio of the dimension in the thickness direction to the dimension in the gas flow direction is as follows. It does not indicate the actual ratio. That is, for example, the thickness in the thickness direction of the solid electrolyte layer 1 and the porous electrodes 2 and 3 is actually about 10 to 50 μm, and the conductive porous support 4 is the actual dimension in the thickness direction. Is about several millimeters and the dimension in the gas flow direction is about several tens of millimeters (eg, about 40 mm).

また、図2は、第2実施形態の電気化学セル200の構成を示すものである。この第2実施形態の電気化学セル200では、導電性多孔質支持体4が、水蒸気+水素(SOFCの場合は水素)の流れ方向(図中矢印で示す。)に沿って、気孔率の異なる導電性多孔質支持体4a、4cから構成されている。これらの導電性多孔質支持体4a、4cは、蒸気の流れ方向の上流側の気孔率が低く、下流側の気孔率が高くなるように配列されている。本実施形態の場合、全体の1/4の長さの上流側の部分の導電性多孔質支持体4aの気孔率が30%、全体の3/4の長さの下流側の導電性多孔質支持体4cの気孔率が50%となっている。   FIG. 2 shows the configuration of the electrochemical cell 200 of the second embodiment. In the electrochemical cell 200 of the second embodiment, the conductive porous support 4 has different porosity along the flow direction (indicated by an arrow in the figure) of water vapor + hydrogen (hydrogen in the case of SOFC). It is composed of conductive porous supports 4a and 4c. These conductive porous supports 4a and 4c are arranged so that the porosity on the upstream side in the steam flow direction is low and the porosity on the downstream side is high. In the case of this embodiment, the porosity of the conductive porous support 4a in the upstream portion of the entire length of 30% is 30%, and the downstream conductive porous in the length of 3/4 of the entire length. The porosity of the support 4c is 50%.

図3は、縦軸を電流密度、横軸を水蒸気の流れ方向位置として、上記した第1実施形態の電気化学セル100、第2実施形態の電気化学セル200、及び前述した参考例1〜6について、電解電圧を1.3Vとした場合の電流密度と流れ方向位置との関係を示すグラフである。また、図4は、縦軸を流れ方向分布の平均電流密度からの標準偏差(%)、縦軸を平均電流密度として、参考例1〜6と第1及び第2実施形態のこれらの値をプロットして示したものである。   FIG. 3 shows the electrochemical cell 100 according to the first embodiment, the electrochemical cell 200 according to the second embodiment, and the reference examples 1 to 6 described above, where the vertical axis represents current density and the horizontal axis represents the flow direction position of water vapor. Is a graph showing the relationship between the current density and the position in the flow direction when the electrolysis voltage is 1.3V. FIG. 4 shows these values of Reference Examples 1 to 6 and the first and second embodiments, where the vertical axis is the standard deviation (%) from the average current density of the flow direction distribution and the vertical axis is the average current density. Plotted.

上記図3に示す電流密度の流れ方向分布は、平坦な方がより効率が高くなり、温度分布も小さくなって構造的にも負荷が小さくなる。また、上記図4では、標準偏差が小さくて電流密度が大きい、つまり右下に向かうほど性能が向上していることを示している。これらの図3、図4に示されるように、第1及び第2実施形態では、電流密度の流れ方向分布がより均一でその標準偏差が低くなっており、かつ、平均電流密度も高くなっている。   The flow direction distribution of the current density shown in FIG. 3 is more efficient when it is flat, the temperature distribution is smaller, and the load is structurally smaller. FIG. 4 shows that the standard deviation is small and the current density is large, that is, the performance is improved toward the lower right. As shown in FIGS. 3 and 4, in the first and second embodiments, the current density distribution in the flow direction is more uniform, the standard deviation thereof is lower, and the average current density is also higher. Yes.

上記のように、第1及び第2実施形態では、導電性多孔質支持体の気孔率を上流側で小さく、下流側で大きくすることによって、電解効率が高く、従来に比べて高性能化及び高効率化を図ることのできる電気化学セルを提供することができる。   As described above, in the first and second embodiments, by increasing the porosity of the conductive porous support on the upstream side and increasing the porosity on the downstream side, the electrolysis efficiency is high, and higher performance and higher performance than in the past can be achieved. An electrochemical cell that can achieve high efficiency can be provided.

なお、本発明は、上記実施形態に限定されるものではなく、各種の変形が可能であることは勿論である。例えば、導電性多孔質支持体の気孔率の異なる部分の数は、4以上としてもよい。また、第1及び第2実施形態のように気孔率がステップ状に異なる導電性多孔質支持体はなく、例えば、一次以上の多項式、指数関数、対数関数等の任意の関数で表されるように、気孔率が連続的に変化する導電性多孔質支持体を用いてもよい。   In addition, this invention is not limited to the said embodiment, Of course, various deformation | transformation are possible. For example, the number of portions having different porosity of the conductive porous support may be 4 or more. In addition, there is no conductive porous support whose porosity differs stepwise as in the first and second embodiments, and for example, it is expressed by an arbitrary function such as a first-order or higher polynomial, exponential function, logarithmic function, etc. Alternatively, a conductive porous support having a continuously changing porosity may be used.

1……固体電解質層、2……多孔質電極層(空気極)、3……多孔質電極層(水素極)、4,4a,4b,4c……導電性多孔質支持体、100,200……電気化学セル。   DESCRIPTION OF SYMBOLS 1 ... Solid electrolyte layer, 2 ... Porous electrode layer (air electrode), 3 ... Porous electrode layer (hydrogen electrode), 4, 4a, 4b, 4c ... Conductive porous support, 100, 200 …… Electrochemical cell.

Claims (5)

イオン伝導体である固体電解質層と、
前記固体電解質層の一方の面に形成された第1多孔質電極層と、
前記固体電解質層の他方の面に形成された第2多孔質電極層と、
前記固体電解質層、第1多孔質電極層、第2多孔質電極層を支持するための導電性多孔質支持体を備え、前記導電性多孔質支持体の表面とガスが接触した状態で流通するガス流通路が設けられた電気化学セルであって、
前記導電性多孔質支持体が気孔率の異なる部分を有し、かつ、前記気孔率の異なる部分が、前記ガス流通路のガス流通方向の上流側で気孔率が低く下流側で気孔率が高くなっていることを特徴とする電気化学セル。
A solid electrolyte layer that is an ionic conductor;
A first porous electrode layer formed on one surface of the solid electrolyte layer;
A second porous electrode layer formed on the other surface of the solid electrolyte layer;
A conductive porous support for supporting the solid electrolyte layer, the first porous electrode layer, and the second porous electrode layer is provided, and the surface of the conductive porous support and gas are in contact with each other. An electrochemical cell provided with a gas flow path,
The conductive porous support has a portion with a different porosity, and the portion with a different porosity has a low porosity on the upstream side in the gas flow direction of the gas flow passage and a high porosity on the downstream side. An electrochemical cell characterized in that
請求項1記載の電気化学セルであって、
前記導電性多孔質支持体が、前記固体電解質層、前記第1多孔質電極層、前記第2多孔質電極層の100倍以上の厚さを有することを特徴とする電気化学セル。
The electrochemical cell according to claim 1, wherein
The electrochemical cell, wherein the conductive porous support has a thickness 100 times or more that of the solid electrolyte layer, the first porous electrode layer, and the second porous electrode layer.
請求項1又は2記載の電気化学セルであって、
前記固体電解質層、前記第1多孔質電極層、前記第2多孔質電極層の厚さが、10〜50μmであることを特徴とする電気化学セル。
The electrochemical cell according to claim 1 or 2,
The electrochemical cell, wherein the solid electrolyte layer, the first porous electrode layer, and the second porous electrode layer have a thickness of 10 to 50 μm.
請求項1〜3いずれか1項記載の電気化学セルであって、
前記第1多孔質電極層及び前記第2多孔質電極層の気孔率が10〜20%であることを特徴とする電気化学セル。
The electrochemical cell according to any one of claims 1 to 3,
The electrochemical cell, wherein the porosity of the first porous electrode layer and the second porous electrode layer is 10 to 20%.
請求項1〜4いずれか1項記載の電気化学セルであって、
前記導電性多孔質支持体の気孔率が30〜50%であることを特徴とする電気化学セル。
An electrochemical cell according to any one of claims 1 to 4, wherein
An electrochemical cell having a porosity of 30 to 50% of the conductive porous support.
JP2009162736A 2009-07-09 2009-07-09 Electrochemical cell Active JP5364477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009162736A JP5364477B2 (en) 2009-07-09 2009-07-09 Electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009162736A JP5364477B2 (en) 2009-07-09 2009-07-09 Electrochemical cell

Publications (2)

Publication Number Publication Date
JP2011017055A JP2011017055A (en) 2011-01-27
JP5364477B2 true JP5364477B2 (en) 2013-12-11

Family

ID=43595042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009162736A Active JP5364477B2 (en) 2009-07-09 2009-07-09 Electrochemical cell

Country Status (1)

Country Link
JP (1) JP5364477B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10205176B2 (en) 2015-05-21 2019-02-12 Nissan Motor Co., Ltd. Cell module for solid oxide fuel cell, and solid oxide fuel cell using same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4932960B1 (en) * 2010-12-20 2012-05-16 日本碍子株式会社 Solid oxide fuel cell
WO2013018317A1 (en) * 2011-08-02 2013-02-07 パナソニック株式会社 Polymer electrolyte fuel cell
JP5729287B2 (en) * 2011-12-06 2015-06-03 コニカミノルタ株式会社 Fuel cell system
JP6433778B2 (en) * 2014-12-17 2018-12-05 三菱日立パワーシステムズ株式会社 Fuel cell and fuel cell electrical connection method
JP6698294B2 (en) * 2015-08-25 2020-05-27 京セラ株式会社 Cell, cell stack device, module, and module housing device
JP6125058B1 (en) * 2016-01-26 2017-05-10 日本碍子株式会社 Fuel cell stack
CN108604691B (en) * 2016-02-25 2020-12-25 京瓷株式会社 Battery unit, battery stack device, module, and module housing device
JP6567584B2 (en) * 2017-03-16 2019-08-28 株式会社東芝 Electrochemical reactor
JP6802827B2 (en) * 2018-09-18 2020-12-23 株式会社東芝 Hydrogen production equipment and diaphragm
JP6638834B2 (en) * 2019-02-14 2020-01-29 日産自動車株式会社 Cell module for solid oxide fuel cell and solid oxide fuel cell using the same
JP7230640B2 (en) * 2019-03-28 2023-03-01 三菱マテリアル株式会社 POROUS ELECTRODE AND WATER ELECTROLYSIS CELL INCLUDING THE SAME

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3706298B2 (en) * 1996-09-26 2005-10-12 日本碍子株式会社 Laminated sintered body and electrochemical cell
JP4925688B2 (en) * 2006-02-24 2012-05-09 京セラ株式会社 Fuel cell and fuel cell
JP5002269B2 (en) * 2007-01-15 2012-08-15 株式会社東芝 Polymer electrolyte fuel cell
JP2009041044A (en) * 2007-08-06 2009-02-26 Toshiba Corp Reaction cell, its production method, and reaction system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10205176B2 (en) 2015-05-21 2019-02-12 Nissan Motor Co., Ltd. Cell module for solid oxide fuel cell, and solid oxide fuel cell using same

Also Published As

Publication number Publication date
JP2011017055A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
JP5364477B2 (en) Electrochemical cell
US20040028988A1 (en) Fiber cooling of fuel cells
Sahli et al. Optimization study of the produced electric power by SOFCs
JP5054049B2 (en) Electrolyzer
EP2477265A1 (en) Fuel cell
JP5057634B2 (en) Fuel cell structure
JP2006260994A (en) Fuel cell
US20140045097A1 (en) Current collector for solid oxide fuel cell and solid oxide fuel cell having the same
JP6243519B2 (en) Cell stack device, module and module housing device
US20110053032A1 (en) Manifold for series connection on fuel cell
KR101220739B1 (en) Saperator for planer solid oxide fuel cell and fuel cell comprising the same
JP2013140766A (en) Tubular solid oxide fuel cell module and method of manufacturing the same
KR101228763B1 (en) Planar solid oxide fuel cell having improved reaction area and method for manufacturing the same
US8697307B2 (en) Solid oxide fuel cell stack
JP2006351452A (en) Fuel cell
JP6340977B2 (en) Fuel cell
KR101367068B1 (en) Bimetal current collecting contact member and fuel cell apparatus with the same
JP6894705B2 (en) Anode support creep
US20140178797A1 (en) Solid oxide fuel cell
Midilli et al. Evaluating Exergetic Sustainability Indicators for an Electrolyte Supported SOFC Stack
Ruiz Diaz Mathematical Modeling of Polymer Electrolyte Membrane Water Electrolysis Cell with a Component-level Approach
KR20150075441A (en) Separator for solid oxide fuel cell same and solid oxide fuel cell comprising the same
JP2019204652A (en) Catalyst layer for fuel cell and electrolyte membrane-electrode assembly
US8841044B2 (en) Solid oxide fuel cell
Abdullah Microstructural Evolution of Solid Oxide Fuel Cell: Modeling and Optimization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R151 Written notification of patent or utility model registration

Ref document number: 5364477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151