JP5360646B2 - Line lighting device - Google Patents

Line lighting device Download PDF

Info

Publication number
JP5360646B2
JP5360646B2 JP2008288460A JP2008288460A JP5360646B2 JP 5360646 B2 JP5360646 B2 JP 5360646B2 JP 2008288460 A JP2008288460 A JP 2008288460A JP 2008288460 A JP2008288460 A JP 2008288460A JP 5360646 B2 JP5360646 B2 JP 5360646B2
Authority
JP
Japan
Prior art keywords
light
light guide
line
longitudinal direction
concavo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008288460A
Other languages
Japanese (ja)
Other versions
JP2010118154A (en
Inventor
達也 田部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colcoat Co Ltd
Original Assignee
Colcoat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colcoat Co Ltd filed Critical Colcoat Co Ltd
Priority to JP2008288460A priority Critical patent/JP5360646B2/en
Publication of JP2010118154A publication Critical patent/JP2010118154A/en
Application granted granted Critical
Publication of JP5360646B2 publication Critical patent/JP5360646B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an illumination device in a line shape with stable illuminance, having excellent performance and of reduced cost. <P>SOLUTION: The illumination device includes a rod-shaped light guide body made of a transparent member and a light source arranged at both ends of the light guide body. Fine prisms with ridge lines parallel to the width direction are arranged on one face in the length direction of the light guide body, and an opposing light- emitting face is made as a cylindrical lens face. Further, one or more rugged lines with ridge lines in a length direction are formed in the area within &plusmn;20&deg; from the normal direction of the center of the fine prism. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、画像読み取り装置に用いられるライン状照明装置に関するものである。 The present invention relates to a line illumination device used in an image reading apparatus.

ファクシミリ、電子黒板、電子複写機その他、画像読取装置に備えるライン状照明装置としては、キセノン蛍光ランプなどの放電管、LED(発光ダイオード)を多数アレイ状に並べたLEDアレイバー、導光体の端部にLEDを配置した導光体照明などが用いられている。
このうち導光体照明方式は、ウォーミングアップが不要、小型、低消費電力、低発熱、低コストといった優れた特徴を有することから、家庭用の小型スキャナを初めとして種々の製品用途での利用が広がってきている。
Line-shaped illumination devices for facsimiles, electronic blackboards, electronic copiers, and other image reading devices include discharge tubes such as xenon fluorescent lamps, LED array bars in which a large number of LEDs (light emitting diodes) are arranged in an array, and ends of light guides Light guide lighting with LEDs arranged in the part is used.
Of these, the light guide illumination method does not require warm-up, and has excellent features such as small size, low power consumption, low heat generation, and low cost. Therefore, it can be used in various products such as small home scanners. It is coming.

画像読み取り装置に用いられる導光体照明方式における一般的な問題点は、端面に配置された光源からの限られた光を効率よく利用して読取エリア全体にわたる照度の均一性を保つ事である。
この方式における導光体の代表的な構成図を斜視図が図1で示し、光線の挙動を説明するための側面図を図2に示す。
光源1からの光は導光体2の端面より導光体内に取り込まれ、空気界面での全反射を繰り返しながら導光体内を伝播していく。導光体の長手方向の一側面には、光を出光面方向に反射させる反射パターン3が形成されており、この反射パターンに当たった光の一部は出光面4より出射される。出光面はシリンドリカルレンズ曲面となっており、集光されて読取部となる原稿面5上の帯状エリア6を照明する。導光体内を伝播する光束は光源から遠ざかるほど減少するが、反射パターンには光源付近では粗で光源から離れるに従って密となるようなグラデーションがついており、全長に亘って均一な照度を得ることが可能となっている。
A general problem in the light guide illumination system used in the image reading apparatus is to efficiently use the limited light from the light source arranged on the end face to maintain the illuminance uniformity over the entire reading area. .
A perspective view of a typical structure of a light guide in this method is shown in FIG. 1, and a side view for explaining the behavior of light rays is shown in FIG.
The light from the light source 1 is taken into the light guide from the end face of the light guide 2 and propagates through the light guide while repeating total reflection at the air interface. A reflection pattern 3 that reflects light in the direction of the light exit surface is formed on one side surface in the longitudinal direction of the light guide, and a part of the light hitting the reflection pattern is emitted from the light exit surface 4. The light exit surface is a curved surface of a cylindrical lens, and is condensed to illuminate the band-like area 6 on the document surface 5 serving as a reading unit. The light flux propagating in the light guide decreases as the distance from the light source decreases.However, the reflection pattern has a gradation that is rough in the vicinity of the light source and becomes denser as the distance from the light source increases, so that uniform illuminance can be obtained over the entire length. It is possible.

反射パターンとしては、代表的には、成形品の表面に微細なプリズムを形成して鏡面反射を利用する方式と、白色(もしくは光拡散性)のインクを印刷塗布してインクによる拡散反射を利用する方式とがある。微細プリズムによる鏡面反射を利用する方式は、印刷工程が不要なため低コストとなるメリットがある。さらに、光を特定の方向に反射するため細い帯状の範囲に光をより効率的に集光でき、照明効率としても有利である。 As a reflection pattern, typically, a micro prism is formed on the surface of a molded product and specular reflection is used, and white (or light diffusive) ink is printed and applied and diffuse reflection by ink is used. There is a method to do. A method using specular reflection by a fine prism has an advantage that the printing process is unnecessary and the cost is low. Furthermore, since the light is reflected in a specific direction, the light can be more efficiently collected in a narrow band-like range, which is advantageous in terms of illumination efficiency.

画像読み取り用光源では、原稿(読み取り面)の浮きによる読み取り位置の変動や、機械のガタツキや組み立て精度限界に対応するために、短手方向(副走査方向)に対して一定幅での照度安定性が求められる。特に原稿が浮きやすい両面ドキュメントスキャナ、電子黒板、複写機などの用途では、広い幅での照度安定性が求められる。図3は導光体の短手方向(横軸)における照度分布の例を示した図であるが、ここに示した分布Pのような短手方向に鋭いピークを持つような照度分布では、原稿の浮きによって照度が変化してしまい、読み取り画像に明暗のムラが発生してしまう。また、ユニットのわずかな位置ズレによっても明暗のムラが発生してしまう。
短手方向での照度安定性を確保するためには、シリンドリカル形状のレンズ面での集光効果を弱く、もしくは無くして短手方向に広がった図3の分布Qとなるような出射光とすればよいが、一方で、読み取り面照度は読み取り高速化やノイズ低減のためにできる限り高くすることが求められているので、単純に集光性を弱めて分布Qのような短手方向分布にした場合には、照度が著しく低下してしまい好ましくない。相反する要求を両立するためには、読み取りに利用する一定範囲内では照度変化が小さく、利用しない範囲に照射され無駄になる光は極力小さくするように図3のRに示したような分布を作り出すことが求められる。
With an image reading light source, the illuminance is stable in a constant width in the short direction (sub-scanning direction) in order to cope with fluctuations in the reading position due to floating of the document (reading surface), machine shakiness and assembly accuracy limits. Sex is required. Especially in applications such as double-sided document scanners, electronic blackboards, and copiers where documents tend to float, illuminance stability over a wide range is required. FIG. 3 is a diagram showing an example of the illuminance distribution in the short direction (horizontal axis) of the light guide, but in the illuminance distribution having a sharp peak in the short direction like the distribution P shown here, The illuminance changes due to the floating of the original, resulting in uneven brightness in the read image. In addition, even if the unit is slightly misaligned, light and dark unevenness occurs.
In order to ensure illuminance stability in the short-side direction, the light collecting effect on the lens surface of the cylindrical shape is weakened or eliminated so that the emitted light has the distribution Q of FIG. 3 spread in the short-side direction. However, on the other hand, the reading surface illuminance is required to be as high as possible in order to increase the reading speed and reduce the noise. In such a case, the illuminance is remarkably lowered, which is not preferable. In order to satisfy the conflicting demands, the distribution as shown in R of FIG. 3 is used so that the change in illuminance is small within a certain range used for reading, and the light that is irradiated to the unused range and is wasted is minimized. It is required to produce.

しかしながら、鏡面反射方式の反射パターンとシリンドリカルレンズによる集光による照射では、短手方向の分布を図3に示される分布Rのように安定化させることが困難という問題を抱えていた。
すなわち、導光体の出光面の断面が連続曲線となる凸形状でかつ全長に渡って同一形状とした場合には、微細プリズムのピッチ、高さ、幅などをコントロールするだけでは、図3のRのような短手方向分布を得ることはできなかった。また、光源近傍から遠方まで短手分布を同一にはできなかった。特に光源近傍においては非常に強いムラが発生する。
However, it has been difficult to stabilize the short-side distribution as the distribution R shown in FIG. 3 by the irradiation by condensing by the specular reflection type reflection pattern and the cylindrical lens.
That is, when the cross section of the light exit surface of the light guide is a convex shape having a continuous curve and the same shape over the entire length, it is only necessary to control the pitch, height, width, etc. of the fine prism as shown in FIG. A short direction distribution such as R could not be obtained. Also, the short distribution cannot be made the same from near the light source to far. In particular, very strong unevenness occurs near the light source.

本発明者は先に光源近傍のエリアの出光面に凹凸を複数配列形成して出射光を程度に拡散させることにより、短手方向の分布を改善する方法を提案した(特許文献1)。しかしながら、光源から離れた位置においても、短手分布を図3のRのような理想的な分布に近づけることには限界があった。 The inventor previously proposed a method for improving the distribution in the lateral direction by forming a plurality of projections and depressions on the light exit surface in the area near the light source to diffuse the emitted light to a certain extent (Patent Document 1). However, there is a limit in making the short distribution close to the ideal distribution as shown in R of FIG. 3 even at a position away from the light source.

特開2008−140726号公報JP 2008-140726 A

本発明は上記のような不都合に対して、導光体の長手方向全体に亘って導光体の短手方向の照度分布が一定の幅の範囲で照度を保ちつつ安定したライン照明装置を提供しようとするものである。 The present invention provides a stable line illuminating device for the above inconvenience while maintaining the illuminance within the range of the illuminance distribution in the short direction of the light guide over the entire length of the light guide. It is something to try.

本発明は透明部材からなる棒状の導光体と、該導光体の端部に配置された光源とを有する照明装置において、該導光体の長手方向の一側面には短手方向に稜線を持つ微細プリズムが配列形成されており、対向する出光面はシリンドリカルレンズ面となっており、さらにこのシリンドリカルレンズ面に微細プリズム稜線中心の法線方向から±20度以内の範囲に長手方向に稜線を持つ凹凸ラインが1本以上形成されていることを特徴とするライン照明装置であり、好ましくは凹凸ラインの幅または高さが長手方向で変化、または凹凸ラインの本数が長手方向で変化させたライン照明装置である。
また本発明では、凹凸ライン断面とシリンドリカルレンズ断面との成す角度が140度以上、かつ隣接する凹凸ライン断面の成す最大角度が110度以上としたライン照明装置である。
The present invention provides a lighting device having a rod-shaped light guide body made of a transparent member and a light source disposed at an end of the light guide body. Are arranged in an array, the light exiting surface is a cylindrical lens surface, and the cylindrical lens surface further has a ridge line in the longitudinal direction within a range of ± 20 degrees from the normal direction of the center of the ridge line of the fine prism. A line illumination device characterized in that one or more concavo-convex lines are formed, and preferably the width or height of the concavo-convex lines is changed in the longitudinal direction, or the number of the concavo-convex lines is changed in the longitudinal direction. It is a line lighting device.
According to the present invention, the line illumination device is configured such that the angle formed by the concavo-convex line cross section and the cylindrical lens cross section is 140 degrees or greater, and the maximum angle formed by the adjacent concavo-convex line cross section is 110 degrees or greater.

本発明によれば、導光体の出光面に、稜線を長手方向に持つ凹凸ラインを全長に亘り形成することにより、理想的な短手分布を得るものであり、更に本発明では凹凸ラインの幅または高さを長手方向で変化、または凹凸ラインの本数を長手方向で変化させることにより、長手方向の位置により短手方向分布が変化してしまうことを解消し、原稿面の浮き、機械のガタツキや組立ての精度限界に対応できる広い幅の照度安定性があるライン照明装置が得られる。 According to the present invention, an ideal concavo-convex distribution is obtained by forming an uneven line having a ridge line in the longitudinal direction on the light exit surface of the light guide over its entire length. By changing the width or height in the longitudinal direction or changing the number of concave and convex lines in the longitudinal direction, it is possible to eliminate changes in the lateral direction distribution depending on the position in the longitudinal direction. A line illuminating device having a wide range of illuminance stability that can cope with backlash and assembly accuracy limits can be obtained.

以下、図面を用いて本発明の好適な実施形態について記述する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図4は本発明のライン照明装置の特徴となる導光体と光源について模式的に表わした斜視図である。導光体2の長手方向(X軸方向)の一側面は平面となっており、ここには微細プリズム8が短手方向(Y軸方向)に稜線9を成すように配列形成されている。導光体の端面にはLED光源1が配置されている。導光体の入光面はLEDからの発光を効率良く取り込めるようLEDと近接して配置されている。入光面から導光体内に取り込まれた光は空気界面での全反射を繰り返しながら長手方向に伝播される。
該導光体の長手方向の一側面には短手方向に稜線を持つ微細プリズムが配列形成されており、微細プリズムに到達した一部の光は反射され導光体の出光面4より一定の幅をもってZ軸プラス方向に出射される。また、一部の光は微細プリズムの空気界面で屈折しプリズム背面側へと取り出されるが、プリズム面の背面側に光反射性の部材が設置されている場合には、背面側へ抜けた光も再度導光体側へと反射させて戻すことに出光面より出射される。したがって照度を上げたい場合には、微細プリズムの背面側に光反射性の部材を配置することが好ましい。
FIG. 4 is a perspective view schematically showing a light guide and a light source which are features of the line illumination device of the present invention. One side surface of the light guide 2 in the longitudinal direction (X-axis direction) is a flat surface, and the fine prisms 8 are arrayed so as to form ridge lines 9 in the short-side direction (Y-axis direction). An LED light source 1 is disposed on the end face of the light guide. The light incident surface of the light guide is arranged close to the LED so that light emitted from the LED can be taken in efficiently. Light taken into the light guide from the light incident surface is propagated in the longitudinal direction while repeating total reflection at the air interface.
On one side surface of the light guide in the longitudinal direction, fine prisms having ridge lines in the short direction are arrayed, and a part of the light reaching the fine prism is reflected and is more constant than the light exit surface 4 of the light guide. The light is emitted in the positive direction of the Z axis with a width. Some of the light is refracted at the air interface of the fine prism and extracted to the back side of the prism, but if a light-reflective member is installed on the back side of the prism surface, the light that has escaped to the back side In addition, the light is again reflected from the light guide and returned from the light exit surface. Therefore, when it is desired to increase the illuminance, it is preferable to arrange a light reflective member on the back side of the fine prism.

導光体の出光面には円弧断面のカマボコ型の凹凸ライン10が少なくとも1本配列形成されている。
ここでこの凹凸ラインの働きを説明する。
LEDの発光は導光体と空気界面で屈折され、ほぼ(半角)40度の広がりを持って入射される。導光体内に取り込まれ微細プリズム以外の面に到達した光は全反射され、微細プリズムに到達した光のみが導光体外へと出射されるわけであるが、微細プリズムは鏡面反射性であるため、微細プリズムに到達する光の角度によって出光面から出射される角度が変化することとなる。短手方向分布を均一に制御するためには微細プリズムへと到達する光の角度が重要となる。まず光源近傍においては、LEDから入射された光が直接プリズムへと到達したり、導光体側面で1回、2回と少ない回数反射して到達する。このように特定の光路を経た光が不連続的に微細プリズムへと到達するため、光源付近では著しい照度ムラが発生する。
On the light exit surface of the light guide, at least one concavo-convex line 10 having an arc cross section is formed.
Here, the function of the uneven line will be described.
The light emitted from the LED is refracted at the interface between the light guide and the air, and is incident with a spread of approximately (half angle) 40 degrees. Light that is taken into the light guide and reaches the surface other than the microprism is totally reflected, and only the light that reaches the microprism is emitted outside the lightguide, but the microprism is specularly reflective. The angle emitted from the light exit surface varies depending on the angle of light reaching the fine prism. In order to uniformly control the lateral distribution, the angle of light reaching the fine prism is important. First, in the vicinity of the light source, the light incident from the LED reaches the prism directly, or is reflected by a small number of times such as once or twice on the side surface of the light guide. As described above, the light passing through the specific optical path discontinuously reaches the fine prism, so that significant illuminance unevenness occurs in the vicinity of the light source.

以下に、図5を用いて導光体の短手方向の照度分布を比較例、実施例について記述する。
図5のAは導光体の出光面に凹凸ラインを設置してない導光体A(比較例)を使用したときの入光面からの距離に応じた短手方向照度分布を示したもので、横軸にY方向(短手方向)の位置(mm)をとり、縦軸は微細プリズム面形成面(後述)の法線方向(角度0)での照度が1となるように標準化した時の各々の位置における相対照度を示す。導光体は断面をR=2.2mmの円弧形状とし、長手一側面は円弧中心より2.0mmの位置で直線断面となる平面が形成されており、平面(微細プリズム形成面)には頂角120度の二等辺三角形断面の微細プリズムを配列させた、長手寸法320mmのもので、シリンドリカルレンズ面(出光面)に凹凸ラインを設けてないものを導光体A(比較例)とする。
Hereinafter, the illuminance distribution in the short direction of the light guide will be described with reference to FIG.
FIG. 5A shows the illuminance distribution in the short direction according to the distance from the light incident surface when using the light guide A (comparative example) in which the uneven surface is not provided on the light exit surface of the light guide. The horizontal axis is the position in the Y direction (short direction) (mm), and the vertical axis is standardized so that the illuminance in the normal direction (angle 0) of the fine prism surface forming surface (described later) is 1. Indicates the relative illuminance at each position of the hour. The light guide has a circular arc shape with a cross section of R = 2.2 mm, and a plane having a straight cross section is formed on one longitudinal side at a position 2.0 mm from the center of the arc. A light guide A (comparative example) is a microlens having a longitudinal dimension of 320 mm in which micro prisms having an isosceles triangle cross section with an angle of 120 degrees are arranged and having no cylindrical surface on the cylindrical lens surface (light exit surface).

図5のAは、導光体Aの出光面より7.5mmの位置(R=2.2のシリンドリカル円弧中心をY=0としてY=9.7の位置)に、微細プリズム形成面に水平に受光面を置いたとき、入光面からの距離(X)が0〜20mm、30〜50mm、120〜230mm、210〜230mm、300〜320mmの5箇所における短手方向の照度分布を、光線シュミレーションソフト(OPTICAL RESEARCH ASSOCIATES社製“LIGHT TOOLS”)を用いてシミュレーションした結果である。
図5のAの上段は短手方向20mmの幅での照度分布のグラフで、下段は短手方向6mmでの照度分布を拡大したグラフを示した。図5のAのグラフを見ると、入光面からの距離に応じた測定位置(5箇所)で著しく分布が異なっていることがわかる。このように、導光体内を伝播する光の角度分布は長手(X)位置によって異なり、微細プリズムに到達する光束の角度分布も長手位置により異なってくる。このことが短手方向の分布を変化させていると考えられる。
5A shows a position 7.5 mm from the light exit surface of the light guide A (Y = 9.7 where R = 2.2 is the center of the cylindrical arc), and is horizontal to the surface where the fine prism is formed. When the light receiving surface is placed on the light receiving surface, the distance (X) from the light incident surface is 5-20 mm, 30-50 mm, 120-230 mm, 210-230 mm, 300-320 mm, and the illuminance distribution in the short direction is expressed as a light beam. This is a result of simulation using simulation software ("LIGHT TOOLS" manufactured by OPTICAL RESEARCH ASSOCIATES).
The upper part of FIG. 5A is a graph of the illuminance distribution with a width of 20 mm in the short direction, and the lower part shows a graph in which the illuminance distribution in the short direction of 6 mm is enlarged. From the graph of FIG. 5A, it can be seen that the distribution is significantly different at the measurement positions (five places) according to the distance from the light incident surface. As described above, the angular distribution of light propagating through the light guide varies depending on the longitudinal (X) position, and the angular distribution of the light beam reaching the fine prism also varies depending on the longitudinal position. This is thought to change the distribution in the short direction.

図5のBは、導光体Aの出光面にR=0.6mmの円弧断面からなるカマボコ型の凹凸ラインを全長に渡って4本形成した導光体Bの短手方向照度分布である(実施例1)。4つのカマボコ円弧の中心座標(Y,Z)は、R=2.2円弧の中心座標を(0,0)としたとき、それぞれ(−0.56,1.53)(−0.21,1.63)(0.21,1.63)(0.56,1.53)で長手方向の全長に亘って一定としている。
図5のA、Bの二つのグラフを比較すると、凹凸ラインを設けた導光体Bにおける短手方向の分布が均一化に向かっており、BにおいてはY=±0.5mmにおいて±10%程度の照度安定性が確保された結果となっている。
このように出光面に凹凸ラインを設けることにより短手方向分布が理想形状に近づき均一化されている。
しかしながら、X=0〜20の範囲の分布はまだ鋭いピークを持つものとなっており長さ方向の全長に亘って照度分布の均一化を図るには不十分ところもある。さらに詳細に見るとX=300〜320の位置においてもピークが狭くなっており、さらなる改善の余地がある。
FIG. 5B shows the illuminance distribution in the short-side direction of the light guide B in which four kamaboko-shaped uneven lines having an arc cross section of R = 0.6 mm are formed over the entire length on the light exit surface of the light guide A. (Example 1). The center coordinates (Y, Z) of the four rounded arcs are (−0.56, 1.53) (−0.21, respectively) when the center coordinates of the arc R = 2.2 are (0, 0). 1.63) (0.21, 1.63) (0.56, 1.53), which is constant over the entire length in the longitudinal direction.
Comparing the two graphs of A and B in FIG. 5, the distribution in the short direction of the light guide B provided with the uneven lines is becoming uniform, and in B, ± 10% at Y = ± 0.5 mm. As a result, a certain degree of illuminance stability is secured.
In this way, by providing uneven lines on the light exit surface, the lateral direction distribution approaches the ideal shape and is made uniform.
However, the distribution in the range of X = 0 to 20 still has a sharp peak, which is insufficient to make the illuminance distribution uniform over the entire length in the length direction. In more detail, the peak is narrow at the position of X = 300 to 320, and there is room for further improvement.

そこで導光体Bの照度分布を更に改良安定化するために、導光体Bにおいて照度ピークをさらに広げたい部分のみカマボコ型の凹凸ラインを追加したり、突出量を大きくして拡散効果を高めたものが導光体Cである(実施例2)。
ここでは、入光面側に6個のカマボコ型の凹凸ラインを追加で設けている。それぞれX=0において(Y,Z)は(−1.15,1.25)(−0.73,1.53)(−0.28,1.68)(0.28,1.68)(0.73,1.53)(1.15,1.25)であり、Y=−1.15のカマボコ中心はY/X方向に0.19度、Z/X方向に0.05度の傾斜を設け、Y=−0.73のカマボコ中心はY/X方向に0.15度の傾斜を設け、Y=−0.28のカマボコ中心はZ/X方向に−0.07の傾斜を設け、Y=0.28のカマボコ中心はZ/X方向に−0.07度の傾斜を設け、Y=0.73のカマボコ中心はY/X方向に−0.15度の傾斜を設け、Y=1.15のカマボコ中心はY/X方向に−0.19度、Z/X方向に0.05度の傾斜を設け、それぞれ入光面から離れるに従い凸部の高さが徐々に小さくなるようにしている。この導光体Cを模式的に示したものが図4である。
Therefore, in order to further improve and stabilize the illuminance distribution of the light guide B, add a kamaboko-shaped concavo-convex line only to the part where the illuminance peak is further expanded in the light guide B, or increase the amount of protrusion to enhance the diffusion effect. This is the light guide C (Example 2).
In this case, six additional concave / convex lines are additionally provided on the light incident surface side. In each case X = 0, (Y, Z) is (−1.15, 1.25) (−0.73, 1.53) (−0.28, 1.68) (0.28, 1.68) (0.73, 1.53) (1.15, 1.25), and the center of Y = -1.15 is 0.19 degrees in the Y / X direction and 0.05 degrees in the Z / X direction. With a slope of 0.15 degrees in the Y / X direction, and a center of Y = -0.28 with a slope of -0.07 in the Z / X direction. The center of Y = 0.28 has an inclination of −0.07 degrees in the Z / X direction, and the center of Y = 0.73 has an inclination of −0.15 degrees in the Y / X direction. , Y = 1.15 has a center of inclination of −0.19 degrees in the Y / X direction and 0.05 degrees in the Z / X direction, and the height of the convex portion gradually increases as the distance from the light incident surface increases. It is set to be small. FIG. 4 schematically shows the light guide C.

さらに、入光対向面にもX=320において(Y,Z)は(−0.6,1.53)(0.6,1.53)となる2本のカマボコ型の凹凸ラインを追加し、Y=−0.6のカマボコ中心はY/X方向に−0.03度の傾斜を設け、Y=0.6のカマボコ中心はY/X方向に0.03度の傾斜を設け、それぞれ入光対向面から離れるに従い凸部の高さが徐々に小さくなるようにしている。
これら追加した凹凸ラインの形状は導光体Bの凹凸ライン形状の上に重なるため、導光体Cの凹凸ラインの本数としては入光面側で6本、入光対向面側で4本となる。
図5のCが導光体Cのシミュレーション結果を示したグラフであるが、これを見ると、短手方向分布は導光体Bの場合よりさらに均一化され、いずれのX位置においても±1.5mmにおいて±4%程度と、高い照度安定性が確保され、理想的な分布にさらに近づいた結果となった。
In addition, on the incident light facing surface, two kamaboko-shaped concavo-convex lines in which (Y, Z) is (−0.6, 1.53) (0.6, 1.53) at X = 320 are added. , Y = −0.6 Camaboko center is provided with a −0.03 degree inclination in the Y / X direction, Y = 0.6 Camaboko center is provided with a 0.03 degree inclination in the Y / X direction. The height of the convex portion gradually decreases as the distance from the light incident facing surface increases.
Since the shape of these added concavo-convex lines overlaps with the concavo-convex line shape of the light guide B, the number of concavo-convex lines of the light guide C is 6 on the light incident surface side and 4 on the light incident opposite surface side. Become.
C in FIG. 5 is a graph showing the simulation result of the light guide C. When this is seen, the lateral direction distribution is made more uniform than in the case of the light guide B, and ± 1 at any X position. As a result, the illuminance stability was as high as about ± 4% at .5 mm, which was closer to the ideal distribution.

凹凸ラインの効果を図6で模式的に示した。凹凸ライン10は、微細プリズム8から反射された光が出射面から出射される際に、光を短手方向に適度に拡散させる効果を有する。これにより照度の短手方向分布を適正化することができる。さらに、長手方向の位置により1本1本の凹凸ラインの幅や高さを変化させたり、凹凸ラインを長手方向の一部に追加形成することにより、分布の変化を抑えることができる。 The effect of the uneven lines is schematically shown in FIG. The uneven line 10 has an effect of appropriately diffusing light in the short direction when the light reflected from the fine prism 8 is emitted from the emission surface. Thereby, the short direction distribution of illuminance can be optimized. Furthermore, the change in distribution can be suppressed by changing the width and height of each concavo-convex line according to the position in the longitudinal direction, or by additionally forming the concavo-convex line in a part in the longitudinal direction.

図7は導光体の入光端面の断面形状を示したもので、凹凸ライン10の形状は図7のCに示すような円弧断面からなるカマボコ型、Dに示すような折れ線型、Eに示すような波型などいずれの形状でも良い。肝心なことは出射光を短手方向に適切に広げる機能であり、シリンドリカルレンズ面との成す最大角度αが140度以上、かつ隣接する凹凸ライン断面の成す最大角度βが110度以上であることが好ましい。αやβの角度が大きいほど強く光を短手方向に拡散するが、角度が大きすぎると読み取り位置への集光が悪化し過ぎて法線方向付近の照度が低下してしまうため好ましくない。また、凹凸ラインの形成位置は光を短手方向に拡散して安定化する上で、微細プリズムの法線方向付近が最も効果的であり、±20度内の範囲に少なくとも1本以上設けることが好ましい。 FIG. 7 shows the cross-sectional shape of the light incident end face of the light guide, and the shape of the concavo-convex line 10 is a squirrel-shaped type having an arc cross section as shown in FIG. Any shape such as a corrugation as shown may be used. What is important is the function of appropriately spreading the emitted light in the short direction, the maximum angle α formed with the cylindrical lens surface is 140 degrees or more, and the maximum angle β formed between adjacent concavo-convex line sections is 110 degrees or more. Is preferred. The larger the α and β angles, the stronger the light is diffused in the short direction. However, if the angle is too large, the light condensing at the reading position is excessively deteriorated and the illuminance near the normal direction is lowered, which is not preferable. In addition, the position of the concave / convex line is most effective in the vicinity of the normal direction of the fine prism in order to diffuse and stabilize the light in the short direction, and at least one is provided within a range of ± 20 degrees. Is preferred.

個々の凹凸ラインの拡散した光は読み取り位置において混じり合って均一化される必要があり、1本の凹凸ラインの短手寸法Kが大きすぎると凹凸に応じた明暗のムラが発生するため不都合である。読み取り面までの距離が短いほど凹凸ラインによる明暗ムラは出やすいためKを小さくする必要があるが、通常の照明装置においてKは概ね導光体短手寸法Wの1/5以下とすることが望ましい。
また、実施例においては出光面のシリンドリカルレンズ断面は単純な円弧形状としたが、これに限られたものではなく、複数の円弧を連続させた曲線や楕円なども適宜選ばれる。
The diffused light of each concavo-convex line needs to be mixed and made uniform at the reading position, and if the short dimension K of one concavo-convex line is too large, light and dark unevenness corresponding to the concavo-convex occurs, which is inconvenient. is there. As the distance to the reading surface is shorter, unevenness in brightness and darkness due to the uneven line is more likely to occur. Therefore, it is necessary to reduce K. However, in a normal illumination device, K is approximately 1/5 or less of the short dimension W of the light guide. desirable.
In the embodiments, the cylindrical lens cross section of the light exit surface is a simple arc shape. However, the present invention is not limited to this, and a curved line or an ellipse in which a plurality of arcs are continuous is appropriately selected.

本発明は導光体の片側端面にLEDを配置する場合でも、両側端面に配置する場合でも適応できる。 The present invention can be applied to a case where LEDs are arranged on one end face of a light guide or a case where LEDs are arranged on both end faces.

次に微細プリズムの働きについて記述する。
本発明の導光板では短手方向(Y方向)に稜線を有する微細プリズムが形成されている。
図8〜11は一つの微細プリズム断面とそこでの光路を説明する側面図である。
微細プリズムの断面形状としては、LEDを両側端面に配置する場合には、両端からの光が対称に出射されるようにするためにプリズム断面形状を対称形とすることが好ましい。先に説明したように微細プリズムに到達した光の一部は出光面側に反射され一部はプリズム裏側に屈折して出射されるが、プリズム裏側に反射板を配置したとしても、法線方向の照度を高くする上ではプリズムからの反射の割合が高い方が有利であり、図8のように二つの反射面13が頂角120度付近の二等辺三角形となる形状が好適である。しかしながらこのような形状では出射光の角度がX−Z面で光源と反対側に傾いてしまうために原稿の凹凸による影の出方が長手位置によって異なり、位置によっては影が際立つといった問題も生じる。この問題を回避したい場合は出射角度ピークを法線方向に近づけることが望ましく、このために図9のように台形の形状とすることし反射面13の角度γを20〜30度にすることが好適である。微細プリズム断面幅をE、高さをDとした時、E/Dの比は小さ過ぎても大き過ぎても出射光率が低下する。E/Dの適正な範囲は概ね3から8である。
Next, the function of the fine prism will be described.
In the light guide plate of the present invention, fine prisms having ridge lines in the lateral direction (Y direction) are formed.
8 to 11 are side views for explaining a cross section of one fine prism and an optical path there.
As the cross-sectional shape of the fine prism, it is preferable that the prism cross-sectional shape is symmetrical in order to emit light from both ends symmetrically when the LEDs are arranged on both end faces. As described above, a part of the light reaching the fine prism is reflected on the light exit surface side, and a part is refracted and emitted on the back side of the prism, but even if a reflector is arranged on the back side of the prism, the normal direction In order to increase the illuminance, it is advantageous that the ratio of reflection from the prism is high, and a shape in which the two reflecting surfaces 13 are isosceles triangles having apex angles of about 120 degrees as shown in FIG. 8 is preferable. However, in such a shape, the angle of the emitted light is inclined to the opposite side to the light source on the XZ plane, so that the shadow appearance due to the unevenness of the original differs depending on the longitudinal position, and there is a problem that the shadow stands out depending on the position. . In order to avoid this problem, it is desirable to make the emission angle peak close to the normal direction. For this purpose, the trapezoidal shape as shown in FIG. 9 is used, and the angle γ of the reflecting surface 13 is set to 20 to 30 degrees. Is preferred. When the cross-sectional width of the fine prism is E and the height is D, the outgoing light rate is reduced if the ratio of E / D is too small or too large. The proper range of E / D is approximately 3 to 8.

一方、LEDを導光体の片側端面のみに配置する場合には、微細プリズムの断面形状は同じく図8や図9のような対称形状にしても良いが、図10のように第一反射面14と第二反射面15とを持つ非対称形状とし、第一反射面の法線と成す角度δを75度から85度とし、第二反射面の成す角度εを15度から50度とすることがさらに好適である。ここで、微細プリズムでの反射比率を高めて照度を上げたい場合には、εを40〜50とし、出射光の角度ピークを微細プリズム法線方向にしたい場合にはεを15〜40とすることが好ましい。 On the other hand, when the LED is disposed only on one end surface of the light guide, the cross-sectional shape of the fine prism may be symmetrical as shown in FIGS. 8 and 9, but the first reflecting surface as shown in FIG. 14 and the second reflecting surface 15, the angle δ formed with the normal of the first reflecting surface is set to 75 to 85 degrees, and the angle ε formed with the second reflecting surface is set to 15 to 50 degrees. Is more preferred. Here, if it is desired to increase the illuminance by increasing the reflection ratio at the fine prism, ε is set to 40 to 50, and ε is set to 15 to 40 when the angle peak of the emitted light is to be in the normal direction of the fine prism. It is preferable.

さらに、入光面側から伝播する光の出射機能を優先しつつ入光対向面側から反射して戻ってきた光も効果的に出射させるために、図11のように非対称な断面形状とすることも好適である。 Furthermore, in order to effectively emit the light reflected and returned from the incident light opposing surface side while giving priority to the light emitting function propagating from the light incident surface side, an asymmetric cross-sectional shape as shown in FIG. It is also suitable.

このような微細プリズム形状は、金型上に対応する先端形状の刃物(バイト)を使用してY軸方向に引き切り加工することで平滑性に優れた凹凸面を金型上に高精度に加工でき、インジェクション成形法によって金型上の凹凸の反転した凹凸形状が転写され形成できる。 Such a fine prism shape can be used to cut a rough surface on the mold with high precision by cutting it in the Y-axis direction using a corresponding cutting edge (cutting tool) on the mold. It is possible to process and form a concavo-convex shape in which the concavo-convex on the mold is reversed by an injection molding method.

導光体の材質としては、用いるLEDの発光波長において高い透過率を持つものが望ましく、アクリル系樹脂、ポリカーボネート樹脂、シクロオレフィン系樹脂、などが好適に用いられる。 As the material of the light guide, one having a high transmittance at the emission wavelength of the LED to be used is desirable, and acrylic resin, polycarbonate resin, cycloolefin resin, and the like are preferably used.

本発明のライン照明装置は、ウォーミングアップが不要、小型、低消費電力、低発熱、低コスト、照度の安定化といった特徴を有することから、家庭用の小型スキャナを初めとしてファクシミリ、電子複写機その他種々の画像読み取り装置で利用が可能である。 The line illumination device of the present invention has features such as no warming up, small size, low power consumption, low heat generation, low cost, and stabilization of illuminance. The image reading apparatus can be used.

代表的な導光体照明方式の構成を示す斜視図The perspective view which shows the structure of a typical light guide illumination system 光の挙動を説明する側面図Side view explaining the behavior of light 短手方向の照度分布を示す図Diagram showing illuminance distribution in the short direction 本発明の照明装置の特徴を示す斜視図The perspective view which shows the characteristic of the illuminating device of this invention 比較例、実施例における短手方向照度分布を示す図The figure which shows the transversal direction illumination distribution in a comparative example and an Example 凹凸ラインの効果を模式的に示す断面図Sectional view schematically showing the effect of uneven lines 凹凸ラインの断面形状を説明する断面図Sectional drawing explaining the cross-sectional shape of an uneven | corrugated line 微細プリズムと光路を示す側面図Side view showing fine prism and optical path 微細プリズムと光路を示す側面図Side view showing fine prism and optical path 微細プリズムと光路を示す側面図Side view showing fine prism and optical path 微細プリズムと光路を示す側面図Side view showing fine prism and optical path

符号の説明Explanation of symbols

1.光源(LED)
2.導光体
3.反射パターン
4.出光面
5.原稿面
6.照明エリア
7.入光面
8.微細プリズム
9.微細プリズム稜線
10.凹凸ライン
13.プリズム反射面
14.第一反射面
15.第二反射面
1. Light source (LED)
2. 2. Light guide 3. Reflective pattern 4. 4. Light exit surface 5. Manuscript surface 6. Lighting area Light incident surface 8. Fine prism 9. 9. Fine prism ridge line Uneven line 13. Prism reflecting surface 14. First reflective surface 15. Second reflecting surface

Claims (3)

透明部材からなる棒状の導光体と、該導光体の端部に配置された光源とを有する照明装置において、該導光体の長手方向の一側面には短手方向に稜線を持つ微細プリズムが配列形成されており、対向する出光面はシリンドリカルレンズ面となっており、さらにこのシリンドリカルレンズ面に微細プリズムの稜線中心の法線方向から±20度以内の範囲に長手方向に稜線を持つ凹凸ラインが1本以上形成されていることを特徴とする画像読み取り用のライン照明装置。In a lighting device having a rod-shaped light guide made of a transparent member and a light source disposed at an end of the light guide, a fine one having a ridge line in the short side direction on one side surface in the longitudinal direction of the light guide The prisms are arrayed, and the light exit surfaces facing each other are cylindrical lens surfaces. Further, the cylindrical lens surfaces have ridge lines in the longitudinal direction within a range of ± 20 degrees from the normal direction of the ridge line center of the fine prism. A line illumination device for reading an image, wherein at least one uneven line is formed. 凹凸ラインの幅が長手方向で入光面から離れるに従い狭くなる様に変化させ、または凸部の高さが長手方向で入光面もしくは入光対向面から離れるに従い徐々に小さくなる様に変化させ、または凹凸ラインの本数が長手方向で変化させたことを特徴とする請求項1記載のライン照明装置 Change the width of the concavo-convex line so that it becomes narrower as it goes away from the light incident surface in the longitudinal direction , or change so that the height of the convex portion becomes smaller gradually as it gets away from the light incident surface or the light incident facing surface in the longitudinal direction. The line illumination device according to claim 1, wherein the number of the uneven lines is changed in the longitudinal direction. 凹凸ライン断面とシリンドリカルレンズ断面との成す最大角度αが140度以上、かつ隣接する凹凸ライン断面の成す最大角度βが110度以上であることを特徴とする請求項1又は2記載のライン照明装置。The line illumination device according to claim 1 or 2, wherein the maximum angle α formed by the concavo-convex line cross section and the cylindrical lens cross section is 140 degrees or more, and the maximum angle β formed by the adjacent concavo-convex line section is 110 degrees or more. .
JP2008288460A 2008-11-11 2008-11-11 Line lighting device Active JP5360646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008288460A JP5360646B2 (en) 2008-11-11 2008-11-11 Line lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008288460A JP5360646B2 (en) 2008-11-11 2008-11-11 Line lighting device

Publications (2)

Publication Number Publication Date
JP2010118154A JP2010118154A (en) 2010-05-27
JP5360646B2 true JP5360646B2 (en) 2013-12-04

Family

ID=42305717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008288460A Active JP5360646B2 (en) 2008-11-11 2008-11-11 Line lighting device

Country Status (1)

Country Link
JP (1) JP5360646B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130052050A (en) * 2011-11-11 2013-05-22 엘지이노텍 주식회사 Phosphor polymer matrix using line configuration and lighting device using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015011968A (en) * 2013-07-02 2015-01-19 スタンレー電気株式会社 Lighting device
JP6354175B2 (en) * 2014-01-28 2018-07-11 市光工業株式会社 Vehicle light guide member, vehicle lamp
JP2017041370A (en) * 2015-08-20 2017-02-23 スタンレー電気株式会社 Light guide body and vehicular lighting fixture using the same
JP6795385B2 (en) * 2016-12-01 2020-12-02 シャープ株式会社 Lighting device, image reader and image forming device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001159796A (en) * 1999-12-02 2001-06-12 Canon Inc Illumination device
JP2002372630A (en) * 2001-04-10 2002-12-26 Bridgestone Corp Wire-shaped luminous body
JP2003100101A (en) * 2001-09-19 2003-04-04 Matsushita Electric Ind Co Ltd Light emitting rod
JP2003346509A (en) * 2002-03-19 2003-12-05 Keiden Koden Kofun Yugenkoshi Linear light source for image scanner and liquid crystal module
JP2005114894A (en) * 2003-10-06 2005-04-28 Konica Minolta Business Technologies Inc Linear lighting unit
JP4093990B2 (en) * 2004-05-26 2008-06-04 日本板硝子株式会社 Light guide, line illumination device, and image reading device
JP4793288B2 (en) * 2007-03-01 2011-10-12 ウシオ電機株式会社 Light guide and bifurcated linear light source device
JP2008226635A (en) * 2007-03-13 2008-09-25 Rohm Co Ltd Light source device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130052050A (en) * 2011-11-11 2013-05-22 엘지이노텍 주식회사 Phosphor polymer matrix using line configuration and lighting device using the same
KR101992396B1 (en) 2011-11-11 2019-06-24 엘지이노텍 주식회사 Phosphor polymer matrix using line configuration and lighting device using the same

Also Published As

Publication number Publication date
JP2010118154A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
US6193383B1 (en) Linear light source unit
JP4093990B2 (en) Light guide, line illumination device, and image reading device
JP5100278B2 (en) Light guiding optical system, document illumination device using the same, and image reading device using the same
EP1739946B1 (en) Light transmissive element
TWI461636B (en) Light source device
KR101019821B1 (en) Light guiding member and linear light source apparatus using same
US8182129B2 (en) Light guide unit and backlight module
JP5533505B2 (en) Linear light source
JP5587025B2 (en) Light guide and illumination device and document reading device including the same
JP2008140726A (en) Line illumination device
JP2010225395A (en) Led illumination device
US7973983B2 (en) Light guide device and illumination module using the same
JP5360646B2 (en) Line lighting device
KR20080031573A (en) Line light source using point light source
JP2006040710A (en) Light guide plate and planar lighting system using it
JP2009176588A (en) Line illumination device
JP2006049286A (en) Planar light source
JP2008053009A (en) Light guide plate, and surface light emitting device
JP2005085671A (en) Light guide plate and plane light source device
JP4908828B2 (en) Document lighting device
TW201426125A (en) Light guide plate and backlight module
JP2010282869A (en) Line lighting device
JP2003141922A (en) Plane luminous device
JP2007027144A (en) Light guide plate and flat lighting device
JP2001061040A (en) Illuminator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130823

R150 Certificate of patent or registration of utility model

Ref document number: 5360646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250