JP2009019251A - Hydrogen storage alloy - Google Patents
Hydrogen storage alloy Download PDFInfo
- Publication number
- JP2009019251A JP2009019251A JP2007184379A JP2007184379A JP2009019251A JP 2009019251 A JP2009019251 A JP 2009019251A JP 2007184379 A JP2007184379 A JP 2007184379A JP 2007184379 A JP2007184379 A JP 2007184379A JP 2009019251 A JP2009019251 A JP 2009019251A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen storage
- storage alloy
- hydrogen
- occlusion
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、水素吸蔵合金に関し、特に水素の吸蔵・放出の繰り返しに対する耐久性の高い水素吸蔵合金に関する。 The present invention relates to a hydrogen storage alloy, and more particularly to a hydrogen storage alloy having high durability against repeated hydrogen storage and release.
水素吸蔵合金の性質として、水素吸蔵量はもちろんであるが、これに加えて、水素の吸蔵・放出の繰返しに対する耐久性が重要である。これまでにAB2合金やLaves相合金で耐久性の高い材料が種々開発されてきたが、水素吸蔵量の向上が求められている。 As a property of the hydrogen storage alloy, not only the hydrogen storage amount but also the durability against repeated storage and release of hydrogen is important. Various materials having high durability such as AB 2 alloy and Laves phase alloy have been developed so far, but improvement of hydrogen storage capacity is demanded.
そこで、体心立方構造(BCC)系の水素吸蔵合金は、結晶構造として空隙体積が大きいため高い水素吸蔵量が見込めることから着目されているが、実用化には耐久性を向上させる必要があった。 Therefore, body-centered cubic (BCC) -based hydrogen storage alloys are attracting attention because they have a large void volume as a crystal structure and can be expected to have a high hydrogen storage capacity. However, it is necessary to improve durability for practical use. It was.
例えば、特許文献1には、組成がTiaCrbFecVdただし20≦a≦45、30≦b≦70、0≦c≦15、5≦d≦45であって、主相がBCC構造でLaves相を含む水素吸蔵合金が提案されている。しかし、単位結晶格子について水素原子1個当りの空隙体積が3.7Å3と小さいため、水素の吸蔵・放出を繰返すと結晶格子の損傷が発生し易く、耐久性が低いという問題がある。
For example,
また、特許文献2および特許文献3にもTi−Cr−Fe−V系でBCC構造を主相とする水素吸蔵合金が開示されているが、耐久性の観点からは向上がなされていない。 Further, Patent Document 2 and Patent Document 3 disclose a hydrogen storage alloy having a BCC structure as a main phase in a Ti—Cr—Fe—V system, but it has not been improved from the viewpoint of durability.
本発明は、水素の吸蔵・放出の繰返しに対して耐久性の高い水素吸蔵合金を提供することを目的とする。 An object of the present invention is to provide a hydrogen storage alloy having high durability against repeated hydrogen storage / release.
上記の目的を達成するために、本発明によれば、下記の組成:
Cr:8〜44at%、
V :25〜85at%、
Fe:1〜10at%、および
残部:不可避不純物
から成ることを特徴とする水素吸蔵合金が提供される。
In order to achieve the above object, according to the present invention, the following composition:
Cr: 8 to 44 at%,
V: 25-85 at%,
Provided is a hydrogen storage alloy comprising Fe: 1 to 10 at%, and the balance: inevitable impurities.
本発明の水素吸蔵合金は、組成を規定範囲内とすることにより、結晶格子が大きく、単位結晶格子について水素原子1個当たりの空隙体積が大きいBCC構造とすることができるため、水素の吸蔵・放出を繰返しても結晶格子の損傷が少なく、高い耐久性を発揮することができる。 The hydrogen storage alloy of the present invention can have a BCC structure in which the crystal lattice is large and the unit crystal lattice has a large void volume per hydrogen atom by setting the composition within the specified range. Even if the release is repeated, the crystal lattice is hardly damaged and high durability can be exhibited.
図1に、種々の水素吸蔵合金について単位結晶格子についての水素原子1個当りの空隙量と、水素吸蔵・放出の繰り返しによる吸蔵量の劣化率(*)との関係を示す。 FIG. 1 shows the relationship between the amount of voids per hydrogen atom in a unit crystal lattice and the rate of deterioration (*) of the amount of occlusion due to repeated hydrogen occlusion / release.
(*:劣化率(%)=100×〔1サイクル目の吸蔵量−40サイクル目の吸蔵量〕/〔1サイクル目の吸蔵量〕。サイクル試験の詳細は実施例に記載したとおり。)
図中の各合金の組成は下記のとおりである。
(*: Degradation rate (%) = 100 × [Occlusion amount in the first cycle−Occlusion amount in the 40th cycle] / [Occlusion amount in the first cycle]. Details of the cycle test are as described in the examples.)
The composition of each alloy in the figure is as follows.
A(低圧型BCC合金):Ti25−Cr50−V25(数字はat%)
B(高圧型BCC合金):Ti25−Cr50−V20−Mo5
C(高圧型高VBCC合金):Ti11−Cr12−V71−Mo5−Ni1
D(本発明BCC合金):Ti25−Cr44−V25−Fe6
E(TiCrMn合金):Ti36−Cr32−Mn32
同図に明瞭に表われているように、空隙量を4Å3以上とすることにより、劣化率を10%以下に抑制することができる。本発明の合金組成は劣化率を10%以下とするために、Cr:8〜44at%、V:25〜85at%、Fe:1〜10at%、および残部:不可避不純物に限定した。任意に25at%以下のTiを更に含有することができる。これらの成分元素のうちの1種でも上記の限定範囲を逸脱すると、劣化率10%以下を安定して達成することができない。
A (low pressure type BCC alloy): Ti 25 -Cr 50 -V 25 (numbers are at%)
B (high pressure type BCC alloy): Ti 25 —Cr 50 —V 20 —Mo 5
C (high pressure type high VBCC alloy): Ti 11 -Cr 12 -V 71 -Mo 5 -Ni 1
D (invention BCC alloy): Ti 25 -Cr 44 -V 25 -Fe 6
E (TiCrMn alloy): Ti 36 -Cr 32 -Mn 32
As clearly shown in the figure, the deterioration rate can be suppressed to 10% or less by setting the void amount to 4 3 or more. The alloy composition of the present invention was limited to Cr: 8 to 44 at%, V: 25 to 85 at%, Fe: 1 to 10 at%, and the balance: inevitable impurities in order to make the deterioration rate 10% or less. Optionally, it can further contain up to 25 at% Ti. If even one of these component elements deviates from the above-mentioned limited range, a deterioration rate of 10% or less cannot be stably achieved.
望ましくは、Cr:8〜20at%、V:60〜82at%、Fe:5〜10at%である。任意成分であるTiは5at%以下であることが望ましい。望ましい範囲内に限定することにより、劣化率を更に安定して低減することができる。 Desirably, Cr: 8 to 20 at%, V: 60 to 82 at%, and Fe: 5 to 10 at%. It is desirable that Ti as an optional component is 5 at% or less. By limiting to the desired range, the deterioration rate can be more stably reduced.
本発明の合金組成は下記に配慮して限定したものである。すなわち、結晶格子を単純に大きくすると、吸蔵圧力が過大となって吸蔵しなくなるか、あるいは過大な吸蔵により著しいサイクル劣化を生ずる。そこで、結晶格子を拡大する傾向のあるTi、Vの含有量と、結晶格子を縮小する傾向のあるCr、Feの含有量のバランスに配慮しつつ、空隙量を4Å3以上ように各成分元素の含有量を限定した。特にFeによって最大水素吸蔵量を調整し、過大な吸蔵によるサイクル劣化を抑制しつつ空隙量4Å3以上を確保した。 The alloy composition of the present invention is limited in consideration of the following. That is, if the crystal lattice is simply increased, the occlusion pressure becomes excessive and the occlusion does not occur, or significant cycle deterioration occurs due to excessive occlusion. Therefore, while considering the balance between the contents of Ti and V, which tend to expand the crystal lattice, and the contents of Cr, Fe, which tend to shrink the crystal lattice, each component element has a void amount of 4 以上3 or more. The content of was limited. In particular, the maximum hydrogen occlusion amount was adjusted with Fe, and a void amount of 4 3 or more was secured while suppressing cycle deterioration due to excessive occlusion.
表1に示す種々の組成の水素吸蔵合金を製造した。 Hydrogen storage alloys having various compositions shown in Table 1 were produced.
上記組成に調合した原料を不活性ガス(Ar)雰囲気中にて1500〜1600℃にて溶解し、鋳造した。鋳造は不活性ガス(Ar)雰囲気中にて、円板形状の金型中に鋳込んで行なった。 The raw materials prepared in the above composition were melted at 1500 to 1600 ° C. in an inert gas (Ar) atmosphere and cast. Casting was performed by casting in a disk-shaped mold in an inert gas (Ar) atmosphere.
得られた鋳造サンプルに、不活性ガス(Ar)雰囲気中にて約1250℃で10時間保持後徐冷する均質化熱処理を施した。 The obtained cast sample was subjected to a homogenization heat treatment in which it was kept at about 1250 ° C. for 10 hours in an inert gas (Ar) atmosphere and then gradually cooled.
上記熱処理後のサンプルを粉砕して粒径約数mm〜0.1mmの粒状とし、サイクル試験に供した。 The sample after the heat treatment was pulverized into granules having a particle size of about several mm to 0.1 mm and subjected to a cycle test.
サイクル試験は、室温で圧力0.1MPaと33MPaとの間で水素を吸蔵・放出させるサイクルを40サイクル行ない、1サイクル目の水素吸蔵量に対する40サイクル目の水素吸蔵量の減少の割合を「劣化率」として測定した(下記式(1)を参照)。 In the cycle test, 40 cycles of storing and releasing hydrogen at a pressure between 0.1 MPa and 33 MPa were performed at room temperature, and the ratio of the decrease in the hydrogen storage amount in the 40th cycle to the hydrogen storage amount in the first cycle was expressed as “deterioration”. Rate "(see formula (1) below).
劣化率(%)=100×〔1サイクル目の吸蔵量−40サイクル目の吸蔵量〕/〔1サイクル目の吸蔵量〕(*:吸蔵量=有効水素量)・・・・・(1)
また、単位結晶格子内の水素原子1個当りの空隙体積を「空隙/H」として下記式(2)の定義により算出した。
Degradation rate (%) = 100 × [Occupation amount in the first cycle−Occlusion amount in the 40th cycle] / [Occlusion amount in the first cycle] (*: occlusion amount = effective hydrogen amount) (1)
Further, the void volume per hydrogen atom in the unit crystal lattice was calculated as “void / H” by the definition of the following formula (2).
空隙/H(Å3)=〔格子体積−構成元素占有体積〕/〔最大吸蔵時1格子内水素原子個数〕・・・・・(2)
劣化率および空隙/Hの測定結果を表1に併せて示す。
Void / H (Å 3 ) = [lattice volume−constituent element occupation volume] / [maximum occlusion number of hydrogen atoms in one lattice] (2)
The measurement results of the deterioration rate and void / H are also shown in Table 1.
サンプルNo.1〜5は本発明の範囲内の実施例であり、サンプルNo.6〜9は本発明の範囲外の比較例である。 Sample Nos. 1 to 5 are examples within the scope of the present invention, and sample Nos. 6 to 9 are comparative examples outside the scope of the present invention.
本発明の範囲外である比較例6〜9は、空隙/Hが4Å3未満と小さいため、劣化率が21〜26%と高くなっている。これに対して本発明の範囲内である実施例1〜5は空隙/Hが4Å3以上と大きいため、劣化率が6〜11と低減している。 In Comparative Examples 6 to 9, which are outside the scope of the present invention, the void ratio / H is as small as less than 4 3 , so the deterioration rate is as high as 21 to 26%. On the other hand, in Examples 1 to 5, which are within the scope of the present invention, the void ratio / H is as large as 4 3 or more, so the deterioration rate is reduced to 6 to 11.
本発明によれば、水素の吸蔵・放出の繰返しに対して耐久性の高い水素吸蔵合金が提供される。 According to the present invention, a hydrogen storage alloy having high durability against repeated hydrogen storage / release is provided.
Claims (5)
Cr:8〜44at%、
V :25〜85at%、
Fe:1〜10at%、および
残部:不可避不純物
から成ることを特徴とする水素吸蔵合金。 The following composition:
Cr: 8 to 44 at%,
V: 25-85 at%,
A hydrogen storage alloy comprising Fe: 1 to 10 at%, and the balance: inevitable impurities.
Cr:8〜20at%、
V :60〜82at%、
Fe:5〜10at%
であることを特徴とする水素吸蔵合金。 In claim 1,
Cr: 8-20 at%,
V: 60-82 at%,
Fe: 5 to 10 at%
A hydrogen storage alloy characterized by
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007184379A JP2009019251A (en) | 2007-07-13 | 2007-07-13 | Hydrogen storage alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007184379A JP2009019251A (en) | 2007-07-13 | 2007-07-13 | Hydrogen storage alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009019251A true JP2009019251A (en) | 2009-01-29 |
Family
ID=40359147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007184379A Pending JP2009019251A (en) | 2007-07-13 | 2007-07-13 | Hydrogen storage alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009019251A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102312145A (en) * | 2010-07-09 | 2012-01-11 | 攀枝花学院 | Ferrochrome and production method thereof |
-
2007
- 2007-07-13 JP JP2007184379A patent/JP2009019251A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102312145A (en) * | 2010-07-09 | 2012-01-11 | 攀枝花学院 | Ferrochrome and production method thereof |
WO2012003669A1 (en) * | 2010-07-09 | 2012-01-12 | 攀枝花学院 | Vanadium-chromium-iron alloy and producing method thereof |
JP2013537582A (en) * | 2010-07-09 | 2013-10-03 | 攀枝▲花▼学院 | Vanadium-chromium-iron alloy and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3528599B2 (en) | Hydrogen storage alloy | |
Liu et al. | Hydrogen storage properties and cycling degradation of single-phase La0. 60R0. 15Mg0· 25Ni3. 45 alloys with A2B7-type superlattice structure | |
JP5134174B2 (en) | Hydrogen storage alloy | |
JP6948441B1 (en) | Low Co hydrogen storage alloy powder | |
JP2009534542A (en) | Nanocrystalline compounds for hydrogen storage | |
JP5449989B2 (en) | Hydrogen storage alloy, method for producing the same, and hydrogen storage device | |
JP2009019251A (en) | Hydrogen storage alloy | |
JP5527768B2 (en) | High capacity hydrogen storage alloy | |
CN114000030B (en) | Titanium-chromium-manganese hydrogen storage alloy and preparation method and application thereof | |
WO2022050268A1 (en) | Hydrogen storage material, hydrogen storage container and hydrogen supply apparatus | |
JP5213156B2 (en) | High capacity hydrogen storage alloy | |
JP2859187B2 (en) | Hydrogen storage alloy | |
JP4417805B2 (en) | Hydrogen storage alloy and hydrogen storage container | |
KR100958419B1 (en) | Hydrogen storage alloy | |
JP5356495B2 (en) | High capacity hydrogen storage alloy | |
KR101280286B1 (en) | Zirconium and Titanium Hydrogen Storage Alloy | |
JP5329498B2 (en) | Hydrogen storage alloy | |
JP2012026040A (en) | High-rigidity iron-based alloy | |
JPS5947022B2 (en) | Alloy for hydrogen storage | |
JP2009013469A (en) | Vanadium based hydrogen storage alloy | |
JP2006188737A (en) | Hydrogen-storage alloy | |
KR20170074038A (en) | Room temperature and low pressure hydrogen storage alloy comprising zirconium | |
JPH10298681A (en) | Hydrogen storage alloy | |
JP2004277829A (en) | Hydrogen storage alloy | |
JP2007309457A (en) | Hydrogen storage tank |