JP2012150274A - Luminous flux control member, light-emitting device including luminous flux control member, and lighting apparatus including light-emitting device - Google Patents

Luminous flux control member, light-emitting device including luminous flux control member, and lighting apparatus including light-emitting device Download PDF

Info

Publication number
JP2012150274A
JP2012150274A JP2011008814A JP2011008814A JP2012150274A JP 2012150274 A JP2012150274 A JP 2012150274A JP 2011008814 A JP2011008814 A JP 2011008814A JP 2011008814 A JP2011008814 A JP 2011008814A JP 2012150274 A JP2012150274 A JP 2012150274A
Authority
JP
Japan
Prior art keywords
light
light emitting
outer peripheral
flux controlling
controlling member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011008814A
Other languages
Japanese (ja)
Other versions
JP5620285B2 (en
Inventor
Akinobu Seki
晃伸 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP2011008814A priority Critical patent/JP5620285B2/en
Publication of JP2012150274A publication Critical patent/JP2012150274A/en
Application granted granted Critical
Publication of JP5620285B2 publication Critical patent/JP5620285B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a luminous flux control member capable of improving partial insufficiency of a light quantity on a surface to be illuminated, and to provide a light-emitting device including the luminous flux control member and a lighting apparatus including the light-emitting device.SOLUTION: At least one of an outer peripheral surface 10 and a recess 5 is formed with an emitting function unit 32 that emits third light Lforming a part of second light Lso as not to reach an emission surface 8 but to head outward the outer peripheral surface 10 at a position in the side of a light-emitting element 2 with respect to the emission surface 8. The emitting function unit 32 emits the third light Lin the direction of forming a larger angle with an optical axis OA than those of first light Land the second light Lemitted from the emission surface 8.

Description

本発明は、光束制御部材、この光束制御部材を備えた発光装置およびこの発光装置を備えた照明装置に係り、特に、発光素子から出射された光を、これの配光特性を制御した上で被照射面に照射するのに好適な光束制御部材、この光束制御部材を備えた発光装置およびこの発光装置を備えた照明装置に関する。   The present invention relates to a light flux controlling member, a light emitting device including the light flux controlling member, and an illumination device including the light emitting device, and in particular, controlling light distribution characteristics of light emitted from a light emitting element. The present invention relates to a light beam control member suitable for irradiating an irradiated surface, a light emitting device including the light beam control member, and an illumination device including the light emitting device.

従来から、ショーケース用の照明や看板用の照明等に用いられる外照式または内照式の発光装置として、特定の方向に光を照射することによって特定の領域を照明するスポット照明用の発光装置が用いられていた。   Conventionally, as an externally or internally illuminated light-emitting device used for showcase illumination or signboard illumination, light emission for spot illumination that illuminates a specific area by irradiating light in a specific direction A device was used.

近年、この種の発光装置の光源としては、小型化、消費電力削減および環境保全等の観点から、LED(Light Emitting Diode:発光ダイオード)が用いられるようになった。   In recent years, light emitting diodes (LEDs) have come to be used as light sources of this type of light emitting device from the viewpoints of miniaturization, power consumption reduction, environmental conservation, and the like.

ところで、LEDは、その発光部から所定の広がり角を以て光束が出射されるため、これをスポット照明用の発光装置に適用するには、発光部から出射された光を被照射面の方向に集光させる手段が必要であった。   By the way, an LED emits a light beam with a predetermined divergence angle from its light emitting part. To apply this to a light emitting device for spot illumination, the light emitted from the light emitting part is collected in the direction of the irradiated surface. There was a need for a means of light.

そこで、従来から、この種の集光手段の1つとして、図32〜図36に示すようなスポット照明用の光束制御部材1(換言すれば、スポットレンズ)が用いられていた。ここで、図32は、光束制御部材1の斜視図である。また、図33は、光束制御部材1の正面図である。さらに、図34は、図33の平面図である。さらにまた、図35は、図33の下面図である。なお、図33の左右の側面図は、図33と同じである。また、図36は、光束制御部材1の縦断面図(光軸OAを含む縦断面図)を、LED等の発光素子2とともに示したものであり、同図は、換言すれば、光束制御部材1と発光素子2とからなる発光装置3の構成図である。なお、図36において、発光素子2は、この発光素子2から出射される光の中心軸(中心光)が光束制御部材1の光軸OAと合致するように位置合わせされた状態で光束制御部材1に対向配置されている。なお、図示はしないが、発光素子2は、基板上に実装されており、光束制御部材1は、この基板上に取り付けられている。   Therefore, conventionally, as one of this kind of condensing means, a light beam control member 1 for spot illumination (in other words, a spot lens) as shown in FIGS. 32 to 36 has been used. Here, FIG. 32 is a perspective view of the light flux controlling member 1. FIG. 33 is a front view of the light flux controlling member 1. FIG. 34 is a plan view of FIG. FIG. 35 is a bottom view of FIG. Note that the left and right side views of FIG. 33 are the same as FIG. FIG. 36 shows a longitudinal sectional view (longitudinal sectional view including the optical axis OA) of the light flux controlling member 1 together with the light emitting element 2 such as an LED. In other words, FIG. 1 is a configuration diagram of a light emitting device 3 including 1 and a light emitting element 2. FIG. In FIG. 36, the light emitting element 2 has a light flux controlling member in a state in which the center axis (center light) of the light emitted from the light emitting element 2 is aligned with the optical axis OA of the light flux controlling member 1. 1 is disposed to face the other. Although not shown, the light emitting element 2 is mounted on a substrate, and the light flux controlling member 1 is attached on the substrate.

図36に示すように、光束制御部材1は、発光素子2に対向して配置された発光素子対向面部(図36における下端部)に、光軸OA方向における発光素子2と反対側(図36における上方)に向かって凹入形成された凹部5を有している。図36に示すように、凹部5は、縦断面が等脚台形形状に形成されており、その内面が、光軸OAと交わる光軸OAに垂直な内部底面と、この内部底面を包囲する内周面とによって形成されている。なお、図35に示すように、凹部5の内部底面は、下面図において光軸OAと同心の円形状を呈している。また、図36に示すように、凹部5の内周面は、凹部5の内部底面の外周端部から発光素子2側に向かって延出されるとともに、発光素子2側に向かうにしたがって内径が大きくなるような光軸OAと同心のテーパ面(内面テーパ)に形成されている。   As shown in FIG. 36, the light flux controlling member 1 is opposite to the light emitting element 2 in the direction of the optical axis OA (FIG. 36) on the light emitting element facing surface portion (lower end portion in FIG. 36) arranged to face the light emitting element 2. The concave portion 5 is formed to be recessed toward the upper side. As shown in FIG. 36, the recess 5 has an isosceles trapezoidal longitudinal section, and the inner surface of the recess 5 is perpendicular to the optical axis OA intersecting the optical axis OA, and the inner surface surrounding the inner bottom surface. And a peripheral surface. As shown in FIG. 35, the inner bottom surface of the recess 5 has a circular shape concentric with the optical axis OA in the bottom view. As shown in FIG. 36, the inner peripheral surface of the recess 5 extends from the outer peripheral end of the inner bottom surface of the recess 5 toward the light emitting element 2 side, and the inner diameter increases toward the light emitting element 2 side. It is formed in the taper surface (inner surface taper) concentric with such optical axis OA.

このような凹部5は、発光素子2から出射された光を光束制御部材1に入射させる機能を有している。すなわち、凹部5の内部底面は、第1入射面6とされており、この第1入射面6には、発光素子2から出射された光(光束)のうちの光軸OAとのなす角度(出射角)が相対的に小さい中心側の第1の光(光束)Lが入射するようになっている。ただし、同図では、第1の光Lのうちの1本の光線のみを代表的に図示している。また、凹部5の内周面は、第2入射面7とされており、この第2入射面7には、発光素子2から出射された光のうちの第1の光Lの外側(周辺側)の第2の光(光束)Lが入射するようになっている。この第2の光Lは、光軸OAとのなす角度(出射角)が第1の光Lに比べて相対的に大きい。ただし、同図では、第2の光Lのうちの2本の光線のみを代表的に図示している。 Such a recess 5 has a function of causing the light emitted from the light emitting element 2 to enter the light flux controlling member 1. That is, the inner bottom surface of the recess 5 is a first incident surface 6, and the angle (with respect to the optical axis OA of the light (light flux) emitted from the light emitting element 2 is formed on the first incident surface 6 ( exit angle) is relatively small center side of the first light (light beam) L 1 is made incident. However, in the figure, only one light beam of the first light L 1 is representatively illustrated. Further, the inner peripheral surface of the recess 5 is a second incident surface 7, and the second incident surface 7 has an outer side (periphery) of the first light L 1 out of the light emitted from the light emitting element 2. second light side) (light flux) L 2 is made incident. The second light L 2 has a relatively large angle (exit angle) formed with the optical axis OA as compared with the first light L 1 . However, in the figure, only two rays of the second light L 2 are representatively illustrated.

また、図36に示すように、光束制御部材1は、光軸OA方向における発光素子2と反対側の端部(図36における上端部)に形成された出射面8を有している。図36および図34に示すように、出射面8は、光軸OAを回転対称軸とし、かつ、光軸OA方向における発光素子2と反対側に向かうにしたがって外径が小さくなるような略円錐面形状に形成されている。この出射面8の作用については後述する。   As shown in FIG. 36, the light flux controlling member 1 has an emission surface 8 formed at an end portion (upper end portion in FIG. 36) opposite to the light emitting element 2 in the optical axis OA direction. As shown in FIGS. 36 and 34, the emission surface 8 has a substantially conical shape in which the optical axis OA is a rotationally symmetric axis and the outer diameter decreases toward the opposite side of the light emitting element 2 in the optical axis OA direction. It is formed in a surface shape. The operation of the emission surface 8 will be described later.

さらに、図36に示すように、凹部5と出射面8との間には、光軸OAを包囲する外周面10が形成されている。図36に示すように、外周面10は、凹部5における光学素子2側の端部から出射面8側に向かって延出されるとともに、出射面8側に向かうにしたがって外径が大きくなるような光軸OAと同心のテーパ面状(外面テーパ状)に形成されている。より具体的には、図36に示すように、外周面10は、光軸OAを含む縦断面の外形(母線)が、光軸OAを基準とした径方向の外方に向かって僅かに膨らむような円弧形状を呈する曲線テーパ面に形成されている。   Furthermore, as shown in FIG. 36, an outer peripheral surface 10 that surrounds the optical axis OA is formed between the recess 5 and the emission surface 8. As shown in FIG. 36, the outer peripheral surface 10 extends from the end of the concave portion 5 on the optical element 2 side toward the emission surface 8 side, and the outer diameter increases toward the emission surface 8 side. It is formed in a tapered surface shape (outer surface tapered shape) concentric with the optical axis OA. More specifically, as shown in FIG. 36, the outer peripheral surface 10 has a longitudinal cross-sectional outer shape (bus line) including the optical axis OA slightly bulging outward in the radial direction with respect to the optical axis OA. It is formed in the curved taper surface which exhibits such a circular arc shape.

このような外周面10は、発光素子2から出射された光の一部を全反射させる機能を有する全反射面11とされている。この全反射面11には、第2入射面7から入射した第2の光Lが、光束制御部材1(光束制御部材本体)内の光路上を進行した後に、臨界角以上の入射角で内部入射するようになっている。そして、全反射面11は、内部入射した第2の光Lを、出射面8に向けて全反射させるようになっている。 Such an outer peripheral surface 10 is a total reflection surface 11 having a function of totally reflecting a part of the light emitted from the light emitting element 2. On the total reflection surface 11, the second light L 2 incident from the second incident surface 7 travels on the optical path in the light flux controlling member 1 (light flux controlling member main body) and then has an incident angle greater than the critical angle. Internal incidence is made. The total reflection surface 11 totally reflects the internally incident second light L 2 toward the emission surface 8.

そして、前述した出射面8には、第1入射面6から入射した第1の光Lが、光束制御部材1の内部の光路上を進行して直接到達(内部入射)するようになっている。なお、直接とは、全反射面11における全反射を介さないという意味である。また、このとき、出射面8には、第2入射面7から入射した第2の光Lが、全反射面11における全反射を経て到達(内部入射)するようになっている。そして、出射面8は、これら到達した第1の光Lと第2の光Lとを被照射面に向けて出射させるようになっている。 Then, the first light L 1 incident from the first incident surface 6 travels on the optical path inside the light flux controlling member 1 and reaches directly (internal incident) to the aforementioned exit surface 8. Yes. The direct means that the total reflection on the total reflection surface 11 is not performed. At this time, the second light L 2 incident from the second incident surface 7 reaches the output surface 8 through total reflection on the total reflection surface 11 (internal incidence). The emission surface 8 is adapted to first light L 1 and the second light L 2 that these reach to be emitted toward the illuminated surface.

なお、図32〜図36に示すように、外周面10における出射面8側の端部(図36における上端部)と出射面8における外周端部(図36における下端部)との間には、平面図(図34)において光軸OAと同心の円環形状を呈するフランジ部12が、外周面10および出射面8よりも径方向の外方に延出するように形成されている。   As shown in FIGS. 32 to 36, there is a gap between the end of the outer peripheral surface 10 on the exit surface 8 side (upper end in FIG. 36) and the outer end of the output surface 8 (lower end in FIG. 36). In the plan view (FIG. 34), the flange portion 12 having an annular shape concentric with the optical axis OA is formed to extend outward in the radial direction from the outer peripheral surface 10 and the emission surface 8.

このような光束制御部材1は、例えば、PMMA(ポリメタクリル酸メチル)、PC(ポリカーボネート)およびEP(エポキシ樹脂)などの樹脂材料やガラス等の透光性材料によって形成されている。   Such a light flux controlling member 1 is made of, for example, a resin material such as PMMA (polymethyl methacrylate), PC (polycarbonate) and EP (epoxy resin), or a translucent material such as glass.

そして、このような光束制御部材1は、例えば、図37に示すように、外照式看板等の外照用の被照射部材15の被照射面15aに対して光軸OAを傾けた状態で配置されることによって、外照式の照明装置を構成するようになっている。ただし、被照射部材15および被照射面15aは、同図の紙面垂直方向に奥行き(横幅)を有しており、これにともなって、同図の構成においては、複数の光束制御部材1が、紙面垂直方向に所定の間隔を設けて整列配置されている。なお、同図には、便宜上、最も手前側の1つの光束制御部材1のみが示されている。また、同図の構成において、各光束制御部材1の光軸OAの傾き方向は、発光素子2から光軸OAに対して大きな角度で出射して発光素子2近傍の被照射面15aに照射する光の方が光軸OAに対して小さな角度で出射する光よりも、被照射面15aへの入射角が小さくなるような傾き方向となっている。このような構成においては、各光束制御部材1のそれぞれの出射面8から出射された第1の光Lおよび第2の光L(図36参照)が、被照射面15aに対して斜め方向(すなわち、被照射面15aの面法線方向に対して傾きを有する方向)から照射されるようになっており、これにより、被照射面15aの照明が行われることになる。 Then, for example, as shown in FIG. 37, such a light flux controlling member 1 has an optical axis OA inclined with respect to the irradiated surface 15a of the irradiated member 15 for external illumination such as an externally illuminated signboard. By being arranged, an external illumination type illumination device is configured. However, the irradiated member 15 and the irradiated surface 15a have a depth (horizontal width) in the direction perpendicular to the paper surface of the figure, and accordingly, in the configuration of the figure, a plurality of light flux controlling members 1 are They are arranged in a line at a predetermined interval in the direction perpendicular to the paper surface. In the figure, for the sake of convenience, only one light flux controlling member 1 on the foremost side is shown. Further, in the configuration shown in the figure, the inclination direction of the optical axis OA of each light flux controlling member 1 is emitted from the light emitting element 2 at a large angle with respect to the optical axis OA and is irradiated on the irradiated surface 15a in the vicinity of the light emitting element 2. The light is inclined such that the incident angle on the irradiated surface 15a is smaller than the light emitted at a smaller angle with respect to the optical axis OA. In such a configuration, the first light L 1 and the second light L 2 (see FIG. 36) emitted from the respective emission surfaces 8 of each light flux controlling member 1 are inclined with respect to the irradiated surface 15a. Irradiation is performed from a direction (that is, a direction having an inclination with respect to the surface normal direction of the irradiated surface 15a), and thereby the irradiated surface 15a is illuminated.

図38は、このように構成された外照式の照明装置において、1つの光束制御部材1から被照射面15aに照射される光(すなわち、第1の光Lと第2の光Lとの混合光)の照度分布を模式的に示したものである。この照度分布は、光束制御部材1によって出射(制御)された光の配光特性を反映している。ここで、同図中の矩形領域の下端部9aは、被照射面15a上の照明すべき領域における光束制御部材1側(光源近傍側)の端部を示している。一方、同矩形領域の上端部9bは、被照射面15a上の照明すべき領域における光束制御部材1と反対側(光源遠方側)の端部を示している。なお、照明すべき領域は、被照射面15a全面となる場合もある。また、同図の横方向は、複数の光束制御部材1の整列方向(被照射部材15の横幅方向)に相当する。そして、同図中には、中央側から周辺側に向かって波紋状に広がるような複数の楕円状(同図縦方向を長軸とした楕円状)の閉曲線が示されているが、これらの閉曲線は、それぞれ被照射面15a上における同照度の点を結んだ等高線とされている。これら複数の等高線のうち、最も中央側の等高線は、対応する照度が相対的に最も高くなっており、この最も中央側の等高線から周辺側の等高線に向かうにしたがって、対応する照度が次第に低くなっている。なお、同図の各等高線は、被照射面15a上の代表的な同照度の位置を離散的に示したものであり、実際は、中央側から周辺側に向かってほぼ連続的に照度が低くなるので、無数の等高線を描くことができる。ただし、同図中における最も周辺側の等高線は、被照射面15aを照明するのに十分な照度であるとみなされる照度の下限に対応したものである。 FIG. 38 shows the light (that is, the first light L 1 and the second light L 2) emitted from one light flux controlling member 1 to the irradiated surface 15a in the external illumination type illumination device configured as described above. The illuminance distribution of the mixed light) is schematically shown. This illuminance distribution reflects the light distribution characteristics of the light emitted (controlled) by the light flux controlling member 1. Here, the lower end portion 9a of the rectangular area in the figure shows the end on the light flux controlling member 1 side (the light source vicinity side) in the area to be illuminated on the irradiated surface 15a. On the other hand, the upper end portion 9b of the rectangular region indicates the end portion on the opposite side (light source far side) from the light flux controlling member 1 in the region to be illuminated on the irradiated surface 15a. Note that the area to be illuminated may be the entire irradiated surface 15a. Further, the horizontal direction in the figure corresponds to the alignment direction of the plurality of light flux controlling members 1 (the horizontal width direction of the irradiated member 15). In the same figure, a plurality of elliptical closed curves (an elliptical shape with the longitudinal direction in the figure as a major axis) spreading in a ripple shape from the central side toward the peripheral side are shown. Each closed curve is a contour line connecting points of the same illuminance on the irradiated surface 15a. Among the plurality of contour lines, the most central contour line has the highest corresponding illuminance, and the corresponding illuminance gradually decreases from the most central contour line toward the contour line on the peripheral side. ing. In addition, each contour line in the figure shows representative positions of the same illuminance on the irradiated surface 15a in a discrete manner. Actually, the illuminance decreases almost continuously from the center side toward the peripheral side. So countless contour lines can be drawn. However, the contour line on the most peripheral side in the figure corresponds to the lower limit of illuminance considered to be sufficient illuminance to illuminate the illuminated surface 15a.

また、このような外照式の照明装置以外にも、光束制御部材1は、例えば、図39に示すような内照式の照明装置を構成する場合もある。同図に示すように、両面内照式の照明装置においては、光束制御部材1が、内照式看板等の互いに平行に対向配置された透光性を有する一対の内照用の被照射部材17、18の間に配置されている。具体的には、同図に示すように、両被照射部材17、18の下端部間には、これらに垂直な底板20が配設されており、この底板20における内側(同図における上側)の表面が、光束制御部材1の配置位置となっている。また、この底板20における内側の表面には、発光素子2の実装された基板が取り付けられている。さらに、同図に示すように、光束制御部材1のフランジ部12には、光束制御部材1を保持するための光軸OAと同心の円筒形状のホルダ21が、外周面10を包囲するように形成されている。そして、このホルダ21の下端面が、光束制御部材1と発光素子2との位置合わせを行ったうえで底板20上(或いは基板上)に固定されることによって、光束制御部材1が底板20上に保持されている。さらにまた、同図において、光束制御部材1は、光軸OAが各被照射部材17、18の被照射面17a、18aに対して平行になるように配置されている。また、同図においては、図37の場合と同様に、複数の光束制御部材1が、紙面垂直方向に整列配置されている。なお、図示はしないが、被照射部材17、18の上端部間には、底板20に対向する天板が配設されており、さらに、被照射部材17、18、底板20および天板の同図紙面垂直方向の両端部には、互いに平行に対向する一対の側板が配設されている。そして、これら被照射部材17、18、底板20、天板および側板によって矩形の筐体が構成されており、光束制御部材1は、この筐体の内部に収容された状態となっている。このような両面内照式の照明装置においても、外照式の照明装置と同様に、発光素子2から光軸OAに対して大きな角度で出射し発光素子2近傍の被照射面17a、18aを照射する光の方が、光軸OAに対して小さな角度で出射する光よりも被照射面17a、18aへの入射角が小さくなるように発光素子2および光束制御部材1の位置決めがなされた上で、光束制御部材1から出射された光L、Lが各被照射面17a、18aに対して斜め方向から照射されることになる。 In addition to such an external illumination type illumination device, the light flux controlling member 1 may constitute, for example, an internal illumination type illumination device as shown in FIG. As shown in the figure, in a double-sided internal illumination type illumination device, a light flux control member 1 is a pair of irradiated members for internal illumination, such as an internally illuminated signboard, having translucency arranged opposite to each other. 17 and 18. Specifically, as shown in the figure, a bottom plate 20 perpendicular to them is disposed between the lower ends of the irradiated members 17 and 18, and the inside of the bottom plate 20 (upper side in the figure). Is the position where the light flux controlling member 1 is arranged. A substrate on which the light emitting element 2 is mounted is attached to the inner surface of the bottom plate 20. Furthermore, as shown in the figure, a cylindrical holder 21 concentric with the optical axis OA for holding the light flux controlling member 1 surrounds the outer peripheral surface 10 at the flange portion 12 of the light flux controlling member 1. Is formed. Then, the lower end surface of the holder 21 is fixed on the bottom plate 20 (or on the substrate) after aligning the light flux control member 1 and the light emitting element 2, so that the light flux control member 1 is on the bottom plate 20. Is held in. Furthermore, in the figure, the light flux controlling member 1 is arranged so that the optical axis OA is parallel to the irradiated surfaces 17a and 18a of the irradiated members 17 and 18. Further, in the same figure, as in the case of FIG. 37, a plurality of light flux controlling members 1 are aligned and arranged in the direction perpendicular to the paper surface. Although not shown, a top plate facing the bottom plate 20 is disposed between the upper ends of the irradiated members 17 and 18, and the irradiated members 17, 18, the bottom plate 20 and the top plate are the same. A pair of side plates facing each other in parallel is disposed at both ends in the direction perpendicular to the drawing. The irradiated members 17 and 18, the bottom plate 20, the top plate and the side plates constitute a rectangular casing, and the light flux controlling member 1 is housed inside the casing. In such a double-sided interior illumination device, similarly to the external illumination type illumination device, the light-emitting elements 2 emit light at a large angle with respect to the optical axis OA, and the irradiated surfaces 17a and 18a in the vicinity of the light-emitting elements 2 are irradiated. The light emitting element 2 and the light flux controlling member 1 are positioned so that the incident light is smaller in the incident angle to the irradiated surfaces 17a and 18a than the light emitted at a smaller angle with respect to the optical axis OA. Thus, the lights L 1 and L 2 emitted from the light flux controlling member 1 are irradiated to the irradiated surfaces 17a and 18a from an oblique direction.

さらに、光束制御部材1は、図40に示すような片面内照式の照明装置を構成する場合もある。同図の構成においては、互いに平行に対向配置された板状の反射部材24と内照式看板等の透光性の被照射部材25とを有している。そして、同図に示すように、光束制御部材1は、両面内照の場合と同様に、反射部材24と被照射部材25との間に配置されている。なお、同図の構成においては、光束制御部材1から反射部材24側に照射された光が、反射部材24の反射面24aにおいて被照射部材25側に反射される点で、両面内照式の照明装置の場合と異なる。   Furthermore, the light flux controlling member 1 may constitute a single-sided interior illumination device as shown in FIG. The configuration shown in FIG. 1 includes a plate-like reflecting member 24 and a translucent irradiated member 25 such as an internally-illuminated signboard, which are opposed to each other in parallel. As shown in the figure, the light flux controlling member 1 is disposed between the reflecting member 24 and the irradiated member 25 as in the case of double-sided internal illumination. In the configuration of the figure, the light irradiated from the light flux controlling member 1 to the reflecting member 24 side is reflected by the reflecting surface 24a of the reflecting member 24 toward the irradiated member 25 side. Different from the case of the lighting device.

このような内照式の照明および外照式の照明に適用可能な光束制御部材1に関する従来技術としては、これまでにも、例えば、特許文献1に示す技術が提案されている。   As a conventional technique related to the light flux controlling member 1 applicable to such internal illumination and external illumination, for example, a technique shown in Patent Document 1 has been proposed.

特開2007−5218号公報JP 2007-5218 A

しかしながら、従来の光束制御部材1は、図38に示したように、外照式の照明に適用された場合には、被照射面15aにおける光束制御部材1の近傍の領域(同図の矩形領域における下端部9a近傍)が、同図における最も周辺側の等高線の外側となることが分かる。このことは、被照射面15aにおける光束制御部材1の近傍の領域の照度が不十分となることを示している。   However, when the conventional light flux controlling member 1 is applied to external illumination as shown in FIG. 38, an area in the vicinity of the light flux controlling member 1 on the irradiated surface 15a (rectangular area in the figure). It can be seen that the vicinity of the lower end 9a in FIG. 4 is outside the contour line on the most peripheral side in FIG. This indicates that the illuminance in the area near the light flux controlling member 1 on the irradiated surface 15a is insufficient.

このような現象は、図39および図40に示したような内照式の照明に適用する場合には更に顕著になると予想される。蓋し、図39および図40の構成においては、光束制御部材1の光軸OAが被照射面17a、18a、25aに対して平行となっているため、外照式の場合(図37の構成)に比べて、被照射面17a、18a、25aに対する照射光の入射角が大きくなる、換言すれば、照射光が光束制御部材1に対してより遠くの位置に照射されることになるからである。   Such a phenomenon is expected to become more prominent when applied to internally-illuminated illumination as shown in FIGS. 39 and 40, since the optical axis OA of the light flux controlling member 1 is parallel to the irradiated surfaces 17a, 18a, and 25a, in the case of the external illumination type (configuration of FIG. 37). ), The incident angle of the irradiation light with respect to the irradiated surfaces 17a, 18a, and 25a is increased. In other words, the irradiation light is irradiated to a position farther from the light flux controlling member 1. is there.

すなわち、従来の光束制御部材1においては、被照射面に光を照射する際に、被照射面における光源近傍の領域が光量不足(換言すれば、暗部)となるといった問題が生じる。   That is, in the conventional light flux controlling member 1, when irradiating light on the surface to be irradiated, there is a problem that the area in the vicinity of the light source on the surface to be irradiated becomes insufficient in light quantity (in other words, a dark part).

また、従来の光束制御部材1を用いた発光装置と被照射面15aとの位置関係を変更し、図41に示すように、光源近傍の領域の光量が補えるような位置に発光装置を配置した場合であっても、同図破線閉曲線に示すように、複数の発光装置間に対応して被照射面に暗部が発生する。したがって、このような場合には、1つの発光装置からの出射光による被照射面上の照度分布の最も周辺側の等高線が、被照射面に投影した光軸(投影光軸)に対して直交する方向に広がるようにする必要がある。   Further, the positional relationship between the light emitting device using the conventional light flux controlling member 1 and the irradiated surface 15a is changed, and the light emitting device is arranged at a position where the light quantity in the region near the light source can be compensated as shown in FIG. Even in this case, as indicated by the closed curve of the broken line in the figure, dark portions are generated on the irradiated surface corresponding to the plurality of light emitting devices. Therefore, in such a case, the contour line on the most peripheral side of the illuminance distribution on the irradiated surface by the light emitted from one light emitting device is orthogonal to the optical axis (projected optical axis) projected on the irradiated surface. It is necessary to spread in the direction.

そこで、本発明は、このような問題点に鑑みなされたものであり、被照射面における部分的な光量不足を改善することができる光束制御部材、この光束制御部材を備えた発光装置およびこの発光装置を備えた照明装置を提供することを目的とするものである。   Therefore, the present invention has been made in view of such a problem, and a light flux control member that can improve a partial shortage of light amount on an irradiated surface, a light emitting device including the light flux control member, and the light emission. It aims at providing the illuminating device provided with the apparatus.

前述した目的を達成するため、本発明の請求項1に係る光束制御部材の特徴は、発光素子から出射された光を、これの配光特性を制御して被照射面に対して斜め方向から照射する光束制御部材であって、前記光束制御部材は、前記発光素子に対向して配置される発光素子対向面部と、前記発光素子対向面部に対して前記発光素子とは反対側に形成された出射面と、前記発光素子対向面部の外周端部から前記出射面の外周端部へ向かって延設された外周面とを備え、前記発光素子対向面部には、前記発光素子から出射された光を前記光束制御部材内へ入射させるための凹部が形成され、前記凹部は、光軸に直交する平面として形成され、前記発光素子から出射された光のうちの中心側の第1の光が入射する第1入射面と、この第1入射面の外周端部から前記発光素子側に向かって延設され、前記発光素子から出射される光のうちの前記第1の光の外側の第2の光が入射する第2入射面とを有し、前記外周面は、前記第2入射面に入射する前記第2の光が前記出射面に向けて全反射されるように、前記発光素子対向面部側から前記出射面側に向かって、漸次、直径が拡径するように形成された全反射面を有し、前記出射面は、前記第1入射面から入射し直接到達した前記第1の光および前記第2入射面から入射し前記全反射面を経て到達した前記第2の光を前記被照射面に向けて出射させ、前記外周面および前記凹部の少なくとも一方には、前記第2の光の一部をなす第3の光を、前記出射面に到達させずに前記出射面よりも前記発光素子側の位置において前記外周面の外側に出射させる出射機能部が形成されており、この出射機能部は、前記第3の光を、前記出射面から出射される前記第1の光および前記第2の光よりも前記光軸から大きな角度方向に出射させる点にある。   In order to achieve the above-described object, the light flux controlling member according to claim 1 of the present invention is characterized in that the light emitted from the light emitting element is controlled in an oblique direction with respect to the irradiated surface by controlling the light distribution characteristics thereof. A light flux controlling member for irradiation, wherein the light flux controlling member is formed on a side opposite to the light emitting element with respect to the light emitting element facing surface portion disposed to face the light emitting element. A light emitting surface, and an outer peripheral surface extending from an outer peripheral end of the light emitting element facing surface portion toward an outer peripheral end of the emitting surface, and the light emitted from the light emitting element is disposed on the light emitting element facing surface portion. Is formed as a plane perpendicular to the optical axis, and the first light on the center side of the light emitted from the light emitting element is incident on the concave portion. First incident surface and outer periphery of the first incident surface And a second incident surface on which the second light outside the first light out of the light emitted from the light emitting element is incident, and the outer circumference The surface gradually increases in diameter from the light emitting element facing surface side toward the emission surface so that the second light incident on the second incidence surface is totally reflected toward the emission surface. A total reflection surface formed to have a diameter, and the output surface is incident from the first incident surface and directly reaches the first light and the second incident surface, and passes through the total reflection surface. The reached second light is emitted toward the irradiated surface, and at least one of the outer peripheral surface and the concave portion is provided with third light forming a part of the second light on the emission surface. The light is emitted to the outside of the outer peripheral surface at a position closer to the light emitting element than the emission surface without reaching. An emission function unit is formed, and the emission function unit emits the third light in a larger angular direction from the optical axis than the first light and the second light emitted from the emission surface. It is in the point to emit.

そして、この請求項1に係る発明によれば、出射機能部によって、第3の光を、出射面よりも発光素子側の位置において、出射面から出射される第1の光および第2の光よりも光軸から大きな角度方向(換言すれば、被照射面に対する入射角が小さくなる方向)に出射させることができるので、第3の光を、被照射面における光源近傍の領域に照射して、この領域の光量不足を改善することができる。   According to the first aspect of the present invention, the first light and the second light emitted from the emission surface by the emission function unit at the position closer to the light emitting element than the emission surface by the emission function unit. Can be emitted in a larger angle direction from the optical axis (in other words, a direction in which the incident angle with respect to the irradiated surface becomes smaller), so that the third light is irradiated on a region near the light source on the irradiated surface. , The shortage of light in this region can be improved.

また、請求項2に係る光束制御部材の特徴は、請求項1において、更に、前記出射機能部は、前記外周面と前記凹部の内周面とに挟まれた光束制御部材本体の壁部における前記外周面の周方向の一部で且つ前記発光素子対向面部側に、前記壁部の厚みを減ずるように形成された切り欠き部であり、前記第3の光を、前記切り欠き部から出射させる点にある。   In addition, the light beam control member according to claim 2 is characterized in that, in claim 1, the emission function portion is a wall portion of the light beam control member main body sandwiched between the outer peripheral surface and the inner peripheral surface of the recess. It is a notch part formed so as to reduce the thickness of the wall part on a part of the outer peripheral surface in the circumferential direction and on the light emitting element facing surface part side, and emits the third light from the notch part. It is in point to let you.

そして、この請求項2に係る発明によれば、出射機能部を、切り欠き部からなる簡易な構成によって実現することができる。   According to the second aspect of the present invention, the emission function unit can be realized by a simple configuration including a notch.

さらに、請求項3に係る光束制御部材の特徴は、請求項2において、更に、前記切り欠き部は、前記外周面から前記凹部に貫通し、且つ前記発光素子対向面部側に開口する貫通溝であり、前記第3の光を、前記貫通溝から前記外周面の外側に出射させる点にある。   Further, the light flux controlling member according to claim 3 is characterized in that, in claim 2, the notch is a through groove that penetrates from the outer peripheral surface to the recess and opens to the light emitting element facing surface side. And the third light is emitted from the through groove to the outside of the outer peripheral surface.

そして、この請求項3に係る発明によれば、切り欠き部を、貫通溝からなる簡易な構成によって実現することができるとともに、被照射面上に十分な光量の第3の光を照射することができる。   According to the third aspect of the invention, the notch can be realized with a simple configuration including a through groove, and a sufficient amount of the third light is irradiated onto the irradiated surface. Can do.

さらにまた、請求項4に係る光束制御部材の特徴は、請求項2において、更に、前記切り欠き部は、前記外周面と前記凹部の内周面とに挟まれた光束制御部材本体の壁部を、前記外周面の周方向の一部で且つ発光素子対向面部側の所定の部位において、前記光軸と平行に削ぎ落として凹設される平面出射部を有し、前記第3の光を、前記第2入射面への入射後に前記平面出射部において屈折させて前記外周面の外側に出射させる点にある。   Still further, the light flux controlling member according to claim 4 is characterized in that, in claim 2, the notch portion is a wall portion of the light flux controlling member body sandwiched between the outer peripheral surface and the inner peripheral surface of the recess. At a predetermined portion on the light emitting element facing surface portion side in a part in the circumferential direction of the outer peripheral surface, and having a flat light emitting portion that is recessed by being cut off in parallel with the optical axis, and the third light is , After being incident on the second incident surface, the light is refracted at the planar light emitting portion and emitted to the outside of the outer peripheral surface.

そして、この請求項4に係る発明によれば、切り欠き部を、平面出射部からなる簡易な構成によって実現することができ、また、平面出射部による光の屈折を利用して、被照射面上における第3の光の照射位置の好適化を図ることも可能となる。   According to the fourth aspect of the present invention, the cut-out portion can be realized by a simple configuration including the flat emission portion, and the surface to be irradiated is utilized by utilizing the refraction of light by the flat emission portion. It is also possible to optimize the irradiation position of the third light above.

また、請求項5に係る光束制御部材の特徴は、請求項2において、更に、前記切り欠き部は、前記外周面と前記凹部の内周面とに挟まれた光束制御部材本体の壁部を、前記外周面の周方向の一部で且つ発光素子対向面部側の所定の部位において、くり抜いて凹設される曲面出射部を有し、前記第3の光を、前記第2入射面への入射後に前記曲面出射部において屈折及び発散させて前記外周面の外側に出射させる点にある。   The light beam control member according to claim 5 is characterized in that, in claim 2, the notch portion is a wall portion of the light beam control member body sandwiched between the outer peripheral surface and the inner peripheral surface of the recess. A curved emission part that is hollowed out and recessed at a predetermined part of the outer peripheral surface in the circumferential direction and on the light emitting element facing surface side, and transmits the third light to the second incident surface. It is in the point which refracts and diverges in the curved surface emission part after incidence, and is emitted outside the outer peripheral surface.

そして、この請求項5に係る発明によれば、出射機能部を、曲面出射部からなる簡易な構成によって実現することができるとともに、曲面出射部による光の発散を利用して、被照射面における第3の光の照射領域を拡大することができる。   According to the fifth aspect of the present invention, the emission function unit can be realized with a simple configuration including the curved surface emission unit, and the divergence of light by the curved surface emission unit is used to irradiate the irradiated surface. The irradiation area of the third light can be enlarged.

さらに、請求項6に係る光束制御部材の特徴は、請求項1において、更に、前記出射機能部は、前記外周面の周方向の一部で且つ発光素子対向面部側の所定の部位を粗面化した外周面粗面化部を有し、前記第3の光を、前記第2入射面への入射後に前記外周面粗面化部において拡散させて前記外周面の外側に出射させる点にある。   Further, the light beam control member according to claim 6 is characterized in that, in claim 1, the emission function part is a rough surface with a predetermined part on the light emitting element facing surface part side as a part of the outer peripheral surface in the circumferential direction. And having the outer peripheral surface roughened portion converted into the third light, which is diffused in the outer peripheral surface roughened portion after being incident on the second incident surface and emitted to the outside of the outer peripheral surface. .

そして、この請求項6に係る発明によれば、出射機能部を、外周面粗面化部からなる簡易な構成によって実現することができるとともに、外周面粗面化部による光の拡散を利用して、第3の光の光量の均一化ひいては被照射面における光源近傍の領域の照度の均一化を図ることができる。   According to the sixth aspect of the invention, the emission function unit can be realized by a simple configuration including the outer peripheral surface roughening unit, and light diffusion by the outer peripheral surface roughening unit is utilized. Thus, the amount of the third light can be made uniform, and the illuminance in the region near the light source on the irradiated surface can be made uniform.

さらにまた、請求項7に係る光束制御部材の特徴は、請求項4〜6のいずれか1項において、更に、前記出射機能部は、前記第2入射面における前記発光素子対向面部側の所定の部位を粗面化した入射面粗面化部を有し、前記第3の光を、前記入射面粗面化部において拡散させることによって前記外周面においてこれの外側に透過されるようにする点にある。   Still further, the light flux controlling member according to claim 7 is characterized in that, in any one of claims 4 to 6, the emission function part further includes a predetermined light-emitting element facing surface side of the second incident surface. An incident surface roughening portion whose surface is roughened, and the third light is diffused in the incident surface roughening portion so as to be transmitted outside the outer peripheral surface. It is in.

そして、この請求項7に係る発明によれば、出射機能部を、入射面粗面化部からなる簡易な構成によって実現することができるとともに、入射面粗面化部による光の拡散を利用して、第3の光の光量の均一化を図ることができる。   According to the seventh aspect of the invention, the emission function unit can be realized by a simple configuration including the incident surface roughening unit, and light diffusion by the incident surface roughening unit is utilized. Thus, the amount of the third light can be made uniform.

また、請求項8に係る光束制御部材の特徴は、請求項1〜7のいずれか1項において、更に、前記外周面の外側に、光束制御部材本体を保持するためのホルダが配置され、前記ホルダは、前記出射機能部から出射された前記第3の光を屈折または拡散させることによって、前記第3の光の配光特性を補正する点にある。   The light flux controlling member according to claim 8 is characterized in that, in any one of claims 1 to 7, a holder for holding a light flux controlling member main body is further disposed outside the outer peripheral surface, The holder lies in that the light distribution characteristic of the third light is corrected by refracting or diffusing the third light emitted from the emission function unit.

そして、この請求項8に係る発明によれば、出射機能部から出射された第3の光の配光特性をホルダによって補正することができるので、被照射面上における第3の光の照射位置の好適化または第3の光の光量の均一化(換言すれば、被照射面における光源近傍の領域の照度の均一化)を図ることができる。   According to the eighth aspect of the invention, since the light distribution characteristic of the third light emitted from the emission function unit can be corrected by the holder, the irradiation position of the third light on the irradiated surface Or uniformizing the amount of light of the third light (in other words, equalizing the illuminance of the region near the light source on the irradiated surface).

さらに、請求項9に係る発光装置の特徴は、光を出射させる発光素子と、請求項1〜8のいずれか1項に記載の光束制御部材とを備え、前記発光素子が、前記光の中心軸を前記光束制御部材の光軸に合致させた状態で前記光束制御部材の前記凹部に臨む位置に配置されている点にある。   Furthermore, the light-emitting device according to claim 9 includes a light-emitting element that emits light and the light flux controlling member according to any one of claims 1 to 8, wherein the light-emitting element has a center of the light. It is in the point arrange | positioned in the position which faces the said recessed part of the said light beam control member in the state which matched the axis | shaft with the optical axis of the said light beam control member.

そして、この請求項9に係る発明によれば、被照射面における光源近傍の領域に光を有効に照射して、この領域の光量不足を改善することができる発光装置を実現することができる。   According to the ninth aspect of the present invention, it is possible to realize a light-emitting device that can effectively irradiate light in the vicinity of the light source on the surface to be irradiated and improve the shortage of light in this region.

さらにまた、請求項10に係る照明装置の特徴は、請求項9に記載の発光装置と、この発光装置による光の照射が行われる被照射面とを備え、前記発光装置の前記光束制御部材は、前記出射機能部を前記被照射面側に向けた状態で配置されている点にある。   Furthermore, the illumination device according to claim 10 includes the light-emitting device according to claim 9 and an irradiated surface on which light is emitted from the light-emitting device, and the light flux controlling member of the light-emitting device includes: The light emitting function part is arranged in a state in which the light emitting function part is directed to the irradiated surface side.

そして、この請求項10に係る発明によれば、被照射面における光源近傍の領域に光を有効に照射して、この領域の光量不足を改善することができ、ひいては照明品質を向上させることができる照明装置を実現することができる。   According to the invention of claim 10, it is possible to effectively irradiate the area near the light source on the surface to be irradiated, to improve the shortage of light in this area, and to improve the illumination quality. An illuminating device that can be realized can be realized.

また、請求項11に係る照明装置の特徴は、請求項9に記載の発光装置と、この発光装置による光の照射が行われる被照射面とを備え、前記発光装置の前記光束制御部材は、前記出射機能部を前記被照射面から遠ざけた状態で配置されている点にある。   The illumination device according to claim 11 includes the light-emitting device according to claim 9 and an irradiated surface on which light is emitted from the light-emitting device, and the light flux controlling member of the light-emitting device includes: It exists in the point arrange | positioned in the state which distanced the said output function part from the said to-be-irradiated surface.

そして、この請求項11に係る発明によれば、被照射面上の照射領域を前述した投影光軸に対して直交方向に広げることによって、被照射面上の照度分布を改善することができる。特に、複数の発光装置を整列配置する場合には、被照射面における各発光装置間に対応する位置の暗部を有効に低減することができる。   According to the eleventh aspect of the invention, the illuminance distribution on the irradiated surface can be improved by expanding the irradiation region on the irradiated surface in the direction orthogonal to the projection optical axis described above. In particular, when arranging a plurality of light emitting devices in alignment, dark portions at positions corresponding to the light emitting devices on the irradiated surface can be effectively reduced.

さらに、請求項12に係る照明装置の特徴は、請求項10または11において、更に、外照式の照明装置とされ、前記光束制御部材は、前記被照射面を照射する前記光束制御部材からの出射光のうち、前記光軸に対して大きな角度の出射光が前記光軸に対して小さな角度の出射光よりも前記被照射面への入射角が小さくなるように前記被照射面に対して傾いた状態で配置されている点にある。   The illuminating device according to a twelfth aspect of the present invention is the illuminating device of the external illumination type according to the tenth or eleventh aspect, wherein the light flux controlling member is provided by the light flux controlling member that irradiates the irradiated surface. Out of the emitted light, the emitted light with a large angle with respect to the optical axis has a smaller incident angle with respect to the irradiated surface than the emitted light with a small angle with respect to the optical axis. It is in the point arranged in a tilted state.

そして、この請求項12に係る発明によれば、外照式の照明に適用する場合においても、被照射面における部分的な光量不足を確実に改善することができる。   According to the twelfth aspect of the present invention, even when applied to external illumination, partial shortage of light quantity on the irradiated surface can be reliably improved.

さらにまた、請求項13に係る照明装置の特徴は、請求項10または11において、更に、内照式の照明装置とされ、前記光束制御部材は、前記被照射面を照射する前記光束制御部材からの出射光のうち、前記光軸に対して大きな角度の出射光が前記光軸に対して小さな角度の出射光よりも前記被照射面への入射角が小さくなるような状態で配置されている点にある。   Still further, the illumination device according to claim 13 is characterized in that, in claim 10 or 11, the illumination device is an internally illuminated illumination device, wherein the light flux controlling member is from the light flux controlling member that irradiates the irradiated surface. Among the emitted light, the emitted light having a large angle with respect to the optical axis is arranged in a state where the incident angle to the irradiated surface is smaller than the emitted light having a small angle with respect to the optical axis. In the point.

そして、この請求項13に係る発明によれば、内照式の照明に適用する場合においても、被照射面における部分的な光量不足を確実に改善することができる。   According to the thirteenth aspect of the invention, even when applied to internally-illuminated illumination, it is possible to reliably improve the partial light quantity shortage on the irradiated surface.

本発明によれば、被照射面における部分的な光量不足を改善することができる。   According to the present invention, it is possible to improve partial light quantity shortage on the irradiated surface.

本発明に係る光束制御部材の第1実施形態を示す斜視図The perspective view which shows 1st Embodiment of the light beam control member which concerns on this invention. 図1の光束制御部材の正面図Front view of the light flux controlling member of FIG. 図2の右側面図Right side view of FIG. 図2の下面図Bottom view of FIG. 本発明に係る発光装置の第1実施形態を示す概略構成図1 is a schematic configuration diagram showing a first embodiment of a light-emitting device according to the present invention. 本発明に係る照明装置の第1実施形態として、外照式の照明装置を示す概略構成図Schematic configuration diagram showing an external illumination type illumination device as a first embodiment of the illumination device according to the present invention 第1実施形態の光束制御部材を被照射面の照明に用いた場合における被照射面上の照度分布を示す模式図Schematic diagram showing the illuminance distribution on the illuminated surface when the light flux controlling member of the first embodiment is used for illumination of the illuminated surface. 本発明に係る照明装置の第1実施形態として、両面内照式の照明装置を示す概略構成図Schematic configuration diagram showing a double-sided interior illumination device as a first embodiment of the illumination device according to the present invention 本発明に係る照明装置の第1実施形態として、片面内照式の照明装置を示す概略構成図Schematic block diagram showing a single-sided interior illumination device as a first embodiment of the illumination device according to the present invention 本発明に係る光束制御部材の第1実施形態において、第1の変形例を示す縦断面図In 1st Embodiment of the light beam control member which concerns on this invention, the longitudinal cross-sectional view which shows a 1st modification 本発明に係る光束制御部材の第1実施形態において、第2の変形例を示す縦断面図The longitudinal cross-sectional view which shows the 2nd modification in 1st Embodiment of the light beam control member which concerns on this invention 本発明に係る光束制御部材の第2実施形態を示す斜視図The perspective view which shows 2nd Embodiment of the light beam control member which concerns on this invention. 図12の光束制御部材の正面図The front view of the light beam control member of FIG. 図13の右側面図Right side view of FIG. 図13の下面図The bottom view of FIG. 本発明に係る発光装置の第2実施形態を示す概略構成図Schematic configuration diagram showing a second embodiment of a light emitting device according to the present invention. 本発明に係る光束制御部材の第3実施形態を示す斜視図The perspective view which shows 3rd Embodiment of the light beam control member which concerns on this invention. 図17の光束制御部材の正面図FIG. 17 is a front view of the light flux controlling member of FIG. 図18の右側面図Right side view of FIG. 図18の下面図18 is a bottom view of FIG. 本発明に係る発光装置の第3実施形態を示す概略構成図The schematic block diagram which shows 3rd Embodiment of the light-emitting device based on this invention. 本発明に係る光束制御部材の第4実施形態を示す正面図The front view which shows 4th Embodiment of the light beam control member which concerns on this invention. 図22の右側面図Right side view of FIG. 図22の下面図The bottom view of FIG. 本発明に係る発光装置の第4実施形態を示す概略構成図Schematic configuration diagram showing a fourth embodiment of a light emitting device according to the present invention. 本発明に係る光束制御部材の第5実施形態を示す下面図The bottom view which shows 5th Embodiment of the light beam control member which concerns on this invention. 本発明に係る発光装置の第5実施形態を示す概略構成図Schematic configuration diagram showing a fifth embodiment of a light emitting device according to the present invention. 本発明に係る光束制御部材の第6実施形態を示す第1の斜視図First perspective view showing a sixth embodiment of a light flux controlling member according to the present invention. 図28の光束制御部材の第2の斜視図28 is a second perspective view of the light flux controlling member of FIG. 図28の光束制御部材を適用した外照式の照明装置を示す概略構成図28 is a schematic configuration diagram showing an external illumination type illumination device to which the light flux controlling member of FIG. 28 is applied. 第6実施形態の光束制御部材を被照射面の照明に用いた場合における被照射面上の照度分布を示す模式図Schematic diagram showing the illuminance distribution on the illuminated surface when the light flux controlling member of the sixth embodiment is used for illumination of the illuminated surface. 従来の光束制御部材の一例を示す斜視図The perspective view which shows an example of the conventional light beam control member 図32の光束制御部材の正面図32 is a front view of the light flux controlling member of FIG. 図33の平面図The top view of FIG. 図33の下面図The bottom view of FIG. 従来の発光装置の一例を示す概略構成図Schematic configuration diagram showing an example of a conventional light emitting device 従来の外照式の照明装置の一例を示す概略構成図Schematic configuration diagram showing an example of a conventional external illumination device 図37の照明装置を用いた照明を行う場合における被照射面上の照度分布を示す模式図Schematic diagram showing the illuminance distribution on the irradiated surface in the case of performing illumination using the illumination device of FIG. 従来の両面内照式の照明装置の一例を示す概略構成図Schematic configuration diagram showing an example of a conventional double-sided interior illumination device 従来の片面内照式の照明装置の一例を示す概略構成図Schematic configuration diagram showing an example of a conventional single-sided interior illumination device 複数の発光装置によって形成される被照面上の全体的な照度分布を示す模式図Schematic diagram showing the overall illumination distribution on the illuminated surface formed by a plurality of light emitting devices

(第1実施形態)
(光束制御部材および発光装置の形態)
以下、本発明の第1実施形態について、図1〜図9を参照して説明する。
(First embodiment)
(Form of light flux controlling member and light emitting device)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.

なお、従来と基本的構成が同一もしくはこれに類する箇所については、同一の符号を用いて説明する。   Note that portions having the same or similar basic configuration as those in the related art will be described using the same reference numerals.

ここで、図1は、本実施形態における光束制御部材30の斜視図である。また、図2は、光束制御部材30の正面図である。さらに、図3は、図2の右側面図である。さらにまた、図4は、図2の下面図である。また、図5は、光束制御部材30の縦断面図(光軸OAを含む縦断面図)を、LED等の発光素子2とともに示したものであり、同図は、本実施形態における発光装置31の構成図に相当する。なお、図5において、発光素子2は、この発光素子2から出射される光の中心軸(中心光)が光束制御部材30の光軸OAと合致するように位置合わせされた状態で光束制御部材30に対向配置されている。   Here, FIG. 1 is a perspective view of the light flux controlling member 30 in the present embodiment. FIG. 2 is a front view of the light flux controlling member 30. FIG. 3 is a right side view of FIG. FIG. 4 is a bottom view of FIG. FIG. 5 shows a longitudinal sectional view (longitudinal sectional view including the optical axis OA) of the light flux controlling member 30 together with the light emitting element 2 such as an LED. FIG. 5 shows the light emitting device 31 in the present embodiment. It corresponds to the configuration diagram of In FIG. 5, the light emitting element 2 has a light flux controlling member in a state where the center axis (center light) of light emitted from the light emitting element 2 is aligned with the optical axis OA of the light flux controlling member 30. 30 is arranged oppositely.

図1〜図5に示すように、本実施形態における光束制御部材30は、従来の光束制御部材1と同様に、光軸OA方向における発光素子2側の発光素子対向面部に形成された凹部5と、光軸OA方向における発光素子2と反対側の端部に形成された出射面8と、凹部5と出射面8との間に形成された外周面10とを備えており、凹部5には、第1の光Lを入射させる第1入射面6および第2の光Lを入射させる第2入射面7が形成され、外周面10には、全反射面11が形成されている。 As shown in FIGS. 1 to 5, the light flux controlling member 30 in the present embodiment is a concave portion 5 formed on the light emitting element facing surface portion on the light emitting element 2 side in the optical axis OA direction, similarly to the conventional light flux controlling member 1. And an exit surface 8 formed at the end opposite to the light emitting element 2 in the optical axis OA direction, and an outer peripheral surface 10 formed between the recess 5 and the exit surface 8. Are formed with a first incident surface 6 on which the first light L 1 is incident and a second incident surface 7 on which the second light L 2 is incident, and on the outer peripheral surface 10, a total reflection surface 11 is formed. .

ただし、本実施形態における光束制御部材30は、従来とは異なり、外周面10および凹部5に出射機能部が形成されている。   However, the light flux controlling member 30 in the present embodiment is different from the conventional one, and the emitting function portion is formed on the outer peripheral surface 10 and the recess 5.

具体的には、図1〜図5に示すように、凹部5の内周面と外周面10とに挟まれた光束制御部材30(光束制御部材本体)の壁部30a(図5参照)のうち、発光素子対向面部(図5における下端部)には、光軸OA回りの所定の形成角度範囲にわたって、壁部30aの厚みを減ずる(本実施形態においては、厚みを無くす)ような切り欠き部32が形成されている。   Specifically, as shown in FIGS. 1 to 5, the wall portion 30 a (see FIG. 5) of the light flux controlling member 30 (light flux controlling member body) sandwiched between the inner circumferential surface and the outer circumferential surface 10 of the recess 5. Of these, the light emitting element facing surface portion (the lower end portion in FIG. 5) has a notch that reduces the thickness of the wall portion 30a over the predetermined formation angle range around the optical axis OA (in this embodiment, the thickness is eliminated). A portion 32 is formed.

より具体的には、本実施形態における切り欠き部32は、外周面10から凹部5の内周面に至るように壁部30aを貫通し、且つ、発光素子対向面部側に開口するような貫通溝に形成されている。以下、本実施形態における切り欠き部32を、貫通溝32と称することとする。この貫通溝32の形成角度範囲は、例えば、貫通溝32における周方向(光軸OA回り方向)の一方の端部と光軸OAとを結ぶ仮想直線を角度の基準線(0°)にとった場合に、基準線から周方向の他方側に90°にわたる角度範囲とすることもできる。   More specifically, the notch 32 in the present embodiment penetrates through the wall 30a so as to reach from the outer peripheral surface 10 to the inner peripheral surface of the recess 5, and opens to the light emitting element facing surface portion side. It is formed in the groove. Hereinafter, the notch 32 in the present embodiment is referred to as a through groove 32. The formation angle range of the through groove 32 is, for example, a virtual straight line connecting one end of the through groove 32 in the circumferential direction (the direction around the optical axis OA) and the optical axis OA taken as an angle reference line (0 °). In this case, the angle range may be 90 ° from the reference line to the other side in the circumferential direction.

より具体的には、貫通溝32は、下面図(図4)において光軸OAと同心の扇形状を呈しており、また、切り欠きの深さ(光軸OA方向の寸法)は、貫通溝32の形成角度範囲内のすべての位置において一定とされている。   More specifically, the through groove 32 has a fan shape concentric with the optical axis OA in the bottom view (FIG. 4), and the depth of the notch (the dimension in the direction of the optical axis OA) It is constant at all positions within the 32 forming angle range.

そして、本実施形態においては、このような貫通溝32が出射機能部として機能するようになっている。   And in this embodiment, such a through-groove 32 functions as an output function part.

すなわち、図5に示すように、貫通溝32は、発光素子2から出射された第2の光L(周辺光束)の一部をなす第3の光L(光束)として、貫通溝32の形成角度範囲と同一角度範囲内において第2入射面7に入射する他の第2の光Lよりも周辺側の第3の光Lを、貫通溝32に囲まれた空間を介して素通りさせる。ただし、同図では、第3の光Lのうちの1本の光線のみを代表的に図示している。 That is, as shown in FIG. 5, the through groove 32 is formed as the third light L 3 (light beam) that forms part of the second light L 2 (peripheral light beam) emitted from the light emitting element 2. The third light L 3 on the peripheral side with respect to the other second light L 2 incident on the second incident surface 7 within the same angle range as the formation angle range is formed through the space surrounded by the through groove 32. Let it pass. However, in the figure shows only third one light beam of the light L 3 representatively.

次いで、このようにして貫通溝32を素通りした第3の光Lは、全反射面11における全反射が行われないので出射面8には到達せず、出射面8よりも発光素子2側の位置において、外周面10の外側に出射される。 Next, the third light L 3 passing through the through groove 32 in this way is not totally reflected at the total reflection surface 11, and therefore does not reach the emission surface 8, and is closer to the light emitting element 2 than the emission surface 8. At this position, the light is emitted outside the outer peripheral surface 10.

このとき、第3の光Lは、出射面8から出射される第1の光Lおよび第2の光Lよりも光軸OAに対して大きな角度方向に出射される。換言すれば、第3の光Lは、発光素子2からの出射角を維持したまま外周面10の外側に出射される。 At this time, the third light L 3 is emitted in a larger angular direction with respect to the optical axis OA than the first light L 1 and the second light L 2 emitted from the emission surface 8. In other words, the third light L 3 is emitted to the outside of the outer peripheral surface 10 while maintaining the emission angle from the light emitting element 2.

(外照式照明装置の形態)
そして、このような第3の光Lの光路を形成する本実施形態の光束制御部材30は、従来と同様に、外照式または内照式の照明に適用することができる。
(External illumination device configuration)
Then, the light flux controlling member 30 of the present embodiment for forming such a third optical path of the light L 3 of, as in the conventional, can be applied to the illumination of the outer Terushiki or internally illuminated.

例えば、図6は、本実施形態における光束制御部材30を適用した外照式の照明装置を示したものであり、同図は、従来の図37に対応したものである。図6に示すように、本実施形態においては、従来と同様に、光束制御部材30が、光軸OAを被照射面15aに対して傾けた状態で配置されている。なお、本実施形態においても、従来と同様に、複数の光束制御部材30が、同図の紙面垂直方向に整列配置されている。さらに、図6に示すように、本実施形態においては、光束制御部材30が、貫通溝32を被照射面15a側に向けた状態で配置されている。なお、貫通溝32は、その周方向における中央部が、光軸OAを含む被照射面15aに垂直な仮想平面上に位置されていることが望ましい。   For example, FIG. 6 shows an external illumination type illumination device to which the light flux controlling member 30 in the present embodiment is applied, and this figure corresponds to the conventional FIG. As shown in FIG. 6, in this embodiment, the light flux controlling member 30 is arranged in a state where the optical axis OA is inclined with respect to the irradiated surface 15a, as in the conventional case. In the present embodiment as well, as in the prior art, a plurality of light flux controlling members 30 are arranged in the vertical direction in the drawing. Furthermore, as shown in FIG. 6, in the present embodiment, the light flux controlling member 30 is arranged with the through groove 32 facing the irradiated surface 15a. In addition, as for the penetration groove | channel 32, it is desirable for the center part in the circumferential direction to be located on the virtual plane perpendicular | vertical to the to-be-irradiated surface 15a containing optical axis OA.

このような本実施形態の外照式の照明装置においては、図6に示すように、貫通溝32を素通りした第3の光Lが、被照射面15aにおける光束制御部材30近傍の領域に照射されることになる。また、図示はしないが、出射面8から出射された第1の光Lおよび第2の光Lは、被照射面15aにおける第3の光Lの照射領域よりも光束制御部材30から遠方の領域に照射されることになる。これは、第3の光Lの方が、第1の光Lおよび第2の光Lよりも被照射面15aに対する入射角が小さいことによるものである。このようにして、第1〜第3の光L1〜3を被照射面15a上にバランス良く振り分けることができ、特に、従来問題とされていた被照射面15aにおける光源近傍の領域の光量不足を有効に改善(低減)することができる。なお、光源近傍の光量不足を改善できるということは、被照射面15a全体でみれば、被照射面15a上の光量ムラ(照度ムラ)を改善できるということになる。 In such an external lighting type illumination device of the present embodiment, as shown in FIG. 6, the third light L 3 passing through the through groove 32 is in the region near the light flux controlling member 30 on the irradiated surface 15a. Will be irradiated. Although not shown, the first light L 1 and the second light L 2 emitted from the emission surface 8 are more from the light flux controlling member 30 than the irradiation region of the third light L 3 on the irradiated surface 15 a. A far field is irradiated. This is because the third light L 3 is by that the angle of incidence on the first light L 1 and the second irradiated surface 15a than the light L 2 is small. In this way, the first to third lights L1 to L3 can be distributed on the irradiated surface 15a in a well-balanced manner, and in particular, the amount of light in the region near the light source on the irradiated surface 15a, which has been considered a problem in the past, is insufficient. Can be effectively improved (reduced). In addition, being able to improve the shortage of light quantity in the vicinity of the light source means that light quantity unevenness (illuminance unevenness) on the illuminated surface 15a can be improved when viewed from the whole illuminated surface 15a.

図7は、このような本実施形態の効果を、被照射面15a上の照度分布として模式的に示したものである。同図は、従来の図38に対応したものであり、その概要は図38について説明したものと同様である。図7に示すように、本実施形態においては、被照射面15aにおける光束制御部材30の近傍の領域(同図の矩形領域における下端部9a近傍)が、同図における最も周辺側の等高線の内側となることが分かる。このことは、被照射面15aにおける光束制御部材30の近傍の領域の照度が十分となることを示しており、従来(図38)と比べて光量不足が改善されていることを示すことに他ならない。   FIG. 7 schematically shows the effect of this embodiment as an illuminance distribution on the irradiated surface 15a. This figure corresponds to FIG. 38 of the prior art, and the outline thereof is the same as that described for FIG. As shown in FIG. 7, in the present embodiment, the area near the light flux controlling member 30 on the irradiated surface 15a (the vicinity of the lower end portion 9a in the rectangular area in the figure) is the inner side of the contour line on the most peripheral side in the figure. It turns out that it becomes. This indicates that the illuminance in the area in the vicinity of the light flux controlling member 30 on the irradiated surface 15a is sufficient, and that the shortage of light is improved compared to the conventional case (FIG. 38). Don't be.

(内照式照明装置の形態)
これ以外にも、本実施形態における光束制御部材30は、従来と同様に、例えば、図8に示すような両面内照式の照明装置に適用することもできるし、また、図9に示すような片面内照式の照明装置に適用することもできる。このような各内照式の照明装置においては、従来と同様に、光束制御部材30が、光軸OAを被照射面17a、18a、25aに平行にした状態で被照射面17a、18a、25aに対向配置されている。また、貫通溝32を被照射面17a、18a、25aに向けた状態で光束制御部材30を配置する点については、図6の外照式の照明装置の場合と同様である。ただし、図8および図9に示すように、内照式の照明装置の場合には、外周面10の外側にホルダ21が設けられているため、貫通溝32は、ホルダ21越しに被照射面17a、18a、25aに臨むような状態で配置されている。また、図8に示すように、両面内照式の照明装置の場合には、被照射面17a、18aが2つあることに対応して、光束制御部材30にも、貫通溝32を、径方向において互いに対向する2箇所の位置に形成することが照度ムラ改善に有効である。
(Internal illumination device configuration)
In addition to this, the light flux controlling member 30 in the present embodiment can be applied to, for example, a double-sided interior illumination device as shown in FIG. 8 as in the prior art, and as shown in FIG. The present invention can also be applied to a single-sided internal illumination type lighting device. In each of these internally-illuminated illumination devices, as in the prior art, the light beam control member 30 has the irradiated surfaces 17a, 18a, 25a with the optical axis OA parallel to the irradiated surfaces 17a, 18a, 25a. Are arranged opposite to each other. Further, the point that the light flux controlling member 30 is arranged with the through groove 32 facing the irradiated surfaces 17a, 18a, and 25a is the same as in the case of the external illumination type illumination device of FIG. However, as shown in FIG. 8 and FIG. 9, in the case of an internally-illuminated lighting device, since the holder 21 is provided outside the outer peripheral surface 10, the through groove 32 is exposed to the surface to be irradiated through the holder 21. It arrange | positions in the state which faces 17a, 18a, 25a. Further, as shown in FIG. 8, in the case of a double-sided internal illumination type illumination device, the light flux controlling member 30 has a through groove 32 with a diameter corresponding to the two irradiated surfaces 17a and 18a. It is effective in improving the illuminance unevenness to form at two positions facing each other in the direction.

これらの内照式の照明装置の場合においても、本実施形態の外照式の照明装置の場合と同様に、貫通溝32によって第3の光Lを素通りさせて、被照射面17a、18a、25a側に出射させることができる。ここで、内照式の場合には、外周面10の外側にホルダ21が設けられているため、貫通溝32を素通りした第3の光Lは、ホルダ21を透過した後に被照射面17a、18a、25aに照射されることになる。そこで、貫通溝32を素通りした第3の光Lを、ホルダ21において屈折または拡散させることによって第3の光Lの配光特性を補正してもよい。第3の光Lを屈折または拡散させて配光特性を補正すると、被照射面17a、18a、25a上における第3の光Lの照射位置の好適化を図ることができ、被照射面17a、18a、25aにおける光源近傍の領域の照度の均一化を図ることができる。なお、ホルダ21において第3の光Lを屈折させるためには、例えば、図10および図11に示すように、ホルダ21の外周面および内周面の少なくとも一方を、光軸OAに対して傾きを有するテーパ面に形成すればよい。また、ホルダ21において第3の光Lを拡散させるようにするためには、ホルダ21の外周面および内周面の少なくとも一方を粗面化すればよい。このようにして、内照式の照明装置の場合においても、貫通溝32によって第3の光Lを被照射面17a、18a、25aにおける光束制御部材30の近傍の領域に照射することができるので、外照式の場合と同様に、被照射面17a、18a、25aにおける光源近傍の領域の光量不足を有効に改善することができる。 In these cases the internal irradiation type illumination device, as in the case of external irradiation type lighting device of the present embodiment, by flow through the third light L 3 by the through grooves 32, the irradiated surface 17a, 18a , 25a can be emitted. Here, in the case of the internal illumination type, since the holder 21 is provided outside the outer peripheral surface 10, the third light L 3 passing through the through groove 32 passes through the holder 21 and then the irradiated surface 17 a. , 18a, 25a. Therefore, the light distribution characteristics of the third light L 3 may be corrected by refracting or diffusing the third light L 3 passing through the through groove 32 in the holder 21. When the third light L 3 refraction or by diffusing to correct the light distribution characteristics, it is possible to suitably of a third irradiation position of the light L 3 at the irradiated surface 17a, 18a, on 25a, the surface to be illuminated It is possible to make the illuminance uniform in the area near the light source in 17a, 18a, and 25a. In order to refract the third light L 3 in the holder 21, for example, as shown in FIGS. 10 and 11, at least one of the outer peripheral surface and the inner peripheral surface of the holder 21 is set to the optical axis OA. What is necessary is just to form in the taper surface which has an inclination. Further, in order to diffuse the third light L 3 at the holder 21 may be at least one roughening of the outer surface and the inner peripheral surface of the holder 21. In this way, even in the case of the internal illumination type illumination device, the third light L 3 can be irradiated to the vicinity of the light flux controlling member 30 on the irradiated surfaces 17 a, 18 a, and 25 a by the through groove 32. Therefore, as in the case of the external illumination type, it is possible to effectively improve the light quantity shortage in the area near the light source on the irradiated surfaces 17a, 18a, and 25a.

なお、ホルダ21によって第3の光Lを屈折または拡散させる構成は、外照式の照明装置に適用してもよい。 The refractive or configured to diffuse the third light L 3 by the holder 21, it may be applied to the lighting device SotoTerushiki.

また、前述した第1出射面8は、光軸OAを対称軸とした回転対称面であれば、円錐面でなくてもよく、例えば、球面レンズまたは非球面レンズ状の凸面であってもよい。   Further, the first emission surface 8 described above may not be a conical surface as long as it is a rotationally symmetric surface with the optical axis OA as an axis of symmetry, and may be a convex surface such as a spherical lens or an aspheric lens. .

(第2実施形態)
次に、本発明の第2実施形態について、第1実施形態との差異を中心に、図12〜図16を参照して説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. 12 to 16 with a focus on differences from the first embodiment.

ここで、図12は、本実施形態における光束制御部材33の斜視図である。また、図13は、光束制御部材33の正面図である。さらに、図14は、図13の右側面図である。さらにまた、図15は、図13の下面図である。また、図16は、光束制御部材33の縦断面図(光軸OAを含む縦断面図)を発光素子2とともに示したものであり、同図は、本実施形態における発光装置34の構成図に相当する。   Here, FIG. 12 is a perspective view of the light flux controlling member 33 in the present embodiment. FIG. 13 is a front view of the light flux controlling member 33. Further, FIG. 14 is a right side view of FIG. FIG. 15 is a bottom view of FIG. FIG. 16 is a longitudinal sectional view of the light flux controlling member 33 (longitudinal sectional view including the optical axis OA) together with the light emitting element 2. FIG. 16 is a configuration diagram of the light emitting device 34 in the present embodiment. Equivalent to.

本実施形態の第1実施形態との相違点は、出射機能部の具体的な構成にある。すなわち、図12〜図16に示すように、外周面10の光軸OA方向における光学素子2側(発光素子対向面部側)の端部には、本実施形態における切り欠き部として、光軸OA回りの所定の角度範囲にわたる光軸OAに平行な平面出射部35が、外周面10の一部を削落するようにして凹設されている。この平面出射部35は、右側面図(図14)において略半月形状を呈しており、発光素子2側の端辺が円弧状に形成され、発光素子2と反対側の端辺が弦状に形成されている。また、平面出射部35における発光素子2側の端部は、外周面10における発光素子2側の端部上に位置されている。そして、本実施形態においては、このような平面出射部35が出射機能部として機能するようになっている。   The difference of this embodiment from the first embodiment is the specific configuration of the emission function unit. That is, as shown in FIGS. 12 to 16, the optical axis OA is formed as a notch portion in the present embodiment at the end of the outer peripheral surface 10 on the optical element 2 side (light emitting element facing surface side) in the optical axis OA direction. A planar emitting portion 35 parallel to the optical axis OA over a predetermined angular range around is recessed so as to cut off a part of the outer peripheral surface 10. The planar emitting portion 35 has a substantially half-moon shape in the right side view (FIG. 14), the end on the light emitting element 2 side is formed in an arc shape, and the end on the opposite side to the light emitting element 2 is in a chord shape. Is formed. In addition, the end on the light emitting element 2 side in the flat emission part 35 is positioned on the end on the light emitting element 2 side in the outer peripheral surface 10. And in this embodiment, such a plane emission part 35 functions as an emission function part.

すなわち、図16に示すように、平面出射部35には、第3の光Lが、第2入射面7への入射後に光束制御部材33の内部側から入射する。そして、平面出射部35は、入射した第3の光Lを、屈折させて外周面10の外側に出射させる。このとき、平面出射部35は、第3の光Lを、出射面8から出射される第1の光Lおよび第2の光Lよりも光軸OAに対して大きな角度方向に出射させる。 That is, as shown in FIG. 16, the third light L 3 is incident on the planar emitting portion 35 from the inside of the light flux controlling member 33 after being incident on the second incident surface 7. Then, the flat emission unit 35 refracts the incident third light L 3 and emits it to the outside of the outer peripheral surface 10. At this time, the flat emission unit 35 emits the third light L 3 in a larger angle direction with respect to the optical axis OA than the first light L 1 and the second light L 2 emitted from the emission surface 8. Let

このような平面出射部35を備えた本実施形態における光束制御部材33は、第1実施形態と同様に、外照式の照明および内照式(両面/片面)の照明のいずれに適用された場合においても、被照射面15a、17a、18a、25aにおける光束制御部材33の近傍の領域に第3の光Lを照射させることができる。したがって、本実施形態においても、第1実施形態と同様に、被照射面15a、17a、18a、25aにおける光源近傍の領域の光量不足を有効に改善することができる。 The light flux controlling member 33 in the present embodiment provided with such a flat emission part 35 was applied to either external illumination or internal illumination (both sides / single side) illumination, as in the first embodiment. Even in this case, it is possible to irradiate the third light L 3 on the irradiated surfaces 15a, 17a, 18a, and 25a in the vicinity of the light flux controlling member 33. Therefore, in this embodiment as well, as in the first embodiment, it is possible to effectively improve the light quantity shortage in the area near the light source on the irradiated surfaces 15a, 17a, 18a, and 25a.

また、平面出射部35における屈折によって第3の光Lの進行方向(換言すれば、被照射面15a、17a、18a、25aに対する入射角)を制御することができるので、ホルダ21を設けずとも、被照射面15a、17a、18a、25a上における第3の光Lの照射位置の好適化を図ることができる。ただし、ホルダ21によって更に光Lの進行方向を補正してもよい。 Furthermore, (in other words, the irradiated surface 15a, 17a, 18a, the angle of incidence with respect to 25a) traveling direction of the third optical L 3 by refraction in the plane emitting part 35 can be controlled, and without providing the holder 21 both can be achieved irradiated surface 15a, 17a, 18a, a third preferred of the irradiation position of the light L 3 on 25a. However, the traveling direction of the light L 3 may be further corrected by the holder 21.

(第3実施形態)
次に、本発明の第3実施形態について、第1実施形態との差異を中心に、図17〜図21を参照して説明する。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIGS. 17 to 21 with a focus on differences from the first embodiment.

ここで、図17は、本実施形態における光束制御部材37の斜視図である。また、図18は、光束制御部材37の正面図である。さらに、図19は、図18の右側面図である。さらにまた、図20は、図18の下面図である。また、図21は、光束制御部材37の縦断面図(光軸OAを含む縦断面図)を発光素子2とともに示したものであり、同図は、本実施形態における発光装置38の構成図に相当する。   Here, FIG. 17 is a perspective view of the light flux controlling member 37 in the present embodiment. FIG. 18 is a front view of the light flux controlling member 37. Further, FIG. 19 is a right side view of FIG. Furthermore, FIG. 20 is a bottom view of FIG. FIG. 21 is a longitudinal sectional view (longitudinal sectional view including the optical axis OA) of the light flux controlling member 37 together with the light emitting element 2. FIG. 21 is a configuration diagram of the light emitting device 38 in the present embodiment. Equivalent to.

本実施形態の第1実施形態との相違点も、出射機能部の具体的な構成にある。すなわち、図17〜図21に示すように、外周面10の光軸OA方向における光学素子2側の端部には、本実施形態における切り欠き部として、光軸OA回りの所定の角度範囲にわたる球面の一部のような形状の曲面出射部39が、外周面10の一部をくり抜くようにして凹設されている。この曲面出射部39は、右側面図(図19)において、光軸OAに直交する方向に長尺な略楕円形状を呈しており、その発光素子2側の端部が、外周面10における発光素子2側の端部上に位置されている。そして、本実施形態においては、このような曲面出射部39が出射機能部として機能するようになっている。   The difference of this embodiment from the first embodiment is also the specific configuration of the emission function unit. That is, as shown in FIGS. 17 to 21, the end portion on the optical element 2 side in the optical axis OA direction of the outer peripheral surface 10 covers a predetermined angular range around the optical axis OA as a notch portion in the present embodiment. A curved surface emitting portion 39 shaped like a part of a spherical surface is recessed so as to cut out a part of the outer peripheral surface 10. In the right side view (FIG. 19), the curved surface emitting portion 39 has a substantially elliptical shape that is long in the direction orthogonal to the optical axis OA, and the end on the light emitting element 2 side emits light on the outer peripheral surface 10. It is located on the end on the element 2 side. In the present embodiment, such a curved surface emitting section 39 functions as an emitting function section.

すなわち、図21に示すように、曲面出射部39には、第3の光Lが、第2入射面7への入射後に光束制御部材37の内部側から入射する。そして、曲面出射部39は、凹曲面に形成されているため、入射した第3の光Lを、凹レンズ面と同様の機能によって発散、屈折させて外周面10の外側に出射させる。このとき、曲面出射部39は、第3の光Lを、出射面8から出射される第1の光Lおよび第2の光Lよりも光軸OAに対して大きな角度方向に出射させる。 That is, as shown in FIG. 21, the third light L 3 is incident on the curved surface emitting portion 39 from the inside of the light flux controlling member 37 after being incident on the second incident surface 7. Since the curved surface emitting portion 39 is formed in a concave curved surface, the incident third light L 3 is diverged and refracted by the same function as the concave lens surface and is emitted to the outside of the outer peripheral surface 10. At this time, the curved surface emitting section 39 emits the third light L 3 in a larger angular direction with respect to the optical axis OA than the first light L 1 and the second light L 2 emitted from the emission surface 8. Let

このような曲面出射部39を備えた本実施形態における光束制御部材37は、第1実施形態と同様に、外照式の照明および内照式(両面/片面)の照明のいずれに適用された場合においても、被照射面15a、17a、18a、25aにおける光束制御部材37の近傍の領域に第3の光Lを照射させることができる。したがって、本実施形態においても、第1実施形態と同様に、被照射面15a、17a、18a、25aにおける光源近傍の領域の光量不足を有効に改善することができる。 The light flux controlling member 37 in this embodiment provided with such a curved surface emitting portion 39 was applied to either external illumination or internal illumination (both sides / single side) illumination, as in the first embodiment. Even in this case, it is possible to irradiate the third light L 3 on the irradiated surfaces 15 a, 17 a, 18 a, and 25 a in the vicinity of the light beam control member 37. Therefore, in this embodiment as well, as in the first embodiment, it is possible to effectively improve the light quantity shortage in the area near the light source on the irradiated surfaces 15a, 17a, 18a, and 25a.

また、曲面出射部39における発散によって第3の光Lの光束径を広げることができるので、ホルダ21を設けずとも、被照射面15a、17a、18a、25aにおける第3の光Lの照射領域の拡大を図ることができる。ただし、ホルダ21を用いて更に第3の光Lの進行方向を補正してもよい。 Further, it is possible to widen the third light flux diameter of the light L 3 by the divergence of the curved exit section 39, without providing the holder 21, the irradiated surface 15a, 17a, 18a, the third light L 3 at 25a The irradiation area can be enlarged. However, the traveling direction of the third light L 3 may be further corrected using the holder 21.

(第4実施形態)
次に、本発明の第4実施形態について、第1実施形態との差異を中心に、図22〜図25を参照して説明する。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described with reference to FIGS. 22 to 25 with a focus on differences from the first embodiment.

ここで、図22は、本実施形態における光束制御部材41の正面図である。また、図23は、図22の右側面図である。さらに、図24は、図22の下面図である。さらにまた、図25は、光束制御部材41の縦断面図(光軸OAを含む縦断面図)を発光素子2とともに示したものであり、同図は、本実施形態における発光装置42の構成図に相当する。   Here, FIG. 22 is a front view of the light flux controlling member 41 in the present embodiment. FIG. 23 is a right side view of FIG. Further, FIG. 24 is a bottom view of FIG. Furthermore, FIG. 25 shows a longitudinal sectional view (longitudinal sectional view including the optical axis OA) of the light flux controlling member 41 together with the light emitting element 2, which is a configuration diagram of the light emitting device 42 in the present embodiment. It corresponds to.

本実施形態の第1実施形態との相違点も、出射機能部の具体的な構成にある。すなわち、図22〜図25に示すように、外周面10の光軸OA方向における光学素子2側(発光素子対向面部側)の端部には、光軸OA回りの所定の角度範囲にわたって、外周面10の一部を粗面化してなる外周面粗面化部43が形成されている。この外周面粗面化部43は、右側面図(図23)において、上底が下底よりも長尺とされた等脚台形状を呈しており、その発光素子2側の端部(下底)が、外周面10における発光素子2側の端部上に位置されている。また、外周面粗面化部43は、下面図(図24)において扇形状を呈している。このような外周面粗面化部43は、金型の形状(樹脂成形の場合)やガラスエッチング等によって実現することができる。そして、本実施形態においては、このような外周面粗面化部43が出射機能部として機能するようになっている。   The difference of this embodiment from the first embodiment is also the specific configuration of the emission function unit. That is, as shown in FIGS. 22 to 25, the end of the outer peripheral surface 10 on the optical element 2 side (light emitting element facing surface portion side) in the optical axis OA direction has an outer periphery over a predetermined angular range around the optical axis OA. An outer peripheral surface roughened portion 43 formed by roughening a part of the surface 10 is formed. The outer peripheral surface roughened portion 43 has an isosceles trapezoidal shape in which the upper base is longer than the lower base in the right side view (FIG. 23), and the end portion (lower side) on the light emitting element 2 side. Bottom) is positioned on the end of the outer peripheral surface 10 on the light emitting element 2 side. Moreover, the outer peripheral surface roughening part 43 is exhibiting the fan shape in a bottom view (FIG. 24). Such an outer peripheral surface roughening portion 43 can be realized by a mold shape (in the case of resin molding), glass etching, or the like. And in this embodiment, such an outer peripheral surface roughening part 43 functions as an output function part.

すなわち、図25に示すように、外周面粗面化部43には、第3の光Lが、第2入射面7への入射後に光束制御部材41の内部側から入射する。そして、外周面粗面化部43は、入射した第3の光Lを、拡散させて外周面10の外側に出射させる。このとき、外周面粗面化部43は、第3の光Lを、出射面8から出射される第1の光Lおよび第2の光Lよりも光軸OAに対して大きな角度方向に出射させる。 That is, as shown in FIG. 25, the third light L 3 enters the outer peripheral surface roughening portion 43 from the inner side of the light flux controlling member 41 after entering the second incident surface 7. Then, the outer peripheral surface roughening part 43 diffuses the incident third light L 3 and emits it to the outside of the outer peripheral surface 10. At this time, the outer peripheral surface roughening portion 43 causes the third light L 3 to have a larger angle with respect to the optical axis OA than the first light L 1 and the second light L 2 emitted from the emission surface 8. The light is emitted in the direction.

このような外周面粗面化部43を備えた本実施形態における光束制御部材41は、第1実施形態と同様に、外照式の照明および内照式(両面/片面)の照明のいずれに適用された場合においても、被照射面15a、17a、18a、25aにおける光束制御部材41の近傍の領域に第3の光Lを照射させることができる。したがって、本実施形態においても、第1実施形態と同様に、被照射面15a、17a、18a、25aにおける光源近傍の領域の光量不足を有効に改善することができる。 The light flux controlling member 41 in this embodiment provided with such an outer peripheral surface roughening portion 43 is used for either external illumination or internal illumination (both sides / single side) illumination, as in the first embodiment. Even when it is applied, it is possible to irradiate the third light L 3 on the irradiated surfaces 15 a, 17 a, 18 a, and 25 a in the vicinity of the light flux controlling member 41. Therefore, in this embodiment as well, as in the first embodiment, it is possible to effectively improve the light quantity shortage in the area near the light source on the irradiated surfaces 15a, 17a, 18a, and 25a.

また、外周面粗面化部43における拡散によって外周面粗面化部43から出射される第3の光Lの光量を均一化することができるので、ホルダ21を設けずとも、被照射面15a、17a、18a、25aにおける光源近傍の領域の照度を均一化することができる。ただし、ホルダ21を用いて更に第3の光Lの進行方向を補正してもよい。 Further, it is possible to equalize the third amount of light L 3 emitted from the outer peripheral surface roughened portion 43 by the diffusion of the outer peripheral surface roughened portion 43, without providing the holder 21, the surface to be illuminated The illuminance of the area near the light source in 15a, 17a, 18a, and 25a can be made uniform. However, the traveling direction of the third light L 3 may be further corrected using the holder 21.

(第5実施形態)
次に、本発明の第5実施形態について、第1実施形態との差異を中心に、図26および図27を参照して説明する。
(Fifth embodiment)
Next, a fifth embodiment of the present invention will be described with reference to FIGS. 26 and 27, focusing on differences from the first embodiment.

ここで、図26は、本実施形態における光束制御部材45の下面図である。また、図27は、光束制御部材45の縦断面図(光軸OAを含む縦断面図)を発光素子2とともに示したものであり、同図は、本実施形態における発光装置46の構成図に相当する。   Here, FIG. 26 is a bottom view of the light flux controlling member 45 in the present embodiment. FIG. 27 shows a longitudinal sectional view (longitudinal sectional view including the optical axis OA) of the light flux controlling member 45 together with the light emitting element 2, which is a configuration diagram of the light emitting device 46 in the present embodiment. Equivalent to.

本実施形態の第1実施形態との相違点も、出射機能部の具体的な構成にある。すなわち、図26および図27に示すように、第2入射面7の光軸OA方向における光学素子2側(発光素子対向面部側)の端部には、光軸OA回りの所定の角度範囲にわたって、第2入射面7の一部を粗面化してなる入射面粗面化部47が形成されている。この入射面粗面化部47は、下面図(図26)において扇形状を呈している。このような入射面粗面化部47は、金型の形状やガラスエッチング等によって実現することができる。そして、本実施形態においては、このような入射面粗面化部47が外周面10とともに出射機能部として機能するようになっている。   The difference of this embodiment from the first embodiment is also the specific configuration of the emission function unit. That is, as shown in FIGS. 26 and 27, the end of the second incident surface 7 on the optical element 2 side (light emitting element facing surface side) in the optical axis OA direction extends over a predetermined angular range around the optical axis OA. An incident surface roughening portion 47 formed by roughening a part of the second incident surface 7 is formed. The incident surface roughening portion 47 has a fan shape in the bottom view (FIG. 26). Such an incident surface roughening portion 47 can be realized by a mold shape, glass etching, or the like. In the present embodiment, such an incident surface roughening portion 47 functions as an output function portion together with the outer peripheral surface 10.

すなわち、図27に示すように、入射面粗面化部47には、発光素子2から出射された第3の光Lが入射する。そして、入射面粗面化部47は、入射した第3の光Lを、拡散させて外周面10に向かって出射させる。そして、入射面粗面化部47から出射された第3の光Lは、外周面10に光束制御部材45の内部側から入射する。このとき、第3の光L(光束)は、入射面粗面化部47において拡散されているため、外周面10(全反射面11)に対する入射角が臨界角未満となる光線を含んでいる。そして、このような光線は、外周面10において全反射されずに、出射面8から出射される第1の光Lおよび第2の光Lよりも光軸OAに対して大きな角度方向に向かって外周面10の外側に出射(透過)される。 That is, as illustrated in FIG. 27, the third light L 3 emitted from the light emitting element 2 is incident on the incident surface roughening portion 47. Then, the incident surface roughening section 47 diffuses the incident third light L 3 and emits it toward the outer peripheral surface 10. Then, the third light L 3 emitted from the incident surface roughening portion 47 enters the outer peripheral surface 10 from the inner side of the light flux controlling member 45. At this time, since the third light L 3 (light beam) is diffused in the incident surface roughening portion 47, the third light L 3 (light beam) includes a light beam whose incident angle with respect to the outer peripheral surface 10 (total reflection surface 11) is less than the critical angle. Yes. Then, such rays, without being totally reflected at the outer peripheral surface 10, a large angular orientations with respect to the first light L 1 and the second optical axis OA than the light L 2 emitted from the emission surface 8 The light is emitted (transmitted) to the outside of the outer peripheral surface 10.

このような入射面粗面化部47を備えた本実施形態における光束制御部材45は、第1実施形態と同様に、外照式の照明および内照式(両面/片面)の照明のいずれに適用された場合においても、被照射面15a、17a、18a、25aにおける光束制御部材45の近傍の領域に第3の光Lを照射させることができる。したがって、本実施形態においても、第1実施形態と同様に、被照射面15a、17a、18a、25aにおける光源近傍の領域の光量不足を有効に改善することができる。 The light flux controlling member 45 in the present embodiment provided with such an incident surface roughening portion 47 is used for either external illumination or internal illumination (both sides / single side) illumination, as in the first embodiment. Even when it is applied, it is possible to irradiate the third light L 3 on the irradiated surfaces 15a, 17a, 18a, and 25a in the vicinity of the light flux controlling member 45. Therefore, in this embodiment as well, as in the first embodiment, it is possible to effectively improve the light quantity shortage in the area near the light source on the irradiated surfaces 15a, 17a, 18a, and 25a.

また、入射面粗面化部47における拡散によって入射面粗面化部47から出射される第3の光Lの光量を均一化することができるので、ホルダ21を設けずとも、被照射面15a、17a、18a、25aにおける光源近傍の領域の照度を均一化することができる。ただし、ホルダ21を用いて更に第3の光Lの進行方向を補正してもよい。 Further, it is possible to equalize the third amount of light L 3 emitted from the incident surface roughened portion 47 by diffusion in the incident surface roughening section 47, without providing the holder 21, the surface to be illuminated The illuminance of the area near the light source in 15a, 17a, 18a, and 25a can be made uniform. However, the traveling direction of the third light L 3 may be further corrected using the holder 21.

(第6実施形態)
次に、本発明の第6実施形態について、第1実施形態との差異を中心に、図28〜図31を参照して説明する。
(Sixth embodiment)
Next, a sixth embodiment of the present invention will be described with reference to FIGS. 28 to 31 with a focus on differences from the first embodiment.

ここで、図28は、本実施形態における光束制御部材50を斜め下方から見上げた斜視図である。また、図29は、光束制御部材50を斜め上方から見下ろした斜視図である。   Here, FIG. 28 is a perspective view of the light flux controlling member 50 in the present embodiment as seen from obliquely below. FIG. 29 is a perspective view of the light flux controlling member 50 as viewed from obliquely above.

本実施形態の第1実施形態との相違点は、出射面8の具体的構成にある。すななわち、図28および図29に示すように、出射面8は、光軸OA回りの所定の第1の角度範囲にわたって形成された第1出射面8aと、第1の角度範囲から外れた光軸OA回りの所定の第2の角度範囲にわたって形成された第2出射面8bとを有している。ここで、同図の構成における具体的な第1の角度範囲は、第1出射面8aにおける周方向の一方の端部と光軸OAとを結ぶ仮想直線を角度の基準線(0°)として、基準線から周方向の他方に向かって180°にわたる角度範囲とされている。また、同図の構成における具体的な第2の角度範囲は、第1の角度範囲と同位置に基準線(0°)をとった場合に、180°〜360°にわたる角度範囲とされている。   The difference of this embodiment from the first embodiment is in the specific configuration of the emission surface 8. In other words, as shown in FIGS. 28 and 29, the exit surface 8 deviates from the first angle range with the first exit surface 8a formed over a predetermined first angle range around the optical axis OA. And a second emission surface 8b formed over a predetermined second angular range around the optical axis OA. Here, the specific first angle range in the configuration of FIG. 6 is that a virtual straight line connecting one end portion in the circumferential direction of the first emission surface 8a and the optical axis OA is an angle reference line (0 °). The angle range is 180 ° from the reference line toward the other circumferential direction. In addition, the specific second angle range in the configuration of the figure is an angle range extending from 180 ° to 360 ° when the reference line (0 °) is taken at the same position as the first angle range. .

また、第1出射面8aは、光軸OAを対称軸として仮定された回転対称面であって光軸OA方向における発光素子2と反対側の端部が光軸OAと交わる面頂点となる所定の回転対称面における第1の角度範囲にわたる部位に相当する形状の曲面に形成されている。より具体的には、図28および図29の構成における第1出射面8aは、第1実施形態における円錐面形状の出射面8を二等分した半円錘面形状に形成されている。   Further, the first emission surface 8a is a rotationally symmetric surface assumed with the optical axis OA as the symmetry axis, and the end opposite to the light emitting element 2 in the direction of the optical axis OA is a predetermined surface vertex that intersects the optical axis OA. Are formed in a curved surface having a shape corresponding to a portion over the first angle range in the rotationally symmetric surface. More specifically, the first emission surface 8a in the configuration of FIGS. 28 and 29 is formed in a semi-conical surface shape that bisects the conical emission surface 8 in the first embodiment.

さらに、第2出射面8bは、第1出射面8aよりも被照射面15a、17a、18a、25aから離れた位置に配置された状態で、出射面8の形状を光軸OA回りの全角度範囲にわたる回転対称面形状(本実施形態においては円錐面形状)と仮定した場合と比較して、被照射面15a、17a、18a、25aに向かって出射される光束を多くするような所定の形状に形成されている。より具体的には、図28および図29の構成における第2出射面8bは、光軸OA方向における発光素子2と反対側に向かうにしたがって光軸OAに接近するような光軸OAに対して傾きを有する傾斜平面であって、その発光素子2と反対側の端辺が、光軸OA上において第1出射面8aの面頂点と交わり、なおかつ、当該端辺が、光軸OA上から離れるにしたがって第1の出射面8aとの段差が大きくなるような傾斜平面に形成されている。   Further, the second emission surface 8b is arranged at a position farther from the irradiated surfaces 15a, 17a, 18a, and 25a than the first emission surface 8a, and the shape of the emission surface 8 is changed to all angles around the optical axis OA. A predetermined shape that increases the amount of light emitted toward the irradiated surfaces 15a, 17a, 18a, and 25a as compared with the case of assuming a rotationally symmetric surface shape over a range (conical surface shape in the present embodiment). Is formed. More specifically, the second emission surface 8b in the configuration of FIG. 28 and FIG. 29 is relative to the optical axis OA that approaches the optical axis OA toward the opposite side of the light emitting element 2 in the optical axis OA direction. An inclined plane having an inclination, and an end side opposite to the light emitting element 2 intersects the surface apex of the first emission surface 8a on the optical axis OA, and the end side is separated from the optical axis OA. Accordingly, it is formed in an inclined plane so that the level difference from the first emission surface 8a becomes large.

さらにまた、図28に示すように、貫通溝32は、第1出射面8aの形成角度範囲である第1の角度範囲内の位置に形成されている。より具体的には、同図の構成において、貫通溝32における周方向の中心部と、第1出射面8aの周方向における中心部とは、光軸OA回りの回転角度位置が互いに一致している。   Furthermore, as shown in FIG. 28, the through groove 32 is formed at a position within a first angle range that is a formation angle range of the first emission surface 8a. More specifically, in the configuration shown in the figure, the central portion in the circumferential direction of the through groove 32 and the central portion in the circumferential direction of the first emission surface 8a are coincident with each other in the rotational angle position around the optical axis OA. Yes.

また、前述した第1出射面8aと第2出射面8bとの段差の部分には、光軸方向に平行な段差面8cが形成されている。この段差面8cは、被照射面15a、17a、18a、25a上への光の照射に利用してもよい。   Further, a step surface 8c parallel to the optical axis direction is formed at the step portion between the first exit surface 8a and the second exit surface 8b. The step surface 8c may be used for irradiating light onto the irradiated surfaces 15a, 17a, 18a, and 25a.

このような本実施形態における光束制御部材50は、例えば、図30に示すように、第1出射面8aが被照射面15aに向けられた状態で配置され、被照射面15aの照明に用いられるようになっている。   For example, as shown in FIG. 30, the light flux controlling member 50 in the present embodiment is arranged with the first emission surface 8a facing the irradiated surface 15a, and is used for illumination of the irradiated surface 15a. It is like that.

ここで、図31は、本実施形態における光束制御部材50を被照射面15aの照明に用いた場合の被照射面15a上の照度分布を模式的に示したものである。同図の概要は第1実施形態の図7と同様である。図31に示すように、本実施形態によれば、同図における最も周辺側の等高線の内側となる領域が、図7の場合と比較して横方向に拡大していることが分かる。このことは、本実施形態における構成が、被照射面15a、17a、18a、25aにおける光源近傍の領域の光量不足を改善することだけでなく、第2出射面8bによって被照射面15aに向かう光束を多くして、被照射面15aにおける十分な光量が照射される領域を拡大することができることを示すことに他ならない。   Here, FIG. 31 schematically shows an illuminance distribution on the illuminated surface 15a when the light flux controlling member 50 in the present embodiment is used for illumination of the illuminated surface 15a. The outline of this figure is the same as FIG. 7 of the first embodiment. As shown in FIG. 31, according to the present embodiment, it can be seen that the region inside the contour line on the most peripheral side in the figure is expanded in the horizontal direction compared to the case of FIG. 7. This is not only because the configuration of the present embodiment improves the shortage of light in the area near the light source on the irradiated surfaces 15a, 17a, 18a, and 25a, but also the light flux directed toward the irradiated surface 15a by the second exit surface 8b. This is nothing but to show that the area irradiated with a sufficient amount of light on the irradiated surface 15a can be enlarged.

なお、このような本実施形態における出射面8の構成は、本出願人によって先になされた特願2010−145485号にも開示されている。同出願の出願書類には、第2出射面の一部を急斜面としたもの(同出願の図12参照)や、第1出射面を非球面としたもの(同出願の図16参照)等の種々の変形例が記載されているが、これらの変形例は、本発明においても適宜採用することができる。また、この他にも、第2出射面8bをシリンドリカル面やトロイダル面に形成してもよい。   In addition, the structure of the output surface 8 in this embodiment is also disclosed in Japanese Patent Application No. 2010-145485 previously made by the present applicant. The application documents of the application include those having a part of the second emission surface as a steep slope (see FIG. 12 of the application), those having a first emission surface as an aspherical surface (see FIG. 16 of the application), etc. Although various modifications are described, these modifications can be appropriately employed in the present invention. In addition, the second emission surface 8b may be formed on a cylindrical surface or a toroidal surface.

(外照式及び内照式照明装置における発光装置と被照射面との位置関係変形例)
また、複数の発光装置を広いピッチで配置し、これら発光装置からの出射光によって被照射面15a、17a、18a、25aを照射する場合や、1つの発光装置からの出射光によって投影光軸に対して直交方向に広い範囲を照射する場合には、図41に示したように、被照射面の発光装置間に対応する位置(1つの発光装置からの出射光が照射する領域の横方向)に暗部が発生する虞がある。
(Modification of positional relationship between light emitting device and irradiated surface in external illumination and internal illumination devices)
In addition, when a plurality of light emitting devices are arranged at a wide pitch and the irradiated surfaces 15a, 17a, 18a, and 25a are irradiated by the light emitted from these light emitting devices, or the projection light axis is emitted by the light emitted from one light emitting device. On the other hand, when irradiating a wide range in the orthogonal direction, as shown in FIG. 41, positions corresponding to the light emitting devices on the irradiated surface (the horizontal direction of the region irradiated with the emitted light from one light emitting device) There is a risk that dark areas will occur.

このように、1つの発光装置からの出射光による被照射面上の照射領域を投影光軸に対して直交方向に広げて照度分布を改善する必要がある場合には、光束制御部材30の出射機能部32、35、39、43、47形成位置を被照射面側に向けず、それら出射機能部の周方向における中央部が、光軸OAを含む被照射面に垂直な第1の仮想平面に対して直交し、且つ光軸OAを含むような第2の仮想平面上に位置されていることが望ましい。   As described above, when it is necessary to improve the illuminance distribution by extending the irradiation area on the surface to be irradiated by the light emitted from one light emitting device in a direction orthogonal to the projection optical axis, the light emitted from the light flux controlling member 30 is emitted. The first virtual plane in which the function part 32, 35, 39, 43, 47 is not directed toward the irradiated surface, and the central part in the circumferential direction of the emitting functional part is perpendicular to the irradiated surface including the optical axis OA. It is desirable to be positioned on the second virtual plane that is orthogonal to the optical axis OA and includes the optical axis OA.

以上述べたように、本発明によれば、出射機能部32、35、39、43、47によって、第3の光Lを、出射面8よりも発光素子2側の位置において、出射面8から出射される第1の光Lおよび第2の光Lよりも光軸OAに対して大きな角度方向に出射させることができるので、第3の光Lを、被照射面15a、17a、18a、25aにおける第1の光L及び第2の光Lが照射し難い領域に照射して、この領域の光量不足を改善することができる。 As described above, according to the present invention, the emission function unit 32, 35, 39, 43, 47 allows the third light L 3 to be emitted at the position closer to the light emitting element 2 than the emission surface 8. it is possible to emit a large angular orientations with respect to the first light L 1 and the second optical axis OA than the light L 2 emitted from the third light L 3, the irradiated surface 15a, 17a can 18a, and irradiating the first light L 1 and the second hard light L 2 is irradiated region at 25a, to improve the light amount shortage in this region.

なお、本発明は、前述した実施の形態に限定されるものではなく、本発明の特徴を損なわない限度において種々変更することができる。   In addition, this invention is not limited to embodiment mentioned above, A various change can be made in the limit which does not impair the characteristic of this invention.

2 発光素子
5 凹部
6 第1入射面
7 第2入射面
8 出射面
10 外周面
11 全反射面
32 貫通溝(切り欠き部)
2 Light-Emitting Element 5 Concave 6 First Incident Surface 7 Second Incident Surface 8 Outgoing Surface 10 Outer Peripheral Surface 11 Total Reflecting Surface 32 Through Groove (Notch)

Claims (13)

発光素子から出射された光を、これの配光特性を制御して被照射面に対して斜め方向から照射する光束制御部材であって、
前記光束制御部材は、
前記発光素子に対向して配置される発光素子対向面部と、前記発光素子対向面部に対して前記発光素子とは反対側に形成された出射面と、前記発光素子対向面部の外周端部から前記出射面の外周端部へ向かって延設された外周面とを備え、
前記発光素子対向面部には、
前記発光素子から出射された光を前記光束制御部材内へ入射させるための凹部が形成され、
前記凹部は、
光軸に直交する平面として形成され、前記発光素子から出射された光のうちの中心側の第1の光が入射する第1入射面と、
この第1入射面の外周端部から前記発光素子側に向かって延設され、前記発光素子から出射される光のうちの前記第1の光の外側の第2の光が入射する第2入射面と
を有し、
前記外周面は、
前記第2入射面に入射する前記第2の光が前記出射面に向けて全反射されるように、前記発光素子対向面部側から前記出射面側に向かって、漸次、直径が拡径するように形成された全反射面を有し、
前記出射面は、
前記第1入射面から入射し直接到達した前記第1の光および前記第2入射面から入射し前記全反射面を経て到達した前記第2の光を前記被照射面に向けて出射させ、
前記外周面および前記凹部の少なくとも一方には、
前記第2の光の一部をなす第3の光を、前記出射面に到達させずに前記出射面よりも前記発光素子側の位置において前記外周面の外側に出射させる出射機能部が形成されており、
この出射機能部は、
前記第3の光を、前記出射面から出射される前記第1の光および前記第2の光よりも前記光軸から大きな角度方向に出射させること
を特徴とする光束制御部材。
A light flux controlling member that irradiates light emitted from the light emitting element from an oblique direction with respect to the irradiated surface by controlling the light distribution characteristics thereof,
The light flux controlling member is
A light emitting element facing surface portion disposed to face the light emitting element; an emission surface formed on the opposite side of the light emitting element to the light emitting element facing surface portion; and an outer peripheral end of the light emitting element facing surface portion. An outer peripheral surface extending toward the outer peripheral end of the emission surface,
In the light emitting element facing surface portion,
A recess is formed for allowing light emitted from the light emitting element to enter the light flux controlling member,
The recess is
A first incident surface that is formed as a plane perpendicular to the optical axis and on which the first light on the center side of the light emitted from the light emitting element is incident;
A second incident that extends from the outer peripheral end of the first incident surface toward the light emitting element, and in which the second light outside the first light out of the light emitted from the light emitting element is incident. Having a surface and
The outer peripheral surface is
The diameter gradually increases from the light emitting element facing surface side toward the exit surface side so that the second light incident on the second entrance surface is totally reflected toward the exit surface. Having a total reflection surface formed on
The exit surface is
The first light incident from the first incident surface and directly reached and the second light incident from the second incident surface and reached through the total reflection surface are emitted toward the irradiated surface,
In at least one of the outer peripheral surface and the recess,
An emission function part is formed that emits the third light forming a part of the second light to the outside of the outer peripheral surface at a position closer to the light emitting element than the emission surface without reaching the emission surface. And
This emission function part
The light flux controlling member, wherein the third light is emitted in a larger angle direction from the optical axis than the first light and the second light emitted from the emission surface.
前記出射機能部は、
前記外周面と前記凹部の内周面とに挟まれた光束制御部材本体の壁部における前記外周面の周方向の一部で且つ前記発光素子対向面部側に、前記壁部の厚みを減ずるように形成された切り欠き部であり、前記第3の光を、前記切り欠き部から出射させること
を特徴とする請求項1に記載の光束制御部材。
The emission function unit is
The thickness of the wall portion is reduced to a part of the outer peripheral surface in the circumferential direction of the wall portion of the light flux controlling member main body sandwiched between the outer peripheral surface and the inner peripheral surface of the concave portion and to the light emitting element facing surface portion side. The light flux controlling member according to claim 1, wherein the third light is emitted from the cutout portion.
前記切り欠き部は、
前記外周面から前記凹部に貫通し、且つ前記発光素子対向面部側に開口する貫通溝であり、前記第3の光を、前記貫通溝から前記外周面の外側に出射させること
を特徴とする請求項2に記載の光束制御部材。
The notch is
A through-groove that penetrates from the outer peripheral surface to the concave portion and opens to the light-emitting element facing surface portion side, and emits the third light from the through-groove to the outside of the outer peripheral surface. Item 3. The light flux controlling member according to Item 2.
前記切り欠き部は、
前記外周面と前記凹部の内周面とに挟まれた光束制御部材本体の壁部を、前記外周面の周方向の一部で且つ発光素子対向面部側の所定の部位において、前記光軸と平行に削ぎ落として凹設される平面出射部を有し、前記第3の光を、前記第2入射面への入射後に前記平面出射部において屈折させて前記外周面の外側に出射させること
を特徴とする請求項2に記載の光束制御部材。
The notch is
The wall portion of the light flux controlling member main body sandwiched between the outer peripheral surface and the inner peripheral surface of the recess is a part of the outer peripheral surface in the circumferential direction and a predetermined portion on the light emitting element facing surface side, and the optical axis. A planar light emitting portion that is recessed by shaving in parallel, and the third light is refracted at the planar light emitting portion after being incident on the second incident surface and emitted outside the outer peripheral surface. The light flux controlling member according to claim 2, wherein
前記切り欠き部は、
前記外周面と前記凹部の内周面とに挟まれた光束制御部材本体の壁部を、前記外周面の周方向の一部で且つ発光素子対向面部側の所定の部位において、くり抜いて凹設される曲面出射部を有し、前記第3の光を、前記第2入射面への入射後に前記曲面出射部において屈折及び発散させて前記外周面の外側に出射させること
を特徴とする請求項2に記載の光束制御部材。
The notch is
A wall portion of the light flux controlling member main body sandwiched between the outer peripheral surface and the inner peripheral surface of the recess is hollowed out and recessed at a predetermined part on the light emitting element facing surface portion side as a part of the outer peripheral surface in the circumferential direction. The curved surface emitting portion is provided, and the third light is refracted and diffused at the curved surface emitting portion after being incident on the second incident surface, and is emitted to the outside of the outer peripheral surface. The light flux controlling member according to 2.
前記出射機能部は、
前記外周面の周方向の一部で且つ発光素子対向面部側の所定の部位を粗面化した外周面粗面化部を有し、前記第3の光を、前記第2入射面への入射後に前記外周面粗面化部において拡散させて前記外周面の外側に出射させること
を特徴とする請求項1に記載の光束制御部材。
The emission function unit is
A part of the outer peripheral surface in the circumferential direction and having an outer peripheral surface roughening portion that roughens a predetermined portion on the light emitting element facing surface side, and the third light is incident on the second incident surface 2. The light flux controlling member according to claim 1, wherein the light flux controlling member is diffused in the outer peripheral surface roughening portion and then emitted to the outside of the outer peripheral surface.
前記出射機能部は、
前記第2入射面における前記発光素子対向面部側の所定の部位を粗面化した入射面粗面化部を有し、前記第3の光を、前記入射面粗面化部において拡散させることによって前記外周面においてこれの外側に透過されるようにすること
を特徴とする請求項4〜6のいずれか1項に記載の光束制御部材。
The emission function unit is
An incident surface roughening portion roughening a predetermined portion of the second incident surface on the light emitting element facing surface portion side; and diffusing the third light in the incident surface roughening portion. The light flux controlling member according to any one of claims 4 to 6, wherein the light is transmitted to the outside of the outer peripheral surface.
前記外周面の外側に、光束制御部材本体を保持するためのホルダが配置され、
前記ホルダは、前記出射機能部から出射された前記第3の光を屈折または拡散させることによって、前記第3の光の配光特性を補正すること
を特徴とする請求項1〜7のいずれか1項に記載の光束制御部材。
A holder for holding the light flux controlling member main body is disposed outside the outer peripheral surface,
The said holder correct | amends the light distribution characteristic of said 3rd light by refracting or diffusing the said 3rd light radiate | emitted from the said radiation | emission function part. The light flux controlling member according to item 1.
光を出射させる発光素子と、
請求項1〜8のいずれか1項に記載の光束制御部材と
を備え、
前記発光素子が、前記光の中心軸を前記光束制御部材の光軸に合致させた状態で前記光束制御部材の前記凹部に臨む位置に配置されていること
を特徴とする発光装置。
A light emitting element that emits light;
A light flux controlling member according to any one of claims 1 to 8,
The light emitting device, wherein the light emitting element is disposed at a position facing the concave portion of the light flux controlling member in a state where a central axis of the light coincides with an optical axis of the light flux controlling member.
請求項9に記載の発光装置と、
この発光装置による光の照射が行われる被照射面と
を備え、
前記発光装置の前記光束制御部材は、前記出射機能部を前記被照射面側に向けた状態で配置されていること
を特徴とする照明装置。
A light emitting device according to claim 9;
An illuminated surface on which light is emitted by the light emitting device, and
The light flux controlling member of the light emitting device is disposed in a state where the emission function portion is directed to the irradiated surface side.
請求項9に記載の発光装置と、
この発光装置による光の照射が行われる被照射面と
を備え、
前記発光装置の前記光束制御部材は、前記出射機能部を前記被照射面から遠ざけた状態で配置されていること
を特徴とする照明装置。
A light emitting device according to claim 9;
An illuminated surface on which light is emitted by the light emitting device, and
The light flux controlling member of the light emitting device is disposed in a state where the emission function unit is away from the irradiated surface.
外照式の照明装置とされ、
前記光束制御部材は、前記被照射面を照射する前記光束制御部材からの出射光のうち、前記光軸に対して大きな角度の出射光が前記光軸に対して小さな角度の出射光よりも前記被照射面への入射角が小さくなるように前記被照射面に対して傾いた状態で配置されていること
を特徴とする請求項10または11に記載の照明装置。
It is an external lighting device,
The luminous flux control member is configured such that, of the emitted light from the luminous flux control member that irradiates the irradiated surface, the emitted light having a larger angle with respect to the optical axis is more than the emitted light having a smaller angle with respect to the optical axis. The illuminating device according to claim 10 or 11, wherein the illumination device is arranged in an inclined state with respect to the irradiated surface so that an incident angle to the irradiated surface becomes small.
内照式の照明装置とされ、
前記光束制御部材は、前記被照射面を照射する前記光束制御部材からの出射光のうち、前記光軸に対して大きな角度の出射光が前記光軸に対して小さな角度の出射光よりも前記被照射面への入射角が小さくなるような状態で配置されていること
を特徴とする請求項10または11に記載の照明装置。
It is an internally illuminated lighting device,
The luminous flux control member is configured such that, of the emitted light from the luminous flux control member that irradiates the irradiated surface, the emitted light having a larger angle with respect to the optical axis is more than the emitted light having a smaller angle with respect to the optical axis. The illuminating device according to claim 10 or 11, wherein the illumination device is arranged in a state in which an incident angle to the irradiated surface is small.
JP2011008814A 2011-01-19 2011-01-19 Luminous flux control member, light emitting device including the luminous flux control member, and illumination device including the luminous device Expired - Fee Related JP5620285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011008814A JP5620285B2 (en) 2011-01-19 2011-01-19 Luminous flux control member, light emitting device including the luminous flux control member, and illumination device including the luminous device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011008814A JP5620285B2 (en) 2011-01-19 2011-01-19 Luminous flux control member, light emitting device including the luminous flux control member, and illumination device including the luminous device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014190055A Division JP5828604B2 (en) 2014-09-18 2014-09-18 Lighting device

Publications (2)

Publication Number Publication Date
JP2012150274A true JP2012150274A (en) 2012-08-09
JP5620285B2 JP5620285B2 (en) 2014-11-05

Family

ID=46792575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011008814A Expired - Fee Related JP5620285B2 (en) 2011-01-19 2011-01-19 Luminous flux control member, light emitting device including the luminous flux control member, and illumination device including the luminous device

Country Status (1)

Country Link
JP (1) JP5620285B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014072081A (en) * 2012-09-28 2014-04-21 Iwasaki Electric Co Ltd Light-emitting element unit, and lighting fixture
JP2014078385A (en) * 2012-10-10 2014-05-01 Koito Mfg Co Ltd Lens and road illumination device
JP2014145790A (en) * 2013-01-25 2014-08-14 Nitto Kogaku Kk Optical member
CN105473935A (en) * 2013-07-22 2016-04-06 雷诺股份公司 Lighting system, in particular for motor vehicle lighting member, comprising integrated LEDs
KR101625353B1 (en) * 2016-01-20 2016-06-15 에이펙스인텍 주식회사 Light diffusing lens having an aspherical surface
KR20160094635A (en) * 2015-02-02 2016-08-10 엘지이노텍 주식회사 A lens and a light emitting device package including the same
JP2017010788A (en) * 2015-06-23 2017-01-12 株式会社光波 Luminaire and optical member
JP2019145363A (en) * 2018-02-21 2019-08-29 パナソニックIpマネジメント株式会社 Lighting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003195790A (en) * 2001-12-27 2003-07-09 Koito Mfg Co Ltd Display board illuminator
JP3115370U (en) * 2005-08-02 2005-11-04 岡谷電機産業株式会社 Indicator lamp
JP2010157653A (en) * 2008-12-26 2010-07-15 Makoto Saito Optical lens
JP2010225395A (en) * 2009-03-23 2010-10-07 Frascoop Corp Led illumination device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003195790A (en) * 2001-12-27 2003-07-09 Koito Mfg Co Ltd Display board illuminator
JP3115370U (en) * 2005-08-02 2005-11-04 岡谷電機産業株式会社 Indicator lamp
JP2010157653A (en) * 2008-12-26 2010-07-15 Makoto Saito Optical lens
JP2010225395A (en) * 2009-03-23 2010-10-07 Frascoop Corp Led illumination device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014072081A (en) * 2012-09-28 2014-04-21 Iwasaki Electric Co Ltd Light-emitting element unit, and lighting fixture
JP2014078385A (en) * 2012-10-10 2014-05-01 Koito Mfg Co Ltd Lens and road illumination device
JP2014145790A (en) * 2013-01-25 2014-08-14 Nitto Kogaku Kk Optical member
CN105473935A (en) * 2013-07-22 2016-04-06 雷诺股份公司 Lighting system, in particular for motor vehicle lighting member, comprising integrated LEDs
JP2016527687A (en) * 2013-07-22 2016-09-08 ルノー エス.ア.エス. Lighting system with integrated LEDs, especially for automotive lighting components
CN105473935B (en) * 2013-07-22 2020-04-17 雷诺股份公司 Lighting system, motor vehicle lighting component and motor vehicle
KR20160094635A (en) * 2015-02-02 2016-08-10 엘지이노텍 주식회사 A lens and a light emitting device package including the same
KR102408719B1 (en) 2015-02-02 2022-06-15 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 A lens and a light emitting device package including the same
JP2017010788A (en) * 2015-06-23 2017-01-12 株式会社光波 Luminaire and optical member
KR101625353B1 (en) * 2016-01-20 2016-06-15 에이펙스인텍 주식회사 Light diffusing lens having an aspherical surface
JP2019145363A (en) * 2018-02-21 2019-08-29 パナソニックIpマネジメント株式会社 Lighting device
JP7016027B2 (en) 2018-02-21 2022-02-04 パナソニックIpマネジメント株式会社 Lighting equipment

Also Published As

Publication number Publication date
JP5620285B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5620285B2 (en) Luminous flux control member, light emitting device including the luminous flux control member, and illumination device including the luminous device
JP6111110B2 (en) Luminous flux control member, light emitting device, surface light source device, and display device
JP5957364B2 (en) Luminous flux control member, light emitting device, surface light source device, and display device
US10502871B2 (en) Light flux controlling member, light-emitting device, illumination apparatus, and mold
US9297512B2 (en) Light flux controlling member, light emitting device and illumination apparatus
JP5888999B2 (en) Lighting device
JP6091789B2 (en) Luminous flux control member, light emitting device, and illumination device
WO2015030169A1 (en) Light flux control member, light-emitting device, and illumination device
EP2279374B1 (en) Optical element for asymmetric light distribution
TWI537523B (en) Optical lens and lighting element using the same
US20130176727A1 (en) Segmented spotlight having narrow beam size and high lumen output
JP2016224366A (en) Luminous flux control member, light emitting device, and lighting device
TWI506229B (en) Light emitting apparatus and lens
JP5889065B2 (en) Luminous flux control member, light emitting device, and illumination device
WO2016158542A1 (en) Light source device and lighting device
JP6437252B2 (en) Luminous flux control member, light emitting device, and illumination device
JP2016218185A (en) Fresnel lens for lighting fixture and lighting fixture having the same
WO2018155676A1 (en) Light-emitting device, planar light source device and display device
JP6748424B2 (en) Light emitting device, surface light source device, and display device
JP6689590B2 (en) Light flux control member, light emitting device, and lighting device
WO2017002723A1 (en) Light flux control member, light-emitting device and illumination device
JP6618074B2 (en) Light emitting device
JP6290040B2 (en) Luminous flux control member, light emitting device, and illumination device
JP5828604B2 (en) Lighting device
JP7383465B2 (en) Light flux control member, light emitting device, surface light source device, and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140918

R150 Certificate of patent or registration of utility model

Ref document number: 5620285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees