JP2009176588A - Line illumination device - Google Patents

Line illumination device Download PDF

Info

Publication number
JP2009176588A
JP2009176588A JP2008014533A JP2008014533A JP2009176588A JP 2009176588 A JP2009176588 A JP 2009176588A JP 2008014533 A JP2008014533 A JP 2008014533A JP 2008014533 A JP2008014533 A JP 2008014533A JP 2009176588 A JP2009176588 A JP 2009176588A
Authority
JP
Japan
Prior art keywords
light
light guide
parallel
illumination device
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008014533A
Other languages
Japanese (ja)
Inventor
Tatsuya Tabei
達也 田部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colcoat Co Ltd
Original Assignee
Colcoat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colcoat Co Ltd filed Critical Colcoat Co Ltd
Priority to JP2008014533A priority Critical patent/JP2009176588A/en
Publication of JP2009176588A publication Critical patent/JP2009176588A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a line illumination device in which the size of the whole illumination device is shortened wherein a light guide body is shortened while securing a necessary illumination length. <P>SOLUTION: This is the line illumination device which has a rod-shaped light guide body 2 composed of a transparent member and a light source 1 arranged at both ends of the light guide body. A light-emitting face 3 of the light guide body is made as a cylindrical lens face of convex state, and on the side opposing to the light-emitting face, a parallel face 10 parallel to a cylindrical lens ridge line exists on the longitudinal most part excluding both ends, there are inclined faces 11 which become narrower toward the end parts at both end faces, reflecting patterns 4 are aligned and formed on the parallel planes, and a step-wise reflecting face 12 is formed on the inclined faces. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、画像読み取り装置に用いられるライン照明装置に関するものである。 The present invention relates to a line illumination device used for an image reading apparatus.

ファクシミリ、電子黒板、電子複写機その他、画像読取装置に備えるライン照明装置としては、キセノン蛍光ランプなどの放電管、発光ダイオード(LED)チップを多数アレイ状に並べたLEDアレイバー、導光体の端部にLEDを配置した導光体照明などが用いられている。
このうち導光体照明方式は、ウォーミングアップが不要、小型、低消費電力、低発熱、低コストといった優れた特徴を有する。とりわけ、RGB三原色の発光波長のLEDチップを一つのパッケージとして導光体の端面に配置する照明方式では、RGBそれぞれの発光を切り替えて照明することによってフルカラーの画像読み取りが行えるため大きなメリットをもち、家庭用の小型スキャナを初めとして種々の製品用途での利用が広がってきている。
Line lighting devices for facsimiles, electronic blackboards, electronic copiers, and other image reading devices include discharge tubes such as xenon fluorescent lamps, LED array bars with many light emitting diode (LED) chips arranged in an array, and the end of the light guide Light guide lighting with LEDs arranged in the part is used.
Among these, the light guide illumination method has excellent features such as no warming up, small size, low power consumption, low heat generation, and low cost. In particular, the illumination system that arranges LED chips with emission wavelengths of RGB three primary colors as one package on the end face of the light guide has a great advantage because full color image reading can be performed by switching and illuminating each RGB light emission, The use for various product uses, such as a small scanner for home use, has spread.

図1に導光体照明方式の基本的な原理を説明する。導光体2の端面に配置された光源であるLED1からの発光は入射端面より導光体内部に取り込まれ、導光体の内面反射により全反射を繰り返して伝播される。導光体の一側面には光を取り出すための反射パターン4が形成されている。反射パターンは光を反射/拡散させる機能を持ち、反射パターンに到達した光の一部は出光面3より導光体外部に出射される。入射端面から遠ざかるに従い導光体内の光束密度は低下していくことになるが、反射パターンの密度を光束密度に逆比例させて徐々に高くすることによって、長手方向で一定の照度分布を得ることが可能となる。
出光面3はシリンドリカルレンズ面となっており、出射光を集光させて原稿5の細長い読み取りエリアを効率的に照明できるようになっている。
FIG. 1 illustrates the basic principle of the light guide illumination method. Light emitted from the LED 1 which is a light source disposed on the end face of the light guide 2 is taken into the light guide from the incident end face, and is propagated by total reflection repeatedly by internal reflection of the light guide. A reflection pattern 4 for extracting light is formed on one side of the light guide. The reflection pattern has a function of reflecting / diffusing light, and part of the light reaching the reflection pattern is emitted from the light exit surface 3 to the outside of the light guide. The light flux density in the light guide decreases as the distance from the incident end face increases, but a constant illuminance distribution is obtained in the longitudinal direction by gradually increasing the reflection pattern density in inverse proportion to the light flux density. Is possible.
The light exit surface 3 is a cylindrical lens surface, and can illuminate the elongated reading area of the document 5 efficiently by condensing the emitted light.

多くの利点を有する導光体照明方式であるが、装置の小型化という点において課題を有する。導光体の入射端面付近の照度を安定化させることが困難なため、読み取り領域の外側まで導光体を延長する必要があるためである。たとえば、特許文献1においては、導光体の端面より導光体直径の2倍以上の距離の部分には反射パターン(光拡散部)を形成しない方法が提案されている。この場合、有効照明領域としては、導光体直径を2倍した内側のさらに内側になる。 Although the light guide illumination system has many advantages, it has a problem in terms of downsizing the apparatus. This is because it is difficult to stabilize the illuminance in the vicinity of the incident end face of the light guide, and thus it is necessary to extend the light guide to the outside of the reading region. For example, Patent Document 1 proposes a method in which a reflection pattern (light diffusing portion) is not formed at a portion that is at least twice the diameter of the light guide from the end face of the light guide. In this case, the effective illumination area is further on the inner side, which is twice the diameter of the light guide.

特開2002−101271号公報JP 2002-101271 A

導光体端部の照度が安定しない理由は以下のようなものである。
図2に示すように、LEDチップからの光は導光体の入射面より界面屈折して入射され、概ね40度の広がり角で放射状に広がり直進する。入射面付近の光線の挙動を追跡すると、反射パターンに到達する光は入射面よりダイレクトに到達する直接光6、一回の内面反射を経て到達する一次反射光7、二回の内面反射を経て到達する二次反射光8とある。一次反射光が到達しない範囲では反射面での光束はゼロであり、二次反射光が到達しない範囲では一次反射光のみとなり、三次反射光が到達しない範囲では一次反射光と二次反射光の和となる。このような現象により、入射端面付近においては位置によって光束密度が不連続的に大きく変動する。さらに、RGB各LEDチップは異なる位置に実装されているため、直接光や一次反射光が到達する位置も図2で示すようにずれることになる。このため、光束密度に応じて反射パターンの反射強度を調整することも不可能となってしまう。
さらに、導光体と光源との位置関係は温度の変動による膨張や振動によるズレなどの影響を受ける。入射付近においては、わずかな位置関係の変動が鋭敏に照度分布を変動させる。
入射面から離れるに従い、反射パターンには種々の光路を経た高次反射光が到達するため光束密度が均一化するが、特に端面からの距離が導光体直径の2倍以内の範囲においては二次反射光が到達しないため光束密度の変動が特に顕著となる。
The reason why the illuminance at the end of the light guide is not stable is as follows.
As shown in FIG. 2, the light from the LED chip is incident after being refracted from the entrance surface of the light guide, and spreads radially and travels straight at a spread angle of approximately 40 degrees. When tracking the behavior of the light rays near the incident surface, the light reaching the reflection pattern is directly reflected from the incident surface 6, directly reflected by the inner surface 7, first reflected by the inner surface 7, and reflected twice by the inner surface. The secondary reflected light 8 arrives. In the range where the primary reflected light does not reach, the light flux on the reflecting surface is zero, in the range where the secondary reflected light does not reach, only the primary reflected light is reached, and in the range where the tertiary reflected light does not reach, the primary reflected light and the secondary reflected light are not. Become sum. Due to such a phenomenon, the light flux density fluctuates greatly in the vicinity of the incident end face depending on the position. Further, since the RGB LED chips are mounted at different positions, the positions where the direct light and the primary reflected light arrive also shift as shown in FIG. For this reason, it becomes impossible to adjust the reflection intensity of the reflection pattern in accordance with the light flux density.
Furthermore, the positional relationship between the light guide and the light source is affected by expansion due to temperature fluctuations and displacement due to vibration. In the vicinity of the incident, a slight change in positional relationship sharply changes the illuminance distribution.
As the distance from the incident surface increases, higher-order reflected light that has passed through various optical paths reaches the reflection pattern, so that the light flux density becomes uniform. In particular, in the range where the distance from the end surface is less than twice the diameter of the light guide. Since the next reflected light does not reach, the fluctuation of the light flux density becomes particularly remarkable.

棒状の導光体を用いたライン照明装置において、光入射面付近における照度の安定化を図った照明装置の提供を目的とする。 An object of the present invention is to provide an illumination device that stabilizes illuminance in the vicinity of a light incident surface in a line illumination device using a rod-shaped light guide.

本発明の照明装置は、透明部材からなる棒状の導光体と、該導光体の両端面に配置された光源とを有するライン照明装置であって、該導光体の出光面は凸形状のシリンドリカルレンズ面となっており、出光面と対向する側には、シリンドリカルレンズ稜線 (導光体のX軸方向) と平行になっている平行面が両端部を除く長手方向の大部分を占めており、両端部には端面に向かって細くなる傾斜面があり、該平行面には反射パターンが配列形成されており、該傾斜面には階段状反射面が形成されていることを特徴とするライン照明装置である。 The illuminating device of the present invention is a line illuminating device having a rod-shaped light guide made of a transparent member and light sources arranged on both end faces of the light guide, and the light output surface of the light guide has a convex shape. The parallel surface parallel to the ridgeline of the cylindrical lens (X-axis direction of the light guide) occupies most of the longitudinal direction excluding both ends on the side facing the light exit surface. The both end portions have inclined surfaces that become narrower toward the end surface, the reflection pattern is arranged on the parallel surface, and the stepped reflection surface is formed on the inclined surface. Line lighting device.

また、本発明の照明装置において前記反射パターンが、導光体の光入射辺と平行な稜線(導光体のY軸方向)を持つ凸または凹部が配列したパターンであって、ピッチ、幅、高さの少なくとも一つは徐変となっていることを特徴とする。 Further, in the illumination device of the present invention, the reflection pattern is a pattern in which convex or concave portions having ridge lines (Y-axis direction of the light guide) parallel to the light incident side of the light guide are arranged, and the pitch, width, At least one of the heights is gradually changing.

本発明によれば、棒状導光体の光入射端面付近の照度を均一化及び安定化することが出来るので、必要な照明長を確保したまま導光体の長さを短縮することができ、照明装置全体の長手寸法を短縮することが可能なライン照明装置となる。そして、図2の場合の様に多色のLEDチップが異なる位置に配置されていてもチップ位置のずれが照度分布にほとんど反映されない照明装置を提供できる。 According to the present invention, since the illuminance near the light incident end face of the rod-shaped light guide can be made uniform and stabilized, the length of the light guide can be shortened while ensuring the necessary illumination length, It becomes a line illuminating device which can shorten the longitudinal dimension of the whole illuminating device. Then, as in the case of FIG. 2, even if multi-color LED chips are arranged at different positions, it is possible to provide an illuminating device in which the chip position deviation is hardly reflected in the illuminance distribution.

以下に図面を用いて本発明の好適な実施形態を説明する。 Preferred embodiments of the present invention will be described below with reference to the drawings.

図3は本発明に関わる照明装置の特徴を説明する斜視図である。棒状の導光体2の両端面には光源1が配置されている。導光体の出光面3は凸形状のシリンドリカルレンズ面となっており、出光面と対向する側には、シリンドリカルレンズ稜線と平行となっている平行面10があり、該平行面は両端部の傾斜面11の部分を除く長手方向の大部分を占めており、傾斜面11は端面に向かって細くなっている。平行面には凸状または凹状の反射パターン4が配列形成されており、傾斜面には階段状反射面12が形成されている。以下、シリンドリカルレンズ面稜線方向をX軸、平行面と垂直方向をZ軸、X軸Z軸の双方と垂直な方向をY軸とする。 FIG. 3 is a perspective view for explaining the characteristics of the illumination device according to the present invention. Light sources 1 are disposed on both end faces of the rod-shaped light guide 2. The light exit surface 3 of the light guide is a convex cylindrical lens surface, and on the side facing the light exit surface, there is a parallel surface 10 parallel to the cylindrical lens ridge line, and the parallel surfaces are at both ends. It occupies most of the longitudinal direction excluding the portion of the inclined surface 11, and the inclined surface 11 is narrowed toward the end surface. Convex or concave reflective patterns 4 are arrayed on the parallel surfaces, and stepped reflective surfaces 12 are formed on the inclined surfaces. Hereinafter, the ridge line direction of the cylindrical lens surface is the X axis, the direction perpendicular to the parallel surface is the Z axis, and the direction perpendicular to both the X axis and the Z axis is the Y axis.

本発明の照明装置における入光端面付近を拡大したXZ断面拡大図である図4、図5により出射光路について説明する。図4では、近接する光源からの光路を示した。導光体端部の傾斜面11には階段状の反射面12が形成されているが、近接する光源からの光がこの階段状反射面で反射されて外部へと出射されることはない。傾斜領域が終了し、平行面10に形成された反射パターン4に到って初めて原稿面5方向に出射される。 The outgoing light path will be described with reference to FIGS. 4 and 5 which are XZ cross-sectional enlarged views of the vicinity of the light incident end face in the illumination device of the present invention. In FIG. 4, the optical path from the adjacent light source is shown. A step-like reflecting surface 12 is formed on the inclined surface 11 at the end of the light guide, but light from the adjacent light source is not reflected by the step-like reflecting surface and emitted to the outside. Only after reaching the reflection pattern 4 formed on the parallel surface 10 after the inclined region is finished, the light is emitted in the direction of the document surface 5.

次に図5は図4の近接光源とは反対側(遠方)に配置された光源からの光路を示した図である。反対側から伝播してきた光は反射パターン4によっても外部へ出射されるが、階段状反射面12によっても出射される。ここで階段状反射面は反射パターンよりも大きい割合で出射させる効果を持つため、傾斜領域より出射される光束はより大きくなる。つまり導光体端部11では遠方配置の光源からの光が大きく出射されることになる。 Next, FIG. 5 is a diagram showing an optical path from a light source arranged on the opposite side (far) from the proximity light source of FIG. The light propagating from the opposite side is emitted to the outside also by the reflection pattern 4, but is also emitted by the stepped reflection surface 12. Here, since the staircase-like reflecting surface has an effect of emitting light at a rate larger than that of the reflecting pattern, the luminous flux emitted from the inclined region becomes larger. That is, a large amount of light is emitted from the remotely located light source at the light guide end 11.

本発明の照明装置では両端の光源は同時に点灯される。RGBの発光を切り替える場合には同じタイミングで切り替えられる。したがって照明光は両端の光源からの光束の和となる。導光体内を伝播する光束において、遠方の光源から伝播される光束は近接の光源からの光束と比較して低い密度となるが、階段状の反射パターンから大きな割合で出射させる効果を持たせ、図4の出射光と図5の出射光のバランスを適正化することによって、光源付近の領域まで(場合により光源の外側まで)照度分布を均一化することが可能となる。 In the illumination device of the present invention, the light sources at both ends are turned on simultaneously. When switching RGB light emission, it is switched at the same timing. Therefore, the illumination light is the sum of the luminous fluxes from the light sources at both ends. In the light beam propagating through the light guide, the light beam propagated from a distant light source has a lower density than the light beam from a nearby light source, but has the effect of emitting a large proportion from the step-like reflection pattern, By optimizing the balance between the emitted light of FIG. 4 and the emitted light of FIG. 5, it is possible to make the illuminance distribution uniform up to the region near the light source (in some cases, to the outside of the light source).

このように本発明の照明装置においては、図2における直接光6や一次反射光7だけが到達する領域においては近接光源からの光を出射させないため、LEDチップが異なる位置に配置されていてもチップ位置のずれが照度分布にほとんど反映されない。また、熱膨張や振動などによって導光体と光源との位置関係が多少変動したとしても照度が不安定化しない。 As described above, in the illumination device of the present invention, the light from the proximity light source is not emitted in the region where only the direct light 6 and the primary reflected light 7 in FIG. 2 reach, so even if the LED chips are arranged at different positions. Chip position deviation is hardly reflected in the illuminance distribution. In addition, the illuminance does not become unstable even if the positional relationship between the light guide and the light source slightly varies due to thermal expansion or vibration.

入射面(導光体端面)から平行面までの長さLは二次反射光が到達するまでの距離以上あることが適しており、入射面の高さH1の概ね2倍〜3倍である。
入射面のサイズは、用いるLED光源からの光束を効率良く取り込める大きさであることが望ましい。例として発光エリアのサイズがφ4mmの表面実装形パッケージ品を用いる場合、φ4mmの円が収まるサイズが望ましい。たとえばH1を4mmとすると、望ましい距離Lは8mm〜12mmとなる。
The length L from the incident surface (light guide end surface) to the parallel surface is suitably longer than the distance until the secondary reflected light reaches, and is approximately 2 to 3 times the height H1 of the incident surface. .
It is desirable that the size of the incident surface is a size that can efficiently take in the luminous flux from the LED light source to be used. For example, when a surface-mount package product having a light emitting area of φ4 mm is used, a size that can accommodate a φ4 mm circle is desirable. For example, if H1 is 4 mm, the desired distance L is 8 mm to 12 mm.

図6は階段状反射面のXZ断面である。傾斜領域からの出射光強度は、階段状反射面の高さをD、ピッチをPとしたときD/Pに比例して大きくなる。図6Aのように階段状反射面がX方向に水平な面で連なっている場合においては、傾斜領域の傾き角度をαとしたときD/Pの値は、D/P=tanαとなり角度αによって規定される。したがってαが小さすぎると、遠方の光源からの光束を利用して照度分布を均一化することができなくなるため5度以上あることが好適である。αの大きさは、入射端面のサイズや集光に適した断面形状によっても制約を受けるため、階段状反射面からの出射光強度を、平行面の反射パターンからの出射光強度と同程度に強くするためには、階段状反射面の形成幅(Y軸方向の長さ)を反射パターンの形成幅よりも広くすることが多くの場合に好適である。また、階段状反射面からの出射光強度を強くする別の方法として、図6Bのように、階段状反射面を角度βで傾いた面によって連なるようにする方法がある。この場合、D/P≒tanα+tanβとなり、同じ角度αでD/Pを大きくすることが可能となる。ただしβが大きすぎる場合には近接の光源からの光束が全反射以下となって外部に出射されてしまうため好ましくなく、βは5度以下であることが好適である。
Dの値は、大きすぎると個々の反射面に対応する照度ムラが発生するため望ましくなく、逆に小さすぎる場合には成形時に正確な形状が形成できないため、概ね0.02mmから0.2mmの範囲にあることが好適である。DとPの値は一定である必要は無く、どちらか、あるいは双方を徐変させることで出射光の強度をコントロールして照度分布の均一化を図ることができる。
FIG. 6 is an XZ cross section of the step-like reflecting surface. The intensity of light emitted from the inclined region increases in proportion to D / P where D is the height of the stepped reflecting surface and P is the pitch. As shown in FIG. 6A, in the case where the step-like reflecting surfaces are connected in a horizontal plane in the X direction, the value of D / P becomes D / P = tanα when the inclination angle of the inclined region is α, and depends on the angle α. It is prescribed. Therefore, if α is too small, it is not possible to make the illuminance distribution uniform by using a light beam from a distant light source. The size of α is also constrained by the size of the incident end face and the cross-sectional shape suitable for condensing, so the intensity of light emitted from the step-like reflective surface is approximately the same as the intensity of light emitted from the parallel reflection pattern. In order to increase the strength, it is preferable in many cases to make the formation width (the length in the Y-axis direction) of the stepped reflection surface wider than the formation width of the reflection pattern. Further, as another method for increasing the intensity of light emitted from the stepped reflecting surface, there is a method of connecting the stepped reflecting surfaces by a surface inclined at an angle β as shown in FIG. 6B. In this case, D / P≈tan α + tan β, and D / P can be increased at the same angle α. However, if β is too large, the light beam from a nearby light source is not totally reflected and is emitted to the outside, which is not preferable. Β is preferably 5 degrees or less.
If the value of D is too large, uneven illuminance corresponding to each reflecting surface is generated, which is not desirable. On the other hand, if it is too small, an accurate shape cannot be formed at the time of molding. It is preferable to be in the range. The values of D and P do not need to be constant, and by gradually changing either or both, the intensity of the emitted light can be controlled to make the illuminance distribution uniform.

図7は階段状の反射面12の一つを拡大したXZ断面図である。(遠方の光源からの光束が)階段状反射面で反射される出射角度分布は、反射面の角度γの大小によって変化する。均一な照度分布を実現するためには、近接の光源から反射パターンによって出射される光と、遠方の光源から階段状反射面によって出射される光とがスムーズに重なる必要がある。そのためには、図5において階段状反射面から反射する光が右の方向(遠方光源の方向)にまで広がる出射角度分布であることが必要となる。そのため、γは45度〜65度の範囲にあることが望ましい。γが45度以下の場合には出射角度分布は右の方向まで広がらず、65度以上の場合には、反射面で反射されて出射される光の割合が小さくなってしまう。 FIG. 7 is an XZ cross-sectional view enlarging one of the step-like reflecting surfaces 12. The outgoing angle distribution in which the light beam from the distant light source is reflected by the stepped reflecting surface varies depending on the angle γ of the reflecting surface. In order to realize a uniform illuminance distribution, it is necessary to smoothly overlap light emitted from a nearby light source with a reflection pattern and light emitted from a distant light source with a stepped reflecting surface. For this purpose, it is necessary that the light reflected from the step-like reflecting surface in FIG. Therefore, γ is desirably in the range of 45 degrees to 65 degrees. When γ is 45 degrees or less, the emission angle distribution does not spread to the right, and when it is 65 degrees or more, the ratio of the light that is reflected by the reflecting surface and emitted is small.

反射パターンとしては、成形品の表面に微細な凹凸パターンを形成して凹凸面による反射を利用する方式と、白色(もしくは光拡散性)のインクを印刷塗布してインクによる拡散反射を利用する方式とが利用できる。
印刷方式においては、微小な円形や方形の印刷パターンの密度や大きさを徐変させながら配列させることによってY軸方向の照度均一性を得ることができる。凹凸方式では微小な凹凸反射パターンの密度や大きさを徐変させて配列させることによって照度均一性を得ることができる。
As a reflection pattern, a method of forming a fine concavo-convex pattern on the surface of a molded product and using reflection by the concavo-convex surface, and a method of using white (or light diffusive) ink and applying diffuse reflection by ink And are available.
In the printing method, the illuminance uniformity in the Y-axis direction can be obtained by arranging while gradually changing the density and size of minute circular and rectangular print patterns. In the concavo-convex method, illuminance uniformity can be obtained by gradually changing the density and size of the minute concavo-convex reflection pattern.

凹凸反射パターンによる反射を利用する方式では、対応する凹凸を形成した金型を用いてインジェクション成形することにより同時に反射パターンを形成できるため、印刷工程が不要で低コストとなる利点がある。さらに、印刷方式は拡散反射を利用するため出射角度をコントロールできないのに対して、凹凸反射方式では凹凸の形状を適正化することにより鏡面反射による出射角度をコントロールできるため、効率的に集光して照度を高めることができる。
特にY軸(導光体の長手方向と直角方向)に稜線を持つ凸部または凹部が配列したパターンを形成することにより出射角度のコントロール性が高まる。このような凹凸反射パターンは、金型上に対応する先端形状の刃物(バイト)を使用してY軸方向に引き切り加工することで平滑性に優れた凹凸面を金型上に高精度に加工でき、インジェクション成形法によって金型上の凹凸の反転した凹凸形状が転写される。
The method using reflection by the uneven reflection pattern has an advantage that the reflection pattern can be simultaneously formed by injection molding using a mold having the corresponding unevenness, so that a printing process is unnecessary and the cost is low. Furthermore, while the printing method uses diffuse reflection, the emission angle cannot be controlled, whereas the uneven reflection method can control the emission angle by specular reflection by optimizing the shape of the unevenness, so that the light is collected efficiently. Can increase the illuminance.
In particular, by forming a pattern in which convex portions or concave portions having ridge lines on the Y axis (perpendicular to the longitudinal direction of the light guide) are formed, the controllability of the emission angle is enhanced. Such a concavo-convex reflection pattern can be used to cut a concavo-convex surface excellent in smoothness with high precision on the mold by cutting it in the Y-axis direction using a cutting tool having a tip shape corresponding to the mold. It can be processed, and an uneven shape in which the unevenness on the mold is reversed is transferred by an injection molding method.

以下にY軸方向に稜線を持つ凸部を形成する場合の望ましい実施形態を図8で説明する。
図8は一つの凸部のXZ断面拡大図である。均一な照度分布を実現するためには、近接の光源から凸部によって出射される光と、遠方の光源から階段状反射面によって出射される光とがスムーズに重なる必要がある。そのためには、図4において反射光が左の方向即ち近接光源の方向にまで広がる出射角度分布であることが必要となる。そのため、図8における凸部突起の平行面(X軸面)に対する角度δは50度〜75度の範囲にあることが望ましい。δが50度以下の場合には出射角度分布は左の方向まで広がらず、75以上の場合には、反射面で反射されて出射される光の割合が小さくなってしまう。
A desirable embodiment in the case of forming a convex portion having a ridge line in the Y-axis direction will be described below with reference to FIG.
FIG. 8 is an XZ cross-sectional enlarged view of one convex portion. In order to realize a uniform illuminance distribution, it is necessary to smoothly overlap light emitted from a light source from a nearby light source with a convex portion and light emitted from a distant light source through a stepped reflection surface. For this purpose, it is necessary that the reflected light has an emission angle distribution that extends in the left direction, that is, in the direction of the proximity light source in FIG. Therefore, the angle δ with respect to the parallel surface (X-axis surface) of the convex protrusion in FIG. 8 is preferably in the range of 50 to 75 degrees. When δ is 50 degrees or less, the emission angle distribution does not spread to the left direction, and when it is 75 or more, the ratio of the light that is reflected by the reflecting surface and emitted is small.

凸部突起の高さDの値は、大きすぎると個々の凸部に対応する照度ムラが発生するため望ましくなく、逆に小さすぎる場合には成形時に正確な形状が転写されないため、概ね0.02mmから0.2mmの範囲にあることが好適である。
凸部突起の幅をEとした時のE/Dの比が小さ過ぎる場合にはX軸面との成す角度が小さい光束を出射させることができなくなり、大きすぎる場合には全ての光束を出射させる比率が小さくなる。E/Dの適正な範囲は概ね3から6である。
導光体出光面全体から出射させるために、このような断面形状を持つ凸部を、長手方向(X軸方向)に適宜の間隔をおいて配列させる。このとき、導光体内の光束密度は入光面から離れるに従い低下するため、凸部のX方向形成ピッチを小さくする、Y方向を長くする、Dを大きくする、の少なくともいずれかを徐変させて照度を均衡させる。本発明においては導光体の両端が入光面であることから、導光体のX方向中心部が極大点(または極少点)となるようにする。
If the height D of the protrusions is too large, it is not desirable because unevenness in illuminance corresponding to each protrusion occurs, and conversely, if it is too small, the exact shape is not transferred at the time of molding. It is preferable to be in the range of 02 mm to 0.2 mm.
When the ratio of E / D is too small when the width of the protrusion is E, it is impossible to emit a light beam having a small angle with the X-axis surface, and when it is too large, all light beams are emitted. The ratio to make becomes small. The proper range of E / D is approximately 3 to 6.
In order to emit light from the entire light-emitting surface of the light guide, convex portions having such a cross-sectional shape are arranged at an appropriate interval in the longitudinal direction (X-axis direction). At this time, the light flux density in the light guide decreases as the distance from the light incident surface decreases. Therefore, at least one of decreasing the X-direction formation pitch of the protrusions, increasing the Y direction, and increasing D is gradually changed. To balance the illuminance. In the present invention, since both ends of the light guide are light incident surfaces, the central portion in the X direction of the light guide is set to a maximum point (or minimum point).

次にY軸方向に稜線を持つ凹部を形成する場合の望ましい実施形態を図9で説明する。
図9は一つの凹部のXZ断面拡大図である。均一な照度分布を実現するためには、近接の光源から凹部によって出射される光と、遠方の光源から階段状反射面によって出射される光とがスムーズに重なる必要がある。そのためには、図4において反射光が左側の方向(近接光源の方向)まで広がる出射角度分布であることが必要となる。そのため、凹部の平行面に対する切り込み角度εは50度〜75度の範囲にあることが望ましい。εが50度以下の場合には出射角度分布は左側の方まで広がらず、75度以上の場合には、反射面で反射されて出射される光の割合が小さくなってしまう。
Dの値は、大きすぎると個々の凸部に対応する照度ムラが発生するため望ましくなく、逆に小さすぎる場合には成形時に正確な形状が形成できないため、概ね0.02mmから0.2mmの範囲にあることが好適である。
Next, a preferred embodiment in the case of forming a recess having a ridge line in the Y-axis direction will be described with reference to FIG.
FIG. 9 is an XZ cross-sectional enlarged view of one recess. In order to realize a uniform illuminance distribution, it is necessary to smoothly overlap light emitted from a nearby light source by a recess and light emitted from a distant light source by a stepped reflecting surface. For this purpose, it is necessary to have an emission angle distribution in which the reflected light spreads in the left direction (the direction of the proximity light source) in FIG. Therefore, it is desirable that the cut angle ε with respect to the parallel surface of the recess is in the range of 50 to 75 degrees. When ε is 50 degrees or less, the emission angle distribution does not spread to the left side, and when it is 75 degrees or more, the ratio of the light that is reflected and emitted from the reflecting surface becomes small.
If the value of D is too large, uneven illuminance corresponding to each convex portion is generated, which is not desirable. Conversely, if it is too small, an accurate shape cannot be formed at the time of molding. It is preferable to be in the range.

本発明の照明装置では、導光体の内部において光源からの直接光や一次反射光のみが到達する端部領域には反射パターンを形成しないようにしているが、階段状反射面の形成された入射面寄りの領域では、二次反射光又はそれよりも高次の反射光と共にやはり光源からの直接光や一次反射光が反射パターンに到達する割合が大きいために、照度ムラを発生しやすい。特に鏡面反射を利用する凹凸反射パターンではこの現象が顕著になる。こうした端部領域におけるムラの発生を緩和するために、シリンドリカルレンズ面に光を適度に拡散するための凹凸を形成することが好適である。図10はこの光拡散用凹凸14をシリンドリカルレンズ面3に形成した様子を示したもので、これを形成する場所は平行面の両端部付近に対向する位置が好ましい。この凹凸の形成により反射パターンで反射された光をY軸方向に広げることによりムラを解消する効果を持つ。光拡散用凹凸の長手方向の形成範囲は、平行面の端よりH1の概ね5〜10倍内側までの範囲が好適である。 In the illumination device of the present invention, the reflection pattern is not formed in the end region where only the direct light or the primary reflected light from the light source reaches inside the light guide, but the step-like reflection surface is formed. In the region near the incident surface, since the ratio of the direct reflected light from the light source and the primary reflected light to the reflection pattern together with the secondary reflected light or the higher order reflected light is large, uneven illuminance is likely to occur. In particular, this phenomenon becomes remarkable in an uneven reflection pattern using specular reflection. In order to alleviate the occurrence of such unevenness in the end region, it is preferable to form irregularities for appropriately diffusing light on the cylindrical lens surface. FIG. 10 shows a state in which the light diffusing irregularities 14 are formed on the cylindrical lens surface 3, and the position where the irregularities 14 are formed is preferably a position facing both ends of the parallel surface. By forming the unevenness, the light reflected by the reflective pattern is spread in the Y-axis direction, thereby eliminating the unevenness. The range in which the unevenness for light diffusion is formed in the longitudinal direction is preferably in the range of approximately 5 to 10 times the inside of H1 from the end of the parallel surface.

使用するLEDパッケージの形状などにもよるが、図11Aに示すように、LED1の発光の一部は導光体内に取り込まれずに導光体の入射端面とのギャップからの漏れ光15となり原稿面5の有効エリア内に到達してしまう。このような場合、部分的に照度ピークが発生することから、図11Bのように、入射端面付近の出光面側は漏れ光を遮るためのカバー16で覆うことが好ましい。 Depending on the shape of the LED package used, as shown in FIG. 11A, a part of the light emitted from the LED 1 is not taken into the light guide, but becomes a leaked light 15 from the gap with the incident end face of the light guide. It reaches the effective area of 5. In such a case, since an illuminance peak is partially generated, it is preferable to cover the light exit surface near the incident end face with a cover 16 for blocking leakage light as shown in FIG. 11B.

図12のように傾斜面の外側にもシリンドリカルレンズ面の稜線と平行となる端部平行面17を設けてもよい。端部平行面には光を出射させるための機能が無いため、有効照射エリアを多少狭めることになるが、階段状反射面からの出射光強度を確保しつつ平行面までの距離Lを少しでも長くして光束密度の不安定な領域からの出射を防ぐ上で有利となる。また、カバー16を設ける場合には、入射面に非常に近い位置からの反射光がカバーによって遮られるため、光をより効率的に利用できるメリットがある。 As shown in FIG. 12, an end parallel surface 17 that is parallel to the ridgeline of the cylindrical lens surface may be provided outside the inclined surface. Since there is no function to emit light on the end parallel surface, the effective irradiation area will be somewhat narrowed, but the distance L to the parallel surface will be as small as possible while ensuring the emitted light intensity from the stepped reflective surface. This is advantageous for preventing the emission from the region where the light flux density is unstable. Further, when the cover 16 is provided, since the reflected light from a position very close to the incident surface is blocked by the cover, there is an advantage that the light can be used more efficiently.

反射パターン、階段状反射面以外の導光体の表面は全て平滑であることが望ましい。平滑性が悪い場合には界面での光散乱が起こるため、制御されていない漏れ光が発生し効率が悪化するばかりでなく、X軸方向に長い導光体では光源から離れたところまで光が伝達されないため全体を発光させることができなくなる。 It is desirable that the surfaces of the light guide other than the reflection pattern and the stepped reflection surface are all smooth. When the smoothness is poor, light scattering at the interface occurs, so that not only the leakage light that is not controlled is generated and the efficiency is deteriorated, but also the light guide that is long in the X-axis direction emits light far from the light source. Since it is not transmitted, the whole cannot emit light.

導光体の材質としては、用いるLEDの発光波長において高い透過率を持つものが望ましく、アクリル系樹脂、ポリカーボネート樹脂、シクロオレフィン系樹脂、などが好適に用いられる。 As the material of the light guide, one having a high transmittance at the emission wavelength of the LED to be used is desirable, and acrylic resin, polycarbonate resin, cycloolefin resin, and the like are preferably used.

反射パターン、および階段状反射面では、全ての光が出光面側に反射されるのではなく、一定量の光は背面裏側にも漏れるため、背面側には散乱反射性の部材を空気層を介して配置することが望ましい。反射部材が導光体背面と密接していれば、反射して導光体側に戻された光もシリンドリカルレンズ面により効果的に集光されて出射される。 In the reflection pattern and the stepped reflection surface, not all the light is reflected to the light exit surface side, but a certain amount of light leaks to the back side. It is desirable to arrange via. If the reflecting member is in close contact with the back surface of the light guide, the light reflected and returned to the light guide side is also effectively collected and emitted by the cylindrical lens surface.

導光体照明方式の一般的な構成図General configuration diagram of light guide illumination method 導光体端部の光路を説明する図The figure explaining the optical path of a light guide end part 本発明の照明装置の特徴を示す斜視図The perspective view which shows the characteristic of the illuminating device of this invention 近接のLEDからの光路を説明する図The figure explaining the optical path from near LED 遠方のLEDからの光路を説明する図The figure explaining the optical path from a distant LED 階段状反射面の形状を説明する図The figure explaining the shape of a step-like reflective surface 階段状反射面での反射光路を説明する図The figure explaining the reflected light path in a step-like reflective surface 反射パターンとして凸部を形成した場合の光路を説明する図The figure explaining the optical path at the time of forming a convex part as a reflective pattern 反射パターンとして凹部を形成した場合の光路を説明する図The figure explaining the optical path at the time of forming a recessed part as a reflective pattern 出光面に光を拡散する凹凸を設けた構造を示す斜視図The perspective view which shows the structure which provided the unevenness | corrugation which diffuses light in the light emission surface LEDからの漏れ光とカバーを説明する図The figure explaining the leak light and cover from LED 傾斜面の外側に平行面を設けた構造を示す図The figure which shows the structure which provided the parallel surface outside the inclined surface

符号の説明Explanation of symbols

1 光源(LED)
2 導光体
3 出光面
4 反射パターン
5 原稿面
6 直接光
7 一次反射光
8 二次反射光
10 平行面
11 傾斜面
12 階段状反射面
14 光拡散用凹凸
15 LEDからの漏れ光
16 カバー
17 端部平行面
1 Light source (LED)
2 Light guide 3 Light exit surface 4 Reflective pattern 5 Document surface 6 Direct light 7 Primary reflected light 8 Secondary reflected light 10 Parallel surface 11 Inclined surface 12 Stepped reflective surface 14 Light diffusion unevenness 15 Light leaked from LED 16 Cover 17 End parallel surface

Claims (3)

透明部材からなる棒状の導光体と、該導光体の両端面に配置された光源とを有するライン照明装置であって、該導光体の出光面は凸形状のシリンドリカルレンズ面となっており、出光面と対向する側には、シリンドリカルレンズ稜線と平行となっている平行面が両端部を除く長手方向の大部分を占めており、両端部には端面に向かって細くなる傾斜面があり、該平行面には反射パターンが配列形成されており、該傾斜面には階段状反射面が形成されていることを特徴とするライン照明装置。 A line illumination device having a rod-shaped light guide made of a transparent member and light sources arranged on both end faces of the light guide, wherein the light output surface of the light guide is a convex cylindrical lens surface. The parallel surface parallel to the cylindrical lens ridge line occupies most of the longitudinal direction excluding both ends on the side facing the light exit surface, and inclined surfaces that narrow toward the end surface are formed at both ends. A line illumination device characterized in that a reflection pattern is arranged on the parallel surface, and a stepped reflection surface is formed on the inclined surface. 反射パターンが、導光体の光入射辺と平行な稜線を持つ凸または凹部が配列したパターンであって、ピッチ、幅、高さの少なくとも一つは徐変となっていることを特徴とする請求項1のライン照明装置。 The reflective pattern is a pattern in which convex or concave portions having ridge lines parallel to the light incident side of the light guide are arranged, and at least one of the pitch, width, and height is gradually changed. The line lighting device according to claim 1. 傾斜面に形成される階段状反射面の形成幅(導光体のY軸方向の長さ)は、平行面に形成される反射パターンの形成幅よりも広いことを特徴とする請求項1または2のライン照明装置。 The formation width of the step-like reflection surface formed on the inclined surface (the length in the Y-axis direction of the light guide) is wider than the formation width of the reflection pattern formed on the parallel surface. 2. Line illumination device.
JP2008014533A 2008-01-25 2008-01-25 Line illumination device Pending JP2009176588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008014533A JP2009176588A (en) 2008-01-25 2008-01-25 Line illumination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008014533A JP2009176588A (en) 2008-01-25 2008-01-25 Line illumination device

Publications (1)

Publication Number Publication Date
JP2009176588A true JP2009176588A (en) 2009-08-06

Family

ID=41031467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008014533A Pending JP2009176588A (en) 2008-01-25 2008-01-25 Line illumination device

Country Status (1)

Country Link
JP (1) JP2009176588A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124836A (en) * 2010-12-10 2012-06-28 Canon Components Inc Image sensor unit and image reader
JP2013066207A (en) * 2012-11-09 2013-04-11 Canon Components Inc Image sensor unit and image reader
JP2015015510A (en) * 2013-07-03 2015-01-22 ウシオ電機株式会社 Linear light source device for reading image
JP2015073264A (en) * 2013-09-03 2015-04-16 キヤノン・コンポーネンツ株式会社 Illumination device, image sensor unit, image reading device and image formation device
CN106764787A (en) * 2016-11-29 2017-05-31 马瑞利汽车零部件(芜湖)有限公司 A kind of LED disc types lens optical system
CN107817628A (en) * 2016-09-12 2018-03-20 株式会社日本显示器 Lighting device and display device
JP2018045990A (en) * 2016-09-12 2018-03-22 株式会社ジャパンディスプレイ Lighting device and display device
CN112555723A (en) * 2020-11-24 2021-03-26 佛山电器照明股份有限公司 Lamp and blackboard lighting system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714414A (en) * 1993-06-15 1995-01-17 Nippon Sheet Glass Co Ltd Bar-like illuminator
JP2004146268A (en) * 2002-10-25 2004-05-20 Fujitsu Display Technologies Corp Light source device and display device using it
WO2004051140A1 (en) * 2002-11-29 2004-06-17 Fujitsu Limited Illumination device and liquid crystal display device
JP2004335434A (en) * 2003-03-12 2004-11-25 Fujitsu Kasei Kk Surface illumination device and liquid crystal display device, and light source device
JP2005029030A (en) * 2003-07-04 2005-02-03 Ichikoh Ind Ltd Lighting fixture for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714414A (en) * 1993-06-15 1995-01-17 Nippon Sheet Glass Co Ltd Bar-like illuminator
JP2004146268A (en) * 2002-10-25 2004-05-20 Fujitsu Display Technologies Corp Light source device and display device using it
WO2004051140A1 (en) * 2002-11-29 2004-06-17 Fujitsu Limited Illumination device and liquid crystal display device
JP2004335434A (en) * 2003-03-12 2004-11-25 Fujitsu Kasei Kk Surface illumination device and liquid crystal display device, and light source device
JP2005029030A (en) * 2003-07-04 2005-02-03 Ichikoh Ind Ltd Lighting fixture for vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124836A (en) * 2010-12-10 2012-06-28 Canon Components Inc Image sensor unit and image reader
JP2013066207A (en) * 2012-11-09 2013-04-11 Canon Components Inc Image sensor unit and image reader
JP2015015510A (en) * 2013-07-03 2015-01-22 ウシオ電機株式会社 Linear light source device for reading image
JP2015073264A (en) * 2013-09-03 2015-04-16 キヤノン・コンポーネンツ株式会社 Illumination device, image sensor unit, image reading device and image formation device
CN107817628A (en) * 2016-09-12 2018-03-20 株式会社日本显示器 Lighting device and display device
JP2018045990A (en) * 2016-09-12 2018-03-22 株式会社ジャパンディスプレイ Lighting device and display device
CN107817628B (en) * 2016-09-12 2021-07-27 株式会社日本显示器 Illumination device and display device
CN106764787A (en) * 2016-11-29 2017-05-31 马瑞利汽车零部件(芜湖)有限公司 A kind of LED disc types lens optical system
CN112555723A (en) * 2020-11-24 2021-03-26 佛山电器照明股份有限公司 Lamp and blackboard lighting system

Similar Documents

Publication Publication Date Title
JP2009176588A (en) Line illumination device
KR101019821B1 (en) Light guiding member and linear light source apparatus using same
JP4798563B2 (en) Line lighting device
JP2008123766A (en) Light guide, light source device, and electronic equipment
KR20060048070A (en) Light guide, line-illuminating device, and image-scanning device
JP2009021158A (en) Linear light source device
JP5494397B2 (en) LED linear light source and reader
JP5385081B2 (en) Document reader
JP6529240B2 (en) Surface light source device and liquid crystal display device
JP2011147105A (en) Linear light source
JP2007227095A (en) Light mixing member, surface light source device
JP2012150274A (en) Luminous flux control member, light-emitting device including luminous flux control member, and lighting apparatus including light-emitting device
JP5360646B2 (en) Line lighting device
JP2008041270A (en) Light guide plate
JP2010027419A (en) Linear light source device
JP6437252B2 (en) Luminous flux control member, light emitting device, and illumination device
CN105992911B (en) Optical element and lighting device with optical element
JP2011199576A (en) Linear illuminator and image reading apparatus
JP2018037246A (en) Surface light source device and liquid crystal display device
JP2012074857A (en) Lighting system, and image sensor using the same
JP6129602B2 (en) Document reading light source device
JP2010282869A (en) Line lighting device
KR101710520B1 (en) Backlight unit capable of local dimming
JP2010020920A (en) Linear light source device and image reading device
JP2018037257A (en) Surface light source device and liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130723