JP5355429B2 - Positive electrode for power storage device, manufacturing method thereof, and power storage device cell - Google Patents

Positive electrode for power storage device, manufacturing method thereof, and power storage device cell Download PDF

Info

Publication number
JP5355429B2
JP5355429B2 JP2010004042A JP2010004042A JP5355429B2 JP 5355429 B2 JP5355429 B2 JP 5355429B2 JP 2010004042 A JP2010004042 A JP 2010004042A JP 2010004042 A JP2010004042 A JP 2010004042A JP 5355429 B2 JP5355429 B2 JP 5355429B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode layer
current collector
capacitor
collector foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010004042A
Other languages
Japanese (ja)
Other versions
JP2011146431A (en
Inventor
憲朗 光田
万希子 吉瀬
茂 相原
大吾 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010004042A priority Critical patent/JP5355429B2/en
Publication of JP2011146431A publication Critical patent/JP2011146431A/en
Application granted granted Critical
Publication of JP5355429B2 publication Critical patent/JP5355429B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオンキャパシタとリチウムイオン電池との構成を内蔵した電力貯蔵デバイスセルに用いられる電力貯蔵デバイス用正極の構成とその製造方法に関する。   The present invention relates to a configuration of a positive electrode for a power storage device used in a power storage device cell incorporating a configuration of a lithium ion capacitor and a lithium ion battery, and a manufacturing method thereof.

電力貯蔵デバイスセルとしては、電気二重層キャパシタ、リチウムイオン電池、リチウムイオンキャパシタなどがある。キャパシタは、セパレータを挟んで互いに対向する分極性電極(正極および負極)が設けられており、電解液中において、この分極性電極の表面に形成される電気二重層の静電容量を利用したものである。ここで、キャパシタは、電気二重層キャパシタ、スーパーキャパシタ、電気化学キャパシタなどとも呼ばれ、以下で説明するリチウムイオンキャパシタも、このキャパシタに含めて呼称される。   Examples of the power storage device cell include an electric double layer capacitor, a lithium ion battery, and a lithium ion capacitor. Capacitors are provided with polarizable electrodes (positive and negative electrodes) facing each other with a separator interposed therebetween, and use the capacitance of the electric double layer formed on the surface of the polarizable electrode in the electrolyte It is. Here, the capacitor is also referred to as an electric double layer capacitor, a super capacitor, an electrochemical capacitor, or the like, and a lithium ion capacitor described below is also included in this capacitor.

リチウムイオン電池は、リチウムをカーボン負極に安定に充電貯蔵できることが特長である。そして、正極には、コバルト、ニッケル、マンガンなどの酸化物が用いられている。   The lithium ion battery is characterized in that lithium can be stably charged and stored in the carbon negative electrode. An oxide such as cobalt, nickel, or manganese is used for the positive electrode.

電気二重層キャパシタは、アルミ電解コンデンサほどの瞬発力はないが、出力密度が大きく、短時間での充放電ができるという利点を有している。一方、リチウムイオン電池は、電力貯蔵デバイスの中では、圧倒的なエネルギー密度(すなわち、持続力)を持った電力貯蔵デバイスである。キャパシタの瞬発力と、リチウム電池の持続力との両方を兼ね備えた電力貯蔵デバイスセルを実現できれば、ハイブリッド自動車や各種のブレーキ回生など、さまざまな用途に利用することができる。   The electric double layer capacitor does not have the instantaneous power as much as that of the aluminum electrolytic capacitor, but has an advantage that the output density is large and charging / discharging can be performed in a short time. On the other hand, the lithium ion battery is a power storage device having an overwhelming energy density (ie, sustainability) among the power storage devices. If a power storage device cell that has both the instantaneous power of a capacitor and the sustainability of a lithium battery can be realized, it can be used for various applications such as hybrid vehicles and various types of brake regeneration.

また、新しいキャパシタとして、リチウムイオンキャパシタが開発されている。このリチウムイオンキャパシタは、電気二重層キャパシタの負極にリチウムイオンをドープしたもので、電気二重層キャパシタよりも高い上限電圧が得られるが、下限電圧を0Vにまでできないという特性を持つものである。以下、リチウムイオンキャパシタのことを、簡単のために、キャパシタと表記する。   In addition, lithium ion capacitors have been developed as new capacitors. This lithium ion capacitor is obtained by doping lithium ions into the negative electrode of an electric double layer capacitor, and has a characteristic that an upper limit voltage higher than that of the electric double layer capacitor can be obtained but the lower limit voltage cannot be reduced to 0V. Hereinafter, the lithium ion capacitor is referred to as a capacitor for the sake of simplicity.

キャパシタとリチウムイオン電池との構造を内蔵した電力貯蔵デバイスセルとして、本発明と同じ出願人によって開示されたものがある(例えば、特許文献1参照)。この特許文献1は、電気二重層キャパシタの瞬発力と、リチウムイオン電池の持続力とを兼ね備えた理想的な電力貯蔵デバイスを実現できるものである。   As a power storage device cell incorporating a structure of a capacitor and a lithium ion battery, there is one disclosed by the same applicant as the present invention (see, for example, Patent Document 1). This patent document 1 can realize an ideal power storage device that combines the instantaneous power of an electric double layer capacitor and the sustainability of a lithium ion battery.

特開2009−141181号公報(図1、図12参照)Japanese Patent Laying-Open No. 2009-141181 (see FIGS. 1 and 12)

しかしながら、従来技術には、以下のような課題がある。
従来の電力貯蔵デバイスセルは、キャパシタの瞬発力を生かして急速な充放電を繰り返すと、電池正極の劣化が大きくなるという課題があった。原因を調査究明した結果、次の2点の要因により、劣化が促進されていることが判明した。
(要因1)充電時に、キャパシタの大きな発熱があり、充電時に副反応を起こして劣化しやすい電池正極の温度を高めて副反応を促進して劣化を大きくしている。
(要因2)放電時には、逆にキャパシタの大きな吸熱があり、充放電時に正極内部で局部的に大きな温度差が生じることで、電池正極の膨張・収縮等の物理的な変化をもたらしていること。
However, the prior art has the following problems.
The conventional power storage device cell has a problem that deterioration of the battery positive electrode increases when rapid charge / discharge is repeated by utilizing the instantaneous force of the capacitor. As a result of investigating and investigating the cause, it was found that deterioration was promoted by the following two factors.
(Factor 1) When the battery is charged, the capacitor generates a large amount of heat. When the battery is charged, the temperature of the battery positive electrode, which easily deteriorates, is increased to accelerate the side reaction and increase the deterioration.
(Factor 2) On the contrary, there is a large heat absorption of the capacitor at the time of discharging, and a large temperature difference is locally generated inside the positive electrode at the time of charging / discharging, thereby causing physical changes such as expansion / contraction of the battery positive electrode. .

本発明は、前記のような課題を解決するためになされたものであり、充電時の局部的な温度上昇や局部的な温度変化を緩和し、急速な充放電を繰り返した場合に起こる電池正極の劣化を抑えることのできる電力貯蔵デバイス正極とその製造方法および電力貯蔵デバイスセルを得ることを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and is a battery positive electrode that occurs when rapid charge / discharge is repeated by mitigating local temperature rise and local temperature change during charging. An object of the present invention is to obtain a power storage device positive electrode capable of suppressing deterioration of the battery, a method for manufacturing the same, and a power storage device cell.

本発明に係る電力貯蔵デバイス正極は、正極集電箔の一方の面に、充電時に発熱し、放電時に吸熱する活性炭の粒子を含むキャパシタ正極電極層が形成されたキャパシタ正極と、正極集電箔の他方の面に、充電時に吸熱し、放電時に発熱するリチウム含有金属化合物の粒子を含んだ電池正極電極層が形成された電池正極とを備えた電力貯蔵デバイス用正極であって、正極集電箔は、厚さが7μm以上15μm未満であり、キャパシタ正極電極層と電池正極電極層とに挟持された正極集電箔は、キャパシタ正極電極層および電池正極電極層に含まれる粒子の形状に沿った起伏を有しているものである。 The power storage device positive electrode according to the present invention includes a positive electrode current collector foil and a positive electrode current collector foil, on which one side of the positive electrode current collector foil is formed with a capacitor positive electrode layer including activated carbon particles that generate heat during charge and absorb heat during discharge. A positive electrode for a power storage device comprising a battery positive electrode layer formed with a battery positive electrode layer containing particles of a lithium-containing metal compound that absorbs heat during charge and generates heat during discharge. The foil has a thickness of 7 μm or more and less than 15 μm, and the positive electrode current collector foil sandwiched between the capacitor positive electrode layer and the battery positive electrode layer follows the shape of the particles contained in the capacitor positive electrode layer and the battery positive electrode layer. and those that have undulating.

また、本発明に係る電力貯蔵デバイス正極の製造方法は、正極集電箔の一方の面に、充電時に発熱し、放電時に吸熱する活性炭の粒子を含むキャパシタ正極電極層が形成されたキャパシタ正極と、正極集電箔の他方の面に、充電時に吸熱し、放電時に発熱するリチウム含有金属化合物の粒子を含んだ電池正極電極層が形成された電池正極とを備え、正極集電箔は、厚さが7μm以上15μm未満であり、キャパシタ正極電極層と電池正極電極層とに挟持された正極集電箔は、キャパシタ正極電極層および電池正極電極層に含まれる粒子の形状に沿った起伏を有している電力貯蔵デバイス用正極の製造方法であって、正極集電箔の起伏をホットロールプレスによって形成する段階を含むものである。 In addition, the method for producing a positive electrode for a power storage device according to the present invention includes a capacitor positive electrode layer having a capacitor positive electrode layer including activated carbon particles that generate heat during charge and absorb heat during discharge on one surface of the positive electrode current collector foil. A battery positive electrode layer on which the battery positive electrode layer containing particles of a lithium-containing metal compound that absorbs heat during charge and generates heat during discharge is formed on the other surface of the positive electrode current collector foil. The positive electrode current collector foil sandwiched between the capacitor positive electrode layer and the battery positive electrode layer has undulations along the shape of the particles contained in the capacitor positive electrode layer and the battery positive electrode layer. A method for producing a positive electrode for a power storage device, comprising the step of forming a undulation of a positive electrode current collector foil by a hot roll press.

さらに、本発明に係る電力貯蔵デバイスセルは、正極集電箔の一方の面に、充電時に発熱し、放電時に吸熱する活性炭の粒子を含むキャパシタ正極電極層が形成されたキャパシタ正極と、正極集電箔の他方の面に、充電時に吸熱し、放電時に発熱するリチウム含有金属化合物の粒子を含んだ電池正極電極層が形成された電池正極とを有し、正極集電箔は、厚さが7μm以上15μm未満であり、キャパシタ正極電極層と電池正極電極層とに挟持された正極集電箔は、キャパシタ正極電極層および電池正極電極層に含まれる粒子の形状に沿った起伏を有している電力貯蔵デバイス用正極と、負極集電箔の両面に負極電極層が形成され、集電箔のみ、もしくは負極全体を貫通する貫通孔を有する共通負極とを備え、電力貯蔵デバイス用正極と共通負極とをセパレータを介して交互に積層もしくは巻回したものである。 Furthermore, the power storage device cell according to the present invention includes a capacitor positive electrode in which a capacitor positive electrode layer including activated carbon particles that generate heat during charge and absorb heat during discharge is formed on one surface of the positive electrode current collector foil, and a positive electrode current collector foil. A battery positive electrode layer on which the battery positive electrode layer containing particles of a lithium-containing metal compound that absorbs heat during charging and generates heat during discharge is formed on the other surface of the electric foil. The positive electrode current collector foil that is 7 μm or more and less than 15 μm and is sandwiched between the capacitor positive electrode layer and the battery positive electrode layer has undulations along the shape of the particles contained in the capacitor positive electrode layer and the battery positive electrode layer Common to the positive electrode for a power storage device, and a common negative electrode having a negative electrode layer formed on both sides of the negative electrode current collector foil and having a through-hole penetrating only the current collector foil or the entire negative electrode. negative The poles are alternately stacked or wound through separators.

本発明によれば、正極集電箔を薄くして起伏を設け、表裏の活性炭粒子とチウム含有金属化合物の粒子との伝熱を促進するとともに、充電時と放電時で吸熱と発熱が表のキャパシタ正極とは逆になる電池正極を正極集電箔の裏に配置することで、充電時の局部的な温度上昇や局部的な温度変化を緩和し、急速な充放電を繰り返した場合に起こる電池正極の劣化を抑えることのできる電力貯蔵デバイス正極とその製造方法および電力貯蔵デバイスセルを得ることができる。   According to the present invention, the positive electrode current collector foil is thinned to provide undulations to promote heat transfer between the activated carbon particles on the front and back surfaces and the particles of the thium-containing metal compound, and the heat absorption and heat generation during charging and discharging are front and back. The battery positive electrode, which is opposite to the capacitor positive electrode, is placed behind the positive electrode current collector foil to reduce local temperature rise and local temperature change during charging, and occurs when repeated rapid charge / discharge It is possible to obtain a power storage device positive electrode capable of suppressing deterioration of the battery positive electrode, a manufacturing method thereof, and a power storage device cell.

本発明の実施の形態1における電力貯蔵デバイスセルの断面模式図である。It is a cross-sectional schematic diagram of the electric power storage device cell in Embodiment 1 of this invention. 本発明の実施の形態1における電力貯蔵デバイス用正極の断面拡大模式図である。It is a cross-sectional enlarged schematic diagram of the positive electrode for electric power storage devices in Embodiment 1 of this invention. 本発明の実施の形態1におけるリチウム含有コバルト酸化物(LiCoO)正極を用いたリチウム電池の充放電曲線と、吸熱・発熱との関係を示すグラフである。A charge-discharge curve of the lithium battery using the lithium-containing cobalt oxide (LiCoO 2) positive electrode in the first embodiment of the present invention, is a graph showing the relationship between heat absorption, heat generation. 本発明の実施の形態1における正極集電箔の起伏を作る製造方法に関する説明図である。It is explanatory drawing regarding the manufacturing method which makes the undulation of the positive electrode current collection foil in Embodiment 1 of this invention. 本発明の実施の形態1における電力貯蔵デバイスセルの急速充電時の特性図である。It is a characteristic view at the time of quick charge of the electric power storage device cell in Embodiment 1 of this invention. 本発明の実施の形態1における電力貯蔵デバイスセルの急速放電時の特性図である。It is a characteristic view at the time of rapid discharge of the electric power storage device cell in Embodiment 1 of this invention. 本発明の実施の形態1における性能試験用の電力貯蔵デバイスセルの平面構成図である。It is a plane block diagram of the power storage device cell for performance tests in Embodiment 1 of the present invention. 本発明の実施の形態2における電力貯蔵デバイスセルの断面模式図である。It is a cross-sectional schematic diagram of the electric power storage device cell in Embodiment 2 of this invention. 本発明の実施の形態3における電力貯蔵デバイスセルの断面模式図である。It is a cross-sectional schematic diagram of the electric power storage device cell in Embodiment 3 of this invention.

実施の形態1.
図1は、本発明の実施の形態1における電力貯蔵デバイスセルの断面模式図である。本実施の形態1における電力貯蔵デバイスセルは、ハイブリッド正極10、2つの共通負極20、第1のセパレータ31、および第2のセパレータ32を備えている。
Embodiment 1 FIG.
FIG. 1 is a schematic cross-sectional view of a power storage device cell according to Embodiment 1 of the present invention. The power storage device cell in the first embodiment includes a hybrid positive electrode 10, two common negative electrodes 20, a first separator 31, and a second separator 32.

ハイブリッド正極10は、正極集電箔11の表裏に、活性炭粒子12を含むキャパシタ正極電極層13と、リチウム含有金属化合物粒子14を含むリチウム電池正極電極層15を形成して構成される。また、2つの共通負極20は、負極集電箔21の表裏に、カーボン粒子を塗布したキャパシタ負極電極層22とリチウム電池負極電極層23を形成した後、貫通孔(図示せず)を形成して電解液を連通させて構成されている。   The hybrid positive electrode 10 is configured by forming a capacitor positive electrode layer 13 including activated carbon particles 12 and a lithium battery positive electrode layer 15 including lithium-containing metal compound particles 14 on both sides of the positive electrode current collector foil 11. In addition, the two common negative electrodes 20 are formed with a capacitor negative electrode layer 22 and a lithium battery negative electrode layer 23 coated with carbon particles on the front and back surfaces of the negative electrode current collector foil 21 and then through holes (not shown). The electrolyte solution is communicated.

キャパシタ正極電極層13とキャパシタ負極電極層22を第1のセパレータ31を介して対峙させることで、キャパシタ部を構成している。また、リチウムイオンの電池正極電極層15とリチウム電池負極電極層23を第2のセパレータ32を介して対峙させることで、リチウム電池部を構成している。   The capacitor positive electrode layer 13 and the capacitor negative electrode layer 22 are opposed to each other via the first separator 31 to constitute a capacitor unit. Further, the lithium battery battery positive electrode layer 15 and the lithium battery negative electrode layer 23 are opposed to each other via the second separator 32 to constitute a lithium battery portion.

短冊状のハイブリッド正極10と共通負極20と第1のセパレータ31と第2のセパレータ32とを交互に積層することで、積層形の蓄電デバイスが構成される。また、ロール状のハイブリッド正極10と共通負極20と第1のセパレータ31と第2のセパレータ32とを一緒に巻回することで、巻回形もしくは扁平巻回形の蓄電デバイスが構成される。   By stacking the strip-like hybrid positive electrode 10, the common negative electrode 20, the first separator 31, and the second separator 32 alternately, a stacked power storage device is configured. Further, by winding together the roll-shaped hybrid positive electrode 10, the common negative electrode 20, the first separator 31, and the second separator 32, a wound type or flat wound type electricity storage device is configured.

電解液としては、例えば、電解質であるLiPFを有機溶媒に含有させた電解液を用いることができ、キャパシタ部とリチウム電池部とで共用する。また、有機溶媒としては、例えば、炭酸プロピレン(PC)、炭化エチレン(EC)、あるいは炭化ジエチルカーボネート(DEC)などを用いることができる。 As the electrolytic solution, for example, an electrolytic solution in which LiPF 6 that is an electrolyte is contained in an organic solvent can be used, which is shared by the capacitor unit and the lithium battery unit. As the organic solvent, for example, propylene carbonate (PC), ethylene carbide (EC), or diethyl carbonate (DEC) can be used.

正極集電箔11には、厚さ7μm以上15μm以下のアルミニウム箔を用いることが望ましい。また、負極集電箔21は、貫通孔のない厚さ約10μm以上20μm以下の銅箔上の表裏に、黒鉛系やハードカーボンなどのカーボン粒子を塗布したキャパシタ負極電極層22とリチウム電池負極電極層23とを形成した後に、剣山のような先端の尖ったものを用いて、物理的に銅箔に貫通孔24を開口して形成することができる。   As the positive electrode current collector foil 11, it is desirable to use an aluminum foil having a thickness of 7 μm or more and 15 μm or less. The negative electrode current collector foil 21 includes a capacitor negative electrode layer 22 and a lithium battery negative electrode in which carbon particles such as graphite and hard carbon are coated on the front and back surfaces of a copper foil having a thickness of about 10 μm to 20 μm. After forming the layer 23, the through hole 24 can be physically opened by using a sharpened tip such as Kenzan.

また、別の形態として、あらかじめ貫通孔24が形成された厚さ約10μm以上20μm以下のパンチングメタルの銅箔やエキスパンドメタルの銅箔などを用いて、その表裏に、キャパシタ負極電極層22とリチウム電池負極電極層23とを形成した負極集電箔21を用いることができる。   Further, as another form, using a punching metal copper foil or an expanded metal copper foil having a thickness of about 10 μm to 20 μm with a through-hole 24 formed in advance, the capacitor negative electrode layer 22 and lithium The negative electrode current collector foil 21 in which the battery negative electrode layer 23 is formed can be used.

第1セパレータ31および第2のセパレータ32は、例えば、厚さが10〜50μm程度、気孔率(空隙率)が60〜80体積%程度、平均気孔径が数〜数十μm程度の多孔質のセルロース、ポリエチレン、ポリプロピレンなどを用いることができる。   The first separator 31 and the second separator 32 are, for example, porous having a thickness of about 10 to 50 μm, a porosity (porosity) of about 60 to 80% by volume, and an average pore diameter of about several to several tens of μm. Cellulose, polyethylene, polypropylene and the like can be used.

キャパシタ正極電極層13の活性炭粒子12としては、フェノール樹脂、石油ピッチ、石油コークス、ヤシガラなどを原料として、水蒸気賦活もしくはアルカリ賦活を施した、平均粒子径が1〜10μm程度の粒子を用いることが望ましい。   As the activated carbon particles 12 of the capacitor positive electrode layer 13, it is preferable to use particles having an average particle diameter of about 1 to 10 μm, which are activated by steam or alkali using phenol resin, petroleum pitch, petroleum coke, coconut shell, or the like as a raw material. desirable.

リチウム電池正極電極層15のリチウム含有金属化合物粒子14としては、充電時の吸熱量と放電時の発熱量が大きいことから、リチウムコバルト酸化物(LiCoO)が望ましい。この他のリチウム含有金属化合物粒子14としては、充電時に吸熱、放電時に発熱するものとして、リチウムニッケル酸化物(LiNiO)やリチウムマンガン酸化物(LiMn)を含むリチウムコバルト酸化物であってよく、3元系や4元系などの多元系であってもよい。 As the lithium-containing metal compound particles 14 of the lithium battery positive electrode layer 15, lithium cobalt oxide (LiCoO 2 ) is desirable because of the large amount of heat absorbed during charging and large amount of heat generated during discharging. Other lithium-containing metal compound particles 14 may be lithium cobalt oxide containing lithium nickel oxide (LiNiO 2 ) or lithium manganese oxide (LiMn 2 O 4 ), which absorbs heat during charge and generates heat during discharge. It may be a multi-component system such as a ternary system or a quaternary system.

また、リチウム含有金属化合物粒子14の平均粒子径は、2〜10μm程度の粒子を用いることが望ましい。特に、このリチウム含有金属化合物粒子14の平均粒子径は、キャパシタ正極電極層13の活性炭粒子12の平均粒子径に近いことが望ましい。   The average particle size of the lithium-containing metal compound particles 14 is preferably about 2 to 10 μm. In particular, the average particle diameter of the lithium-containing metal compound particles 14 is desirably close to the average particle diameter of the activated carbon particles 12 of the capacitor positive electrode layer 13.

キャパシタ負極電極層22とリチウム電池負極電極層23の材料としては、一般のリチウムイオン電池に使われている黒鉛、ハードカーボン、非晶質カーボン、メソカーボンマイクロビーズ黒鉛などのカーボン微粒子を用いることができる。さらに、この平均粒子径は、1〜20μm程度が望ましい。   As the material for the capacitor negative electrode layer 22 and the lithium battery negative electrode layer 23, carbon fine particles such as graphite, hard carbon, amorphous carbon, mesocarbon microbead graphite, etc. used in general lithium ion batteries are used. it can. Further, the average particle diameter is desirably about 1 to 20 μm.

次に、本実施の形態1における、リチウム電池正極電極層15のリチウム含有コバルト系酸化物粒子14と、キャパシタ正極電極層13の活性炭粒子12の、充放電による吸熱発熱とハイブリッド正極構造の詳細について説明する。図2は、本発明の実施の形態1における電力貯蔵デバイス用正極の断面拡大模式図である。また、図3は、本発明の実施の形態1におけるリチウム含有コバルト酸化物(LiCoO)正極を用いたリチウム電池の充放電曲線と、吸熱・発熱との関係を示すグラフである。 Next, details of endothermic heat generation and hybrid positive electrode structure due to charging / discharging of lithium-containing cobalt-based oxide particles 14 of the lithium battery positive electrode layer 15 and activated carbon particles 12 of the capacitor positive electrode layer 13 in the first embodiment. explain. FIG. 2 is a schematic enlarged cross-sectional view of the positive electrode for a power storage device according to Embodiment 1 of the present invention. FIG. 3 is a graph showing the relationship between the charge / discharge curve of the lithium battery using the lithium-containing cobalt oxide (LiCoO 2 ) positive electrode according to Embodiment 1 of the present invention and the endothermic / heat generation.

図3で明らかなように、リチウムコバルト酸化物(LiCoO)正極は、充電初期、すなわち、電圧が2.9Vから3.8V程度まで上昇する間に大きな吸熱があり、放電末期、すなわち、電圧が3.8Vから2.8V程度まで下降する間に大きな発熱がある。これらの吸熱量と発熱量は、ジュール熱、すなわち、内部抵抗と電流の二乗に比例する発熱量よりも多い。従って、このリチウムコバルト酸化物(LiCoO)正極の影響で、リチウム電池部は、充電時に温度が下がり、放電時に温度が上昇する。 As is apparent from FIG. 3, the lithium cobalt oxide (LiCoO 2 ) positive electrode has a large endotherm during the initial charge, that is, while the voltage rises from about 2.9 V to about 3.8 V, and the end of discharge, that is, the voltage Generates a large amount of heat while the voltage drops from 3.8V to about 2.8V. These endothermic amounts and calorific values are greater than Joule heat, that is, calorific values proportional to the square of internal resistance and current. Therefore, due to the influence of this lithium cobalt oxide (LiCoO 2 ) positive electrode, the temperature of the lithium battery part decreases during charging and increases during discharging.

この現象は、広く知られており、リチウムコバルト酸化物(LiCoO)の結晶変化に基づくエントロピー変化の吸熱量と発熱量であることが判明している。リチウムコバルト酸化物(LiCoO)以外にも、Co,Mn,Niの三元系のリチウム含有酸化物でも、吸熱量と発熱量は、同様にして起こる。 This phenomenon is widely known and has been found to be an endothermic amount and an exothermic amount of entropy change based on crystal change of lithium cobalt oxide (LiCoO 2 ). In addition to lithium cobalt oxide (LiCoO 2 ), the endothermic amount and the calorific value of the ternary lithium-containing oxide of Co, Mn, and Ni are generated in the same manner.

特に、急速放電の時に、ジュール熱と、リチウムコバルト酸化物(LiCoO)の結晶系の変化による発熱が重なる。この結果、リチウムコバルト酸化物(LiCoO)の膨張収縮を伴うこととなり、劣化の大きな原因になっていた。従って、リチウムコバルト酸化物(LiCoO)では、これまで、急速放電する場合には、低電圧まで放電しない使い方が一般的であった。以上の理由によって、リチウムコバルト酸化物(LiCoO)は、リチウム電池の中でもエネルギー密度が最も高い系であるが、せっかく溜まっている大量の電気を急速に取り出すことができなかった。 In particular, during rapid discharge, Joule heat and heat generation due to changes in the crystal system of lithium cobalt oxide (LiCoO 2 ) overlap. As a result, lithium cobalt oxide (LiCoO 2 ) was accompanied by expansion and contraction, which was a major cause of deterioration. Therefore, in the case of lithium cobalt oxide (LiCoO 2 ), in the past, in the case of rapid discharge, a method of not discharging to a low voltage has been common. For the above reasons, lithium cobalt oxide (LiCoO 2 ) is the system having the highest energy density among lithium batteries, but a large amount of accumulated electricity could not be rapidly extracted.

一方、キャパシタ正極電極層13の活性炭粒子12については、図示しないが、充電時には、陰イオンが有機溶媒と共に数ナノメータの大きさの気孔に入り、エントロピー変化による大きな発熱がある。また、放電時には、陰イオンが有機溶媒と共に数ナノメータの大きさの気孔から出て、エントロピー変化による大きな吸熱がある。これらの吸熱・発熱の変化は、リチウム含有コバルト系酸化物粒子14の場合と全く逆である。そこで、本発明は、この逆の吸熱発熱を利用して、劣化を大幅に軽減することを技術的特徴とするものである。   On the other hand, the activated carbon particles 12 of the capacitor positive electrode layer 13 are not shown, but at the time of charging, anions enter pores having a size of several nanometers together with the organic solvent, and there is a large heat generation due to entropy change. Further, during discharge, anions come out of pores having a size of several nanometers together with an organic solvent, and there is a large endotherm due to entropy change. These changes in endotherm and heat generation are completely opposite to those of the lithium-containing cobalt-based oxide particles 14. Therefore, the present invention has a technical feature that the reverse endothermic heat generation is utilized to greatly reduce deterioration.

図1および図2に示す本実施の形態1のハイブリッド正極10では、リチウム電池正極電極層15のリチウム含有コバルト系酸化物粒子14と、キャパシタ正極電極層13の活性炭粒子12が、起伏のある正極集電箔11に接触して近接しており、明らかに伝熱が良くなっている。この結果、充電時には、リチウム含有コバルト系酸化物粒子14の発熱が、起伏のある正極集電箔11を介して活性炭粒子12に伝達されて吸熱される。   In the hybrid positive electrode 10 of the first embodiment shown in FIGS. 1 and 2, the lithium-containing cobalt-based oxide particles 14 of the lithium battery positive electrode layer 15 and the activated carbon particles 12 of the capacitor positive electrode layer 13 are undulated positive electrodes. It is in close contact with the current collector foil 11, and the heat transfer is clearly improved. As a result, during charging, heat generated by the lithium-containing cobalt-based oxide particles 14 is transmitted to the activated carbon particles 12 through the undulating positive electrode current collector foil 11 and absorbed.

また、放電時には、活性炭粒子12の発熱が、起伏のある正極集電箔11を介してリチウム含有コバルト系酸化物粒子14に伝達されて吸熱される。従って、ハイブリッド正極としては、ジュール熱を除いて、吸熱と発熱がバランスして、一定の温度を保つことができる。温度が一定になれば、高温でのリチウム含有コバルト系酸化物粒子14の劣化や活性炭粒子12内部での電解液の副反応を防止することができる。   Moreover, at the time of discharge, the heat generation of the activated carbon particles 12 is transmitted to the lithium-containing cobalt-based oxide particles 14 through the undulating positive electrode current collector foil 11 and absorbed. Therefore, as a hybrid positive electrode, excluding Joule heat, heat absorption and heat generation are balanced and a constant temperature can be maintained. If the temperature becomes constant, it is possible to prevent deterioration of the lithium-containing cobalt-based oxide particles 14 at a high temperature and side reactions of the electrolyte solution inside the activated carbon particles 12.

図2のような正極集電箔11の起伏がなければ、あるいは、正極集電箔の厚さが、通常使用されるアルミ箔のように30〜50μmと厚ければ、速やかな伝熱による熱移動は困難であり、本発明の効果を十分に発揮することができなくなる。正極集電箔11の厚さとしては、7〜15μmが望ましく、材質としての展性と正極条件での耐電圧から、アルミ箔が望ましい。   If there is no undulation of the positive electrode current collector foil 11 as shown in FIG. 2 or if the thickness of the positive electrode current collector foil is 30 to 50 μm as in a commonly used aluminum foil, heat due to rapid heat transfer The movement is difficult, and the effects of the present invention cannot be fully exhibited. The thickness of the positive electrode current collector foil 11 is desirably 7 to 15 μm, and aluminum foil is desirable from the viewpoint of malleability as a material and withstand voltage under positive electrode conditions.

次に、図2のような正極集電箔11の起伏を作る製造方法について、図4を用いて説明する。図4は、本発明の実施の形態1における正極集電箔11の起伏を作る製造方法に関する説明図である。具体的には、ホットロールプレスで、ハイブリッド正極10を圧縮して、正極集電箔11の起伏が生じる様子を模式的に図示している。   Next, a manufacturing method for making the undulations of the positive electrode current collector foil 11 as shown in FIG. 2 will be described with reference to FIG. FIG. 4 is an explanatory diagram relating to a manufacturing method for forming the undulations of the positive electrode current collector foil 11 according to Embodiment 1 of the present invention. More specifically, the hybrid positive electrode 10 is compressed by a hot roll press, and the appearance of the undulation of the positive electrode current collector foil 11 is schematically illustrated.

左側は、圧縮する前のハイブリッド正極10の断面模式図である。ホットロールプレスの熱媒温度を150℃に設定して、両面に塗布乾燥したハイブリッド正極10をホットロールプレスに通す。この結果、上下の粒子に押されて、薄いアルミ箔が圧延されて、上下の粒子の形状に沿って変形し、まさに、図4の右側に示すように起伏が生じる。なお、上下の粒子の平均粒径が揃っていることが望ましく、上下から同じ大きさの粒子で圧延されることによって、上下に平均的に起伏した理想的な正極集電箔11が形成される。   The left side is a schematic cross-sectional view of the hybrid positive electrode 10 before being compressed. The heating medium temperature of the hot roll press is set to 150 ° C., and the hybrid positive electrode 10 coated and dried on both sides is passed through the hot roll press. As a result, the thin aluminum foil is rolled by being pushed by the upper and lower particles, and deforms along the shape of the upper and lower particles, and the undulation is generated exactly as shown on the right side of FIG. In addition, it is desirable that the average particle diameters of the upper and lower particles are uniform, and an ideal positive electrode current collector foil 11 that is averaged up and down is formed by rolling with the same size particles from the upper and lower sides. .

図5は、本発明の実施の形態1における電力貯蔵デバイスセルの急速充電時の特性図である。また、図6は、本発明の実施の形態1における電力貯蔵デバイスセルの急速放電時の特性図である。具体的には、図5は、一定の電流で5秒間の急速充電を行った場合、図6は、同じく5秒間の急速放電を行った場合の、キャパシタ部およびリチウム電池部に流れる電流のシミュレーション結果を示したものである。   FIG. 5 is a characteristic diagram at the time of rapid charging of the power storage device cell according to the first embodiment of the present invention. Moreover, FIG. 6 is a characteristic diagram at the time of rapid discharge of the power storage device cell in Embodiment 1 of the present invention. Specifically, FIG. 5 shows a simulation of the current flowing in the capacitor part and the lithium battery part when a quick charge is performed for 5 seconds at a constant current, and FIG. The results are shown.

図5の急速充電時において、充電初期には、キャパシタ部が分担し、キャパシタ部の電圧の低下に伴って、リチウム電池部の分担が増える。充電が終了すると、キャパシタに溜めていた電力がリチウム電池部に移動する。このように、充電初期の大電流をキャパシタが分担することで、リチウム電池の急速充電による劣化を抑制でき、リチウム電池の充電時間を、キャパシタからの充電時間を含めて実質的に長く保つことができる。この結果、充電効率が高まり、リチウム電池部からの発熱も小さくなる。これが、キャパシタ部とリチウム電池部とを備えた電力貯蔵デバイスの大きな効果である。   At the time of rapid charging in FIG. 5, the capacitor portion is shared at the initial stage of charging, and the sharing of the lithium battery portion increases as the voltage of the capacitor portion decreases. When charging is completed, the electric power stored in the capacitor moves to the lithium battery unit. In this way, by sharing a large current at the beginning of charging, the capacitor can suppress deterioration due to rapid charging of the lithium battery, and the charging time of the lithium battery can be kept substantially long including the charging time from the capacitor. it can. As a result, charging efficiency increases and heat generation from the lithium battery portion also decreases. This is a great effect of the power storage device including the capacitor unit and the lithium battery unit.

これに加えて、キャパシタ正極は、充電時に発熱するが、リチウム電池正極が吸熱するので、熱バランスが保たれ、キャパシタ正極が放電してリチウム電池正極に充電する際には、両方共に吸熱になる。この結果、ジュール熱を除けば、温度が低下することになる。従って、リチウム電池への急速充電時のリチウム電池正極の劣化を大幅に抑制することができる。図6に示した急速放電時においても、同様であり、リチウム電池正極の劣化を大幅に抑制することができる。   In addition, the capacitor positive electrode generates heat during charging, but the lithium battery positive electrode absorbs heat, so the thermal balance is maintained, and when the capacitor positive electrode discharges and charges the lithium battery positive electrode, both of them absorb heat. . As a result, if Joule heat is removed, temperature will fall. Therefore, the deterioration of the lithium battery positive electrode during rapid charging of the lithium battery can be significantly suppressed. The same applies to the rapid discharge shown in FIG. 6, and the deterioration of the lithium battery positive electrode can be significantly suppressed.

次に、本発明の効果を、具体的な実施例1〜3、および比較例1〜3に基づいて説明する。   Next, the effect of the present invention will be described based on specific Examples 1 to 3 and Comparative Examples 1 to 3.

実施例1
[ハイブリッド正極の作製]
キャパシタ正極電極層としての平均粒径5μmの活性炭と、バインダーとしてのアクリル系ポリマーと、溶媒としての水とからなる電極ペーストを混合調製した。次に、このペーストを幅300mm、厚さ10μmの純アルミニウム製の集電箔の片面に塗工し、厚さ100μmのキャパシタ正極電極層を形成した。このアルミ集電箔の裏面にリチウム電池正極電極層として、平均粒径5μmのコバルト酸リチウム、アセチレンブラック、バインダーとしてのポリフッ化ビニリデン(PVDF)をn−メチルピロリドン(NMP)に分散させ、100℃で乾燥させた。これにより、厚さ100μmのリチウム電池正極電極を形成し、200℃でホットロールプレスして、実施例1のハイブリッド正極を得た。
Example 1
[Production of hybrid positive electrode]
An electrode paste composed of activated carbon having an average particle diameter of 5 μm as a capacitor positive electrode layer, an acrylic polymer as a binder, and water as a solvent was prepared by mixing. Next, this paste was applied to one side of a current collector foil made of pure aluminum having a width of 300 mm and a thickness of 10 μm to form a capacitor positive electrode layer having a thickness of 100 μm. As a lithium battery positive electrode layer on the back surface of the aluminum current collector foil, lithium cobaltate having an average particle diameter of 5 μm, acetylene black, and polyvinylidene fluoride (PVDF) as a binder are dispersed in n-methylpyrrolidone (NMP), and 100 ° C. And dried. As a result, a lithium battery positive electrode having a thickness of 100 μm was formed, and hot roll pressing was performed at 200 ° C. to obtain a hybrid positive electrode of Example 1.

その後、400kg/cmの線圧力をかけて、180℃でホットロールプレスすることで、アルミ集電箔の表裏に、活性炭の粒子とコバルト酸リチウムの粒子を食い込ませた。断面を実体顕微鏡で観察することで、図2のように、アルミ集電箔が破れることなく、表裏の粒子の形状に押される形で大きな起伏が生じている様子が観測された。   Thereafter, hot roll pressing was performed at 180 ° C. under a linear pressure of 400 kg / cm, whereby activated carbon particles and lithium cobalt oxide particles were caused to bite into the front and back of the aluminum current collector foil. By observing the cross section with a stereomicroscope, it was observed that the aluminum current collector foil was not broken as shown in FIG.

ハイブリッド正極の全体の厚さは、170μmであった。この正極を30mm×50mmの短冊に切断し、角から23mm×20mmの部分を切除して、7mm×20mmのタブ部を設け、その表裏のキャパシタ正極電極及びリチウム電池正極電極層を剥がし、箔部を露出させて電流端子タブ部とした。   The total thickness of the hybrid positive electrode was 170 μm. This positive electrode is cut into a 30 mm × 50 mm strip, a 23 mm × 20 mm portion is cut from the corner, a 7 mm × 20 mm tab portion is provided, and the capacitor positive electrode and the lithium battery positive electrode layer on the front and back are peeled off, and the foil portion Was exposed to form a current terminal tab portion.

[負極の作製]
負極電極層としての黒鉛粒子と、バインダーとしてのポリフッ化ビニリデンと、溶媒としてのn−メチルピロリドンからなる電極ペーストを混合調製した。次に、このペーストを負極集電箔として、幅300mm、厚さ20μmの銅箔の片面に塗工形成して乾燥後、カレンダーロールプレスにて105℃で加圧して負極電極とした。この負極を32mm×52mmの短冊に切断し、角から20mm×20mmの部分を切除して、7mm×20mmのタブ部を設け、電流端子タブ部とした。
[Production of negative electrode]
An electrode paste composed of graphite particles as a negative electrode layer, polyvinylidene fluoride as a binder, and n-methylpyrrolidone as a solvent was mixed and prepared. Next, this paste was used as a negative electrode current collector foil, coated and formed on one side of a copper foil having a width of 300 mm and a thickness of 20 μm, dried, and then pressed at 105 ° C. with a calendar roll press to obtain a negative electrode. This negative electrode was cut into a 32 mm × 52 mm strip, a 20 mm × 20 mm portion was cut from the corner, and a 7 mm × 20 mm tab portion was provided to form a current terminal tab portion.

[セルの作製]
負極(電極層は片面)、ハイブリッド正極、負極(電極層は片面)の順に互いの電極層が対向するように中心を揃えて積層し、間に厚さ35μmのセルロース系紙セパレータを1枚はさんだ。2枚の負極の集電タブを重ねて、この集電タブにアルミニウム箔を超音波溶接により接続して、正極集電端子とした。
[Production of cell]
A negative electrode (electrode layer is on one side), a hybrid positive electrode, and a negative electrode (electrode layer is on one side) are laminated in order so that the electrode layers face each other, and one sheet of cellulose paper separator with a thickness of 35 μm is placed between them. Mr .. Two negative electrode current collecting tabs were overlapped, and an aluminum foil was connected to the current collecting tabs by ultrasonic welding to obtain a positive electrode current collecting terminal.

図7は、本発明の実施の形態1における性能試験用の電力貯蔵デバイスセルの平面構成図である。電極積層体を、図7のようにアルミラミネートフィルムの外装40に収納し、電解液として、1.2mol/lのLiPFを含む、エチレンカーボネート−ジエチルカーボネート3:7混合溶媒を注液し、最後にアルミラミネート外装を封口し、試験用セルとした。 FIG. 7 is a plan configuration diagram of a power storage device cell for performance testing in Embodiment 1 of the present invention. The electrode laminate is housed in an aluminum laminate film exterior 40 as shown in FIG. 7, and an ethylene carbonate-diethyl carbonate 3: 7 mixed solvent containing 1.2 mol / l LiPF 6 is injected as an electrolyte. Finally, the aluminum laminate exterior was sealed to obtain a test cell.

図7において、アルミラミネートフィルムの外装40は、2つ折りして、3辺を熱可塑性樹脂で熱融着する(図7における熱融着部50に相当)。正極電流端子部17には、フッ素樹脂被覆されたアロメル・カロメルの熱電対16をカプトンテープ18で固定した。   In FIG. 7, the aluminum laminate film exterior 40 is folded in two and the three sides are heat-sealed with a thermoplastic resin (corresponding to the heat-sealing portion 50 in FIG. 7). The positive electrode current terminal portion 17 was fixed with a Kapton tape 18 with a fluororesin-coated aroma / calomel thermocouple 16.

電流端子部は、金属との密着性を改善した熱可塑性樹脂が装着された後、外装40に熱融着されている。図7の底辺については、真空引きを行って電解液を含浸した後、最終的に熱融着して封止した。   The current terminal portion is heat-sealed to the exterior 40 after a thermoplastic resin with improved adhesion to metal is attached. The bottom side of FIG. 7 was vacuum-evacuated and impregnated with an electrolytic solution, and finally heat-sealed and sealed.

なお、図7において、外装40が長くなっているのは、3cm×3cmの電極部に面圧をかけて充放電試験を実施する際に、電極から劣化に伴うガスが発生しても、長くなった外装部に発生したガスを溜めて、試験を継続できるようにするためである。なお、正極よりも負極を、外形で4辺とも1mm大きくして、正極と負極のずれによる測定誤差を防いでいる。   In FIG. 7, the exterior 40 is long even when a gas accompanying deterioration is generated from the electrode when the surface pressure is applied to the electrode portion of 3 cm × 3 cm to perform the charge / discharge test. This is because the generated gas is accumulated in the outer packaging so that the test can be continued. Note that the negative electrode is made larger than the positive electrode by 1 mm on all four sides in order to prevent measurement errors due to the deviation between the positive electrode and the negative electrode.

[セルの評価]
このセルについて、3cm×3cmの電極部にステンレス製の押さえ板で5kg/cmの面圧をかけて、25℃環境下で下限電圧2.0V、上限電圧4.0Vで6分間充電、6分間放電(10C)を繰り返す充放電試験を行った。10分後の温度上昇値をΔTとして評価した。
Cell evaluation
For this cell, a surface pressure of 5 kg / cm 2 was applied to a 3 cm × 3 cm electrode portion with a stainless steel holding plate, and charged at a lower limit voltage of 2.0 V and an upper limit voltage of 4.0 V for 6 minutes in an environment of 25 ° C., 6 The charge / discharge test was repeated for 10 minutes. The temperature rise value after 10 minutes was evaluated as ΔT.

実施例2
キャパシタ正極電極層として、平均粒径2μmの活性炭を用い、リチウム電池正極電極層として平均粒径2μmのコバルト酸リチウムを用い、厚さ7μmのアルミニウム箔を用いており、それら以外は、実施例1と同じとした。
Example 2
As the capacitor positive electrode layer, activated carbon having an average particle diameter of 2 μm was used, as the lithium battery positive electrode layer, lithium cobaltate having an average particle diameter of 2 μm was used, and an aluminum foil having a thickness of 7 μm was used. And the same.

実施例3
キャパシタ正極電極層として、平均粒径10μmの活性炭を用い、リチウム電池正極電極層として、平均粒径10μmのコバルト酸リチウムを用い、厚さ15μmのアルミニウム箔を用いており、それら以外は、実施例1と同じとした。
Example 3
As the capacitor positive electrode layer, activated carbon having an average particle diameter of 10 μm is used, and as the lithium battery positive electrode layer, lithium cobaltate having an average particle diameter of 10 μm is used, and an aluminum foil having a thickness of 15 μm is used. Same as 1.

比較例1
厚さ20μmのアルミニウム箔を用いており、それ以外は、実施例1と同じとした。
Comparative Example 1
An aluminum foil having a thickness of 20 μm was used, and other than that was the same as Example 1.

比較例2
ハイブリッド正極のホットロールプレスを行わなかったこと以外は、実施例1と同じとした。
Comparative Example 2
Example 1 was the same as Example 1 except that the hot-roll press of the hybrid positive electrode was not performed.

比較例3
キャパシタ正極電極層として、平均粒径10μmの活性炭を用い、リチウム電池正極電極層として、平均粒径2μmのコバルト酸リチウムを用いており、それら以外は、実施例1と同じとした。
Comparative Example 3
As the capacitor positive electrode layer, activated carbon having an average particle diameter of 10 μm was used, and as the lithium battery positive electrode layer, lithium cobaltate having an average particle diameter of 2 μm was used.

実施例1、2、3と比較例1、2、3のそれぞれの条件下において、10分後の温度上昇値ΔTを比較した評価結果をまとめて表1に示す。   Table 1 summarizes the evaluation results comparing the temperature rise value ΔT after 10 minutes under the conditions of Examples 1, 2, 3 and Comparative Examples 1, 2, 3.

Figure 0005355429
Figure 0005355429

表1において、実施例1と比較例1とを比較すると、実施例1の方が15℃も負極集電箔の温度が低く保たれている。このことから、本実施の形態1の吸熱発熱のバランスによる温度上昇防止の効果、特に、集電箔の厚さの効果は、明らかである。すなわち、集電箔が厚すぎると、ホットロールプレスしても起伏が生じず、良好な伝熱を保つことができない。比較例1の断面実体顕微鏡写真で、アルミ集電箔に起伏が生じていないことを確認した。   In Table 1, when Example 1 and Comparative Example 1 are compared, Example 1 keeps the temperature of the negative electrode current collector foil as low as 15 ° C. From this, the effect of temperature rise prevention by the balance of endothermic heat generation according to the first embodiment, in particular, the effect of the thickness of the current collector foil is clear. That is, if the current collector foil is too thick, undulation does not occur even when hot roll pressing is performed, and good heat transfer cannot be maintained. In the cross-sectional stereomicrograph of Comparative Example 1, it was confirmed that there was no undulation in the aluminum current collector foil.

表1において、実施例1と比較例2とを比較すると、実施例1の方が10℃も負極集電箔の温度が低く保たれている。このことから、本実施の形態1の吸熱発熱のバランスによる温度上昇防止の効果、特に、ホットロールプレスの効果は、明らかである。すなわち、ホットロールプレスしないと起伏が生じず、良好な伝熱を保つことができない。比較例2の断面実体顕微鏡写真で、当然ではあるが、アルミ集電箔に起伏が生じていないことを確認した。   In Table 1, when Example 1 and Comparative Example 2 are compared, Example 1 is kept at a lower temperature of the negative electrode current collector foil by 10 ° C. From this, the effect of the temperature rise prevention by the balance of endothermic heat generation according to the first embodiment, in particular, the effect of the hot roll press is clear. That is, unless hot roll pressing is performed, undulations do not occur and good heat transfer cannot be maintained. In the cross-sectional stereomicrograph of Comparative Example 2, it was confirmed that there was no undulation in the aluminum current collector foil.

表1において、実施例1と比較例3とを比較すると、実施例1の方が8℃も負極集電箔の温度が低く保たれている。このことから、本実施の形態1の吸熱発熱のバランスによる温度上昇防止の効果、特に、表裏の平均粒子径の効果は明らかである。すなわち、表裏の平均粒子径が違いすぎると、ホットロールプレスしても起伏が生じず、良好な伝熱を保つことができない。比較例3の断面実体顕微鏡写真で、アルミ集電箔に起伏は、多少生じていたが、粒子との密着性が良好になっていないことを確認した。   In Table 1, when Example 1 and Comparative Example 3 are compared, Example 1 keeps the temperature of the negative electrode current collector foil as low as 8 ° C. From this, the effect of temperature rise prevention by the balance of endothermic heat generation according to the first embodiment, in particular, the effect of the average particle diameter on the front and back sides is clear. That is, if the average particle diameters on the front and back sides are too different, undulation will not occur even with hot roll pressing, and good heat transfer cannot be maintained. In the cross-sectional stereomicrograph of Comparative Example 3, it was confirmed that the aluminum current collector foil had some undulations, but the adhesion with the particles was not good.

表1において、実施例1〜3における負極集電箔の温度は、いずれも低く保たれている(10分後の温度上昇値ΔTが、9〜18℃の値となっている)。このことから、本実施の形態1の吸熱発熱のバランスによる温度上昇防止の効果、特に、表裏の平均粒子径を同じに保つ効果は明らかである。すなわち、アルミ集電箔が多少厚くなっても、表裏の粒子径がほぼ同じであれば、表裏からバランス良く圧力が加わり、粒子の形状に合わせて集電箔に起伏が生じ、表裏の粒子が密着して、表裏の粒子間距離が最短に保たれるので、良好な熱伝導が保たれる。   In Table 1, the temperatures of the negative electrode current collector foils in Examples 1 to 3 are all kept low (the temperature increase value ΔT after 10 minutes is 9 to 18 ° C.). From this, the effect of preventing the temperature rise due to the balance of endothermic heat generation according to the first embodiment, in particular, the effect of keeping the average particle diameter on the front and back sides the same is clear. In other words, even if the aluminum current collector foil is somewhat thicker, if the front and back particle diameters are approximately the same, pressure is applied in a balanced manner from the front and back surfaces, and the current collector foil undulates according to the shape of the particles. Adhering to each other, the distance between the front and back particles is kept to the shortest, so that good heat conduction is maintained.

以上のように、実施の形態1において、集電箔の厚さとしては、7μmから15μmが望ましく、7μmを下回ると、集電箔が破れる、あるいは集電箔に孔が開くなどの不具合が生じる。集電箔に孔が開くと、正極表裏の電解液が短絡して、活性炭粒子とコバルト酸リチウムの粒子との間に短絡電流が流れ、劣化が起こる。また、15μmを上まわると、集電箔の起伏が生じにくくなり、伝熱が阻害される。   As described above, in the first embodiment, the thickness of the current collector foil is preferably 7 μm to 15 μm. If the thickness is less than 7 μm, problems such as breakage of the current collector foil or opening of holes in the current collector foil occur. . When a hole is opened in the current collector foil, the electrolyte solution on the front and back sides of the positive electrode is short-circuited, and a short-circuit current flows between the activated carbon particles and the lithium cobalt oxide particles, resulting in deterioration. On the other hand, if the thickness exceeds 15 μm, the current collecting foil does not easily undulate and heat transfer is hindered.

また、実施の形態1において、ホットロールプレスされることが望ましく、バインダーが軟化する温度近くまで加熱されることで、活性炭の粒子およびコバルト酸リチウムの粒子が流動しやすくなり、集電箔の起伏が形成されやすくなる。   Further, in the first embodiment, it is desirable to perform hot roll pressing, and by heating to near the temperature at which the binder is softened, the activated carbon particles and the lithium cobalt oxide particles easily flow, and the current collector foil is undulated. Is easily formed.

また、実施の形態1において、表裏の平均粒子径は、同程度であることが望ましく、表裏からほぼ同じ大きさの粒子でプレスされることで、集電箔の起伏が形成されやすくなる。また、表裏の平均粒子径が大きく異なる場合には、集電箔が破れやすくなる。   Moreover, in Embodiment 1, it is desirable that the average particle diameters on the front and back sides are approximately the same, and by pressing the particles with substantially the same size from the front and back sides, the undulations of the current collector foil are easily formed. Moreover, when the average particle diameters of the front and back are greatly different, the current collector foil is easily broken.

なお、上記の実施例1〜3と比較例1〜3では、小型セルでの試験のため、負極集電箔の片面に負極電極層を設けた場合を示した。これに対して、図1のように、負極集電箔の両面に負極電極層を設けて、セパレータを介して交互に積層することでも、同じ効果が得られることは自明である。また、長尺にして、巻回、あるいは扁平巻回しても同じ効果が得られることは自明である。   In addition, in said Examples 1-3 and Comparative Examples 1-3, the case where the negative electrode layer was provided in the single side | surface of negative electrode current collection foil was shown for the test in a small cell. On the other hand, as shown in FIG. 1, it is obvious that the same effect can be obtained by providing negative electrode layers on both sides of the negative electrode current collector foil and alternately laminating them via separators. In addition, it is obvious that the same effect can be obtained even if it is made long and wound or flatly wound.

また、上記の実施例1〜3と比較例1〜3では、表裏の正極電極層が同じ厚さの場合を示したが、異なっていても同じ効果が得られる。さらには、キャパシタ正極電極層の単位面積あたりの充電時および放電時の発熱量および吸熱量と、リチウム電池正極電極層の単位面積あたりの充電時および放電時の吸熱量および発熱量とが同じになるように、キャパシタ正極電極層とリチウム電池正極電極層に含まれる活性炭粒子およびリチウム含有金属化合物の粒子の量を正極電極層の厚さや密度で調整すれば、本発明による温度上昇防止の効果がさらに高められる。   Moreover, in said Examples 1-3 and Comparative Examples 1-3, although the case where the positive electrode layer of the front and back was the same thickness was shown, even if it differs, the same effect is acquired. Furthermore, the amount of heat generation and heat absorption during charging and discharging per unit area of the capacitor positive electrode layer is the same as the amount of heat absorption and heat generation during charging and discharging per unit area of the lithium battery positive electrode layer. Thus, if the amount of activated carbon particles and lithium-containing metal compound particles contained in the capacitor positive electrode layer and the lithium battery positive electrode layer is adjusted by the thickness and density of the positive electrode layer, the effect of preventing temperature rise according to the present invention can be obtained. Further enhanced.

以上のように、実施の形態1によれば、キャパシタ正極と電池正極とを同じ正極集電箔の表裏に設けた電力貯蔵デバイス正極において、正極集電箔を薄くして起伏を設けた構造としている。この結果、キャパシタ正極と電池正極との間の伝熱を容易にしている。さらに、電池正極に、充電時に吸熱し、放電時に発熱する材料を用いることで、充電時のキャパシタ正極の発熱を電池正極の吸熱でキャンセルし、放電時の電池正極の発熱をキャパシタの吸熱でキャンセルさせることができる。これにより、充電時の局部的な温度上昇や局部的な温度変化が緩和され、急速な充放電を繰り返した場合に起こる電池正極の劣化を防止することができる。   As described above, according to the first embodiment, in the power storage device positive electrode in which the capacitor positive electrode and the battery positive electrode are provided on the front and back sides of the same positive electrode current collector foil, the positive electrode current collector foil is thinned and provided with undulations. Yes. As a result, heat transfer between the capacitor positive electrode and the battery positive electrode is facilitated. Furthermore, by using a material that absorbs heat at the time of charging and generates heat at the time of discharging, the heat generation of the capacitor positive electrode at the time of charging is canceled by the heat absorption of the battery positive electrode, and the heat generation of the battery positive electrode at the time of discharging is canceled by the heat absorption of the capacitor. Can be made. Thereby, the local temperature rise and local temperature change at the time of charge are relieved, and the deterioration of the battery positive electrode which occurs when rapid charge / discharge is repeated can be prevented.

実施の形態2.
図8は、本発明の実施の形態2における電力貯蔵デバイスセルの断面模式図である。先の実施の形態1との違いは、負極集電箔21に多数の孔(貫通孔24)の開いたパンチングメタルを用いていることのみである。
Embodiment 2. FIG.
FIG. 8 is a schematic cross-sectional view of a power storage device cell according to Embodiment 2 of the present invention. The only difference from the first embodiment is that punching metal having a large number of holes (through holes 24) is used for the negative electrode current collector foil 21.

多数の孔は、共通負極20の電気化学電位を一定に保つことを可能にする。この結果、キャパシタ正極もしくは電池正極の局部的な高電位や低電位による腐食の危険性を、大幅に軽減することができる効果が得られる。   The large number of holes makes it possible to keep the electrochemical potential of the common negative electrode 20 constant. As a result, there is an effect that the risk of corrosion due to the local high potential or low potential of the capacitor positive electrode or the battery positive electrode can be greatly reduced.

負極集電箔21には、パンチングメタルの他、エキスパンドメタルやマスクを使って、部分的に多数の孔を化学エッチングで設けるエッチング箔を用いても良い。   The negative electrode current collector foil 21 may be an etching foil in which a number of holes are partially formed by chemical etching using an expanded metal or a mask in addition to a punching metal.

以上のように、実施の形態2によれば、負極集電箔に多数の孔を備えた電力貯蔵デバイスセルを用いることで、先の実施の形態1の効果に加え、キャパシタ正極もしくは電池正極の局部的な高電位や低電位による腐食の危険性を、大幅に軽減することが可能となる。   As described above, according to the second embodiment, by using the power storage device cell having a large number of holes in the negative electrode current collector foil, in addition to the effect of the first embodiment, the capacitor positive electrode or the battery positive electrode The risk of corrosion due to local high and low potentials can be greatly reduced.

実施の形態3.
図9は、本発明の実施の形態3における電力貯蔵デバイスセルの断面模式図である。先の実施の形態1との違いは、共通負極20全体を貫通する多数の孔(貫通孔25)を設けたことのみである。
Embodiment 3 FIG.
FIG. 9 is a schematic cross-sectional view of a power storage device cell according to Embodiment 3 of the present invention. The only difference from the first embodiment is that a large number of holes (through holes 25) penetrating the entire common negative electrode 20 are provided.

共通負極20全体を貫通する多数の孔は、共通負極20の電気化学電位を一定に保つことを可能にする。この結果、キャパシタ正極もしくは電池正極の局部的な高電位や低電位による腐食の危険性を、大幅に軽減することができる効果が得られる。さらに、電解液やイオンを、共通負極の表裏を介して表裏のセパレータに速やかに移動できるので、電極の膨張収縮に速やかに応答して、急速な充放電による劣化を防止する効果が得られる。   A large number of holes penetrating the entire common negative electrode 20 makes it possible to keep the electrochemical potential of the common negative electrode 20 constant. As a result, there is an effect that the risk of corrosion due to the local high potential or low potential of the capacitor positive electrode or the battery positive electrode can be greatly reduced. Furthermore, since the electrolytic solution and ions can be quickly moved to the front and back separators through the front and back surfaces of the common negative electrode, the effect of preventing rapid deterioration due to rapid charge and discharge can be obtained quickly in response to the expansion and contraction of the electrodes.

共通負極20の穴開け加工方法としては、例えば、底辺0.4mm、高さ0.7mmの四角錐の突起が0.8mm間隔で形成されている金属金型と、表面が平滑な金属板との間に共通負極20を設置し、0.3MPa程度の圧力でプレスする操作を繰り返す方法、あるいは、針をもったローラーに通して多数の孔を開ける方法などがある。   As a drilling method for the common negative electrode 20, for example, a metal mold in which quadrangular pyramid projections having a base of 0.4 mm and a height of 0.7 mm are formed at intervals of 0.8 mm, a metal plate having a smooth surface, There are a method in which the common negative electrode 20 is installed between the two and a pressing operation at a pressure of about 0.3 MPa is repeated, or a method in which a large number of holes are opened through a roller having a needle.

貫通孔25の開口面積としては、負極集電箔21の全面積に対して、1〜50面積%が好ましく、さらには5〜20面積%が望ましい。1〜50面積%の範囲であれば、イオン伝導性および電気伝導性をともに確保することができる。さらに、5〜20面積%の範囲であれば、イオン伝導性と電気伝導性のバランスが良好となるとともに、集電箔の強度を十分に保つことができる。   The opening area of the through hole 25 is preferably 1 to 50% by area, and more preferably 5 to 20% by area with respect to the total area of the negative electrode current collector foil 21. If it is the range of 1-50 area%, both ion conductivity and electrical conductivity can be ensured. Furthermore, if it is the range of 5-20 area%, while the balance of ion conductivity and electrical conductivity will become favorable, the intensity | strength of current collection foil can fully be maintained.

この開口面積を変化させることによって、貫通孔25を透過する場合のイオン伝導抵抗が変化する。この結果、キャパシタ部およびリチウム電池部の電気化学電位の差異を制御することができ、開口面積を小さくするほど、電気化学電位の差異が大きくなって、リチウム電池部の電気化学電位が緩慢に変化するようになる。   By changing the opening area, the ion conduction resistance when passing through the through hole 25 is changed. As a result, the difference in electrochemical potential between the capacitor part and the lithium battery part can be controlled. The smaller the opening area, the larger the difference in electrochemical potential and the slower the electrochemical potential of the lithium battery part. To come.

以上のように、実施の形態3によれば、共通負極全体を貫通する多数の孔を備えた電力貯蔵デバイスセルを用いることで、先の実施の形態1の効果に加え、キャパシタ正極もしくは電池正極の局部的な高電位や低電位による腐食の危険性を、大幅に軽減するとともに、電極の膨張収縮に速やかに応答して、急速な充放電による劣化を防止することが可能となる。   As described above, according to the third embodiment, by using the power storage device cell having a large number of holes penetrating the entire common negative electrode, in addition to the effect of the first embodiment, the capacitor positive electrode or the battery positive electrode It is possible to significantly reduce the risk of corrosion due to local high potential and low potential, and to quickly respond to the expansion and contraction of the electrode, thereby preventing deterioration due to rapid charge and discharge.

なお、上記実施の形態1〜3では、リチウム含有金属化合物の粒子としてコバルト酸リチウムの場合を示した。しかしながら、本発明はこれに限定されず、充電時に吸熱、放電時に発熱するリチウム含有金属化合物の粒子であればよい。具体的には、この他に、充電時に吸熱、放電時に発熱するものとして、リチウムニッケル酸化物(LiNiO)やリチウムマンガン酸化物(LiMn)を含むリチウムコバルト酸化物であってよく、3元系や4元系などの多元系であってもよい。 In the first to third embodiments, the case of lithium cobaltate is shown as the lithium-containing metal compound particles. However, the present invention is not limited to this, and any lithium-containing metal compound particles that absorb heat during charging and generate heat during discharging may be used. Specifically, in addition to this, it may be a lithium cobalt oxide containing lithium nickel oxide (LiNiO 2 ) or lithium manganese oxide (LiMn 2 O 4 ), which absorbs heat during charging and generates heat during discharging. A multi-component system such as a ternary system or a quaternary system may be used.

10 ハイブリッド正極、11 正極集電箔、12 活性炭粒子、13 キャパシタ正極電極層、14 リチウム含有金属化合物粒子、15 電池正極電極層、16 熱電対、17 正極電流端子部、18 カプトンテープ(接着テープ)、20 共通負極、21 負極集電箔、22 キャパシタ負極電極層、23 リチウム電池負極電極層、24 貫通孔(集電箔の貫通孔)、25 貫通孔(共通負極を貫通する貫通孔)、31 第1のセパレータ、32 第2のセパレータ、40 外装、50 熱融着部。   DESCRIPTION OF SYMBOLS 10 Hybrid positive electrode, 11 Positive electrode current collection foil, 12 Activated carbon particle, 13 Capacitor positive electrode layer, 14 Lithium containing metal compound particle, 15 Battery positive electrode layer, 16 Thermocouple, 17 Positive current terminal part, 18 Kapton tape (adhesive tape) , 20 Common negative electrode, 21 Negative electrode current collector foil, 22 Capacitor negative electrode layer, 23 Lithium battery negative electrode layer, 24 Through hole (through hole of current collector foil), 25 Through hole (through hole penetrating the common negative electrode), 31 1st separator, 32 2nd separator, 40 exterior, 50 heat fusion part.

Claims (6)

正極集電箔の一方の面に、充電時に発熱し、放電時に吸熱する活性炭の粒子を含むキャパシタ正極電極層が形成されたキャパシタ正極と、
前記正極集電箔の他方の面に、充電時に吸熱し、放電時に発熱するリチウム含有金属化合物の粒子を含んだ電池正極電極層が形成された電池正極と
を備えた電力貯蔵デバイス用正極であって、
前記正極集電箔は、厚さが7μm以上15μm未満であり、
前記キャパシタ正極電極層と前記電池正極電極層とに挟持された前記正極集電箔は、前記キャパシタ正極電極層および前記電池正極電極層に含まれる粒子の形状に沿った起伏を有している
ことを特徴とする電力貯蔵デバイス用正極。
A capacitor positive electrode on which one surface of the positive electrode current collector foil is formed with a capacitor positive electrode layer including activated carbon particles that generate heat during charge and absorb heat during discharge;
A positive electrode for a power storage device, comprising: a battery positive electrode layer including a battery positive electrode layer including particles of a lithium-containing metal compound that absorbs heat during charge and generates heat during discharge on the other surface of the positive electrode current collector foil. And
The positive electrode current collector foil has a thickness of 7 μm or more and less than 15 μm,
The positive electrode current collector foil sandwiched between the capacitor positive electrode layer and the battery positive electrode layer has undulations along the shape of particles contained in the capacitor positive electrode layer and the battery positive electrode layer . A positive electrode for a power storage device.
請求項1に記載の電力貯蔵デバイス用正極において、
前記活性炭の粒子と前記リチウム含有金属化合物の粒子の平均粒子径は、ともに2μm以上10μm未満であり、かつそれぞれの平均粒子径が略同一であることを特徴とする電力貯蔵デバイス用正極。
The positive electrode for a power storage device according to claim 1,
An average particle size of the activated carbon particles and the lithium-containing metal compound particles is both 2 μm or more and less than 10 μm, and the average particle size is approximately the same, and the positive electrode for a power storage device.
請求項1または2に記載の電力貯蔵デバイス用正極において、
前記キャパシタ正極電極層に含まれる前記活性炭粒子の量、および前記電池正極電極層に含まれる前記リチウム含有金属化合物の粒子の量は、前記キャパシタ正極電極層の単位面積あたりの充電時および放電時のそれぞれにおける発熱量および吸熱量と、前記電池正極電極層の単位面積あたりの充電時および放電時のそれぞれにおける吸熱量および発熱量とが同じになるように調整されていることを特徴とする電力貯蔵デバイス用正極。
The positive electrode for a power storage device according to claim 1 or 2,
The amount of the activated carbon particles contained in the capacitor positive electrode layer and the amount of the lithium-containing metal compound particles contained in the battery positive electrode layer are determined during charging and discharging per unit area of the capacitor positive electrode layer. The power storage, wherein the heat generation amount and the heat absorption amount in each of the battery positive electrode layer and the heat absorption amount and the heat generation amount at the time of charging and discharging per unit area of the battery positive electrode layer are adjusted to be the same Positive electrode for devices.
請求項1ないし3のいずれか1項に記載の電力貯蔵デバイス用正極において、
前記リチウム含有金属化合物は、コバルト酸化物を含むことを特徴とする電力貯蔵デバイス用電極。
The positive electrode for a power storage device according to any one of claims 1 to 3,
The electrode for a power storage device, wherein the lithium-containing metal compound contains a cobalt oxide.
正極集電箔の一方の面に、充電時に発熱し、放電時に吸熱する活性炭の粒子を含むキャパシタ正極電極層が形成されたキャパシタ正極と、
前記正極集電箔の他方の面に、充電時に吸熱し、放電時に発熱するリチウム含有金属化合物の粒子を含んだ電池正極電極層が形成された電池正極と
を備え、
前記正極集電箔は、厚さが7μm以上15μm未満であり、
前記キャパシタ正極電極層と前記電池正極電極層とに挟持された前記正極集電箔は、前記キャパシタ正極電極層および前記電池正極電極層に含まれる粒子の形状に沿った起伏を有している
電力貯蔵デバイス用正極の製造方法であって、
前記正極集電箔の起伏をホットロールプレスによって形成する段階を含む
ことを特徴とする電力貯蔵デバイス用正極の製造方法。
A capacitor positive electrode on which one surface of the positive electrode current collector foil is formed with a capacitor positive electrode layer including activated carbon particles that generate heat during charge and absorb heat during discharge;
On the other surface of the positive electrode current collector foil, a battery positive electrode formed with a battery positive electrode layer containing particles of a lithium-containing metal compound that absorbs heat during charging and generates heat during discharging, and
The positive electrode current collector foil has a thickness of 7 μm or more and less than 15 μm,
The positive electrode current collector foil sandwiched between the capacitor positive electrode layer and the battery positive electrode layer has undulations along the shape of particles contained in the capacitor positive electrode layer and the battery positive electrode layer . A method for producing a positive electrode for a storage device, comprising:
The manufacturing method of the positive electrode for electric power storage devices characterized by including the step of forming the undulation of the said positive electrode current collection foil by hot roll press.
正極集電箔の一方の面に、充電時に発熱し、放電時に吸熱する活性炭の粒子を含むキャパシタ正極電極層が形成されたキャパシタ正極と、前記正極集電箔の他方の面に、充電時に吸熱し、放電時に発熱するリチウム含有金属化合物の粒子を含んだ電池正極電極層が形成された電池正極とを有し、前記正極集電箔は、厚さが7μm以上15μm未満であり、前記キャパシタ正極電極層と前記電池正極電極層とに挟持された前記正極集電箔は、前記キャパシタ正極電極層および前記電池正極電極層に含まれる粒子の形状に沿った起伏を有している電力貯蔵デバイス用正極と、
負極集電箔の両面に負極電極層が形成され、集電箔のみ、もしくは負極全体を貫通する貫通孔を有する共通負極と
を備え、
前記電力貯蔵デバイス用正極と前記共通負極とをセパレータを介して交互に積層もしくは巻回したことを特徴とする電力貯蔵デバイスセル。
A capacitor positive electrode layer formed on one surface of the positive electrode current collector foil with a capacitor positive electrode layer containing activated carbon particles that generate heat during charge and absorb heat during discharge; and the other surface of the positive electrode current collector foil absorbs heat during charge. And a positive electrode current collector foil having a thickness of 7 μm or more and less than 15 μm, wherein the positive electrode current collector foil has a thickness of 7 μm or more and less than 15 μm. The positive electrode current collector foil sandwiched between an electrode layer and the battery positive electrode layer has an undulation along the shape of particles contained in the capacitor positive electrode layer and the battery positive electrode layer . A positive electrode;
A negative electrode layer is formed on both surfaces of the negative electrode current collector foil, and the common negative electrode having a through hole penetrating only the current collector foil or the entire negative electrode,
The power storage device cell, wherein the positive electrode for the power storage device and the common negative electrode are alternately stacked or wound via a separator.
JP2010004042A 2010-01-12 2010-01-12 Positive electrode for power storage device, manufacturing method thereof, and power storage device cell Expired - Fee Related JP5355429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010004042A JP5355429B2 (en) 2010-01-12 2010-01-12 Positive electrode for power storage device, manufacturing method thereof, and power storage device cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010004042A JP5355429B2 (en) 2010-01-12 2010-01-12 Positive electrode for power storage device, manufacturing method thereof, and power storage device cell

Publications (2)

Publication Number Publication Date
JP2011146431A JP2011146431A (en) 2011-07-28
JP5355429B2 true JP5355429B2 (en) 2013-11-27

Family

ID=44461050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010004042A Expired - Fee Related JP5355429B2 (en) 2010-01-12 2010-01-12 Positive electrode for power storage device, manufacturing method thereof, and power storage device cell

Country Status (1)

Country Link
JP (1) JP5355429B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2967543A1 (en) * 2014-11-12 2016-05-19 Intec Energy Storage Corp. Fast charge apparatus for a battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3745594B2 (en) * 2000-06-29 2006-02-15 三菱電機株式会社 Battery and electrode forming apparatus for the battery
JP2004055541A (en) * 2002-05-31 2004-02-19 Hitachi Maxell Ltd Compound energy element
JP5040626B2 (en) * 2007-12-07 2012-10-03 三菱電機株式会社 Power storage device cell and control method thereof

Also Published As

Publication number Publication date
JP2011146431A (en) 2011-07-28

Similar Documents

Publication Publication Date Title
JP5357276B2 (en) Power storage device cell, and manufacturing method and storage method thereof
JP4833065B2 (en) Lithium ion capacitor
JP5368589B2 (en) Power storage device cell, manufacturing method thereof, and power storage device
JP4842633B2 (en) Method for producing lithium metal foil for battery or capacitor
JP5236765B2 (en) Organic electrolyte capacitor
JP4732072B2 (en) Winding type lithium ion capacitor
JP4616005B2 (en) Power storage device
JP4386334B2 (en) Film power storage device
JP4813168B2 (en) Lithium ion capacitor
JP5730321B2 (en) Lithium ion capacitor
WO1999060652A1 (en) Nonaqueous secondary cell and method for controlling the same
JP2006286919A (en) Lithium ion capacitor
JPWO2004059672A1 (en) Power storage device and method for manufacturing power storage device
WO2007026492A1 (en) Lithium ion capacitor
JP2012169576A (en) Electrochemical device
JP2012114415A (en) Power storage device cell
JP2012059396A (en) Negative electrode for power storage device and power storage device, and method of manufacturing them
JP2012138408A (en) Electrochemical device and manufacturing method thereof
JP5308646B2 (en) Lithium ion capacitor
US20120300366A1 (en) Method for pre-doping anode and lithium ion capacitor storage device including the same
JP2012248556A (en) Electrochemical device and method for manufacturing the same
JPWO2012127991A1 (en) Power storage device
JP4931239B2 (en) Power storage device
JP2011159642A (en) Electrochemical device
JP5355429B2 (en) Positive electrode for power storage device, manufacturing method thereof, and power storage device cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R150 Certificate of patent or registration of utility model

Ref document number: 5355429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees