JP5329498B2 - Hydrogen storage alloy - Google Patents

Hydrogen storage alloy Download PDF

Info

Publication number
JP5329498B2
JP5329498B2 JP2010195336A JP2010195336A JP5329498B2 JP 5329498 B2 JP5329498 B2 JP 5329498B2 JP 2010195336 A JP2010195336 A JP 2010195336A JP 2010195336 A JP2010195336 A JP 2010195336A JP 5329498 B2 JP5329498 B2 JP 5329498B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
hydrogen
wtppm
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010195336A
Other languages
Japanese (ja)
Other versions
JP2011021276A (en
Inventor
裕一朗 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2010195336A priority Critical patent/JP5329498B2/en
Publication of JP2011021276A publication Critical patent/JP2011021276A/en
Application granted granted Critical
Publication of JP5329498B2 publication Critical patent/JP5329498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、水素吸蔵合金に関し、特に水素の吸蔵量、吸蔵速度、及び反応効率に優れた水素吸蔵合金に関する。   The present invention relates to a hydrogen storage alloy, and more particularly to a hydrogen storage alloy excellent in hydrogen storage amount, storage rate, and reaction efficiency.

近年、水素は低公害でクリーンな環境に優しいエネルギー源として注目を集めている。一方、水素は室温で気体であることから、取り扱いが難しく、また、体積あたりのエネルギー量が小さいという問題を有している。
水素の貯蔵手段として、高圧ガスボンベに充填した場合、体積を約150分の1にすることができ、また、液体水素にした場合は体積を800分の1にすることができるが、水素吸蔵合金の場合は、さらにそれ以上の貯蔵能力があり、合金体積の約1000倍の気体状水素を吸蔵することができる。
In recent years, hydrogen has attracted attention as a low-pollution, clean and environmentally friendly energy source. On the other hand, since hydrogen is a gas at room temperature, it is difficult to handle and has a problem that the amount of energy per volume is small.
When hydrogen gas is filled in a high-pressure gas cylinder, the volume can be reduced to about 1/150. When liquid hydrogen is used, the volume can be reduced to 1/800. In the case of (3), there is a further storage capacity, and gaseous hydrogen about 1000 times the alloy volume can be occluded.

したがって、水素吸蔵合金中に水素を貯蔵すれば、液体水素や高圧のガスを取り扱う必要がなく、処理操作の面でも優れている。
また、温度・圧力の調整という簡単な手段のみで水素を合金中に出し入れできるので、水素吸蔵合金は水素を安全に輸送し、且つ、高い密度で貯蔵する技術として注目されている。
さらに、水素の吸蔵・放出反応の点からみると、水素吸蔵合金が水素を吸蔵するときは発熱反応であり、逆に水素を放出するときは吸熱反応である。
Therefore, if hydrogen is stored in the hydrogen storage alloy, it is not necessary to handle liquid hydrogen or high-pressure gas, and the processing operation is excellent.
Further, since hydrogen can be taken in and out of the alloy only by simple means of adjusting temperature and pressure, hydrogen storage alloys are attracting attention as a technology for safely transporting hydrogen and storing it at a high density.
Further, from the viewpoint of the hydrogen storage / release reaction, when the hydrogen storage alloy stores hydrogen, it is an exothermic reaction, and conversely, when it releases hydrogen, it is an endothermic reaction.

このことは、例えば、水素が急激に大量に放出されるような環境におかれても、水素を大量に放出させるのに必要な反応熱の供給が追いつかず、合金自身の温度が低下し、水素の急激な放出が自動的に抑制されることになるから、該合金による水素貯蔵方式は、他のガスボンベ等の方式に比べて貯蔵された水素を少量ずつ放出して使用する際の安全性の点でも優れている。
このように水素を室温付近で大量に吸蔵・放出することができる水素吸蔵合金は、二次電池用の電極、自動車用或いは家庭用燃料電池の燃料貯蔵媒体、ヒートポンプ、熱エネルギー変換システム等種々の分野に用途を拡大してきている。
This means that, for example, even in an environment where a large amount of hydrogen is suddenly released, the supply of reaction heat necessary to release a large amount of hydrogen cannot catch up, and the temperature of the alloy itself decreases. Since the rapid release of hydrogen is automatically suppressed, the hydrogen storage method using the alloy is safer when using the stored hydrogen in small amounts than other gas cylinders. It is also excellent in terms of.
As described above, hydrogen storage alloys capable of storing and releasing hydrogen in a large amount near room temperature include various types of electrodes such as electrodes for secondary batteries, fuel storage media for automobile or household fuel cells, heat pumps, thermal energy conversion systems, etc. Applications are expanding into the field.

水素吸蔵合金に望まれる特性は、水素吸蔵量が大きいことは勿論、常温又は常温より若干高い温度域で水素の吸蔵・放出が容易に起こることである。
特に今後大きな需要と経済効果が期待される固体高分子電解質型燃料電池の運転温度は100°C程度が限界であるから、100°C以下でのスムーズな吸蔵・放出反応特性が不可欠である。
The desired properties of the hydrogen storage alloy are not only that the amount of hydrogen stored is large, but also that hydrogen can be stored and released easily at room temperature or in a temperature range slightly higher than room temperature.
In particular, since the operating temperature of solid polymer electrolyte fuel cells, which are expected to have great demand and economic effects in the future, is limited to about 100 ° C, smooth occlusion / release reaction characteristics at 100 ° C or lower are indispensable.

今日まで、希土類系AB型水素吸蔵合金やラーベス相合金をはじめ、水素吸蔵速度が速く、吸蔵量が大きい、100°C以下で水素の吸蔵排出ができる、軽量、安価である等の特性を有する多数の水素吸蔵合金が研究開発されている。
例えば、軽量で、かつ水素との親和性が高いマグネシウムおよびリチウムを水素吸蔵合金の主構成元素とし、その結晶格子が体心立方格子であるマグネシウム-リチウム系合金を含むことにより、水素の吸蔵速度が速く、単位重量当たりの水素吸蔵量が大きい水素吸蔵材料が提案されている(例えば、特許文献1参照)。
To date, the characteristics such as rare earth AB 5 type hydrogen storage alloy and Laves phase alloy, high hydrogen storage speed, large storage capacity, storage and discharge of hydrogen below 100 ° C, light weight and low cost, etc. A number of hydrogen storage alloys have been researched and developed.
For example, magnesium and lithium, which are lightweight and have high affinity with hydrogen, are the main constituent elements of the hydrogen storage alloy, and contain a magnesium-lithium alloy whose crystal lattice is a body-centered cubic lattice. Has been proposed that has a high hydrogen storage capacity per unit weight (see, for example, Patent Document 1).

また、一般式Ca1-yMy(Ni1-xSix)3で表される組成を有する水素吸蔵合金で、上記一般式中、MはYおよびランタノイドで総称される希土類金属から成る群から選んだ少なくとも1種の元素であり、x、yは、0.05≦x≦0.25、0≦y≦0.5である水素吸蔵合金(例えば、特許文献2参照)も知られている。
この合金は、有効水素吸蔵量が1.0質量%以上で、100°C以下で水素を吸蔵放出することができる。
And a hydrogen storage alloy having a composition represented by the general formula Ca1-yMy (Ni1-xSix) 3 , wherein M is at least one selected from the group consisting of rare earth metals generically referred to as Y and lanthanoids. A hydrogen storage alloy in which x and y are 0.05 ≦ x ≦ 0.25 and 0 ≦ y ≦ 0.5 (see, for example, Patent Document 2) is also known.
This alloy has an effective hydrogen storage amount of 1.0% by mass or more and can store and release hydrogen at 100 ° C. or less.

特開2003− 73765号公報JP 2003-73765 A 特開2003−119529号公報JP 2003-119529 A

上記するように水素吸蔵合金として、LaNi等のAB型、ZnMn等のAB型、TiFe等のAB型、MgNi等の、AB型の二元系金属間化合物の材料は知られている。
また、水素吸蔵合金は、化学組成、合金構造等の点から、希土類元素系、Mg系、ラーベス相系、或いは、多相系等に分けられ、合金の化学組成や組織構造については、ある程度幅広く研究がなされ、合金の性能は日々改善されてきている。
しかしながら、上記の特性に及ぼす合金中の不純物の影響については、これまで十分に検討されていなかった。特に、水素吸蔵合金中に含まれる不純物が水素吸蔵能に与える影響には特に関心がなく、不純物が大きく影響を受けることについての知見はなかった。したがって不純物の量的問題も全く解明されていなかった。
As described above, AB 5 type such as LaNi 5 ; AB 2 type such as ZnMn 2 ; AB type such as TiFe; and A 2 B type binary intermetallic compound such as Mg 2 Ni as the hydrogen storage alloy as described above. Is known.
In addition, hydrogen storage alloys are classified into rare earth elements, Mg, Laves phase, or multiphase systems in terms of chemical composition, alloy structure, etc., and the chemical composition and structure of the alloy are somewhat broad. Research has been done and the performance of alloys has been improved daily.
However, the influence of impurities in the alloy on the above properties has not been sufficiently studied so far. In particular, there was no particular interest in the influence of impurities contained in the hydrogen storage alloy on the hydrogen storage capacity, and there was no knowledge that the impurities were greatly affected. Therefore, the quantitative problem of impurities has not been elucidated at all.

本発明者は、水素吸蔵合金の純度或いは不純物の種類及びその量と合金特性の観点から研究し、解明を行った結果、合金中の個々の不純物量だけでなく不純物総量と合金特性の関係を新たに見いだし、本発明を完成した。
本発明は、これまでとは異なる観点から、水素吸蔵量が大きいだけでなく、吸蔵速度が速く、水素の放出を効率的、かつ容易に行うことができる水素吸蔵合金を提供することを目的とする。
As a result of research and elucidation from the viewpoint of the purity or the type and amount of impurities and the alloy characteristics of the hydrogen storage alloy, the present inventor found not only the amount of individual impurities in the alloy but also the relationship between the total amount of impurities and the alloy characteristics. A new discovery was made and the present invention was completed.
An object of the present invention is to provide a hydrogen storage alloy that not only has a large hydrogen storage amount, but also has a high storage speed and can efficiently and easily release hydrogen from a different viewpoint. To do.

上記の課題を解決するために、本発明者は、水素吸蔵合金中の不純物が特性に影響を与えていると考え、これらの関係を明らかにし、不純物の総量及び個々の含有量を規制することにより好ましい特性が得られるとの知見を得た。
本発明は上記知見に基づき、
1)合金構成元素以外の合金中の金属不純物の合計含有量が、1000wtppm以下であることを特徴とする水素吸蔵合金、2)合金構成元素以外の合金中の金属不純物の合計含有量が、500wtppm以下であることを特徴とする1記載の水素吸蔵合金、3)非金属であるS、C、Nがそれぞれ100wtppm以下であることを特徴とする1又は2記載の水素吸蔵合金、を提供する。
In order to solve the above problems, the present inventor considers that impurities in the hydrogen storage alloy have an effect on the characteristics, clarifying these relationships, and regulating the total amount of impurities and individual contents. It was found that more favorable characteristics can be obtained.
The present invention is based on the above findings.
1) Hydrogen storage alloy characterized in that the total content of metal impurities in the alloy other than the alloy constituent elements is 1000 wtppm or less, 2) The total content of metal impurities in the alloy other than the alloy constituent elements is 500 wtppm The hydrogen storage alloy according to 1 or 2, wherein the hydrogen storage alloy according to 1 or 2 is characterized in that S, C, and N which are non-metals are each 100 wtppm or less.

本発明の水素吸蔵合金は、合金中の金属不純物量を1000tppm以下に規制したので、水素の吸蔵量は従来合金に比べて著しく増大すると共に、水素の吸蔵速度及び放出効率も向上し、各種特性を改善することができた。特に、不純物量を500wtppm以下にした場合の効果は顕著である。上記の不純物量と特性の関係は、特にMg−Li系合金、希土類、ニッケル系合金において顕著な効果がみられる。   In the hydrogen storage alloy of the present invention, the amount of metal impurities in the alloy is regulated to 1000 tppm or less, so that the hydrogen storage amount is significantly increased as compared with conventional alloys, and the hydrogen storage rate and release efficiency are also improved. Was able to improve. In particular, the effect when the impurity amount is 500 wtppm or less is remarkable. The above relationship between the amount of impurities and the characteristics is particularly remarkable in Mg-Li alloys, rare earths, and nickel alloys.

通常、水素吸蔵合金は、金属単独で水素と反応して水素化物を作る種々の元素のみからなるか、或いは、この水素化物を作る元素と、水素化物を作らない元素、即ち、合金構成元素との組み合わせからなる。
本発明で用いられる水素化物を作る金属としては、Ti,Ta,Hf,Zr,Li,Na,Mg,K,Ca,Sc,V,Rb,Sr,Y,Nb,Cs,Ba,La,Ta等が例示される。
合金構成元素としては、Ni,Cr,Mn,Fe,Co,Cu等が選択される。 合金中の不純物としては、S,C,N等が挙げられる。
水素吸蔵合金中の不純物量を下記のように所定値以下に規制すれば、水素吸蔵量や、反応効率をはじめ合金の種々の特性が向上した。
Usually, the hydrogen storage alloy consists of only various elements that react with hydrogen alone to form a hydride, or an element that forms this hydride and an element that does not form a hydride, that is, an alloy constituent element. It consists of a combination of
Examples of the metal that forms the hydride used in the present invention include Ti, Ta, Hf, Zr, Li, Na, Mg, K, Ca, Sc, V, Rb, Sr, Y, Nb, Cs, Ba, La, and Ta. Etc. are exemplified.
Ni, Cr, Mn, Fe, Co, Cu or the like is selected as the alloy constituent element. Examples of impurities in the alloy include S, C, and N.
When the amount of impurities in the hydrogen storage alloy is regulated to a predetermined value or less as described below, various properties of the alloy including the hydrogen storage amount and reaction efficiency are improved.

本発明の水素吸蔵合金中の上記各種不純物量を制御して、合金の特性を調べたところ、合金中の金属不純物総量が1000wtppm以下であれば、大量の水素吸蔵量を確保できた。
より好ましい態様としては、不純物総量を500wtppm以下にしたとき、水素吸蔵量と反応効率をより一層高めることができる。水素吸蔵合金の純度は99.9%以上である。
また、金属不純物の総量だけでなく、個々のS,C,Nの量をそれぞれ、100wtppm以下に規制することも、特性向上の点で重要である。好ましくはS,C,Nの量をそれぞれ、100wtppm以下とする。これらは特に水素吸蔵能に大きく影響を与え、性能を低下させる不純物である。
The characteristics of the alloy were examined by controlling the above-mentioned various impurity amounts in the hydrogen storage alloy of the present invention. As a result, if the total amount of metal impurities in the alloy was 1000 wtppm or less, a large amount of hydrogen storage was ensured.
As a more preferred embodiment, when the total amount of impurities is 500 wtppm or less, the hydrogen storage amount and reaction efficiency can be further increased. The purity of the hydrogen storage alloy is 99.9% or more.
In addition to regulating the total amount of metal impurities, it is also important in terms of improving characteristics to regulate the amount of each S, C, and N to 100 wtppm or less. Preferably, the amounts of S, C, and N are each 100 wtppm or less. These are impurities that particularly affect the hydrogen storage capacity and reduce the performance.

本発明の別の態様として、合金表面に触媒作用金属をメッキ等の、種々の公知の被覆手段により被覆すると、水素吸蔵量及び反応効率はより好ましくなる。
被覆する金属として、例えば、Pd、Pt等の貴金属をあげることができる。Pdは、水素吸蔵作用をする有効な水素化物形成金属ではないが、水素の吸蔵放出反応を助け、水素の放出を容易にする触媒作用をすると考えられる。
本発明合金の使用形態は、バルクでも粉体でも有効に使用することができる。
As another aspect of the present invention, when the surface of the alloy is coated with various known coating means such as plating, the hydrogen storage amount and the reaction efficiency become more preferable.
Examples of the metal to be coated include noble metals such as Pd and Pt. Pd is not an effective hydride-forming metal that absorbs hydrogen, but is thought to act as a catalyst that facilitates the storage and release reaction of hydrogen and facilitates the release of hydrogen.
The use form of the alloy of the present invention can be effectively used in both bulk and powder.

次に、実施例及び比較例を説明するが、本実施例は理解を容易にするためのものであり、本発明を制限するものではない。即ち、本発明の技術思想の範囲内での他の変形或いは他の実施例は、当然本発明に含まれる。
純度の異なる金属原料を選択し、高周波溶解炉を用い、製造条件を変えて種々の不純物量のインゴットを鋳造した。
鋳造インゴットから所定寸法の試験片を作成し、この試験片を水素加圧チャンバーに入れ、20°C、1MPaの水素加圧下で1時間暴露して水素を吸蔵・放出させ、それぞれの水素特性をジーベルツ法により測定した。
Next, although an Example and a comparative example are demonstrated, a present Example is for making an understanding easy, and does not restrict | limit this invention. That is, other modifications or other embodiments within the scope of the technical idea of the present invention are naturally included in the present invention.
Metal raw materials with different purities were selected, and ingots with various amounts of impurities were cast using a high-frequency melting furnace and varying production conditions.
A test piece of a predetermined size is prepared from a casting ingot, this test piece is put in a hydrogen pressure chamber, and exposed to hydrogen pressure at 20 ° C. and 1 MPa for 1 hour to occlude and release hydrogen. Measured by the Siebels method.

(実施例1)
本実施例の水素吸蔵合金は、水素化物を形成する金属であるMgとLiからなり、MgとLiが原子比で1:0.5の割合で混合して製造したもので、該Mg−Li合金中の金属不純物の合計量は350wtppmであり、S:20wtppm、C:40wtppm、N:20wtppmであった。
測定の結果、水素貯蔵量は9.5wt%であることが確認された。
Example 1
The hydrogen storage alloy of this example is made of Mg and Li, which are hydride-forming metals, and is manufactured by mixing Mg and Li at a ratio of 1: 0.5 by atomic ratio. The total amount of metal impurities in the alloy was 350 wtppm, S: 20 wtppm, C: 40 wtppm, and N: 20 wtppm.
As a result of the measurement, it was confirmed that the hydrogen storage amount was 9.5 wt%.

(実施例2)
本実施例の水素吸蔵合金は、水素化物を形成する金属であるMgとLiからなり、MgとLiが原子比で1:1の割合で混合して製造したもので、該Mg−Li合金中の不純物の合計量は、900wtppmであり、S:80wtppm、C:60wtppm、N:70wtppmであった。測定の結果、水素貯蔵量は7.5wt%であることが確認された。
(Example 2)
The hydrogen storage alloy of this example is made of Mg and Li, which are metals that form hydrides, and is manufactured by mixing Mg and Li at an atomic ratio of 1: 1. The total amount of impurities was 900 wtppm, S: 80 wtppm, C: 60 wtppm, and N: 70 wtppm. As a result of the measurement, it was confirmed that the hydrogen storage amount was 7.5 wt%.

(実施例3)
本実施例の水素吸蔵合金は、水素化物を形成する金属として、MgとLiを用い、他の合金構成元素としてNiを用いた。合金の混合組成は、Mg:Li:Niは、原子比で1:0.3:0.2の割合で混合して製造したもので、該Mg−Li−Ni合金中の金属不純物の合計量は400ppmで、S:10wtppm、C:90wtppm、N:90wtppmであった。
測定の結果、水素貯蔵量は8.5wt%であることが確認された。
(Example 3)
In the hydrogen storage alloy of this example, Mg and Li were used as the metal forming the hydride, and Ni was used as the other alloy constituent element. The mixed composition of the alloy was prepared by mixing Mg: Li: Ni at an atomic ratio of 1: 0.3: 0.2, and the total amount of metal impurities in the Mg-Li-Ni alloy. Was 400 ppm, S: 10 wtppm, C: 90 wtppm, and N: 90 wtppm.
As a result of the measurement, it was confirmed that the hydrogen storage amount was 8.5 wt%.

(実施例4)
実施例1と同じ条件で製造した後、さらに表面に10μmの厚さのPdをスパッタ法で被覆した試験片を用いた。
該Mg−Li合金中の不純物の合計量は、350wtppmで、S:20wtppm、C:40wtppm、N:20wtppmであった。
測定の結果、水素貯蔵量は10wt%であることが確認された。
Example 4
After the production under the same conditions as in Example 1, a test piece having a surface coated with Pd having a thickness of 10 μm by a sputtering method was used.
The total amount of impurities in the Mg—Li alloy was 350 wtppm, S: 20 wtppm, C: 40 wtppm, and N: 20 wtppm.
As a result of the measurement, it was confirmed that the hydrogen storage amount was 10 wt%.

(実施例5)
実施例1と同じ条件で製造した後、さらに表面に5μmの厚さのPdをスパッタ法で被覆した試験片を用いた。
該Mg−Li合金中の金属不純物の合計量は300ppmで、S:10ppm、C:30ppm、N:20ppmであった。測定の結果、水素貯蔵量は11wt%であることが確認された。
(Example 5)
After manufacturing under the same conditions as in Example 1, a test piece having a surface coated with 5 μm thick Pd by a sputtering method was used.
The total amount of metal impurities in the Mg—Li alloy was 300 ppm, S: 10 ppm, C: 30 ppm, and N: 20 ppm. As a result of the measurement, it was confirmed that the hydrogen storage amount was 11 wt%.

(実施例6)
本実施例の水素吸蔵合金は、水素化物を形成する金属であるMgとLiからなり、MgとLiが原子比で1:0.5の割合で混合して製造したもので、該Mg−Li合金中の金属不純物の合計量は100wtppmであり、S:20wtppm、C:20wtppm、N:20wtppmであった。
測定の結果、水素貯蔵量は12wt%であることが確認された。
(Example 6)
The hydrogen storage alloy of this example is made of Mg and Li, which are hydride-forming metals, and is manufactured by mixing Mg and Li at a ratio of 1: 0.5 by atomic ratio. The total amount of metal impurities in the alloy was 100 wtppm, S: 20 wtppm, C: 20 wtppm, and N: 20 wtppm.
As a result of the measurement, it was confirmed that the hydrogen storage amount was 12 wt%.

(実施例7)
本実施例の水素吸蔵合金は、水素化物を形成する金属であるMgとLiからなり、MgとLiが原子比で1:0.5の割合で混合して製造したもので、該Mg−Li合金中の金属不純物の合計量は400wtppmであり、S:40wtppm、C:30wtppm、N:20wtppmであった。
測定の結果、水素貯蔵量は9.0wt%であることが確認された。
(Example 7)
The hydrogen storage alloy of this example is made of Mg and Li, which are hydride-forming metals, and is manufactured by mixing Mg and Li at a ratio of 1: 0.5 by atomic ratio. The total amount of metal impurities in the alloy was 400 wtppm, S: 40 wtppm, C: 30 wtppm, and N: 20 wtppm.
As a result of the measurement, it was confirmed that the hydrogen storage amount was 9.0 wt%.

(比較例1)
この水素吸蔵合金は、水素化物を形成する金属である2N(99%)レベルの純度のMgと2N(99%)レベルの純度のLiからなり、これらのMgとLiを原子比で1:0.5の割合で混合し、溶解して製造したもので、該Mg−Li合金中の金属不純物の合計量は1500ppmで、S:20wtppm、C:400wtppm、N:700wtppmであった。特に、金属不純物量、C量及びN量が高い場合の例である。
不純物レベルは、本発明の条件の範囲外である。測定の結果、水素貯蔵量は2.5wt%であった。
(Comparative Example 1)
This hydrogen storage alloy is composed of Mg having a purity of 2N (99%) and Li having a purity of 2N (99%), which is a metal that forms a hydride. The total amount of metallic impurities in the Mg-Li alloy was 1500 ppm, S: 20 wtppm, C: 400 wtppm, and N: 700 wtppm. In particular, this is an example where the amount of metal impurities, the amount of C, and the amount of N are high.
The impurity level is outside the scope of the conditions of the present invention. As a result of the measurement, the hydrogen storage amount was 2.5 wt%.

(比較例2)
この水素吸蔵合金は、水素化物を形成する金属であるMgとLiからなり、MgとLiの原子比で1:0.5の割合で混合し、溶解して製造したもので、この製造後、表面に10μmの厚さのPdをスパッタ法で被覆した。該Mg−Li合金中の金属不純物の合計量は4500ppmで、S:1100wtppm、C:2000wtppm、N:400wtppmであった。特に、金属不純物量が著しく多く、S量、C量及びN量も高い場合の例である。
不純物レベルは、本発明の条件の範囲外である。測定の結果、水素貯蔵量は1.5wt%であることが確認された。Mg−Li合金中の不純物が強く影響しており、表面のPd被覆には改善効果はなかった。
(Comparative Example 2)
This hydrogen storage alloy is made of Mg and Li, which are metals that form hydrides, and is manufactured by mixing and melting at an atomic ratio of Mg and Li of 1: 0.5. The surface was coated with 10 μm thick Pd by sputtering. The total amount of metal impurities in the Mg—Li alloy was 4500 ppm, S: 1100 wtppm, C: 2000 wtppm, and N: 400 wtppm. In particular, this is an example in which the amount of metal impurities is remarkably large and the amounts of S, C and N are also high.
The impurity level is outside the scope of the conditions of the present invention. As a result of the measurement, it was confirmed that the hydrogen storage amount was 1.5 wt%. Impurities in the Mg-Li alloy were strongly influenced, and the surface Pd coating had no improvement effect.

(比較例3)
この水素吸蔵合金は、水素化物を形成する金属であるMgとLiからなり、MgとLiの原子比で1:0.7の割合で混合し、溶解して作製後、表面に5μmの厚さのPdをスパッタ法で被覆したもので、該Mg−Li合金中の金属不純物の合計量は2500ppmで、S:30wtppm、C:700wtppm、N:1500wtppmであった。特に、金属不純物量、C量及びN量が高い場合の例である。
不純物レベルは、本発明の条件の範囲外である。測定の結果、水素貯蔵量は2wt%であることが確認された。Mg−Li合金中の不純物が強く影響しており、表面のPd被覆には改善効果はなかった。
(Comparative Example 3)
This hydrogen storage alloy is made of Mg and Li, which are metals that form hydrides. The atomic ratio of Mg and Li is mixed at a ratio of 1: 0.7, melted, and prepared to have a thickness of 5 μm on the surface. The total amount of metal impurities in the Mg—Li alloy was 2500 ppm, S: 30 wtppm, C: 700 wtppm, and N: 1500 wtppm. In particular, this is an example where the amount of metal impurities, the amount of C, and the amount of N are high.
The impurity level is outside the scope of the conditions of the present invention. As a result of the measurement, it was confirmed that the hydrogen storage amount was 2 wt%. Impurities in the Mg-Li alloy were strongly influenced, and the surface Pd coating had no improvement effect.

(比較例4)
この水素吸蔵合金は、水素化物を形成する金属であるMgとLiからなり、MgとLiの原子比で1:0.7の割合で混合し、溶解して作製後、表面に5μmの厚さのPdをスパッタ法で被覆したもので、該Mg−Li合金中の金属不純物の合計量は2000ppmで、S:500wtppm、C:450wtppm、N:50wtppmであった。特に、金属不純物量、S量及びC量が高い場合の例である。
不純物レベルは、本発明の条件の範囲外である。測定の結果、水素貯蔵量は3.0wt%であることが確認された。Mg−Li合金中の不純物が強く影響しており、表面のPd被覆には改善効果はなかった。
(Comparative Example 4)
This hydrogen storage alloy is made of Mg and Li, which are metals that form hydrides. The atomic ratio of Mg and Li is mixed at a ratio of 1: 0.7, melted, and prepared to have a thickness of 5 μm on the surface. The total amount of metal impurities in the Mg—Li alloy was 2000 ppm, S: 500 wtppm, C: 450 wtppm, and N: 50 wtppm. In particular, this is an example when the amount of metal impurities, the amount of S, and the amount of C are high.
The impurity level is outside the scope of the conditions of the present invention. As a result of the measurement, it was confirmed that the hydrogen storage amount was 3.0 wt%. Impurities in the Mg-Li alloy were strongly influenced, and the surface Pd coating had no improvement effect.

(比較例5)
この水素吸蔵合金は、水素化物を形成する金属であるMgとLiからなり、MgとLiの原子比で1:0.7の割合で混合し、溶解して作製後、表面に5μmの厚さのPdをスパッタ法で被覆したもので、該Mg−Li合金中の金属不純物の合計量は400ppmで、S:120wtppm、C:60wtppm、N:80wtppmであった。特に、S量がやや高い場合の例である。
不純物レベルは、本発明の条件の範囲外である。測定の結果、水素貯蔵量は3.5wt%であることが確認された。Mg−Li合金中の不純物が強く影響しており、表面のPd被覆には改善効果はなかった。
(Comparative Example 5)
This hydrogen storage alloy is made of Mg and Li, which are metals that form hydrides. The atomic ratio of Mg and Li is mixed at a ratio of 1: 0.7, melted, and prepared to have a thickness of 5 μm on the surface. The total amount of metal impurities in the Mg—Li alloy was 400 ppm, S: 120 wtppm, C: 60 wtppm, and N: 80 wtppm. In particular, this is an example when the amount of S is slightly high.
The impurity level is outside the scope of the conditions of the present invention. As a result of the measurement, it was confirmed that the hydrogen storage amount was 3.5 wt%. Impurities in the Mg-Li alloy were strongly influenced, and the surface Pd coating had no improvement effect.

(比較例6)
この水素吸蔵合金は、水素化物を形成する金属であるMgとLiからなり、MgとLiの原子比で1:0.7の割合で混合し、溶解して作製後、表面に5μmの厚さのPdをスパッタ法で被覆したもので、該Mg−Li合金中の金属不純物の合計量は200ppmで、S:30wtppm、C:120wtppm、N:180wtppmであった。特に、C量とN量が高い場合の例である。
不純物レベルは、本発明の条件の範囲外である。測定の結果、水素貯蔵量は4.0wt%であることが確認された。Mg−Li合金中の不純物が強く影響しており、表面のPd被覆には改善効果はなかった。
(Comparative Example 6)
This hydrogen storage alloy is made of Mg and Li, which are metals that form hydrides. The atomic ratio of Mg and Li is mixed at a ratio of 1: 0.7, melted, and prepared to have a thickness of 5 μm on the surface. The total amount of metal impurities in the Mg-Li alloy was 200 ppm, S: 30 wtppm, C: 120 wtppm, and N: 180 wtppm. In particular, this is an example when the amount of C and the amount of N are high.
The impurity level is outside the scope of the conditions of the present invention. As a result of the measurement, it was confirmed that the hydrogen storage amount was 4.0 wt%. Impurities in the Mg-Li alloy were strongly influenced, and the surface Pd coating had no improvement effect.

上記実施例及び比較例の結果を表1に示す。この表1から明らかなように、金属不純物の合計量と非金属である元素であるS、C、Nによって大きく影響を受けることが分かる。従来の水素貯蔵合金では、特に不純物の量が水素吸蔵能に影響を与えるものであるという認識はなく、その量的問題も全く考慮されていなかった。本発明は、これらの問題を効果的に解決するものである。   The results of the above examples and comparative examples are shown in Table 1. As is apparent from Table 1, it can be seen that the total amount of metal impurities and non-metallic elements S, C, and N are greatly affected. In the conventional hydrogen storage alloy, there is no recognition that the amount of impurities particularly affects the hydrogen storage capacity, and the quantitative problem is not considered at all. The present invention effectively solves these problems.

なお、上記実施例及び比較例において示す水素を吸蔵する金属の例は、煩雑さを避けるため、必ずしも全てに亘って述べてはいないが、合金中の不純物の問題は、全ての吸蔵合金において共通している。
すなわち、不純物の多量の含有は水素吸蔵能を著しく低下させる原因となることが上記実施例及び比較例から明らかである。したがって、水素吸蔵合金の選択と共に、不純物の低減は水素吸蔵能を高める上で極めて重要である。
本発明は、水素吸蔵合金の全てに適用できるものである。そして、本発明はそれらを全て包含する。
In addition, although the example of the metal which occludes hydrogen shown in the said Example and comparative example does not necessarily describe over all in order to avoid complexity, the problem of the impurity in an alloy is common in all occlusion alloys. doing.
That is, it is clear from the above Examples and Comparative Examples that a large amount of impurities causes a significant decrease in hydrogen storage capacity. Therefore, along with the selection of a hydrogen storage alloy, the reduction of impurities is extremely important for enhancing the hydrogen storage capacity.
The present invention is applicable to all hydrogen storage alloys. And this invention includes all of them.

Figure 0005329498
Figure 0005329498

本発明の水素吸蔵合金は、合金中の金属不純物量を1000ppm以下に規制したので、水素の吸蔵量は従来合金に比べて著しく増大すると共に、水素の吸蔵速度及び放出効率も向上し、各種特性を改善することができた。特に、金属不純物量を500ppm以下に、さらには非金属であるS、C、Nをそれぞれ100wtppm以下した場合の効果は顕著である。このように、本発明の合金は、水素吸蔵合金として有用である。   In the hydrogen storage alloy of the present invention, the amount of metal impurities in the alloy is regulated to 1000 ppm or less, so that the hydrogen storage amount is significantly increased as compared with conventional alloys, and the hydrogen storage rate and release efficiency are also improved. Was able to improve. In particular, the effect is remarkable when the amount of metal impurities is 500 ppm or less, and further, S, C, and N, which are nonmetals, are each 100 wtppm or less. Thus, the alloy of the present invention is useful as a hydrogen storage alloy.

Claims (3)

水素化物を作る金属元素であるLi若しくはMgから構成される水素吸蔵合金、又は該水素吸蔵合金とNiの合金構成元素からなる水素吸蔵合金であって、上記水素吸蔵合金に含有される金属元素以外の金属不純物の合計含有量が1000wtppm以下、かつ非金属であるS、C、Nがそれぞれ100wtppm以下であり、水素吸蔵合金の表面に、さらに貴金属の被覆層を有することを特徴とする水素吸蔵合金。 A hydrogen storage alloy composed of Li or Mg, which is a metal element that forms a hydride, or a hydrogen storage alloy composed of an alloy constituent element of the hydrogen storage alloy and Ni, other than the metal elements contained in the hydrogen storage alloy hydrogen absorbing the total content of metal impurities is 1000wtppm or less, and Ri S, C, N is 100wtppm or less each der is non-metallic, the surface of the hydrogen storage alloy, further characterized by having a coating layer of a noble metal alloy. 前記貴金属の被覆層が、Pd又はPtの被覆層からなることを特徴とする請求項1に記載の水素吸蔵合金 The hydrogen storage alloy according to claim 1, wherein the noble metal coating layer is made of a Pd or Pt coating layer . 水素吸蔵合金に含有される金属元素以外の金属不純物の合計含有量が、500wtppm以下であることを特徴とする請求項1又は2記載の水素吸蔵合金。 Hydrogen the total content of storage alloy metal impurities other than the metal elements contained are, according to claim 1 or 2 wherein the hydrogen absorbing alloy is characterized in that less 500Wtppm.
JP2010195336A 2010-09-01 2010-09-01 Hydrogen storage alloy Expired - Fee Related JP5329498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010195336A JP5329498B2 (en) 2010-09-01 2010-09-01 Hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010195336A JP5329498B2 (en) 2010-09-01 2010-09-01 Hydrogen storage alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004086017A Division JP4808384B2 (en) 2004-03-24 2004-03-24 Hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JP2011021276A JP2011021276A (en) 2011-02-03
JP5329498B2 true JP5329498B2 (en) 2013-10-30

Family

ID=43631588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010195336A Expired - Fee Related JP5329498B2 (en) 2010-09-01 2010-09-01 Hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP5329498B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107739936B (en) * 2017-10-10 2018-11-27 安徽工业大学 A kind of high entropy reversible hydrogen storage alloy of Mg base and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953153A (en) * 1995-08-17 1997-02-25 Matsushita Electric Ind Co Ltd Zirconium-chromium-iron type hydrogen storage alloy
JPH1025529A (en) * 1996-03-28 1998-01-27 Shin Etsu Chem Co Ltd Hydrogen storage alloy containing rare earth element, its production, alkali storage battery cathode using the alloy, and alkali storage battery
JPH10219376A (en) * 1997-02-10 1998-08-18 Nuclear Fuel Ind Ltd Soft zirconium alloy excellent in hydrogen absorbing characteristic and stress corrosion cracking resistance in high temperature-high pressure water vapor atmosphere
JP2001262247A (en) * 2000-03-16 2001-09-26 Dowa Mining Co Ltd Method for producing magnesium series hydrogen storage alloy

Also Published As

Publication number Publication date
JP2011021276A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
JP4828986B2 (en) Hydrogen storage alloy, hydrogen storage membrane and hydrogen storage tank
JP4261566B2 (en) Hydrogen storage alloy, hydrogen separation membrane, hydrogen storage tank, and hydrogen storage / release method
JP5092747B2 (en) Hydrogen storage alloy and manufacturing method thereof, hydrogen storage alloy electrode, and secondary battery
JP2002327230A (en) Magnesium-based hydrogen absorbing alloy
CN114107776B (en) Hydrogen storage alloy with high hydrogen storage capacity and preparation method thereof
JP2016528676A (en) Synergistic multiphase hydride alloy
JP5449989B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage device
JPH0382734A (en) Rare earth metal-series hydrogen storage alloy
JP6602785B2 (en) Hydrogen storage multiphase alloy
JP5329498B2 (en) Hydrogen storage alloy
JP5700305B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, and secondary battery
JP4808384B2 (en) Hydrogen storage alloy
KR100958419B1 (en) Hydrogen storage alloy
KR101583297B1 (en) Hydrogen stroge alloy based on titanium-zirconium and production methods thereof
JP2002241884A (en) Hydrogen storage alloy
JP5213156B2 (en) High capacity hydrogen storage alloy
EP4129534A1 (en) Ab5-type based hydrogen storage alloys, methods of preparation and uses thereof
JPS5947022B2 (en) Alloy for hydrogen storage
JP4417805B2 (en) Hydrogen storage alloy and hydrogen storage container
JP2000303101A (en) Hydrogen storage alloy excellent in durability, and its manufacture
JP2006256888A (en) Hydrogen storage material and its manufacturing method
JP3795443B2 (en) Titanium-chromium-manganese hydrogen storage alloy
JP2001279361A (en) V-based solid solution type hydrogen storage alloy
WO2018155400A1 (en) Hydrogen-occluding alloy
JP5356495B2 (en) High capacity hydrogen storage alloy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130724

R150 Certificate of patent or registration of utility model

Ref document number: 5329498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees