JP5356495B2 - High capacity hydrogen storage alloy - Google Patents

High capacity hydrogen storage alloy Download PDF

Info

Publication number
JP5356495B2
JP5356495B2 JP2011286339A JP2011286339A JP5356495B2 JP 5356495 B2 JP5356495 B2 JP 5356495B2 JP 2011286339 A JP2011286339 A JP 2011286339A JP 2011286339 A JP2011286339 A JP 2011286339A JP 5356495 B2 JP5356495 B2 JP 5356495B2
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
hydrogen storage
amount
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011286339A
Other languages
Japanese (ja)
Other versions
JP2012117151A (en
Inventor
和也 久保
秀明 伊藤
俊樹 兜森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2011286339A priority Critical patent/JP5356495B2/en
Publication of JP2012117151A publication Critical patent/JP2012117151A/en
Application granted granted Critical
Publication of JP5356495B2 publication Critical patent/JP5356495B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、水素貯蔵用材料、熱変換用水素吸収材料、燃料電池用水素供給用材料、Ni−水素電池用負極材料、水素精製回収用材料、水素ガスアクチュエータ用水素吸収材料等に用いられる水素吸蔵合金に関するものである。   The present invention relates to a hydrogen storage material, a hydrogen absorption material for heat conversion, a hydrogen supply material for a fuel cell, a negative electrode material for a Ni-hydrogen battery, a hydrogen purification and recovery material, a hydrogen absorption material for a hydrogen gas actuator, etc. It relates to a storage alloy.

従来、水素の貯蔵・輸送用としてボンベ方式や液体水素方式があるが、これらの方式に代わって水素貯蔵合金を使った方式が注目されている。周知のように、水素貯蔵合金は水素と可逆的に反応して、反応熱の出入りを伴って水素を吸蔵、放出する性質を有している。この化学反応を利用して水素を貯蔵、運搬する技術の実用化が図られており、さらに反応熱を利用して、熱貯蔵、熱輸送システム等を構成する技術の開発、実用化が進められている。代表的な水素吸蔵合金としてはLaNi、TiFe、TiMn1.5等がよく知られている。最近では室温付近で大きな有効水素移動量を有する体心立方構造を有する合金(以下、BCC合金とよぶ)に着目が浴びており、特にTiCrV合金や、TiCrV合金に対して添加元素を加えて改善を施した合金や、特許文献1のようなTiCr基のBCC合金、TiMnV合金などがあり、それら合金に特殊な製法、手法を用いて特性を改善したBCC合金などが多数提案されている。例えば特許文献2では、TiCrVにMoを置換することで水素放出量を大きく低下させずに平衡解離圧を増加させ、低温域での水素放出を可能とした合金が提案されている。 Conventionally, there are a cylinder method and a liquid hydrogen method for storing and transporting hydrogen, but a method using a hydrogen storage alloy is attracting attention instead of these methods. As is well known, hydrogen storage alloys have the property of reversibly reacting with hydrogen and absorbing and releasing hydrogen with the input and output of reaction heat. The technology for storing and transporting hydrogen using this chemical reaction has been put to practical use, and further, the development and practical application of the technology for configuring heat storage, heat transport system, etc. using reaction heat has been promoted. ing. As typical hydrogen storage alloys, LaNi 5 , TiFe, TiMn 1.5 and the like are well known. Recently, attention has been focused on an alloy having a body-centered cubic structure (hereinafter referred to as a BCC alloy) that has a large effective hydrogen transfer amount near room temperature, and in particular, it is improved by adding additional elements to TiCrV alloy and TiCrV alloy There are alloys such as TiCr-based BCC alloys and TiMnV alloys as disclosed in Patent Document 1, and many BCC alloys whose characteristics have been improved by using special manufacturing methods and techniques have been proposed. For example, Patent Document 2 proposes an alloy in which TiCrV is replaced with Mo to increase the equilibrium dissociation pressure without greatly reducing the hydrogen release amount and to enable hydrogen release in a low temperature range.

特許第3528599号公報Japanese Patent No. 3528599 特開2006−188737号公報JP 2006-188737 A

しかし、上記BCC合金は、TiCrやTiMnといったラーベス相合金をべースにVやMoといったBCC構造を持つ元素を加えることでBCC合金を形成しており、組成によっては過酷な熱処理などの製法を行わなければBCC単相構造が得られないという問題がある。
また、各種用途の実用化においては、水素貯蔵材料の特性を一層向上させる必要があり、例えば、水素貯蔵量の増加、原料の低廉化、プラトー特性の改善、耐久性の向上などが大きな課題として挙げられている。中でもV、TiMnV系、TiCrV系合金などのBCC合金は、すでに実用化されているAB型合金やAB型合金に比べ大量の水素を吸蔵することが古くから知られている。しかし、現存するBCC型水素吸蔵合金は氷点下のような低温域での水素放出特性に問題がある。低温域で水素を放出させるためにはTi/Cr比を減少させCr量を増加させたりすることが必要であるが、それでは水素放出量が低下してしまう問題がある。したがって、更なる有効水素移動量の増加、耐久性など改善すべき点が多々ある。
However, the BCC alloy forms a BCC alloy by adding an element having a BCC structure such as V and Mo in base over scan a Laves phase alloy such TiCr 2 and TiMn 2, such as severe heat treatment depending on the composition There is a problem that a BCC single-phase structure cannot be obtained unless the production method is performed.
Moreover, in the practical application of various applications, it is necessary to further improve the characteristics of the hydrogen storage material.For example, increasing the amount of hydrogen storage, lowering the cost of raw materials, improving the plateau characteristics, improving the durability, etc. Are listed. Among them, it has been known for a long time that BCC alloys such as V, TiMnV-based and TiCrV-based alloys occlude a large amount of hydrogen compared to AB 5 type alloys and AB 2 type alloys that have already been put into practical use. However, the existing BCC-type hydrogen storage alloy has a problem in hydrogen release characteristics in a low temperature region such as below freezing point. In order to release hydrogen in a low temperature range, it is necessary to decrease the Ti / Cr ratio and increase the amount of Cr. However, this causes a problem that the amount of released hydrogen decreases. Therefore, there are many points that should be improved, such as further increase in the amount of effective hydrogen transfer and durability.

本発明は上記課題を解決することを基本的な目的とし、常温で有効に水素を吸収、放出でき、更に氷点下のような低温域での放出特性をも高めた水素吸蔵合金を提供することを目的とするものである。   The basic object of the present invention is to provide a hydrogen storage alloy that can effectively absorb and release hydrogen at room temperature, and has improved release characteristics in a low temperature range such as below freezing. It is the purpose.

高容量水素吸蔵合金の本発明は、一般式TiMo(但し、a、b、cはat%、a+b+c=100、0<b<25、c<70、a/b≦2)で表される組成を有し、体心立方構造を有することを特徴とする。 The present invention of a high capacity hydrogen storage alloy has the general formula Ti a Mo b V c (where a, b, c are at%, a + b + c = 100, 0 <b <25, c <70, a / b ≦ 2) And having a body-centered cubic structure.

すなわち、本発明はTi、Mo、Vを構成元素とし、体心立方構造を有すること、または、前記水素吸蔵合金の原料として、前記に加えてFeを使用することを特徴としている。なお構成元素としては、TiMoV三元系もしくはTiMoVFe四元系を基本とするが、製造上不可避的に混入する不純物はこの限りではない。本組成を持つ合金は溶解のままでもBCC単相構造を示すため、特殊な熱処理は不要であるが、用途に応じては熱処理を実施してもよい。   That is, the present invention is characterized in that Ti, Mo, and V are constituent elements and has a body-centered cubic structure, or Fe is used as a raw material for the hydrogen storage alloy. The constituent elements are basically a TiMoV ternary system or a TiMoVFe quaternary system, but the impurities inevitably mixed in the manufacturing are not limited to this. An alloy having this composition shows a BCC single-phase structure even when dissolved, so that no special heat treatment is required, but heat treatment may be performed depending on the application.

なお、上記a、b、cは、総和量が100であり、0<b<25を満たすことが必要である。
Tiの量比aに関しては、c≧70の場合、平衡解離圧の極端な低下を防ぐため、30未満であることが必要である。一方、c<70の場合には、aは5以上で、下記bとの関係でa/b≦2を満たし、a<50の範囲内にある。
また、Moの量比bに関しては、質量貯蔵密度の大幅な減少を防ぐために上記のように25未満とする。さらに0<b<20とするのが望ましい。
Note that the above-mentioned a, b, and c have a total amount of 100 and need to satisfy 0 <b <25.
Regarding the amount ratio a of Ti, when c ≧ 70, it is necessary to be less than 30 in order to prevent an extreme decrease in the equilibrium dissociation pressure. On the other hand, when c <70, a is 5 or more, satisfies a / b ≦ 2 in relation to the following b, and is in the range of a <50.
Further, the Mo amount ratio b is set to less than 25 as described above in order to prevent a significant decrease in mass storage density. Further, it is desirable that 0 <b <20.

また、上記量比a、bの関係では、c<70の場合、上記のようにa/b≦2であることが必要とされる。該比の関係を保つことで平衡解離圧の極端な低下を防ぎ、用途に応じた平衡解離圧を持つ合金を提供できること及び、水素との親和力が強いTiとの相互作用によって安定にトラップされてしまう水素(固溶水素)量を低減させ、有効に利用できる水素量を増大させる、という効果がある。   Further, in the relationship between the quantity ratios a and b, when c <70, it is necessary that a / b ≦ 2 as described above. By maintaining the relationship of the ratio, an extreme decrease in the equilibrium dissociation pressure can be prevented, and an alloy having an equilibrium dissociation pressure according to the application can be provided. There is an effect of reducing the amount of hydrogen (solid hydrogen) and increasing the amount of hydrogen that can be used effectively.

また、Vは平衡解離圧や水素吸蔵量の大幅な変化をもたらす元素ではないことから、Ti量とMo量の含有量に合わせて適宜調整をすることができ、その量比cは、25≦c<100の範囲内で選択することができる。   Further, V is not an element that causes a significant change in the equilibrium dissociation pressure or the hydrogen storage amount, and therefore can be appropriately adjusted according to the contents of Ti and Mo, and the amount ratio c is 25 ≦ It can be selected within the range of c <100.

すなわち、本発明の高容量水素吸蔵合金は、一般式TiMo(但し、a、b、cはat%、a+b+c=100、0<b<25、c<70、a/b≦2)で表される組成を有し、体心立方構造を有するので、常温で有効に水素を吸収、放出でき、更に氷点下のような低温域での放出特性にも優れている。
また、現存するBCC型水素吸蔵合金に対しては、組成によっては、過酷な熱処理等のプロセスが必要となるが、本発明で提供する合金では全ての組成範囲で溶解のままでもBCC構造を示すことから、特殊な熱処理などの後処理は不要であり、製造負担が軽減されるとともに、後処理に伴う不要な不純物元素の含有などを排除することができる。
That is, the high-capacity hydrogen storage alloy of the present invention has a general formula Ti a Mo b V c (where a, b, c are at%, a + b + c = 100, 0 <b <25, c <70, a / b ≦ 2) and has a body-centered cubic structure, it can absorb and release hydrogen effectively at room temperature, and has excellent emission characteristics at low temperatures such as below freezing.
In addition, for existing BCC-type hydrogen storage alloys, depending on the composition, a process such as severe heat treatment is required, but the alloys provided by the present invention exhibit a BCC structure even when dissolved in the entire composition range. Therefore, a post-treatment such as a special heat treatment is unnecessary, the manufacturing burden is reduced, and inclusion of unnecessary impurity elements accompanying the post-treatment can be eliminated.

TiMo90におけるPCT線図である。It is a PCT line diagram of Ti 4 Mo 6 V 90. 90Ti10−xMoにおけるMo含有量と平衡解離圧の関係を示すグラフである。It is a graph showing the relationship between the Mo content and the equilibrium dissociation pressure of V 90 Ti 10-x Mo x . Ti20Mo73におけるPCT線図である。It is a PCT line diagram of Ti 20 Mo 7 V 73. Ti33Mo67−xにおけるMo含有量と水素移動量の関係を示すグラフである。It is a graph showing the relationship between the Mo content and the hydrogen amount of movement Ti 33 Mo x V 67-x . Ti30−xMo70およびTi10−xMo90におけるTi/Moと平衡圧との関係を示す図である。Is a diagram showing the relationship between the Ti / Mo and the equilibrium pressure in the Ti 30-x Mo x V 70 and Ti 10-x Mo x V 90 . Ti33Mo67−xおよびTi50Mo50−xにおけるTi/Moと平衡圧との関係を示す図である。Is a diagram showing the relationship between the Ti / Mo and the equilibrium pressure in the Ti 33 Mo x V 67-x and Ti 50 Mo x V 50-x . 本発明のTi−Mo−V三元系合金の組成範囲および実施例供試材をプロットした図である。It is the figure which plotted the composition range of the Ti-Mo-V ternary system alloy of this invention, and an Example test material.

以下に、本発明の実施形態を説明する。
本発明の高容量水素吸蔵合金は、本発明の組成範囲となるように成分調製をし、溶解、凝固により得ることができる。該溶解、凝固の方法は本発明としては特に限定をされるものではなく、既知の方法を採用することも可能である。
溶解、凝固により得られる合金は、溶製ままでBCC構造を有しており、従来のようにBCC構造を得るために熱処理などの後処理を必要としない。但し、本発明としては後処理を排除するものではなく、必要に応じて適宜の熱処理などの後処理を行うことが可能である。
得られた高容量水素吸蔵合金は、常温で有効に水素を吸収、放出でき、更に氷点下のような低温域での放出特性にも優れている。
Hereinafter, embodiments of the present invention will be described.
The high-capacity hydrogen storage alloy of the present invention can be obtained by preparing components so as to be within the composition range of the present invention, and by melting and solidifying. The dissolution and coagulation methods are not particularly limited in the present invention, and known methods can be employed.
The alloy obtained by melting and solidification has a BCC structure as melted, and does not require post-treatment such as heat treatment to obtain the BCC structure as in the prior art. However, the present invention does not exclude post-processing, and post-processing such as appropriate heat treatment can be performed as necessary.
The obtained high-capacity hydrogen storage alloy can absorb and release hydrogen effectively at room temperature, and also has excellent release characteristics in a low temperature range such as below freezing point.

以下、この発明の一実施例を図に基づいて説明する。
図1に、溶製ままのTiMo90のPCT線図を示す。図に明らかなように、0℃においても広いプラトー領域を示す特徴を示しており、低温域での放出特性に優れている。さらに、Vを90at%含有した組成において、Mo含有量に対する平衡解離圧の変化を図2を示す。図に示されるように、TiとMoの含有比を変化させることで平衡解離圧を大きく変化させることができ、低温領域での広いプラトーを求められる条件下で達成することができる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a PCT diagram of Ti 4 Mo 6 V 90 as melted. As is apparent from the figure, it shows a characteristic that shows a wide plateau region even at 0 ° C., and has excellent emission characteristics in a low temperature region. Furthermore, FIG. 2 shows the change in the equilibrium dissociation pressure with respect to the Mo content in a composition containing 90 at% V. As shown in the figure, the equilibrium dissociation pressure can be greatly changed by changing the content ratio of Ti and Mo, and a wide plateau in a low temperature region can be achieved under the required conditions.

また、本合金は常温領域でも組成の調整により、有効に水素を吸収・放出できる。図3にTi20Mo73のPCT線図を示す。図から明らかなように、常温領域での有効水素移動量も大きい。 In addition, this alloy can effectively absorb and release hydrogen even in the normal temperature range by adjusting the composition. FIG. 3 shows a PCT diagram of Ti 20 Mo 7 V 73 . As is clear from the figure, the effective hydrogen transfer amount in the normal temperature region is also large.

さらに、本発明水素吸蔵合金の有効水素吸蔵量は、Mo量に大きく依存しており、その一例を図4に示す。有効水素吸蔵量300cc/gを確保して質量貯蔵密度の大幅な減少を防ぐMo量としては25at%未満であることが分かる。この傾向は、Ti量、V量が異なる合金においても同様の傾向があり、したがって、上記参考例ではMoの量比は25at%未満としている。   Furthermore, the effective hydrogen storage amount of the hydrogen storage alloy of the present invention greatly depends on the Mo amount, and an example is shown in FIG. It can be seen that the amount of Mo that secures an effective hydrogen storage amount of 300 cc / g and prevents a significant decrease in mass storage density is less than 25 at%. This tendency is the same for alloys having different Ti and V contents. Therefore, in the above reference example, the Mo content ratio is less than 25 at%.

さらに、Vの量比を70と90とにした各合金において、Ti/Mo(a/b)の比の変化に対する平衡圧の変化を図5に示す。平衡圧としては0.01以上が必要とされることから、Vの量比が70のものでは、Ti/Moの比によっては、上記平衡圧を満たさないことになるが、Vの量比が90にまでなると、平衡圧が高く、上記量比の比に拘わらず、0.01以上の平衡圧が確保されている。このことから、Vの量比cに従って、Ti/Moの比率を規制することが必要される。すなわち、c≧70では、上記比率の規制は特に必要とされず、c<70において、a/bの比を規制する。
図6は、2種の水素吸蔵合金においてa/bを変化させた場合の平衡圧の変化を示す図である。この図から明らかなように、a/bを2.0以下にすることで平衡圧0.01が確保される。したがって、本発明では、c<70の条件においてa/b≦2を必須の条件としている。
Further, FIG. 5 shows the change in the equilibrium pressure with respect to the change in the Ti / Mo (a / b) ratio in each alloy in which the amount ratio of V is 70 and 90. Since an equilibrium pressure of 0.01 or more is required, when the amount ratio of V is 70, the equilibrium pressure may not be satisfied depending on the ratio of Ti / Mo, but the amount ratio of V is When it reaches 90, the equilibrium pressure is high, and an equilibrium pressure of 0.01 or more is secured regardless of the ratio of the above-mentioned quantitative ratios. For this reason, it is necessary to regulate the Ti / Mo ratio in accordance with the amount ratio c of V. That is, when c ≧ 70, the above ratio is not particularly required, and when c <70, the ratio a / b is regulated.
FIG. 6 is a diagram showing changes in the equilibrium pressure when a / b is changed in two types of hydrogen storage alloys. As is apparent from this figure, an equilibrium pressure of 0.01 is secured by setting a / b to 2.0 or less. Therefore, in the present invention, a / b ≦ 2 is an essential condition under the condition of c <70.

さらに、表1に示す合金については、0.01MPa以下の固溶水素量(死蔵水素を意味する)を排除したプラトー幅を算出することによって有効水素移動量を測定した。その結果を表1に示す。また、各合金の組成を図7に示す組成図にプロットして示した。
表および図7から明らかなように、本発明の範囲内にある合金では、有効水素移動量に優れており、本発明および参考例の範囲外にある合金は、有効水素移動量が少ないという結果が得られた。
Further, for the alloys shown in Table 1, the effective hydrogen transfer amount was measured by calculating the plateau width excluding the solid solution hydrogen amount (meaning dead hydrogen) of 0.01 MPa or less. The results are shown in Table 1. Further, the composition of each alloy is plotted in the composition diagram shown in FIG.
As is apparent from the table and FIG. 7, the alloy within the scope of the present invention is excellent in the effective hydrogen transfer amount, and the alloy outside the range of the present invention and the reference example has a small effective hydrogen transfer amount. was gotten.

Figure 0005356495
Figure 0005356495

Claims (1)

一般式TiMo(但し、a、b、cはat%、a+b+c=100、0<b<25、c<70、a/b≦2)で表される組成を有し、体心立方構造を有することを特徴とする高容量水素吸蔵合金。 It has a composition represented by the general formula Ti a Mo b V c (where a, b, c are at%, a + b + c = 100, 0 <b <25, c <70, a / b ≦ 2), A high capacity hydrogen storage alloy characterized by having a centered cubic structure.
JP2011286339A 2011-12-27 2011-12-27 High capacity hydrogen storage alloy Expired - Fee Related JP5356495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011286339A JP5356495B2 (en) 2011-12-27 2011-12-27 High capacity hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011286339A JP5356495B2 (en) 2011-12-27 2011-12-27 High capacity hydrogen storage alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007215395A Division JP5213156B2 (en) 2007-08-22 2007-08-22 High capacity hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JP2012117151A JP2012117151A (en) 2012-06-21
JP5356495B2 true JP5356495B2 (en) 2013-12-04

Family

ID=46500329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011286339A Expired - Fee Related JP5356495B2 (en) 2011-12-27 2011-12-27 High capacity hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP5356495B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013469A (en) * 2007-07-05 2009-01-22 Honda Motor Co Ltd Vanadium based hydrogen storage alloy

Also Published As

Publication number Publication date
JP2012117151A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
Zhang et al. New approaches for rare earth-magnesium based hydrogen storage alloys
JP5334455B2 (en) Hydrogen storage alloy and nickel-hydrogen storage battery
JP5092747B2 (en) Hydrogen storage alloy and manufacturing method thereof, hydrogen storage alloy electrode, and secondary battery
Zhang et al. Formation mechanism, phase structure and electrochemical properties of the La–Mg–Ni-based multiphase alloys by powder sintering LaNi5 and LaMgNi4
JP3626298B2 (en) Hydrogen storage alloy and manufacturing method
JP5134175B2 (en) Hydrogen storage alloy
Ding et al. Highly efficient hydrogen storage capacity of 2.5 wt% above 0.1 MPa using Y and Cr codoped V-based alloys
JP5449989B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage device
CN114107776B (en) Hydrogen storage alloy with high hydrogen storage capacity and preparation method thereof
JP5213156B2 (en) High capacity hydrogen storage alloy
JP5356495B2 (en) High capacity hydrogen storage alloy
JP2007084883A (en) Method for manufacturing hydrogen occlusion alloy
KR101583297B1 (en) Hydrogen stroge alloy based on titanium-zirconium and production methods thereof
JPH11310844A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
KR100958419B1 (en) Hydrogen storage alloy
KR100187919B1 (en) Hydrogen storage alloy
KR101280286B1 (en) Zirconium and Titanium Hydrogen Storage Alloy
JP5329498B2 (en) Hydrogen storage alloy
JPH07268514A (en) Hydrogen occluding alloy and hydrogen occluding alloy electrode
JP3746808B2 (en) Hydrogen storage material
JPH10298681A (en) Hydrogen storage alloy
JP4808384B2 (en) Hydrogen storage alloy
JP2009013469A (en) Vanadium based hydrogen storage alloy
JP2009019251A (en) Hydrogen storage alloy
KR100846668B1 (en) Titanium based hydrogen storage alloy

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130828

R150 Certificate of patent or registration of utility model

Ref document number: 5356495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees