JP2006286919A - Lithium ion capacitor - Google Patents

Lithium ion capacitor Download PDF

Info

Publication number
JP2006286919A
JP2006286919A JP2005104676A JP2005104676A JP2006286919A JP 2006286919 A JP2006286919 A JP 2006286919A JP 2005104676 A JP2005104676 A JP 2005104676A JP 2005104676 A JP2005104676 A JP 2005104676A JP 2006286919 A JP2006286919 A JP 2006286919A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
electrode
lithium
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005104676A
Other languages
Japanese (ja)
Inventor
Shinichi Tasaki
信一 田▼さき▲
Nobuo Ando
信雄 安東
Mitsuru Nagai
満 永井
Mitsuo Shiraga
充朗 白髪
Kohei Matsui
恒平 松井
Yukinori Hado
之規 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2005104676A priority Critical patent/JP2006286919A/en
Publication of JP2006286919A publication Critical patent/JP2006286919A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion capacitor which has high energy density, power density, a large capacity, and offers high safety. <P>SOLUTION: The lithium ion capacitor has a lithium salt nonproton organic solvent solution which serves as a positive electrode, a negative electrode, and an electrolyte, a positive electrode active material which can carry lithium ions and/or anions reversibly, and a negative active material which can carry lithium ions reversibly. The positive electrode registers a potential of 2.0 V or lower after short-circuiting the positive electrode and negative electrode. The capacitor also includes a positive electrode current collector and a negative electrode current collector, each collector having holes penetrating its front/back surfaces; and a cell structure which is formed by winding the positive/negative electrodes via a separator, or laminating them alternately into three layers. A lithium ion supply source which is arranged to be counter to the wound or laminated positive/negative electrodes, is brought into electrochemical contact with the positive electrode and/or the negative electrode which causes the positive electrode and/or the negative electrode to carry lithium ions in advance. A counter area between the lithium ion supply source and the negative electrode is 75 to 100% of the area of the negative electrode. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、エネルギー密度、出力密度が高い高容量のリチウムイオンキャパシタに関する。   The present invention relates to a high-capacity lithium ion capacitor with high energy density and high output density.

近年、グラファイト等の炭素材料を負極に用い、正極にLiCoO等のリチウム含有金属酸化物を用いた電池が提案されている。この電池は、電池組立後、充電することにより正極のリチウム含有金属酸化物から負極にリチウムを供給し、更に放電では負極リチウムを正極に戻すという、いわゆるロッキングチェア型電池であり、負極に金属リチウムを使用せずリチウムイオンのみが充放電に関与することから、リチウムイオン二次電池と呼ばれ、リチウム金属を用いるリチウム電池とは区別されている。この電池は、高電圧及び高容量、高安全性を有することを特長としている。 In recent years, a battery using a carbon material such as graphite for the negative electrode and a lithium-containing metal oxide such as LiCoO 2 for the positive electrode has been proposed. This battery is a so-called rocking chair type battery in which lithium is supplied from the lithium-containing metal oxide of the positive electrode to the negative electrode by charging after the battery is assembled, and further, the negative electrode lithium is returned to the positive electrode in the discharge. This is called a lithium ion secondary battery, and is distinguished from a lithium battery using lithium metal. This battery is characterized by high voltage, high capacity, and high safety.

また、環境問題がクローズアップされる中、太陽光発電や風力発電によるクリーンエネルギーの貯蔵システムや、ガソリン車に代わる電気自動車用またはハイブリッド電気自動車用の電源の開発が盛んに行われている。さらに、最近ではパワーウインドウやIT関連機器など車載装置や設備が高性能・高機能化してきたこともあり、エネルギー密度、出力密度の点から新しい電源が求められるようになってきている。   In addition, while environmental problems are being highlighted, development of a clean energy storage system using solar power generation or wind power generation, and a power source for an electric vehicle or a hybrid electric vehicle that replaces a gasoline vehicle has been actively conducted. Furthermore, recently, in-vehicle devices and equipment such as power windows and IT-related equipment have become more sophisticated and functional, and new power sources are being demanded in terms of energy density and output density.

こうした高エネルギー密度、高出力特性を必要とする用途に対応する蓄電装置として、近年、リチウムイオン二次電池と電気二重層キャパシタの蓄電原理を組み合わせた、ハイブリッドキャパシタと呼ばれる蓄電装置が注目されている。その一つとして、リチウムイオンを吸蔵、脱離し得る炭素材料に、予め化学的方法または電気化学的方法でリチウムイオンを吸蔵、担持(以下、ドーピングということもある)させて、負極電位を下げることによりエネルギー密度を大幅に大きくできる炭素材料を負極に用いる有機電解質キャパシタが提案されている(例えば、特許文献1参照)。   In recent years, a power storage device called a hybrid capacitor, which combines the power storage principles of a lithium ion secondary battery and an electric double layer capacitor, has been attracting attention as a power storage device for such applications that require high energy density and high output characteristics. . As one of them, a lithium ion can be occluded and desorbed by a chemical method or an electrochemical method in advance and occluded and supported (hereinafter sometimes referred to as doping) to lower the negative electrode potential. An organic electrolyte capacitor using a carbon material that can significantly increase the energy density as a negative electrode has been proposed (see, for example, Patent Document 1).

この種の有機電解質キャパシタでは、高性能が期待されるものの、負極に予めリチウムイオンをドーピングさせる場合に、極めて長時間を要することや負極全体にリチウムイオンを均一に担持させることに問題を有し、特に電極を捲回した円筒型装置や複数枚の電極を積層した角型電池のような大型の高容量セルでは、実用化は困難とされていた。   Although this type of organic electrolyte capacitor is expected to have high performance, there are problems in that it takes a very long time when lithium ions are doped in advance on the negative electrode and that lithium ions are uniformly supported on the entire negative electrode. In particular, it has been difficult to put into practical use in a large-sized high-capacity cell such as a cylindrical device in which electrodes are wound or a square battery in which a plurality of electrodes are stacked.

このような問題の解決方法として、正極集電体および負極集電体がそれぞれ表裏面に貫通する孔を備え、負極活物質がリチウムイオンを可逆的に担持可能であり、負極あるいは正極と対向して配置されたリチウム金属との電気化学的接触により負極にリチウムイオンが担持される有機電解質電池が提案されている(例えば、特許文献2参照)。   As a method for solving such a problem, the positive electrode current collector and the negative electrode current collector each have holes penetrating the front and back surfaces, and the negative electrode active material can reversibly carry lithium ions, and faces the negative electrode or the positive electrode. There has been proposed an organic electrolyte battery in which lithium ions are supported on a negative electrode by electrochemical contact with lithium metal disposed in a row (see, for example, Patent Document 2).

該有機電解質電池においては、電極集電体に表裏面を貫通する孔を設けることにより、リチウムイオンが電極集電体に遮断されることなく電極の表裏間を移動できるため、積層枚数の多いセル構成の蓄電装置においても、該貫通孔を通じて、リチウム金属近傍に配置された負極だけでなくリチウム金属から離れて配置された負極にもリチウムイオンを電気化学的に担持させることが可能となる。   In the organic electrolyte battery, since a hole penetrating the front and back surfaces is provided in the electrode current collector, lithium ions can move between the front and back surfaces of the electrode current collector without being blocked by the electrode current collector. Also in the power storage device having the configuration, lithium ions can be electrochemically supported not only on the negative electrode arranged in the vicinity of the lithium metal but also on the negative electrode arranged away from the lithium metal through the through hole.

特開平8−107048号公報(第2頁第2欄38行〜47行)JP-A-8-107048 (page 2, column 2, lines 38 to 47) 国際公開番号WO98/033227号公報(第11頁4行〜第12頁27行)International Publication No. WO98 / 033227 (page 11, line 4 to page 12, line 27)

上述のように、リチウムイオンを吸蔵、脱離しうる炭素材料等に予めすなわち充電前にリチウムイオンを吸蔵させた負極は、負極が電気二重層キャパシタに用いられる活性炭よりも電位が卑になるので、正極活性炭と組み合わせたセルの耐電圧は向上し、また負極の容量は活性炭に比較し非常に大きいため、該負極を備えた有機電解質キャパシタ(リチウムイオンキャパシタ)はエネルギー密度が高くなる。   As described above, a negative electrode in which lithium ions are occluded in advance in a carbon material or the like that can occlude and desorb lithium ions, that is, before charging, has a lower potential than activated carbon used for an electric double layer capacitor. The withstand voltage of the cell combined with the positive electrode activated carbon is improved, and the capacity of the negative electrode is much larger than that of the activated carbon. Therefore, the organic electrolyte capacitor (lithium ion capacitor) provided with the negative electrode has a high energy density.

上記リチウムイオンキャパシタにおいて、セルは正極と負極とをセパレータを介して交互に積層した電極積層体として構成され、負極にはこの電極積層体の外部に正極および/または負極に対向して配置したリチウム金属からリチウムイオンが電極集電板の貫通孔を通して順次ドーピングされる。この場合、負極には予め負極にドーピングするリチウムイオン量に応じて設定したリチウム金属のすべてがリチウムイオンとして均一にドーピングされることが好ましい。   In the lithium ion capacitor, the cell is configured as an electrode laminate in which a positive electrode and a negative electrode are alternately laminated via a separator, and the negative electrode is a lithium disposed outside the electrode laminate and facing the positive electrode and / or the negative electrode. Lithium ions are sequentially doped from the metal through the through holes of the electrode current collector. In this case, it is preferable that all of the lithium metal previously set according to the amount of lithium ions doped in the negative electrode is uniformly doped as lithium ions in the negative electrode.

しかしながら、セル内に配置するリチウム金属の面積が対向する負極の面積よりも大きいと、リチウム金属が負極にドーピングされずにセル内に残る場合がある。リチウム金属の量は、予め負極に予めドーピングする量に合わせて設定しているので、このようにセル内にリチウム金属が残ると、その分のリチウムイオンを負極にドーピングできなくなる、あるいは残ったリチウム金属がセル内の電解液と反応し特性が劣化したり、ショート原因となる等の不具合が発生する可能性や、外装ケースが破損した際にはリチウム金属が発熱、発火する危険性等の安全性が損なわれるなどの不具合を生じる。   However, if the area of the lithium metal disposed in the cell is larger than the area of the opposing negative electrode, the lithium metal may remain in the cell without being doped into the negative electrode. Since the amount of lithium metal is set in advance according to the amount of doping in advance in the negative electrode, if lithium metal remains in the cell in this way, the lithium ion cannot be doped into the negative electrode or the remaining lithium Safety such as the possibility that the metal reacts with the electrolyte in the cell and the characteristics deteriorate, causing a short circuit, or the lithium metal generates heat or ignites when the outer case is damaged Cause problems such as loss of performance.

一方、リチウム金属の面積が対向する負極の面積よりも過度に小さいと、所定量のリチウム金属が負極全体にドーピングされないため、初期の性能と特性が得られなくなるおそれが生じると共に、場合によってはリチウム金属が残ったり、セルの容量が小さくなるという問題があった。また、リチウム金属の面積が対向する負極の面積と同じ場合は、セルの組み立てにおいて両者を完全に一致させることが至難であるため、組立て作業性の低下を招き、実際はしばしばリチウム金属が対向する負極からはみ出し、リチウム金属がセル内に残る不具合が生じることもあった。   On the other hand, if the area of the lithium metal is excessively smaller than the area of the opposing negative electrode, a predetermined amount of lithium metal is not doped in the entire negative electrode, which may result in failure to obtain the initial performance and characteristics, and in some cases the lithium metal There was a problem that metal remained or the capacity of the cell was reduced. In addition, when the area of the lithium metal is the same as the area of the opposing negative electrode, it is difficult to completely match both in the cell assembly, resulting in a decrease in assembly workability. In some cases, the lithium metal protrudes from the cell and remains in the cell.

本発明は、このような問題を解消しリチウム金属がセル内に残らずに所定量のリチウムイオンを予め負極および/または正極にドーピングすることができ、かつセルの組立て作業性が優れるリチウムイオンキャパシタを提供することを目的とする。   The present invention solves such a problem, and a lithium ion capacitor in which a predetermined amount of lithium ions can be preliminarily doped into the negative electrode and / or the positive electrode without leaving any lithium metal in the cell, and the assembly workability of the cell is excellent. The purpose is to provide.

上記課題を解決するため、本発明者らは、リチウム金属をセル内に残さずに負極および/または正極に所定量のリチウムイオンをドーピングできる方策について鋭意研究した結果、リチウム金属を対向する負極より少し小さ目にすることにより、リチウム金属をセル内に残さずにドーピングできることを見出し、更にリチウム金属を対向する負極に対しどの程度縮小すれば、負極に所定量のリチウムイオンをセル内にリチウム金属を残さずにドーピングできるかを究明し、本発明を完成させるに至った。すなわち、本発明は、次のリチウムイオンキャパシタを提供する。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research on a method capable of doping a predetermined amount of lithium ions into the negative electrode and / or the positive electrode without leaving the lithium metal in the cell. By making it a little smaller, it was found that lithium metal can be doped without leaving it in the cell, and how much the lithium metal can be reduced relative to the opposing negative electrode, a predetermined amount of lithium ions can be added to the negative electrode in the cell. The present inventors have completed the present invention by investigating whether doping can be performed without leaving a residue. That is, the present invention provides the following lithium ion capacitor.

(1)正極、負極および電解液としてリチウム塩の非プロトン性有機溶媒液を備え、正極活物質がリチウムイオンおよび/またはアニオンを可逆的に担持可能な物質であり、かつ負極活物質がリチウムイオンを可逆的に担持可能な物質であり、正極と負極を短絡させた後の正極の電位が2.0V以下となるリチウムイオンキャパシタであって、正極集電体および負極集電体が、それぞれ表裏面を貫通する孔を備え、正極と負極をセパレータを介して捲回、もしくは交互に3層以上積層したセル構成を有し、捲回もしくは積層された負極、正極に対向して配置されたリチウムイオン供給源と負極および/または正極との電気化学的接触により予め負極および/または正極にリチウムイオンが担持されるようになっており、リチウムイオン供給源と負極の対向面積が負極面積の75%以上、100%未満であることを特徴とするリチウムイオンキャパシタ。
(2)リチウムイオン供給源がリチウムイオン供給源に対向する負極からはみ出さないように配置されていることを特徴とする上記(1)のリチウムイオンキャパシタ。
(3)リチウムイオン供給源と負極が曲面状であるときの、リチウムイオン供給源と負極の対向面積は、それぞれの対向部分の投影面積であることを特徴とする上記(1)または(2)のリチウムイオンキャパシタ。
(4)正極と負極をセパレータを介して交互に捲回もしくは積層した電極積層体の最外部がセパレータであり、セパレータの内側が負極であり、該負極にリチウムイオン供給源が対向している上記(1)、(2)または(3)のリチウムイオンキャパシタ。
(5)負極が、芳香族系縮合ポリマーの熱処理物であって水素原子/炭素原子の原子比が0.50〜0.05であるポリアセン系骨格構造を有するポリアセン系有機半導体(PAS)であることを特徴とする上記(1)〜(4)のいずれかのリチウムイオンキャパシタ。
(6)負極活物質は、正極活物質に比べて、単位重量あたりの静電容量が3倍以上を有し、かつ正極活物質の重量が負極活物質の重量より大きいことを特徴とする(1)〜(5)のいずれかのリチウムイオンキャパシタ。
(1) A positive electrode, a negative electrode, and an electrolyte solution of an aprotic organic solvent of lithium salt as an electrolyte, the positive electrode active material is a material capable of reversibly supporting lithium ions and / or anions, and the negative electrode active material is lithium ions A lithium ion capacitor in which the potential of the positive electrode becomes 2.0 V or less after the positive electrode and the negative electrode are short-circuited, and the positive electrode current collector and the negative electrode current collector are respectively Lithium provided with a hole penetrating the back surface and having a cell configuration in which a positive electrode and a negative electrode are wound with a separator interposed therebetween or alternately laminated in three or more layers, and are disposed facing the wound or laminated negative electrode and positive electrode The lithium ion is previously supported on the negative electrode and / or the positive electrode by electrochemical contact between the ion supply source and the negative electrode and / or the positive electrode. The opposing area of the negative electrode more than 75% of the negative electrode area, a lithium ion capacitor, which is a less than 100%.
(2) The lithium ion capacitor according to (1), wherein the lithium ion supply source is disposed so as not to protrude from the negative electrode facing the lithium ion supply source.
(3) The above-mentioned (1) or (2), wherein when the lithium ion supply source and the negative electrode are curved, the facing area between the lithium ion supply source and the negative electrode is a projected area of each facing portion. Lithium ion capacitor.
(4) The electrode stack in which the positive electrode and the negative electrode are alternately wound or stacked with a separator interposed therebetween is a separator, the inner side of the separator is a negative electrode, and the lithium ion supply source faces the negative electrode (1) The lithium ion capacitor of (2) or (3).
(5) The negative electrode is a polyacene organic semiconductor (PAS) which is a heat-treated product of an aromatic condensation polymer and has a polyacene skeleton structure in which the atomic ratio of hydrogen atom / carbon atom is 0.50 to 0.05. The lithium ion capacitor according to any one of (1) to (4) above.
(6) The negative electrode active material has a capacitance per unit weight that is at least three times that of the positive electrode active material, and the weight of the positive electrode active material is greater than the weight of the negative electrode active material ( The lithium ion capacitor according to any one of 1) to (5).

本発明のリチウムイオンキャパシタによれば、上記したようにリチウムイオン供給源と負極の対向面積を負極面積の75%以上100%未満にしていることによって、セル内にリチウムイオン供給源を残さずに負極にリチウムイオンをドーピングできるので、安全性の高い、高品質のリチウムイオンキャパシタを得ることができる。   According to the lithium ion capacitor of the present invention, as described above, the facing area between the lithium ion supply source and the negative electrode is 75% or more and less than 100% of the negative electrode area, so that the lithium ion supply source does not remain in the cell. Since the negative electrode can be doped with lithium ions, a highly safe and high quality lithium ion capacitor can be obtained.

また、リチウムイオン供給源の面積が対向する負極面積に対し小さめになっているので、リチウムイオン供給源を前記負極からはみ出さないようセル内に配置することが容易となり、セルの組立て作業性と生産性を向上できる。   Further, since the area of the lithium ion supply source is smaller than the area of the negative electrode facing the lithium ion supply source, it becomes easy to arrange the lithium ion supply source in the cell so as not to protrude from the negative electrode, and the assembly workability of the cell is improved. Productivity can be improved.

本発明のリチウムイオンキャパシタ(以下、LICということもある)は、正極、負極、および電解液としてリチウム塩の非プロトン性有機電解液を備え、正極活物質がリチウムイオンおよび/またはアニオンを可逆的に担持可能な物質であり、かつ負極活物質がリチウムイオンを可逆的に担持可能な物質であり、正極と負極を短絡させた後の正極および負極電位が2.0V以下を有している。   The lithium ion capacitor of the present invention (hereinafter sometimes referred to as LIC) includes a positive electrode, a negative electrode, and an aprotic organic electrolyte of a lithium salt as an electrolyte, and the positive electrode active material reversibly converts lithium ions and / or anions. The negative electrode active material is a material capable of reversibly supporting lithium ions, and the positive electrode and negative electrode potentials after the positive electrode and the negative electrode are short-circuited have 2.0 V or less.

従来の電気二重層キャパシタでは、通常、正極と負極に同じ活物質(主に活性炭)をほぼ同量用いている。この活物質はセルの組立時には約3Vの電位を有しており、キャパシタを充電することにより、正極表面にはアニオンが電気二重層を形成して正極電位は上昇し、一方負極表面にはカチオンが電気二重層を形成して電位が降下する。逆に、放電時には正極からアニオンが、負極からはカチオンがそれぞれ電解液中に放出されて電位はそれぞれ下降、上昇し、3V近傍に戻ってくる。このように通常の炭素材料は約3Vの電位を有しているため、正極、負極ともに炭素材料を用いた有機電解質キャパシタは、正極と負極を短絡させた後の正極および負極の電位はいずれも約3Vとなる。   In conventional electric double layer capacitors, the same active material (mainly activated carbon) is usually used in substantially the same amount for the positive electrode and the negative electrode. This active material has a potential of about 3 V when the cell is assembled. When the capacitor is charged, an anion forms an electric double layer on the positive electrode surface, and the positive electrode potential rises. Forms an electric double layer and the potential drops. Conversely, during discharge, anions are released from the positive electrode and cations from the negative electrode into the electrolyte, respectively, and the potential decreases and rises to return to around 3V. As described above, since the normal carbon material has a potential of about 3 V, the organic electrolyte capacitor using the carbon material for both the positive electrode and the negative electrode has the positive electrode and the negative electrode both short-circuited after being short-circuited. It becomes about 3V.

これに対し、本発明のLICでは上記したように正極と負極を短絡した後の正極の電位は2.0V(Li/Li、以下同じ)以下である。すなわち、本発明では正極にリチウムイオンおよび/またはアニオンを可逆的に担持可能な活物質を用い、また負極にリチウムイオンを可逆的に担持可能な活物質を用い、正極と負極を短絡させた後に正極と負極の電位が2.0V以下になるように、負極および/または正極に予めリチウムイオンを担持させている。 On the other hand, in the LIC of the present invention, as described above, the potential of the positive electrode after short-circuiting the positive electrode and the negative electrode is 2.0 V (Li / Li + , the same shall apply hereinafter) or less. That is, in the present invention, an active material capable of reversibly supporting lithium ions and / or anions is used for the positive electrode, and an active material capable of reversibly supporting lithium ions is used for the negative electrode. Lithium ions are previously supported on the negative electrode and / or the positive electrode so that the potential between the positive electrode and the negative electrode is 2.0 V or less.

なお、本発明で、正極と負極を短絡させた後の正極の電位が2V以下とは、以下の(A)又は(B)の2つのいずれかの方法で求められる正極の電位が2V以下の場合をいう。即ち、(A)リチウムイオンによるドープピングの後、キャパシタセルの正極端子と負極端子を導線で直接結合させた状態で12時間以上放置した後に短絡を解除し、0.5〜1.5時間内に測定した正極電位、(B)充放電試験機にて12時間以上かけて0Vまで定電流放電させた後に正極端子と負極端子を導線で結合させた状態で12時間以上放置した後に短絡を解除し、0.5〜1.5時間内に測定した正極電位。   In the present invention, the potential of the positive electrode after the positive electrode and the negative electrode are short-circuited is 2 V or less. The potential of the positive electrode determined by one of the following two methods (A) or (B) is 2 V or less. Refers to cases. That is, (A) After doping with lithium ions, the positive electrode terminal and the negative electrode terminal of the capacitor cell are directly coupled with a conductive wire and left for 12 hours or more, then the short circuit is released, and within 0.5 to 1.5 hours Measured positive electrode potential, (B) Charge-discharge tester discharges constant current to 0V over 12 hours and then leaves positive electrode terminal and negative electrode terminal connected with lead wire for 12 hours or more, then releases short circuit Positive electrode potential measured within 0.5 to 1.5 hours.

また、本発明において、正極と負極とを短絡させた後の正極電位が2.0V以下というのは、リチウムイオンがドーピングされたすぐ後だけに限られるものではなく、充電状態、放電状態あるいは充放電を繰り返した後に短絡した場合など、いずれかの状態で短絡後の正極電位が2.0V以下となることである。   In the present invention, the positive electrode potential after the positive electrode and the negative electrode are short-circuited is 2.0 V or less, not only immediately after the lithium ions are doped, but in the charged state, discharged state or charged state. The positive electrode potential after short-circuiting is 2.0 V or less in any state, such as when short-circuiting after repeating discharge.

本発明において、正極と負極とを短絡させた後の正極電位が2.0V以下になるということに関し、以下に詳細に説明する。上述のように活性炭や炭素材は通常3V(Li/Li)前後の電位を有しており、正極、負極ともに活性炭を用いてセルを組んだ場合、いずれの電位も約3Vとなるため、短絡しても正極電位はかわらず約3Vである。また、正極に活性炭、負極にリチウムイオン二次電池にて使用されている黒鉛や難黒鉛化炭素のような炭素材を用いた、いわゆるハイブリットキャパシタの場合も同様であり、いずれの電位も約3Vとなるため、短絡しても正極電位はかわらず約3Vである。正極と負極の重量バランスにもよるが充電すると負極電位が0V近傍まで推移するので、充電電圧を高くすることが可能となるため高電圧、高エネルギー密度を有したキャパシタとなる。一般的に充電電圧の上限は正極電位の上昇による電解液の分解が起こらない電圧に決められるので、正極電位を上限にした場合、負極電位が低下する分、充電電圧を高めることが可能となるのである。しかしながら、短絡時に正極電位が約3Vとなる上述のハイブリットキャパシタでは、正極の上限電位が例えば4.0Vとした場合、放電時の正極電位は3.0Vまでであり、正極の電位変化は1.0V程度と正極の容量を充分利用できていない。更に、負極にリチウムイオンを挿入(充電)、脱離(放電)した場合、初期の充放電効率が低い場合が多く、放電時に脱離できないリチウムイオンが存在していることが知られている。これは、負極表面にて電解液の分解に消費される場合や、炭素材の構造欠陥部にトラップされる等の説明がなされているが、この場合正極の充放電効率に比べ負極の充放電効率が低くなり、充放電を繰り返した後にセルを短絡させると正極電位は3Vよりも高くなり、さらに利用容量は低下する。すなわち、正極は4.0Vから2.0Vまで放電可能であるところ、4.0Vから3.0Vまでしか使えない場合、利用容量として半分しか使っていないこととなり、高電圧にはなるが高容量にはならないのである。 In the present invention, the fact that the positive electrode potential after the positive electrode and the negative electrode are short-circuited is 2.0 V or less will be described in detail below. As described above, activated carbon and carbon materials usually have a potential of about 3 V (Li / Li + ), and when the cell is assembled using activated carbon for both the positive electrode and the negative electrode, both potentials are about 3 V. Even if it is short-circuited, the positive electrode potential is about 3 V regardless. The same applies to a so-called hybrid capacitor using activated carbon as the positive electrode and carbon material such as graphite or non-graphitizable carbon used in the lithium ion secondary battery as the negative electrode. Therefore, even if a short circuit occurs, the positive electrode potential is about 3 V regardless. Although depending on the weight balance between the positive electrode and the negative electrode, when charged, the potential of the negative electrode transitions to around 0 V, so that the charging voltage can be increased, so that the capacitor has a high voltage and a high energy density. Generally, the upper limit of the charging voltage is determined to be a voltage at which the electrolyte solution does not decompose due to the increase in the positive electrode potential. Therefore, when the positive electrode potential is set as the upper limit, the charging voltage can be increased by the amount of decrease in the negative electrode potential. It is. However, in the above-described hybrid capacitor in which the positive electrode potential is about 3 V at the time of short circuit, when the upper limit potential of the positive electrode is 4.0 V, for example, the positive electrode potential at the time of discharge is up to 3.0 V, and the potential change of the positive electrode is 1. The capacity of the positive electrode of about 0 V is not fully utilized. Furthermore, when lithium ions are inserted (charged) and desorbed (discharged) into the negative electrode, the initial charge / discharge efficiency is often low, and it is known that there are lithium ions that cannot be desorbed during discharge. This is explained when it is consumed in the decomposition of the electrolyte solution on the negative electrode surface or trapped in the structural defect part of the carbon material. In this case, the charge / discharge of the negative electrode is compared with the charge / discharge efficiency of the positive electrode. When the efficiency is lowered and the cell is short-circuited after repeated charging and discharging, the positive electrode potential becomes higher than 3 V, and the utilization capacity further decreases. That is, the positive electrode can be discharged from 4.0 V to 2.0 V. However, when only 4.0 V to 3.0 V can be used, only half of the usage capacity is used. It will not be.

ハイブリットキャパシタを高電圧、高エネルギー密度だけでなく、高容量そして更にエネルギー密度を高めるためには、正極の利用容量を向上させることが必要である。   In order to increase not only high voltage and high energy density but also high capacity and energy density of the hybrid capacitor, it is necessary to improve the capacity of the positive electrode.

短絡後の正極電位が3.0Vよりも低下すればそれだけ利用容量が増え、高容量になるということである。2.0V以下になるためには、セルの充放電により充電される量だけでなく、別途リチウム金属などのリチウムイオン供給源から負極にリチウムイオンを充電することが好ましい。正極と負極以外からリチウムイオンが供給されるので、短絡させた時には、正極、負極、リチウム金属の平衡電位になるため、正極電位、負極電位ともに3.0V以下になる。リチウム金属の量が多くなる程に平衡電位は低くなる。負極材、正極材が変われば平衡電位も変わるので、短絡後の正極電位が2.0V以下になるように、負極材、正極材の特性を鑑みて負極に担持させるリチウムイオン量の調整が必要である。   If the positive electrode potential after the short circuit falls below 3.0V, the utilization capacity increases and the capacity increases. In order to be 2.0 V or less, it is preferable to charge not only the amount charged by charging / discharging the cell but also separately charging lithium ions from a lithium ion supply source such as lithium metal to the negative electrode. Since lithium ions are supplied from other than the positive electrode and the negative electrode, when they are short-circuited, the equilibrium potentials of the positive electrode, the negative electrode, and the lithium metal are reached, so that both the positive electrode potential and the negative electrode potential are 3.0 V or less. As the amount of lithium metal increases, the equilibrium potential decreases. If the negative electrode material and the positive electrode material change, the equilibrium potential also changes. Therefore, it is necessary to adjust the amount of lithium ions supported on the negative electrode in view of the characteristics of the negative electrode material and the positive electrode material so that the positive electrode potential after the short circuit becomes 2.0 V or less. It is.

本発明のLICにおいて、正極と負極を短絡させた後の正極電位が2.0V以下になるということは、上記したように該LICの正極および負極以外から正極および/又は負極にリチウムイオンが供給されているということである。リチウムイオンの供給は負極と正極の片方あるいは両方いずれでもよいが、例えば正極に活性炭を用いた場合、リチウムイオンの担持量が多くなり正極電位が低くなると、リチウムイオンを不可逆的に消費してしまい、セルの容量が低下するなどの不具合が生じる場合があるので、負極と正極への供給するリチウムイオンの量は不具合が生じないよう適宜制御が必要である。いずれの場合でも、予め正極および/又は負極に供給されたリチウムイオンはセルの充電により負極に供給されるので、負極電位は低下する。   In the LIC of the present invention, the positive electrode potential after the positive electrode and the negative electrode are short-circuited is 2.0 V or less, as described above, lithium ions are supplied to the positive electrode and / or the negative electrode from other than the positive electrode and the negative electrode of the LIC. It is that it has been. The supply of lithium ions may be either one or both of the negative electrode and the positive electrode. For example, when activated carbon is used for the positive electrode, if the amount of lithium ion supported increases and the positive electrode potential decreases, the lithium ion is irreversibly consumed. Since problems such as a decrease in cell capacity may occur, the amount of lithium ions supplied to the negative electrode and the positive electrode needs to be appropriately controlled so as not to cause problems. In any case, since the lithium ions previously supplied to the positive electrode and / or the negative electrode are supplied to the negative electrode by charging the cell, the negative electrode potential decreases.

また、正極と負極を短絡させた後の正極電位が2.0Vよりも高い場合は、正極および/又は負極に供給されたリチウムイオンの量が少ないためセルのエネルギー密度は小さい。リチウムイオンの供給量が多くなるほどに正極と負極を短絡させた後の正極電位は低くなりエネルギー密度は向上する。高いエネルギー密度を得るには2.0V以下が好ましく、更に高いエネルギー密度を得るには1.0V(Li/Li)以下が好ましい。正極と負極を短絡させた後の正極電位が低くなるということは、言い換えると、セルの充電により負極に供給されるリチウムイオンの量が多くなるということであり、負極の静電容量が増大するとともに負極の電位変化量が小さくなり、結果的に正極の電位変化量が大きくなりセルの静電容量および容量が大きくなり、高いエネルギー密度が得られるのである。また、正極電位が1.0Vを下回ると正極活物質にもよるが、ガス発生や、リチウムイオンを不可逆に消費してしまう等の不具合が生じるため、正極電位の測定が困難となる。また、正極電位が低くなりすぎる場合、負極重量が過剰ということであり、逆にエネルギー密度は低下する。一般的には0.1V以上であり、好ましくは0.3V以上である。 When the positive electrode potential after the positive electrode and the negative electrode are short-circuited is higher than 2.0 V, the energy density of the cell is small because the amount of lithium ions supplied to the positive electrode and / or the negative electrode is small. As the supply amount of lithium ions increases, the potential of the positive electrode after the positive electrode and the negative electrode are short-circuited becomes lower and the energy density is improved. In order to obtain a high energy density, 2.0 V or less is preferable, and in order to obtain a higher energy density, 1.0 V (Li / Li + ) or less is preferable. In other words, the positive electrode potential after the positive electrode and the negative electrode are short-circuited is reduced, which means that the amount of lithium ions supplied to the negative electrode by charging the cell increases, and the capacitance of the negative electrode increases. At the same time, the potential change amount of the negative electrode is reduced. As a result, the potential change amount of the positive electrode is increased, the capacitance and capacity of the cell are increased, and a high energy density is obtained. Further, when the positive electrode potential is less than 1.0 V, although depending on the positive electrode active material, problems such as gas generation and irreversible consumption of lithium ions occur, so that it is difficult to measure the positive electrode potential. On the other hand, when the positive electrode potential becomes too low, the negative electrode weight is excessive, and conversely the energy density decreases. Generally, it is 0.1 V or more, preferably 0.3 V or more.

なお、本発明において静電容量、容量は次のように定義する。セルの静電容量とは、セルの放電カーブの傾きを示し単位はF(ファラッド)、セルの単位重量当たりの静電容量とはセルの静電容量をセル内に充填している正極活物質重量と負極活物質重量の合計重量にて割った値であり、単位はF/g、正極の静電容量とは正極の放電カーブの傾きを示し単位はF、正極の単位重量当たりの静電容量とは正極の静電容量をセル内に充填している正極活物質重量にて割った値であり、単位はF/g、負極の静電容量とは負極の静電容量をセル内に充填している負極活物質重量にて割った値であり、単位はF/gである。   In the present invention, the capacitance and capacitance are defined as follows. The capacitance of the cell indicates the slope of the discharge curve of the cell, the unit is F (farad), and the capacitance per unit weight of the cell is the positive electrode active material in which the capacitance of the cell is filled in the cell It is the value divided by the total weight of the weight and the weight of the negative electrode active material, the unit is F / g, the capacitance of the positive electrode is the slope of the discharge curve of the positive electrode, the unit is F, the electrostatic capacity per unit weight of the positive electrode The capacity is a value obtained by dividing the capacitance of the positive electrode by the weight of the positive electrode active material filled in the cell. The unit is F / g. The capacitance of the negative electrode is the capacitance of the negative electrode in the cell. The value is divided by the weight of the filled negative electrode active material, and the unit is F / g.

更に、セル容量とかセルの放電開始電圧と放電終了電圧の差、すなわち電圧変化量とセルの静電容量の積であり単位はC(クーロン)であるが、1Cは1秒間に1Aの電流が流れたときの電荷量であるので、本特許においては換算してmAh表示することとした。正極容量とは放電開始時の正極電位と放電終了時の正極電位の差(正極電位変化量)と正極の静電容量の積であり単位はCまたはmAh、同時に負極容量とは放電開始時の負極電位と放電終了時の負極電位の差(負極電位変化量)と負極の静電容量のせきであり単位はCまたはmAhである。これらセル容量と正極容量、負極容量とは一致する。   Furthermore, the cell capacity or the difference between the discharge start voltage and the discharge end voltage of the cell, that is, the product of the voltage change amount and the capacitance of the cell, the unit is C (coulomb), and 1 C is a current of 1 A per second. Since this is the amount of charge when it flows, it is converted to mAh in this patent. The positive electrode capacity is the product of the difference between the positive electrode potential at the start of discharge and the positive electrode potential at the end of discharge (positive electrode potential change amount) and the positive electrode capacitance. The unit is C or mAh. The difference between the negative electrode potential and the negative electrode potential at the end of discharge (amount of change in negative electrode potential) and the capacitance of the negative electrode, and the unit is C or mAh. These cell capacity, positive electrode capacity, and negative electrode capacity coincide with each other.

次に、本発明のリチウムイオンキャパシタの構成を図面に従って説明する。以下に示す図面は本発明の好ましい実施の態様を例示したものであり、本発明はこれに限定されない。図1は本発明に係わるリチウムイオンキャパシタ(以下、セルということもある)の代表的な一つであるフィルム型セルの断面図、図2は図1の平面図であり、図1の断面図は図2のA−A’の断面を示す。   Next, the structure of the lithium ion capacitor of this invention is demonstrated according to drawing. The drawings shown below illustrate preferred embodiments of the present invention, and the present invention is not limited thereto. FIG. 1 is a cross-sectional view of a film-type cell that is a typical lithium ion capacitor (hereinafter also referred to as a cell) according to the present invention. FIG. 2 is a plan view of FIG. Shows a cross section taken along the line AA 'in FIG.

本発明においてセルは、図1に示すように正極1、負極2をセパレータ3を介して交互に積層して電極積層体11を形成して外装容器5内に設置し、該電極積層体11の上部に積層された正極1、負極2に対向してリチウムイオン供給源としてリチウム金属(リチウム極)4を配置して構成される。積層された各正極1は取出し部6によって正極接続端子9に例えば溶接で接続されており、また各負極2およびリチウム金属4はそれぞれ取出し部7およびリチウム極取出し部8によって負極接続端子10に接続されている。本例では正極接続端子9と負極接続端子10を図2に示すようにフィルム型セルのそれぞれ左側端部と右側端部に設けているが、これら接続端子の位置は適宜変えることができる。   In the present invention, as shown in FIG. 1, the cell is formed by alternately laminating positive electrodes 1 and negative electrodes 2 via separators 3 to form an electrode laminate 11 and placing it in an outer container 5. A lithium metal (lithium electrode) 4 is arranged as a lithium ion supply source so as to face the positive electrode 1 and the negative electrode 2 stacked on the upper part. Each of the stacked positive electrodes 1 is connected to the positive electrode connection terminal 9 by, for example, welding by the extraction portion 6, and each of the negative electrode 2 and the lithium metal 4 is connected to the negative electrode connection terminal 10 by the extraction portion 7 and the lithium electrode extraction portion 8, respectively. Has been. In this example, the positive electrode connection terminal 9 and the negative electrode connection terminal 10 are provided at the left end and the right end of the film type cell as shown in FIG. 2, respectively, but the positions of these connection terminals can be changed as appropriate.

このように構成されたセル内にリチウムイオンを移送可能な電解液(電解質)を注入して封止し、この状態で所定時間(例えば10日間)放置しておくと、リチウム金属4と負極2とが短絡されているので、負極2に予めリチウムイオンをドーピングすることができる。なお、本発明において、「正極」とは放電の際に電流が流出し、充電の際に電流が流入する側の極、「負極」とは放電の際に電流が流入し、充電の際に電流が流出する側の極を意味する。   When an electrolyte (electrolyte) capable of transporting lithium ions is injected into the thus configured cell and sealed, and left in this state for a predetermined time (for example, 10 days), the lithium metal 4 and the anode 2 Are short-circuited, so that the negative electrode 2 can be preliminarily doped with lithium ions. In the present invention, the “positive electrode” means that a current flows out during discharging, the electrode into which current flows during charging, and the “negative electrode” refers to a current flowing during discharging, and during charging. It means the pole where the current flows out.

本例では活物質層の数で正極2層、負極3層の合計5層によってセルを構成しているが、セルに組み込まれる正極、負極の層数は、セルの種類やセルに配置するリチウム金属の層数などによって異なり特定されないが、通常は10〜20層程度である。また、電極積層体11は外装容器5に縦方向に収容することもできる。   In this example, the cell is composed of two positive electrode layers and three negative electrode layers in total, depending on the number of active material layers. The number of positive electrode and negative electrode layers incorporated in the cell depends on the type of cell and the lithium disposed in the cell. Although it differs depending on the number of metal layers and the like, it is usually about 10 to 20 layers. Further, the electrode laminate 11 can be accommodated in the exterior container 5 in the vertical direction.

セルを構成する電極積層体11において、特にリチウム金属4が配置される側の最外部(図1では上部)はセパレータ3であり、その内側に負極2が設置されるのが好ましい。電極積層体11の最外部をセパレータ3にすることによって、電極にリチウム金属4が直接に接触するのを回避して電解液の注液後の急激なドーピングによる電極表面へのダメージを防ぐことができ、さらに電極積層体11を予め外部で作ってから外装容器5に設置するようなときには、セパレータ3で電極を覆って保護できる。また、該セパレータ3の内側を負極にすることによって、負極2とリチウム金属4と短絡しても問題が無い等の利点が得られる。   In the electrode laminate 11 constituting the cell, the outermost part (upper part in FIG. 1) on the side where the lithium metal 4 is arranged is the separator 3, and the negative electrode 2 is preferably installed inside thereof. By using the separator 3 as the outermost part of the electrode laminate 11, it is possible to prevent the lithium metal 4 from coming into direct contact with the electrode and prevent damage to the electrode surface due to abrupt doping after injection of the electrolyte. Further, when the electrode laminate 11 is made in advance and then installed in the outer container 5, the electrodes can be covered with the separator 3 for protection. Further, by making the inner side of the separator 3 a negative electrode, there is an advantage that there is no problem even if the negative electrode 2 and the lithium metal 4 are short-circuited.

図3は、電極積層体11の内部に積層される負極2を一部を切り欠いて示したものである。上記負極2は、負極集電体2a上に負極活物質層(図にはこの負極活物質層を負極2として示している)として形成され、電極積層体11の内部に積層される負極2では、負極集電体2aの両側に形成されるのが好ましい。しかし、電極積層体11の最外部に積層される負極では、通常、負極活物質層を負極集電体2aの片面(内面)だけに形成することができる。   FIG. 3 shows the negative electrode 2 laminated inside the electrode laminate 11 with a part cut away. The negative electrode 2 is formed as a negative electrode active material layer (this negative electrode active material layer is shown as the negative electrode 2 in the figure) on the negative electrode current collector 2 a, and the negative electrode 2 is laminated inside the electrode laminate 11. The negative electrode current collector 2a is preferably formed on both sides. However, in the negative electrode laminated on the outermost part of the electrode laminate 11, the negative electrode active material layer can usually be formed only on one surface (inner surface) of the negative electrode current collector 2a.

上記負極集電体2aは、図3に示すように表裏面を貫通する孔12が設けられた多孔材で、その側端部の一部に取出し部7を備えている。図示はしないが、正極1は正極活物質層で形成する点を除いて負極2同じようにして製造できる。このように負極集電体2aと正極集電体1aを多孔材にすることによって、リチウムイオンは電極積層体11の端部から両集電体の貫通孔を通って自由に各極間を移動し、電極積層体11のすべての負極にリチウムイオンをドーピングできる。   As shown in FIG. 3, the negative electrode current collector 2a is a porous material provided with holes 12 penetrating the front and back surfaces, and includes a takeout portion 7 at a part of the side end portion thereof. Although not shown, the positive electrode 1 can be manufactured in the same manner as the negative electrode 2 except that the positive electrode 1 is formed of a positive electrode active material layer. Thus, by making the negative electrode current collector 2a and the positive electrode current collector 1a into a porous material, lithium ions freely move between the electrodes from the end of the electrode laminate 11 through the through holes of both current collectors. In addition, all the negative electrodes of the electrode stack 11 can be doped with lithium ions.

一方、セルの正極1、負極2に対向して配置されるリチウム金属4は、リチウム極集電体4aの好ましくは両面にリチウム金属を圧着して貼り付けし形成されている。このリチウム極集電体4aは、リチウム金属を圧着しやすくし、必要に応じてリチウムイオンが通りぬけできるように、前記の負極集電体2aと同様に多孔構造のものが好ましい。   On the other hand, the lithium metal 4 disposed so as to face the positive electrode 1 and the negative electrode 2 of the cell is formed by pressing and bonding a lithium metal on both sides of the lithium electrode current collector 4a, preferably on the both sides. The lithium electrode current collector 4a preferably has a porous structure like the negative electrode current collector 2a so that the lithium metal can be easily crimped and lithium ions can pass through if necessary.

本発明はこのような構成を有するリチウムイオンキャパシタにおいて、セル内に設置される負極、正極に対向して配置されたリチウム金属の対向面積が、リチウム金属に対向する負極の対向面積の75%以上、100%未満、好ましくは85%以上、98%以下、更に好ましくは90%以上、95%以下になっている。   In the lithium ion capacitor having the above-described configuration, the present invention provides a negative electrode disposed in the cell, and a facing area of the lithium metal disposed facing the positive electrode is 75% or more of a facing area of the negative electrode facing the lithium metal. , Less than 100%, preferably 85% or more and 98% or less, more preferably 90% or more and 95% or less.

ここで、リチウム金属の対向面積とは、リチウム金属と負極の重なった領域の面積のことであり、負極の方が大きくリチウム金属が負極面積の中に完全に納まる場合はリチウム金属自体の面積であり、具体的にはリチウム極集電体にリチウム金属が圧着もしくは貼着されている部分の面積である。逆に、リチウム金属の方が大きく負極がリチウム金属面積の中に完全に納まる場合は負極の面積がリチウム金属の対向面積となる。一般に、角型やフィルム型等の積層タイプのセルでは、実質的に同一の大きさを有する負極、正極を積層して電極積層体を構成し、電極積層体はリチウム金属に対向しているので、該負極の面積またはリチウム金属の面積の小さいほうが対向面積となる。   Here, the facing area of the lithium metal is the area of the region where the lithium metal and the negative electrode overlap. When the negative electrode is larger and the lithium metal completely fits in the negative electrode area, it is the area of the lithium metal itself. Specifically, it is the area of the portion where the lithium metal is crimped or adhered to the lithium electrode current collector. Conversely, when the lithium metal is larger and the negative electrode completely fits in the lithium metal area, the area of the negative electrode becomes the opposite area of the lithium metal. In general, in a stacked type cell such as a square type or a film type, a negative electrode and a positive electrode having substantially the same size are stacked to form an electrode stack, and the electrode stack is opposed to lithium metal. The smaller the area of the negative electrode or the area of the lithium metal is the opposing area.

一方、電極積層体が捲回して構成されている捲回タイプのセルは帯状の負極が捲回して電極積層体を形成している。このような場合には負極とリチウム金属とが曲面状になるので、負極とリチウム金属の面積はそれぞれの投影面積とし、その重なった領域を対向面積とする。   On the other hand, in a wound type cell in which an electrode laminate is wound, a strip-shaped negative electrode is wound to form an electrode laminate. In such a case, since the negative electrode and the lithium metal are curved, the areas of the negative electrode and the lithium metal are projected areas, and the overlapping region is the opposing area.

次に、図1のフィルム型リチウムイオンキャパシタを例にして具体的に説明する。図4は図1の電極積層体11とリチウム金属4とを模式的に示したものである。図示の如く、電極積層体11は正極1と負極2とがセパレータ3を介して交互に積層して構成されており、その最外部にセパレータ3が設置され、該セパレータ3の内側に負極2が設置されている。リチウム金属4は上記電極積層体11の負極2に対向して配置される。   Next, the film type lithium ion capacitor of FIG. 1 will be described in detail as an example. FIG. 4 schematically shows the electrode laminate 11 and the lithium metal 4 of FIG. As shown in the figure, the electrode laminate 11 is configured by alternately laminating positive electrodes 1 and negative electrodes 2 with separators 3 interposed between them, and a separator 3 is installed at the outermost part, and the negative electrode 2 is placed inside the separator 3. is set up. The lithium metal 4 is disposed to face the negative electrode 2 of the electrode laminate 11.

本発明は、上記においてリチウム金属4の対向面積Sを、負極2の対向面積Tの75%以上、100%未満にする。本例は分かりやすくするためリチウム金属4の横寸法を負極2の横寸法より便宜的に短縮してリチウム金属4の対向面積Sを負極2の対向面積Tより小さくしているが、リチウム金属4の縦寸法あるいは縦、横両寸法を負極2の寸法に対して縮めてもよい。リチウム金属4の対向面積Sが負極2の対向面積Tの75%未満であると、リチウム金属4の対向面が負極2に対して小さくなりすぎるため、負極全体にリチウムイオンをむらなく充分にドーピングできなくなる、局所的にリチウムイオンのドーピングが集中するので、負極の一部に負荷がかかり劣化する、またはリチウム金属が残る、などのおそれが生じる。また、100%以上であると、リチウム金属4を設置するとき負極2からはみ出し(100%であっても整合ミスによってはみ出しやすい)、このはみ出した部分のリチウム金属の一部が負極にドーピングされずにセル内に残るため、セルの特性面、安全性の面で好ましくない。   In the present invention, the facing area S of the lithium metal 4 is 75% or more and less than 100% of the facing area T of the negative electrode 2 in the above. In this example, for easy understanding, the lateral dimension of the lithium metal 4 is conveniently shortened from the lateral dimension of the negative electrode 2 so that the opposing area S of the lithium metal 4 is smaller than the opposing area T of the negative electrode 2. The vertical dimension or both vertical and horizontal dimensions may be reduced with respect to the dimension of the negative electrode 2. When the facing area S of the lithium metal 4 is less than 75% of the facing area T of the negative electrode 2, the facing surface of the lithium metal 4 is too small with respect to the negative electrode 2, so that the entire negative electrode is sufficiently doped with lithium ions without unevenness. Since the doping of lithium ions is concentrated locally, the doping of some of the negative electrode may be applied and deteriorated, or lithium metal may remain, etc. Further, if it is 100% or more, it protrudes from the negative electrode 2 when the lithium metal 4 is installed (even if it is 100%, it easily protrudes due to misalignment), and a part of the lithium metal in this protruding portion is not doped into the negative electrode. Therefore, it is not preferable in terms of cell characteristics and safety.

また、100%未満であっても100%に近い場合には、リチウム金属4が負極2からはみ出さないように配置することが至難となるので、リチウム金属4の対向面積Sは負極2の対向面積Tの85%以上、98%以下であるのが好ましい。   Further, even if it is less than 100%, if it is close to 100%, it is difficult to dispose the lithium metal 4 so as not to protrude from the negative electrode 2, so that the facing area S of the lithium metal 4 is opposite to that of the negative electrode 2. It is preferably 85% or more and 98% or less of the area T.

また、リチウム金属4の対向面積Sが負極2の対向面積Tの100%未満であっても、リチウム金属4が負極2に対し正確に整合して配置されないと、リチウム金属4の一部が負極2からはみ出し、リチウム金属がセル内に残る要因となる。したがって、リチウム金属4を配置するときは、負極2からはみ出さないようにするのが重要である。   Even if the facing area S of the lithium metal 4 is less than 100% of the facing area T of the negative electrode 2, if the lithium metal 4 is not accurately aligned with the negative electrode 2, a part of the lithium metal 4 is negative. It protrudes from 2 and causes lithium metal to remain in the cell. Therefore, when arranging the lithium metal 4, it is important not to protrude from the negative electrode 2.

なお、リチウム金属4の対向面積をこのように最外負極2の対向面積との関係で定めたのは、主に実際のセルにおいてリチウムイオンが負極2にドーピングされること、セルの組立て工程においてリチウム金属4を電極積層体の最外に位置する負極2に整合させて配置することによる。   The reason why the facing area of the lithium metal 4 is thus determined in relation to the facing area of the outermost negative electrode 2 is that lithium ions are doped into the negative electrode 2 mainly in an actual cell, and in the cell assembly process. By arranging the lithium metal 4 in alignment with the negative electrode 2 located on the outermost side of the electrode laminate.

図5および図6は、角型積層タイプのリチウムイオンキャパシタにおける他の実施の形態を示す模式的な断面図をそれぞれ示す。図5はセルを構成する電極積層体11の上部と下部にリチウム金属4を配置する例であり、図6はセルを2個以上の電極積層体11で構成し、電極積層体11の間にリチウム金属4を配置する例である。これらの例においても、同様にリチウム金属4の対向面積をリチウム金属4に対向する負極2の対向面積の75%以上、100%未満にすることによって同様の効果が得られる。   FIGS. 5 and 6 are schematic cross-sectional views showing other embodiments of a rectangular laminated type lithium ion capacitor, respectively. FIG. 5 shows an example in which the lithium metal 4 is disposed on the upper and lower portions of the electrode stack 11 constituting the cell, and FIG. 6 shows that the cell is composed of two or more electrode stacks 11 between the electrode stacks 11. This is an example in which lithium metal 4 is disposed. In these examples, similarly, the same effect can be obtained by setting the facing area of the lithium metal 4 to 75% or more and less than 100% of the facing area of the negative electrode 2 facing the lithium metal 4.

図7は本発明の他の実施の形態である捲回タイプのリチウムイオンキャパシタの断面図である。本例においては帯状の正極1と負極2をセパレータ3を介在させて円形に捲回して、最外部をセパレータ3、その内側は負極2にして円柱状の電極積層体11を形成し、該電極積層体の例えば対面に負極2に対向させてリチウム金属4をそれぞれ配置しセルを構成している。図7において、正極1、負極2およびリチウム金属4の高さは実質的に同じであり、リチウム金属4と負極2の対向部分は略円筒状の曲面となっている。また、電極集電体はすべて不図示となっている。   FIG. 7 is a sectional view of a wound type lithium ion capacitor according to another embodiment of the present invention. In this example, a belt-like positive electrode 1 and a negative electrode 2 are wound in a circle with a separator 3 interposed therebetween, and a cylindrical electrode stack 11 is formed with the separator 3 as the outermost part and the negative electrode 2 inside thereof. For example, a lithium metal 4 is disposed on the opposite side of the laminate so as to face the negative electrode 2 to constitute a cell. In FIG. 7, the heights of the positive electrode 1, the negative electrode 2, and the lithium metal 4 are substantially the same, and the facing portion of the lithium metal 4 and the negative electrode 2 is a substantially cylindrical curved surface. Further, all electrode current collectors are not shown.

このような捲回タイプのリチウムイオンキャパシタにおいて、リチウム金属4の対向面積は略円筒状のリチウム金属の投影面積Sであり、またリチウム金属に対向する負極2の対向面積は、リチウム金属4と対向する電極積層体11の最外にあってリチウム金属4と対向する部分の面積が最大となる略円筒状負極の半円筒面の投影面積Tである。したがって、本例ではリチウム金属4の投影面積Sをリチウム金属に対向する負極2の投影面積Tの75%以上、100%未満にする。   In such a wound type lithium ion capacitor, the facing area of the lithium metal 4 is the projected area S of the substantially cylindrical lithium metal, and the facing area of the negative electrode 2 facing the lithium metal is facing the lithium metal 4. This is the projected area T of the semi-cylindrical surface of the substantially cylindrical negative electrode where the area of the outermost part of the electrode laminate 11 facing the lithium metal 4 is maximized. Therefore, in this example, the projected area S of the lithium metal 4 is set to 75% or more and less than 100% of the projected area T of the negative electrode 2 facing the lithium metal.

図8は、捲回した電極積層体を用いた他のリチウムイオンキャパシタの断面図である。本例は扁平の捲回タイプのリチウムイオンキャパシタであり、リチウム金属4は扁平の電極積層体11の中心部に設置されている。本例におけるリチウム金属4の対向面積Sおよびリチウム金属に対向する負極2の対向面積Tは図示の通りである。リチウム金属4の対向面積Sをリチウム金属4に対向する負極2の対向面積Tの75%以上、100%未満にすることによって、セル内にリチウム金属を残さずに負極および/または正極にリチウムイオンをドーピングすることができる。なお、リチウム金属4は上記扁平の電極積層体11の外側に設置してもよく、この場合においてもリチウム金属4の対向面積Sはリチウム金属4に対向する負極2の対向面積Tの75%以上、100%未満である。   FIG. 8 is a cross-sectional view of another lithium ion capacitor using the wound electrode laminate. This example is a flat wound type lithium ion capacitor, and the lithium metal 4 is installed at the center of the flat electrode laminate 11. The facing area S of the lithium metal 4 and the facing area T of the negative electrode 2 facing the lithium metal in this example are as shown. By making the facing area S of the lithium metal 4 75% or more and less than 100% of the facing area T of the negative electrode 2 facing the lithium metal 4, lithium ions are left in the negative electrode and / or positive electrode without leaving any lithium metal in the cell. Can be doped. The lithium metal 4 may be installed outside the flat electrode laminate 11, and in this case as well, the facing area S of the lithium metal 4 is 75% or more of the facing area T of the negative electrode 2 facing the lithium metal 4. , Less than 100%.

以下に、本発明のリチウムイオンキャパシタを構成する主要素について順次説明する。
本発明の正極集電体および負極集電体としては、一般に有機電解質電池などの用途で提案されている種々の材質を用いることができ、正極集電体にはアルミニウム、ステンレス等、負極集電体にはステンレス、銅、ニッケル等をそれぞれ好適に用いることができ、箔状、ネット状等各種形状のものを用いることができる。特に負極および/又は正極に予めリチウイオンを担持させるためには、表裏面を貫通する孔を備えたものが好ましく、例えばエキスパンドメタル、パンチングメタル、金属網、発泡体、あるいはエッチングにより貫通孔を付与した多孔質箔等を挙げることができる。電極集電体の貫通孔は丸状、角状、その他適宜設定できる。
更に好ましくは、電極を形成する前に、当該電極集電体の貫通孔を、脱落しにくい導電性材料を用いて少なくとも一部を閉塞し、その上に正極および負極を活性物質を用いて形成することにより、電極の生産性を向上させるとともに、電極の脱落によるキャパシタの信頼性低下の問題を解決し、更には、集電体を含む電極の厚さを薄くして、高エネルギー密度、高出力密度を実現できる。
電極集電体の貫通孔の形態、数等は、後述する電解液中のリチウムイオンが電極集電体に遮断されることなく電極の表裏間を移動できるように、また、導電性材料によって閉塞し易いように、適宜設定することができる。
Below, the main elements which comprise the lithium ion capacitor of this invention are demonstrated one by one.
As the positive electrode current collector and the negative electrode current collector of the present invention, various materials generally proposed for applications such as organic electrolyte batteries can be used. The positive electrode current collector is made of aluminum, stainless steel, or the like. Stainless steel, copper, nickel and the like can be suitably used for the body, and various shapes such as foil and net can be used. In particular, in order to support lithium ions in advance on the negative electrode and / or the positive electrode, those having holes penetrating the front and back surfaces are preferable. For example, expanded metal, punching metal, metal net, foam, or through holes are provided by etching. A porous foil etc. can be mentioned. The through-hole of the electrode current collector can be appropriately set to be round, square, or the like.
More preferably, before forming the electrode, at least a part of the through-hole of the electrode current collector is blocked with a conductive material that does not easily fall off, and a positive electrode and a negative electrode are formed thereon using an active substance. As a result, the productivity of the electrode is improved, the problem of a decrease in the reliability of the capacitor due to the dropping of the electrode is solved, and furthermore, the thickness of the electrode including the current collector is reduced, so that the high energy density and the high Power density can be realized.
The shape and number of through-holes in the electrode current collector are blocked by a conductive material so that lithium ions in the electrolyte described later can move between the front and back of the electrode without being blocked by the electrode current collector. It can be set as appropriate so that it is easy to do.

この電極集電体の気孔率は、{1―(集電体重量/集電体真比重)/(集電体見かけ体積)}の比を百分率に換算して得られるものと定義する。本発明に用いる電極集電体の気孔率は、通常、10〜79%、好ましくは20〜60%である。電極集電体の気孔率や孔径は、セルの構造や生産性を考慮し、上述の範囲で適宜選定することが望ましい。   The porosity of this electrode current collector is defined as that obtained by converting the ratio of {1- (current collector weight / current collector true specific gravity) / (current collector apparent volume)} into a percentage. The porosity of the electrode current collector used in the present invention is usually 10 to 79%, preferably 20 to 60%. It is desirable that the porosity and the pore diameter of the electrode current collector are appropriately selected within the above-mentioned range in consideration of the cell structure and productivity.

上記負極活物質としては、リチウムイオンを可逆的に担持できるものであれば特に限定させず、例えば黒鉛、難黒鉛化炭素、芳香族系縮合ポリマーの熱処理物であって水素原子/炭素原子の原子比が0.50〜0.05であるポリアセン系骨格構造を有するポリアセン系有機半導体(PAS)等を挙げることができる。中でもPASは高容量が得られる点でより好ましい。PASに400mAh/gのリチウムイオンを担持(充電)させた後に放電させると650F/g以上の静電容量が得られ、また、500mAh/g以上のリチウムイオンを充電させると750F/g以上の静電容量が得られる。このことから、PASが非常に大きな静電容量を持つことがわかる。   The negative electrode active material is not particularly limited as long as it can reversibly carry lithium ions. For example, it is a heat-treated product of graphite, non-graphitizable carbon, and aromatic condensation polymer, and includes hydrogen atoms / carbon atoms. Examples thereof include a polyacene organic semiconductor (PAS) having a polyacene skeleton structure with a ratio of 0.50 to 0.05. Among these, PAS is more preferable in that a high capacity can be obtained. Capacitance of 650 F / g or more can be obtained by discharging after charging (charging) 400 mAh / g of lithium ions on PAS, and static electricity of 750 F / g or more can be obtained by charging lithium ions of 500 mAh / g or more. Capacitance can be obtained. From this, it can be seen that PAS has a very large capacitance.

本発明の好ましい形態において、PASのようなアモルファス構造を有する活物質を負極に用いた場合、担持させるリチウムイオン量を増加させるほど電位が低下するので、得られる蓄電装置の耐電圧(充電電圧)が高くなり、また、放電における電圧の上昇速度(放電カーブの傾き)が低くなるため、求められる蓄電装置の使用電圧に応じて、リチウムイオン量は活物質のリチウムイオン吸蔵能力の範囲内にて適宜設定することが望ましい。   In a preferred embodiment of the present invention, when an active material having an amorphous structure such as PAS is used for the negative electrode, the potential decreases as the amount of lithium ions to be carried increases, so that the withstand voltage (charging voltage) of the obtained power storage device In addition, the rate of increase in voltage during discharge (the slope of the discharge curve) decreases, so that the amount of lithium ions is within the range of lithium ion storage capacity of the active material, depending on the required operating voltage of the power storage device. It is desirable to set appropriately.

また、PASはアモルファス構造を有することから、リチウムイオンの挿入・脱離に対して膨潤・収縮といった構造変化がないためサイクル特性に優れ、またリチウムイオンの挿入・脱離に対して等方的な分子構造(高次構造)であるため、急速充電、急速放電にも優れた特性を有することから負極材として好適である。   In addition, since PAS has an amorphous structure, there is no structural change such as swelling / shrinkage with respect to insertion / extraction of lithium ions, so that cycle characteristics are excellent, and isotropic to insertion / extraction of lithium ions. Since it has a molecular structure (higher order structure), it is suitable as a negative electrode material because it has excellent characteristics in rapid charge and rapid discharge.

PASの前駆体である芳香族系縮合ポリマーとは、芳香族炭化水素化合物とアルデヒド類との縮合物である。芳香族炭化水素化合物としては、例えばフェノール、クレゾール、キシレノール等の如き、いわゆるフェノール類を好適に用いることができる。例えば、下記式   The aromatic condensation polymer that is a precursor of PAS is a condensate of an aromatic hydrocarbon compound and an aldehyde. As the aromatic hydrocarbon compound, so-called phenols such as phenol, cresol, xylenol and the like can be suitably used. For example, the following formula

Figure 2006286919
(ここで、x及びyはそれぞれ独立に、0、1または2である)
で表されるメチレン・ビスフェノール類であることができ、あるいはヒドロキシ・ビフェニル類、ヒドロキシナフタレン類であることもできる。これらの中でも、実用的にはフェノール類、特にフェノールが好適である。
Figure 2006286919
(Where x and y are each independently 0, 1 or 2)
Or a biphenyl or a hydroxynaphthalene. Among these, phenols, particularly phenol, are preferable for practical use.

また、上記芳香族系縮合ポリマ−としては、上記のフェノール性水酸基を有する芳香族炭化水素化合物の1部をフェノール性水酸基を有さない芳香族炭化水素化合物、例えばキシレン、トルエン、アニリン等で置換した変成芳香族系縮合ポリマー、例えばフェノールとキシレンとホルムアルデヒドとの縮合物を用いることもできる。更に、メラミン、尿素で置換した変成芳香族系ポリマーを用いることもでき、フラン樹脂も好適である。   As the aromatic condensed polymer, a part of the aromatic hydrocarbon compound having a phenolic hydroxyl group is substituted with an aromatic hydrocarbon compound having no phenolic hydroxyl group, such as xylene, toluene, aniline, etc. It is also possible to use a modified aromatic condensation polymer such as a condensate of phenol, xylene and formaldehyde. Furthermore, a modified aromatic polymer substituted with melamine or urea can be used, and a furan resin is also suitable.

本発明においてPASは不溶不融性基体として使用され、該不溶不融性基体は例えば上記芳香族系縮合ポリマーから次のようにして製造することもできる。すなわち、上記芳香族系縮合ポリマーを、非酸化性雰囲気下(真空も含む)中で400〜800°Cの適当な温度まで徐々に加熱することにより、水素原子/炭素原子の原子比(以下H/Cと記す)が0.5〜0.05、好ましくは0.35〜0.10の不溶不融性基体を得ることができる。
しかし、不溶不融性基体の製造方法はこれに限定されることなく、例えば、特公平3−24024号公報等に記載されている方法で、上記H/Cを有し、かつ600m/g以上のBET法による比表面積を有する不溶不融性基体を得ることもできる。
In the present invention, PAS is used as an insoluble and infusible substrate, and the insoluble and infusible substrate can also be produced, for example, from the aromatic condensation polymer as follows. That is, the aromatic condensation polymer is gradually heated to a suitable temperature of 400 to 800 ° C. in a non-oxidizing atmosphere (including a vacuum), whereby a hydrogen atom / carbon atom ratio (hereinafter referred to as H). / C)) is 0.5 to 0.05, preferably 0.35 to 0.10.
However, the method for producing an insoluble and infusible substrate is not limited to this, and is, for example, a method described in Japanese Patent Publication No. 3-24024 and the like, and has the above H / C and 600 m 2 / g. It is also possible to obtain an insoluble and infusible substrate having a specific surface area by the above BET method.

本発明に用いる不溶不融性基体は、X線回折(CuKα)によれば、メイン・ピークの位置は2θで表して24°以下に存在し、また該メイン・ピークの他に41〜46°の間にブロードな他のピークが存在している。すなわち、上記不溶不融性基体は、芳香族系多環構造が適度に発達したポリアセン系骨格構造を有し、かつアモルファス構造を有し、リチウムを安定にドーピングすることができることから、リチウム蓄電装置用の活物質として好適する。   According to X-ray diffraction (CuKα), the insoluble and infusible substrate used in the present invention has a main peak position represented by 2θ of 24 ° or less, and 41 to 46 ° in addition to the main peak. There are other broad peaks in between. That is, the insoluble infusible substrate has a polyacene skeleton structure in which an aromatic polycyclic structure is appropriately developed, has an amorphous structure, and can be stably doped with lithium. Suitable as an active material.

本発明において負極活物質は、細孔直径3nm以上で細孔容積を0.10ml/g以上有するものが好ましく、その細孔直径の上限は限定されないが、通常は3〜50nmの範囲である。また、細孔容積の範囲についても特に限定されないが、通常0.10〜0.5ml/g、好ましくは0.15〜0.5ml/gである。   In the present invention, the negative electrode active material preferably has a pore diameter of 3 nm or more and a pore volume of 0.10 ml / g or more, and the upper limit of the pore diameter is not limited, but is usually in the range of 3 to 50 nm. The range of the pore volume is not particularly limited, but is usually 0.10 to 0.5 ml / g, preferably 0.15 to 0.5 ml / g.

本発明において負極は、上記の炭素材料やPAS等の負極活物質粉末から負極集電体上に形成されるが、その方法は特定されず既知の方法が使用できる。具体的には、負極活物質粉末、バインダーおよび必要に応じて導電性粉末を水系または有機溶媒中に分散させてスラリーとし、該スラリーを前記集電体に塗布するか、または上記スラリーを予めシート状に成形し、これを集電体に貼り付けることによって形成できる。ここで使用されるバインダーとしては、例えばSBR等のゴム系バインダーやポリ四フッ化エチレン、ポリフッ化ビニリデン等の合フッ素系樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂を用いることができる。中でもフッ素系バインダーが好ましく、特にフッ素原子/炭素原子の原子比(以下、F/Cとする)が0.75以上、1.5未満であるフッ素系バインダーを用いることが好ましく、0.75以上、1.3未満のフッ素系バインダーが更に好ましい。バインダーの使用量は、負極活物質の種類や電極形状等により異なるが、負極活物質に対して1〜20重量%、好ましくは2〜10重量%である。   In the present invention, the negative electrode is formed on the negative electrode current collector from the above-mentioned carbon material or negative electrode active material powder such as PAS, but the method is not specified and a known method can be used. Specifically, the negative electrode active material powder, the binder and, if necessary, conductive powder are dispersed in an aqueous or organic solvent to form a slurry, and the slurry is applied to the current collector, or the slurry is preliminarily sheeted. It can form by shape | molding in a shape and sticking this on a collector. As the binder used here, for example, a rubber-based binder such as SBR, a synthetic fluorine-based resin such as polytetrafluoroethylene or polyvinylidene fluoride, or a thermoplastic resin such as polypropylene or polyethylene can be used. Among them, a fluorine-based binder is preferable, and it is particularly preferable to use a fluorine-based binder having a fluorine atom / carbon atom ratio (hereinafter referred to as F / C) of 0.75 or more and less than 1.5. More preferred is a fluorine-based binder of less than 1.3. Although the usage-amount of a binder changes with kinds, electrode shape, etc. of a negative electrode active material, it is 1-20 weight% with respect to a negative electrode active material, Preferably it is 2-10 weight%.

また、必要に応じて使用される導電性材料としては、アセチレンブラック、グラファイト、金属粉末等が挙げられる。導電性材料の使用量は負極活物質の電気伝導度、電極形状等により異なるが、負極活物質に対して2〜40重量%の割合で加えるのが適当である。
なお、負極活物質の厚さは、セルのエネルギー密度を確保できるように正極活物質との厚さのバランスで設計されるが、セルの出力密度とエネルギー密度、工業的生産性等を考慮すると、集電体の片面で通常、15〜100μm、好ましくは20〜80μmである。
Moreover, as an electroconductive material used as needed, acetylene black, a graphite, a metal powder, etc. are mentioned. The amount of the conductive material used varies depending on the electrical conductivity of the negative electrode active material, the electrode shape, etc., but it is appropriate to add it in a proportion of 2 to 40% by weight with respect to the negative electrode active material.
In addition, the thickness of the negative electrode active material is designed with a balance of the thickness with the positive electrode active material so that the energy density of the cell can be secured, but considering the output density and energy density of the cell, industrial productivity, etc. The thickness of one side of the current collector is usually 15 to 100 μm, preferably 20 to 80 μm.

本発明のLICにおいて、正極は、リチウムイオンおよび/又は、例えばテトラフルオロボレートのようなアニオンを可逆的に把持できる正極活物質を含有する。   In the LIC of the present invention, the positive electrode contains a positive electrode active material capable of reversibly holding lithium ions and / or anions such as tetrafluoroborate.

上記正極活物質としては、リチウムイオンおよび/又はアニオンを可逆的に担持できるものであれば特には限定されず、例えば活性炭、導電性高分子、芳香族系縮合ポリマーの熱処理物であって水素原子/炭素原子の原子比が0.05〜0.50であるポリアセン系骨格構造を有するポリアセン系有機半導体(PAS)等を挙げることができる。
なお、上記正極活物質を用いて正極集電体に正極を形成する方法は、前記した負極の場合と実質的に同じであるので、詳細な説明は省略する。
The positive electrode active material is not particularly limited as long as it can reversibly carry lithium ions and / or anions. For example, the positive electrode active material is a heat-treated product of activated carbon, conductive polymer, aromatic condensation polymer, and hydrogen atoms. Examples thereof include a polyacene organic semiconductor (PAS) having a polyacene skeleton structure having an atomic ratio of carbon atoms of 0.05 to 0.50.
The method for forming the positive electrode on the positive electrode current collector using the positive electrode active material is substantially the same as in the case of the negative electrode described above, and a detailed description thereof will be omitted.

また、本発明のLICでは、負極活物質の単位重量当たりの静電容量が正極活物質の単位重量当たりの静電容量の3倍以上を有し、かつ正極活物質重量が負極活物質重量よりも大きいのが好ましい。使用する正極の静電容量を考慮して負極へのリチウムイオンの充填量(プレドープ量)を適切に制御することにより、正極単位重量当たり静電容量の3倍以上の静電容量を確保し、かつ正極活物質重量が負極活物質重量よりも重くすることができる。これにより、従来の電気二重層キャパシタよりも高電圧かつ高容量のキャパシタが得られる。さらに、正極の単位重量当たりの静電容量よりも大きい単位重量当たりの静電容量を持つ負極を用いる場合には、負極の電位変化量を変えずに負極活物質重量を減らすことが可能となるため、正極活物質の充填量が多くなりセルの静電容量および容量を大きくできる。正極活物質重量は負極活物質重量に対して大きいことが好ましいが、1.1倍〜10倍であることが更に好ましい。1.1倍未満であれば容量差が小さくなり、10倍を超えると逆に容量が小さくなる場合もあり、また正極と負極の厚み差が大きくなり過ぎるのでセル構成上好ましくない。   Further, in the LIC of the present invention, the capacitance per unit weight of the negative electrode active material has more than three times the capacitance per unit weight of the positive electrode active material, and the positive electrode active material weight is more than the negative electrode active material weight. Is also preferably large. In consideration of the capacitance of the positive electrode to be used, by appropriately controlling the filling amount (pre-doping amount) of lithium ions into the negative electrode, a capacitance more than three times the capacitance per unit weight of the positive electrode is secured, In addition, the weight of the positive electrode active material can be heavier than the weight of the negative electrode active material. Thereby, a capacitor having a higher voltage and a higher capacity than the conventional electric double layer capacitor can be obtained. Furthermore, when a negative electrode having a capacitance per unit weight larger than the capacitance per unit weight of the positive electrode is used, the negative electrode active material weight can be reduced without changing the potential change amount of the negative electrode. Therefore, the filling amount of the positive electrode active material is increased, and the capacitance and capacity of the cell can be increased. The weight of the positive electrode active material is preferably larger than the weight of the negative electrode active material, but more preferably 1.1 times to 10 times. If it is less than 1.1 times, the capacity difference becomes small, and if it exceeds 10 times, the capacity may be reduced, and the thickness difference between the positive electrode and the negative electrode becomes too large, which is not preferable in terms of the cell structure.

本発明のLICに用いる電解質としては、リチウムイオンを移送可能な電解質を用いる。このような電解質は、通常液状であってセパレータに含浸できるものが好ましい。この電解質の溶媒としては、非プロトン性有機溶媒電解質溶液を形成できる非プロトン性有機溶媒が好ましく使用できる。この非プロトン性有機溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γーブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、スルホラン等が挙げられる。更に、これら非プロトン性有機溶媒の二種以上を混合した混合液を用いることもできる。   As the electrolyte used in the LIC of the present invention, an electrolyte capable of transporting lithium ions is used. Such an electrolyte is preferably a liquid that can be impregnated in a separator. As the electrolyte solvent, an aprotic organic solvent capable of forming an aprotic organic solvent electrolyte solution can be preferably used. Examples of the aprotic organic solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride, sulfolane and the like. Furthermore, a mixed solution in which two or more of these aprotic organic solvents are mixed can also be used.

また、かかる溶媒に溶解させる電解質としては、リチウムイオンを移送可能で高電圧でも電気分解を起こさず、リチウムイオンが安定に存在できるものであれば使用できる。このような電解質としては、例えばLiClO、LiAsF、LiBF、LiPF6、Li(CSON等のリチウム塩を好適に用いることができる。
上記の電解質及び溶媒は、充分に脱水された状態で混合して電解液とするが、電解液中の電解質の濃度は、電解液による内部抵抗を小さくするため少なくとも0.1モル/l以上とすることが好ましく、0.5〜1.5モル/lの範囲内とすることが更に好ましい。
As an electrolyte to be dissolved in such a solvent, any electrolyte can be used as long as it can transfer lithium ions, does not cause electrolysis even at a high voltage, and can stably exist. As such an electrolyte, lithium salts such as LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6, and Li (C 2 F 5 SO 2 ) 2 N can be preferably used.
The electrolyte and the solvent are mixed in a sufficiently dehydrated state to obtain an electrolyte solution. The electrolyte concentration in the electrolyte solution is at least 0.1 mol / l or more in order to reduce the internal resistance due to the electrolyte solution. It is preferable to make it within a range of 0.5 to 1.5 mol / l.

また、セパレータとしては、電解液あるいは電極活物質等に対して耐久性のある連通気孔を有する電気伝導性のない多孔体等を用いることができる。このセパレータの材質としては、セルロース(紙)、ポリエチレン、ポリプロピレン、などが挙げられ、既知のものが使用できる。これらの中でセルロース(紙)が耐久性と経済性の点で優れている。セパレータの厚さは限定されないが、通常は20〜50μm程度が好ましい。     Further, as the separator, a non-electrically conductive porous body having continuous vent holes that are durable against an electrolytic solution or an electrode active material can be used. Examples of the material of the separator include cellulose (paper), polyethylene, and polypropylene, and known materials can be used. Among these, cellulose (paper) is excellent in terms of durability and economy. Although the thickness of a separator is not limited, Usually, about 20-50 micrometers is preferable.

本発明のLICにおいて、2個以上の電極ユニットを横方向または縦方向に積層してセルを構成するとき、積層する各電極ユニット間、あるいは更にセルの両側端部に位置する電極ユニットの一方または両方の外側には、負極および/又は正極に予めリチウムイオンを担持させるためのリチウムイオン供給源として、前記したようにリチウム金属が配置される。このリチウム金属としては、リチウム金属あるいはリチウム−アルミニウム合金のように、少なくともリチウム元素を含有し、リチウムイオンを供給することのできる物質を用いる。   In the LIC of the present invention, when a cell is formed by laminating two or more electrode units in the horizontal direction or the vertical direction, one of the electrode units positioned between the laminated electrode units or at both ends of the cell, or As described above, lithium metal is disposed on both outer sides as a lithium ion supply source for supporting lithium ions on the negative electrode and / or the positive electrode in advance. As the lithium metal, a substance that contains at least lithium element and can supply lithium ions, such as lithium metal or lithium-aluminum alloy, is used.

この場合、キャパシタ内部に配置させるリチウムイオン供給源の量(リチウム金属等のリチウムイオンを供給することのできる物質の重量)は、所定の負極の容量が得られるだけの量があれば充分であるが、それ以上の量を配置させた場合はリチウム金属から所定量だけ担持させた後、リチウム金属をキャパシタ内部に残しておいてもよい。ただし、安全性を考慮すれば必要量のみ配置し、全量を負極および/又は正極に担持させた方が好ましい。
本発明において、リチウム金属は、導電性多孔体からなるリチウム極集電体上に形成することが好ましい。ここで、リチウム極集電体となる導電性多孔体としては、ステンレスメッシュ等のリチウムイオン供給源と反応しない金属多孔体を用いることが好ましい。例えばリチウムイオン供給源としてリチウム金属を用い、リチウム極集電体としてステンレスメッシュ等の導電性多孔体を用いる場合、リチウム金属の少なくとも一部、好ましくは80重量%以上がリチウム極集電体の気孔部に埋め込まれていることが好ましい。これにより、リチウムイオンが負極に担持された後も、リチウム金属の消失によって電極間に生じる隙間が少なくなり、LICの信頼性をより確実に保持できる。
In this case, the amount of the lithium ion supply source (the weight of the substance capable of supplying lithium ions such as lithium metal) to be disposed inside the capacitor is sufficient if the amount is sufficient to obtain a predetermined negative electrode capacity. However, when a larger amount is disposed, after a predetermined amount is supported from the lithium metal, the lithium metal may be left inside the capacitor. However, in consideration of safety, it is preferable that only a necessary amount is disposed and the entire amount is supported on the negative electrode and / or the positive electrode.
In the present invention, the lithium metal is preferably formed on a lithium electrode current collector made of a conductive porous body. Here, it is preferable to use a porous metal body that does not react with a lithium ion supply source, such as a stainless mesh, as the conductive porous body serving as the lithium electrode current collector. For example, when lithium metal is used as the lithium ion supply source and a conductive porous material such as stainless steel mesh is used as the lithium electrode current collector, at least a portion of the lithium metal, preferably 80% by weight or more, is a pore of the lithium electrode current collector. It is preferably embedded in the part. Thereby, even after lithium ions are supported on the negative electrode, gaps generated between the electrodes due to the disappearance of the lithium metal are reduced, and the reliability of the LIC can be more reliably maintained.

リチウム金属をリチウム極集電体に形成する場合、リチウム金属は多孔体のリチウム極集電体の片面または両面に形成できる。セルの端部に位置する電極ユニットの外側に配置するリチウム金属では、電極ユニットの負極に対向する、リチウム極集電体の片面にだけ形成するのが好ましい。リチウム極集電体に圧着するリチウム金属の厚さは、負極に予め担持するリチウムイオン量を考慮して適宜決められるため限定されないが、通常リチウム極集電体の片面で約50〜300μm程度である。   When lithium metal is formed on the lithium electrode current collector, the lithium metal can be formed on one or both surfaces of the porous lithium electrode current collector. The lithium metal disposed outside the electrode unit located at the end of the cell is preferably formed only on one side of the lithium electrode current collector facing the negative electrode of the electrode unit. The thickness of the lithium metal to be crimped to the lithium electrode current collector is not limited because it is appropriately determined in consideration of the amount of lithium ions supported in advance on the negative electrode, but is usually about 50 to 300 μm on one side of the lithium electrode current collector. is there.

本発明のLICの外装容器の材質は特に限定されず、一般に電池またはキャパシタに用いられている種々の材質を用いることができ、例えば鉄、アルミニウム等の金属材料、プラスチック材料、あるいはそれらを積層した複合材料等を使用できる。また、外装容器の形状も特に限定されず、円筒型や角型など、用途に応じて適宜選択することができる。LICの小型化、軽量化の観点からは、アルミニウムとナイロン、ポリプロピレンなどの高分子材料とのラミネートフィルムを用いたフィルム型の外装容器が好ましい。   The material of the outer packaging container of the LIC of the present invention is not particularly limited, and various materials generally used for batteries or capacitors can be used, for example, metal materials such as iron and aluminum, plastic materials, or laminated layers thereof. Composite materials can be used. Further, the shape of the outer container is not particularly limited, and can be appropriately selected depending on the application, such as a cylindrical shape or a rectangular shape. From the viewpoint of reducing the size and weight of the LIC, a film-type exterior container using a laminate film of aluminum and a polymer material such as nylon or polypropylene is preferable.

以下、本発明のLICの製造方法の一例を示す。LICの電極集電体の貫通孔は、導電性材料で塞がれても塞がれなくても良いが、本例では塞ぐ場合について説明する。電極集電体の貫通孔は、例えばカーボン系の導電性材料を用いて、スプレー法などの公知の手法によって塞ぐことができる。   Hereafter, an example of the manufacturing method of LIC of this invention is shown. The through hole of the electrode collector of the LIC may or may not be blocked with a conductive material. In this example, the case of blocking will be described. The through hole of the electrode current collector can be closed by a known method such as a spray method using, for example, a carbon-based conductive material.

次に、貫通孔を導電性材料で塞がれた電極集電体上に、正極、負極を形成する。正極は正極活物質をバインダー樹脂と混合してスラリーとし、正極集電体上にコーティングして乾燥させることにより形成する。負極も同様に、負極活物質をバインダー樹脂と混合してスラリーとし、負極集電体上にコーティングして乾燥させることにより形成する。   Next, a positive electrode and a negative electrode are formed on the electrode current collector in which the through hole is closed with a conductive material. The positive electrode is formed by mixing a positive electrode active material with a binder resin to form a slurry, coating the positive electrode current collector, and drying. Similarly, the negative electrode is formed by mixing a negative electrode active material with a binder resin to form a slurry, coating the negative electrode current collector, and drying.

リチウム極は、リチウム金属を導電性多孔体からなるリチウム極集電体上に圧着することにより形成する。リチウム極集電体の厚さは10〜200μm程度、リチウム金属の厚さは使用する負極活物質量にもよるが、一般的には50〜300μm程度である。   The lithium electrode is formed by pressure bonding lithium metal onto a lithium electrode current collector made of a conductive porous body. The thickness of the lithium current collector is about 10 to 200 μm, and the thickness of the lithium metal is generally about 50 to 300 μm, although it depends on the amount of the negative electrode active material used.

電極は乾燥させた後、セルの外装容器のサイズにあわせた幅にカットする。この際、端子溶接部として取出し部を有する形状にカットするのが好ましい。
ついで、電極を形成した電極集電体を、正極と負極とが互いに直接接触しないようにセパレータを挟み込みながら3層以上積層して電極ユニットを組み立てる。そして、その外側をテープで止める。このとき正極、負極の取出し部を所定の位置に揃えるようにする。
After the electrode is dried, it is cut into a width that matches the size of the outer packaging container of the cell. At this time, it is preferable to cut into a shape having an extraction portion as a terminal weld portion.
Next, an electrode unit is assembled by laminating three or more layers of electrode collectors on which electrodes are formed while sandwiching a separator so that the positive electrode and the negative electrode are not in direct contact with each other. And the outside is stopped with tape. At this time, the take-out portions of the positive electrode and the negative electrode are aligned at predetermined positions.

組み立てた電極ユニットの下部と上部にリチウム金属を配置し、正極集電体の取出し部と正極端子、負極集電体およびリチウム極集電体の取出し部と負極端子とをそれぞれ超音波溶接等により溶接する。   Lithium metal is placed on the lower and upper parts of the assembled electrode unit, and the positive electrode collector take-out part and positive electrode terminal, the negative electrode current collector and the lithium electrode current collector take-out part and negative electrode terminal are respectively ultrasonically welded. Weld.

上記のリチウム金属を配置した電極ユニットを外装容器の内部へ配置し、電解液注入口を残して熟融着等により外装容器を閉じる。外部端子は、外部回路と接続できるよう、少なくとも一部を外装容器の外部に露出させた状態とする。外装容器の電解液注入口から電解液を注入し、外装容器内部に電解液で充填した後、電解液注入口を熱融着等により閉じ、外装容器を完全に封止することにより、本発明のリチウムイオンキャパシタが得られる。   The electrode unit in which the above lithium metal is disposed is disposed inside the outer container, and the outer container is closed by mature fusion or the like while leaving the electrolyte inlet. At least a part of the external terminal is exposed to the outside of the outer container so that it can be connected to an external circuit. By injecting an electrolytic solution from the electrolytic solution injection port of the outer container and filling the outer container with the electrolytic solution, the electrolytic solution injection port is closed by heat fusion or the like, and the outer container is completely sealed. Lithium ion capacitor can be obtained.

電解液を注入すると、すべての負極とリチウム金属が電気化学的に接触し、リチウム金属から電解液中に溶出したリチウムイオンは時間の経過とともに負極に移動し、所定量のリチウムイオンが負極に担持される。負極へのリチウムイオンの担持に当たっては、負極へのリチウムイオンの浸入により生じるひずみで負極の変形が発生し、負極の平坦性が損なわれないように、外部から力を加えて拘束しておくような工夫をすることが好ましい。特に、フィルム型電池では、外装容器からの接圧が円筒型や角型電池のような金属ケースを用いた電池より弱いので、外部からの圧力を加えて正極、負極の平坦性をとることによりセル自身の歪みもなくなり、セル性能が向上し、好ましい。   When the electrolyte is injected, all the negative electrode and lithium metal are in electrochemical contact, and the lithium ions eluted from the lithium metal into the electrolyte move to the negative electrode over time, and a predetermined amount of lithium ion is carried on the negative electrode. Is done. When supporting lithium ions on the negative electrode, the negative electrode will be deformed by strain caused by the penetration of lithium ions into the negative electrode, and restrained by applying external force so that the flatness of the negative electrode is not impaired. It is preferable to devise various ideas. In particular, in a film type battery, the contact pressure from the outer container is weaker than a battery using a metal case such as a cylindrical type or a square type battery. Therefore, by applying external pressure, the flatness of the positive electrode and the negative electrode is obtained. The distortion of the cell itself is also eliminated, and the cell performance is improved, which is preferable.

かくして、本発明の好ましい実施形態のLICは、正極にはリチウムイオンおよび/又はアニオンを可逆的に担持可能な活物質を用いており、そして電解質にはリチウム塩の非プロトン性有機溶媒溶液を用い、負極としては正極活物質の単位重量当たりの静電容量の3倍以上の静電容量を有し、かつ正極活物質重量が負極活物質重量よりも大きく、負極にリチウムを予め担持させるリチウム金属がセルに設けられ、充電前の負極に予めリチウムイオンをドーピングできる。   Thus, the LIC of a preferred embodiment of the present invention uses an active material capable of reversibly supporting lithium ions and / or anions for the positive electrode, and uses an aprotic organic solvent solution of lithium salt for the electrolyte. The negative electrode is a lithium metal having a capacitance more than three times the capacitance per unit weight of the positive electrode active material, the positive electrode active material weight is larger than the negative electrode active material weight, and the lithium is previously supported on the negative electrode Is provided in the cell, and the negative electrode before charging can be previously doped with lithium ions.

また、正極の単位重量当たりの静電容量に対して大きな単位重量当たりの静電容量を持つ負極を用いたことにより、負極の電位変化量を変えずに負極活物質重量を減らすことが可能となるため、正極活物質の充填量が多くなりセルの静電容量および容量が大きくなる。また、負極の静電容量が大きいために負極の電位変化量が小さくなり、結果的に正極の電位変化量が大きくなりセルの静電容量および容量が大きくなる。   In addition, by using a negative electrode having a capacitance per unit weight that is larger than the capacitance per unit weight of the positive electrode, the weight of the negative electrode active material can be reduced without changing the potential change amount of the negative electrode. Therefore, the filling amount of the positive electrode active material is increased, and the capacitance and capacity of the cell are increased. Further, since the negative electrode has a large capacitance, the potential change amount of the negative electrode is reduced, and as a result, the potential change amount of the positive electrode is increased, and the capacitance and capacity of the cell are increased.

さらに、従来の電気二重層キャパシタでは放電時に正極電位は約3Vまでしか電位が下がらないが、本発明のリチウムイオンキャパシタでは負極電位が低いことにより正極電位が3V以下まで低下できるので、従来の電気二重層キャパシタの構成より高容量になる。   Further, in the conventional electric double layer capacitor, the potential of the positive electrode drops only to about 3V at the time of discharge, but in the lithium ion capacitor of the present invention, the negative electrode potential is low, so that the positive electrode potential can be lowered to 3V or less. The capacity is higher than that of the double layer capacitor.

さらにまた、負極容量として必要な容量を得るために所定量のリチウムを予め負極に担持させることにより、通常のキャパシタの使用電圧が2.3〜2.7V程度であるのに対し、3V以上に高く設定でき、エネルギー密度が向上する。
以下具体的な実施例により詳細を説明する。
Furthermore, in order to obtain a required capacity as a negative electrode capacity, a predetermined amount of lithium is supported on the negative electrode in advance, so that the operating voltage of a normal capacitor is about 2.3 to 2.7 V, whereas it is 3 V or more. It can be set higher and energy density is improved.
Details will be described below with reference to specific examples.

(実施例1)
(負極1の製造法)
厚さ0.5mmのフェノール樹脂成形板をシリコニット電気炉中に入れ、窒素雰囲気下で500℃まで50℃/時間の速度で、更に10℃/時間の速度で660℃まで昇温し、熱処理し、PASを合成した。かくして得られたPAS板をディスクミルで粉砕することにより、PAS粉体を得た。このPAS粉体のH/C比は0.21であった。
Example 1
(Production method of negative electrode 1)
A 0.5 mm thick phenolic resin molded plate is placed in a siliconite electric furnace, heated to 500 ° C. at a rate of 50 ° C./hour, and further at a rate of 10 ° C./hour to 660 ° C. in a nitrogen atmosphere, followed by heat treatment. PAS was synthesized. The PAS plate thus obtained was pulverized with a disk mill to obtain a PAS powder. The H / C ratio of this PAS powder was 0.21.

次に、上記PAS粉体100重量部と、ポリフッ化ビニリデン粉末10重量部をN−メチルピロリドン80重量部に溶解した溶液とを充分に混合することによりスラリーを得た。該スラリーを厚さ18μmの銅箔片面に固形分にして約7mg/cm程度になるよう塗工し、乾燥、プレス後PAS負極1を得た。 Next, 100 parts by weight of the PAS powder and a solution prepared by dissolving 10 parts by weight of polyvinylidene fluoride powder in 80 parts by weight of N-methylpyrrolidone were sufficiently mixed to obtain a slurry. The slurry was coated on one side of a 18 μm thick copper foil so that the solid content was about 7 mg / cm 2 , dried and pressed to obtain a PAS negative electrode 1.

(正極1の製造法)
市販の比表面積が1950m/g活性炭粉末100重量部とポリフッ化ビニリデン粉末10重量部をN−メチルピロリドン100重量部に溶解した溶液とを充分に混合することによりスラリーを得た。該スラリーをカーボン系導電塗料をコーティングした厚さ20μmのアルミニウム箔片面に固形分にして約7mg/cm程度になるよう塗工し、乾燥、プレス後正極1を得た。
(Method for producing positive electrode 1)
A slurry was obtained by thoroughly mixing 100 parts by weight of a commercially available specific surface area of 1950 m 2 / g activated carbon powder and 10 parts by weight of polyvinylidene fluoride powder in 100 parts by weight of N-methylpyrrolidone. The slurry was applied to one surface of an aluminum foil having a thickness of 20 μm coated with a carbon-based conductive paint so that the solid content was about 7 mg / cm 2 , dried, and pressed to obtain a positive electrode 1.

(正極1の単位重量当たりの静電容量測定)
上記正極を1.5×2.0cmサイズに切り出し、評価用正極とした。正極と対極として1.5×2.0cmサイズ、厚み200μmの金属リチウムを厚さ50μmのポリエチレン製不織布をセパレーターとして介し模擬セルを組んだ。参照極として金属リチウムを用いた。電解液としては、プロピレンカーボネートに、1モル/lの濃度にLiPF を溶解した溶液を用いた。
充電電流1mAにて3.6Vまで充電しその後定電圧充電を行い、総充電時間1時間の後、1mAにて2.5Vまで放電を行った。3.5V〜2.5V間の放電時間より正極1の単位重量当たりの静電容量を求めたところ92F/gであった。
(Capacitance measurement per unit weight of positive electrode 1)
The positive electrode was cut into a size of 1.5 × 2.0 cm 2 and used as a positive electrode for evaluation. As a positive electrode and a counter electrode, a simulation cell was assembled with a lithium metal non-woven fabric having a size of 1.5 × 2.0 cm 2 and a thickness of 200 μm and a thickness of 50 μm as a separator. Metallic lithium was used as a reference electrode. As the electrolytic solution, a solution obtained by dissolving LiPF 6 in propylene carbonate at a concentration of 1 mol / l was used.
The battery was charged to 3.6 V at a charging current of 1 mA and then charged at a constant voltage. After a total charging time of 1 hour, the battery was discharged to 2.5 V at 1 mA. The capacitance per unit weight of the positive electrode 1 was determined from the discharge time between 3.5 V and 2.5 V and found to be 92 F / g.

(負極1の単位重量当たりの静電容量測定)
上記負極を1.5×2.0cmサイズに4枚切り出し、評価用負極とした。負極と対極として1.5×2.0cmサイズ、厚み200μmの金属リチウムを厚さ50μmのポリエチレン製不織布をセパレーターとして介し模擬セルを組んだ。参照極として金属リチウムを用いた。電解液としては、プロピレンカーボネートに、1モル/lの濃度にLiPF6 を溶解した溶液を用いた。
充電電流1mAにて負極活物質重量に対して280mAh/g、350mAh/g、400mAh/g、500mAh/g分のリチウムを充電し、その後1mAにて1.5Vまで放電を行った。放電開始後1分後の負極の電位から0.2V電位変化する間の放電時間より負極1の単位重量当たりの静電容量を求めた。結果を表1に示す。
(Capacitance measurement per unit weight of negative electrode 1)
Four negative electrodes were cut into 1.5 × 2.0 cm 2 sizes, and used as negative electrodes for evaluation. As a negative electrode and a counter electrode, a simulation cell was assembled with a lithium metal nonwoven fabric of 1.5 × 2.0 cm 2 size and thickness of 200 μm and a polyethylene nonwoven fabric of thickness of 50 μm as a separator. Metallic lithium was used as a reference electrode. As the electrolytic solution, a solution of LiPF6 dissolved in propylene carbonate at a concentration of 1 mol / l was used.
Lithium was charged at 280 mAh / g, 350 mAh / g, 400 mAh / g, and 500 mAh / g with respect to the negative electrode active material weight at a charging current of 1 mA, and then discharged to 1.5 V at 1 mA. The electrostatic capacity per unit weight of the negative electrode 1 was determined from the discharge time during which the potential of the negative electrode changed by 0.2 V from the potential of the negative electrode one minute after the start of discharge. The results are shown in Table 1.

Figure 2006286919
ここでの充電量は負極に流れた充電電流の積算値を負極活物質重量にて割った値であり、単位はmAh/g。
Figure 2006286919
The amount of charge here is a value obtained by dividing the integrated value of the charging current flowing through the negative electrode by the weight of the negative electrode active material, and the unit is mAh / g.

(負極2の製造法)
厚さ32μm(気孔率50%)の銅製エキスパンドメタル(日本金属工業株式会社製)両面に上記負極1のスラリーをダイコーターにて成形し、プレス後負極全体の厚さ(両面の負極電極層厚さと負極集電体厚さの合計)が148μmの負極2を得た。
(Production method of negative electrode 2)
The slurry of the negative electrode 1 was formed on both sides of a copper expanded metal (manufactured by Nippon Metal Industry Co., Ltd.) having a thickness of 32 μm (porosity 50%) with a die coater, and the thickness of the negative electrode as a whole after pressing (the thickness of the negative electrode layers on both sides) And the negative electrode current collector thickness) were 148 μm.

(正極2の製造法)
厚さ35μm(気孔率50%)のアルミニウム製エキスパンドメタル(日本金属工業株式会社製)両面に非水系のカーボン系導電塗料(日本アチソン株式会社製:EB−815)をスプレー方式にてコーティングし、乾燥することにより導電層が形成された正極用集電体を得た。全体の厚み(集電体厚みと導電層厚みの合計)は52μmであり貫通孔はほぼ導電塗料により閉塞された。上記正極1のスラリーをロールコーターにて該正極集電体の両面に成形し、プレス後正極全体の厚さ(両面の正極電極層厚さと両面の導電層厚さと正極集電体厚さの合計)が312μmの正極2を得た。
(Method for producing positive electrode 2)
A non-aqueous carbon-based conductive paint (Nippon Acheson Co., Ltd .: EB-815) is coated on both sides of an aluminum expanded metal (manufactured by Nippon Metal Industry Co., Ltd.) with a thickness of 35 μm (porosity 50%), A positive electrode current collector having a conductive layer formed thereon was obtained by drying. The total thickness (the sum of the current collector thickness and the conductive layer thickness) was 52 μm, and the through-hole was almost blocked by the conductive paint. The positive electrode 1 slurry is formed on both sides of the positive electrode current collector with a roll coater, and the thickness of the entire positive electrode after pressing (the total thickness of the positive electrode layer on both sides, the thickness of the conductive layer on both sides, and the thickness of the positive electrode collector) ) To obtain a positive electrode 2 of 312 μm.

(電極積層体の作製)
厚さ148μmの負極2と、厚さ312μmの正極2を図3に示すような形状でそれぞれ、6.0×7.5cm(端子溶接部を除く)にカットし、セパレータとして厚さ35μmのセルロース/レーヨン混合不織布を用いて、図1に示したように正極集電体、負極集電体の端子溶接部がそれぞれ反対側になるよう配置し、正極、負極の対向面が20層になるよう積層した。最上部と最下部にセパレータを配置させて4辺をテープ止めし、正極集電体の端子溶接部(10枚)、負極集電体の端子溶接部(11枚)をそれぞれ巾50mm、長さ50mm、厚さ0.2mmのアルミニウム製正極端子及び銅製負極端子に超音波溶接して電極積層体を得た。なお、正極は10枚、負極は11枚用いた。正極活物質重量は負極活物質重量の1.4倍である。
(Production of electrode laminate)
The negative electrode 2 with a thickness of 148 μm and the positive electrode 2 with a thickness of 312 μm are cut into 6.0 × 7.5 cm 2 (excluding the terminal weld) in the shape shown in FIG. 3, and a thickness of 35 μm is used as a separator. Using a cellulose / rayon mixed nonwoven fabric, as shown in FIG. 1, the positive electrode current collector and the negative electrode current collector are arranged so that the terminal welds are on opposite sides, and the positive electrode and negative electrode facing surfaces are 20 layers. Were laminated. Separators are placed at the top and bottom and four sides are taped, and the terminal welded part (10 sheets) of the positive electrode current collector and the terminal welded part (11 sheets) of the negative electrode current collector are each 50 mm wide and long. An electrode laminate was obtained by ultrasonic welding to an aluminum positive electrode terminal and a copper negative electrode terminal having a thickness of 50 mm and a thickness of 0.2 mm. Note that 10 positive electrodes and 11 negative electrodes were used. The weight of the positive electrode active material is 1.4 times the weight of the negative electrode active material.

(セル1の作製)
リチウム極として、リチウム金属箔(85μm、5.9×7.4cm、200mAh/g相当)を厚さ80μmのステンレス網に圧着したものを用い、負極と完全に対向するように電極積層体の上部および下部に各1枚配置し三極積層ユニットを得た。なお、リチウム極集電体の端子溶接部(2枚)は負極端子溶接部に抵抗溶接した。尚、リチウム金属の負極との対向面積の負極面積に対する比率は、97.0%である。
(Production of cell 1)
As a lithium electrode, a lithium metal foil (85 μm, 5.9 × 7.4 cm 2 , equivalent to 200 mAh / g) was bonded to an 80 μm thick stainless steel mesh, and the electrode laminate was completely opposed to the negative electrode. One each was arranged on the upper part and the lower part to obtain a three-pole laminated unit. In addition, the terminal welding part (two sheets) of the lithium electrode current collector was resistance welded to the negative electrode terminal welding part. The ratio of the area facing the negative electrode of lithium metal to the negative electrode area is 97.0%.

上記三極積層ユニットを6.5mm深絞りした外装フィルムの内部へ設置し(図1参照)、外装ラミネートフィルムで覆い三辺を融着後、電解液としてエチレンカーボネート、ジエチルカーボネートおよびプロピレンカーボネートを重量比で3:4:1とした混合溶媒に、1モル/lの濃度にLiPFを溶解した溶液を真空含浸させた後、残り一辺を融着させ、フィルム型キャパシタを4セル組立てた。尚、セル内に配置されたリチウム金属は負極活物質重量当たり400mAh/g相当である。 The above tripolar laminated unit is installed inside the exterior film deeply drawn by 6.5 mm (see FIG. 1), covered with the exterior laminate film, fused on three sides, and then weighed ethylene carbonate, diethyl carbonate and propylene carbonate as electrolytes A solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l was vacuum impregnated in a mixed solvent having a ratio of 3: 4: 1, and the remaining side was fused to assemble four cells of film type capacitors. In addition, the lithium metal arrange | positioned in a cell is equivalent to 400 mAh / g per negative electrode active material weight.

(セルの初期評価)
セル組み立て後20日間放置後に1セル分解したところ、リチウム金属はいずれも完全に無くなっていたことから、負極活物質の単位重量当たりに660F/gの静電容量を得るためのリチウムが予備充電されたと判断した。負極の静電容量は正極の静電容量の7.2倍となる。
(Initial evaluation of the cell)
When one cell was disassembled after being left for 20 days after cell assembly, all the lithium metal was completely lost, so lithium was precharged to obtain a capacitance of 660 F / g per unit weight of the negative electrode active material. Judged that. The capacitance of the negative electrode is 7.2 times that of the positive electrode.

(セルの特性評価)
2000mAの定電流でセル電圧が3.6Vになるまで充電し、その後3.6Vの定電圧を印加する定電流−定電圧充電を1時間行った。次いで、200mAの定電流でセル電圧が1.9Vになるまで放電した。この3.6V−1.9Vのサイクルを繰り返し、3回目の放電においてセル容量及びエネルギー密度を評価した。結果を表2に示す。ただし、データは3セルの平均である。
(Characteristic evaluation of cells)
The battery was charged with a constant current of 2000 mA until the cell voltage reached 3.6 V, and then a constant current-constant voltage charge in which a constant voltage of 3.6 V was applied was performed for 1 hour. Next, the battery was discharged at a constant current of 200 mA until the cell voltage reached 1.9V. This cycle of 3.6V-1.9V was repeated, and the cell capacity and energy density were evaluated in the third discharge. The results are shown in Table 2. However, the data is an average of 3 cells.

Figure 2006286919
Figure 2006286919

上記測定終了後に正極と負極を短絡させ正極の電位を測定したところ、0.95Vであり、2.0V以下であった。正極と負極を短絡させた時の正極電位が2.0V以下になるよう負極および/または正極に予めリチウムイオンを担持させることにより、高いエネルギー密度を有したキャパシタが得られた。   When the positive electrode and the negative electrode were short-circuited after the measurement was completed, and the potential of the positive electrode was measured, it was 0.95 V and was 2.0 V or less. A capacitor having a high energy density was obtained by previously supporting lithium ions on the negative electrode and / or the positive electrode so that the positive electrode potential when the positive electrode and the negative electrode were short-circuited was 2.0 V or less.

(比較例1)
リチウム極として、リチウム金属箔(82μm、6.0×7.5cm、200mAh/g相当)を厚さ80μmのステンレス網に圧着したものを用い、負極と幅方向に5mmずらして対向するように電極積層体の上部および下部に各1枚配置し三極積層ユニットを得た以外は実施例1と同様にしてフィルム型キャパシタを4セル組立てた。なお、セル内に配置されたリチウム金属は負極活物質重量当たり400mAh/g相当である。
セル組み立て後20日間放置後に1セル分解したところ、いずれも負極と対向せずにはみ出ていたリチウム金属の大部分が残っていた。
リチウム金属は残っていたものの、実施例1と同様に2000mAの定電流でセル電圧が3.6Vになるまで充電し、その後3.6Vの定電圧を印加する定電流−定電圧充電を1時間行った。次いで、200mAの定電流でセル電圧が1.9Vになるまで放電した。この3.6V−1.9Vのサイクルを繰り返し、3回目の放電においてセル容量及びエネルギー密度を評価した。結果を表3に示す。ただし、データは3セルの平均である。
(Comparative Example 1)
As a lithium electrode, a lithium metal foil (82 μm, 6.0 × 7.5 cm 2 , equivalent to 200 mAh / g) is bonded to a stainless steel net having a thickness of 80 μm, and is opposed to the negative electrode by 5 mm in the width direction. Four cell capacitors were assembled in the same manner as in Example 1 except that one electrode was placed on each of the upper and lower portions of the electrode laminate to obtain a three-pole laminate unit. In addition, the lithium metal arrange | positioned in a cell is equivalent to 400 mAh / g per negative electrode active material weight.
When one cell was disassembled after being allowed to stand for 20 days after cell assembly, most of the lithium metal that had protruded without facing the negative electrode remained.
Although lithium metal remained, the battery was charged at a constant current of 2000 mA until the cell voltage reached 3.6 V, as in Example 1, and then a constant current-constant voltage charge in which a constant voltage of 3.6 V was applied was performed for 1 hour. went. Next, the battery was discharged at a constant current of 200 mA until the cell voltage reached 1.9V. This cycle of 3.6V-1.9V was repeated, and the cell capacity and energy density were evaluated in the third discharge. The results are shown in Table 3. However, the data is an average of 3 cells.

Figure 2006286919
Figure 2006286919

上記測定終了後に正極と負極を短絡させ正極の電位を測定したところ、1.05Vであり、2.0V以下であった。正極と負極を短絡させた時の正極電位が2.0V以下になるよう負極および/または正極に予めリチウムイオンを担持させることにより、高いエネルギー密度を有したキャパシタが得られたが、比較例1のごとくリチウム金属が負極と完全に対向しなかった場合、セルの容量は実施例1よりも小さい結果となった。これは負極と対向していないリチウム金属の大部分が残ってしまい、負極の所定容量を得るためのリチウムイオンが足りなかったためと思われる。   When the positive electrode and the negative electrode were short-circuited after the measurement was completed and the potential of the positive electrode was measured, it was 1.05 V and 2.0 V or less. A capacitor having a high energy density was obtained by previously supporting lithium ions on the negative electrode and / or the positive electrode so that the positive electrode potential when the positive electrode and the negative electrode were short-circuited was 2.0 V or less. Comparative Example 1 As described above, when the lithium metal did not completely face the negative electrode, the cell capacity was smaller than that of Example 1. This seems to be because most of the lithium metal not facing the negative electrode remained, and there were not enough lithium ions to obtain the predetermined capacity of the negative electrode.

(実施例2〜4、比較例2〜4)
リチウム金属箔として、厚さ112μm、縦横サイズ5.5×6.0cm(実施例2)、厚さ92μm、縦横サイズ5.7×7.0cm(実施例3)、厚さ87μm、縦横サイズ5.8×7.3cm(実施例4)、厚さ137μm、縦横サイズ4.5×6.0cm(比較例2)、厚さ185μm、縦横サイズ4.0×5.0cm(比較例3)、厚さ71μm、縦横サイズ6.5×8.0cm(比較例4)をそれぞれ厚さ80μmのステンレス網に圧着したものを用い、負極(実施例1と同じ)と完全に対向するように電極積層体の上部および下部に各1枚配置し三極積層ユニットを得た以外は実施例1と同様にしてフィルム型キャパシタを各4セル組立てた(セル内のリチウム金属はいずれも400mAh/g相当)。実施例2〜4、比較例2〜4のリチウム金属の負極との対向面積の負極面積に対する比率は、それぞれ73.3%、88.7%、94.1%、60.0%、44.4%、115.6%である。なお、リチウム極集電体の端子溶接部(2枚)は負極端子溶接部に抵抗溶接した。
(Examples 2-4, Comparative Examples 2-4)
As a lithium metal foil, a thickness of 112 μm, vertical and horizontal size 5.5 × 6.0 cm 2 (Example 2), thickness 92 μm, vertical and horizontal size 5.7 × 7.0 cm 2 (Example 3), thickness 87 μm, vertical and horizontal Size 5.8 × 7.3 cm 2 (Example 4), thickness 137 μm, vertical and horizontal size 4.5 × 6.0 cm 2 (Comparative Example 2), thickness 185 μm, vertical and horizontal size 4.0 × 5.0 cm 2 ( Comparative Example 3), 71 μm thick and 6.5 × 8.0 cm 2 in length and width size (Comparative Example 4) were each crimped to a 80 μm thick stainless steel mesh, completely with the negative electrode (same as Example 1) Four film capacitors were assembled in the same manner as in Example 1 except that one each was placed on the upper and lower parts of the electrode laminate so as to face each other to obtain a three-pole laminate unit (the lithium metal in the cell was Is equivalent to 400 mAh / g). The ratios of the opposing area of the lithium metal negative electrode in Examples 2 to 4 and Comparative Examples 2 to 4 to the negative electrode area were 73.3%, 88.7%, 94.1%, 60.0%, and 44.44, respectively. 4% and 115.6%. In addition, the terminal welding part (two sheets) of the lithium electrode current collector was resistance welded to the negative electrode terminal welding part.

セル組み立て後20日間放置後に1セル分解したところ、実施例3〜5はリチウム金属は完全に無くなっていたことから、負極活物質の単位重量当たりに660F/gの静電容量を得るためのリチウムが予備充電されたと判断した。また、比較例2、3はまだ完全にはなくなっておらず、比較例4は負極と対向している部分はなくなっていたものの、対向していないはみ出した部分は残っていた。   When one cell was decomposed after being left for 20 days after cell assembly, Examples 3 to 5 were completely free of lithium metal, so that lithium for obtaining a capacitance of 660 F / g per unit weight of the negative electrode active material was obtained. Was precharged. Further, Comparative Examples 2 and 3 were not completely removed, and Comparative Example 4 had no portion facing the negative electrode, but the portion that did not face was left.

実施例1と同様に1000mAの定電流でセル電圧が3.6Vになるまで充電し、その後3.6Vの定電圧を印加する定電流−定電圧充電を1時間行った。次いで、100mAの定電流でセル電圧が1.9Vになるまで放電した。この3.6V−1.9Vのサイクルを繰り返し、3回目の放電においてセル容量及びエネルギー密度を評価した。結果を表4に示す。ただし、データは3セルの平均である。   As in Example 1, charging was performed at a constant current of 1000 mA until the cell voltage reached 3.6 V, and then constant current-constant voltage charging in which a constant voltage of 3.6 V was applied was performed for 1 hour. Next, the battery was discharged at a constant current of 100 mA until the cell voltage reached 1.9V. This cycle of 3.6V-1.9V was repeated, and the cell capacity and energy density were evaluated in the third discharge. The results are shown in Table 4. However, the data is an average of 3 cells.

Figure 2006286919
Figure 2006286919

上記測定終了後に正極と負極を短絡させ正極の電位を測定したところ、いずれも0.9〜1.1Vであり、2.0V以下であった。正極と負極を短絡させた時の正極電位が2.0V以下になるよう負極および/または正極に予めリチウムイオンを担持させることにより、高いエネルギー密度を有したキャパシタが得られたが、中でも表4に示されている通り、対向面積が大きいほど容量は大きい傾向にあることがわかる。比較例2、3のように対向面積が70%未満では大きく容量が低下するが、これは完全にリチウム金属が担持されず残ったためと考えられる。比較例4は対向面積は大きいが、負極からはみ出したリチウム金属が残っているため、容量が低い結果となったと考えられる。   When the positive electrode and the negative electrode were short-circuited after the measurement was completed and the potential of the positive electrode was measured, both were 0.9 to 1.1 V and 2.0 V or less. Capacitors having a high energy density were obtained by previously supporting lithium ions on the negative electrode and / or the positive electrode so that the positive electrode potential when the positive electrode and the negative electrode were short-circuited was 2.0 V or less. It can be seen that the capacity tends to increase as the facing area increases. When the facing area is less than 70% as in Comparative Examples 2 and 3, the capacity is greatly reduced. This is considered to be because lithium metal was not completely supported and remained. In Comparative Example 4, although the facing area is large, the lithium metal protruding from the negative electrode remains, so that the capacity is considered to be low.

(比較例5)
リチウム金属箔として、厚さ82μm、縦横サイズ6.0×7.5cmを厚さ80μmのステンレス網に圧着したものを用い、負極(実施例1と同じ)と完全に対向するように電極積層体の上部および下部に各1枚配置し三極積層ユニットを得た以外は実施例1と同様にしてフィルム型キャパシタを各4セル組立てた(セル内のリチウム金属は400mAh/g相当)。リチウム金属の負極との対向面積の負極面積に対する比率は100%である。なお、リチウム極集電体の端子溶接部(2枚)は負極端子溶接部に抵抗溶接した。
(Comparative Example 5)
A lithium metal foil having a thickness of 82 μm and a vertical and horizontal size of 6.0 × 7.5 cm 2 bonded to a stainless steel mesh with a thickness of 80 μm is used, and the electrode is laminated so as to completely face the negative electrode (same as in Example 1). Four film capacitors were assembled in the same manner as in Example 1 except that one each was placed on the upper and lower parts of the body to obtain a three-pole laminated unit (the lithium metal in the cell was equivalent to 400 mAh / g). The ratio of the area facing the negative electrode of lithium metal to the negative electrode area is 100%. In addition, the terminal welding part (two sheets) of the lithium electrode current collector was resistance welded to the negative electrode terminal welding part.

セル組み立て後20日間放置後に1セル分解したところ、リチウム金属は完全に無くなっていたことから、負極活物質の単位重量当たりに660F/gの静電容量を得るためのリチウムが予備充電されたと判断した。   When one cell was disassembled after being left for 20 days after cell assembly, the lithium metal was completely lost. Therefore, it was determined that lithium was precharged to obtain a capacitance of 660 F / g per unit weight of the negative electrode active material. did.

実施例1と同様に2000mAの定電流でセル電圧が3.6Vになるまで充電し、その後3.6Vの定電圧を印加する定電流−定電圧充電を1時間行った。次いで、200mAの定電流でセル電圧が1.9Vになるまで放電した。この3.6V−1.9Vのサイクルを繰り返し、3回目の放電においてセル容量及びエネルギー密度を評価した。結果を表5に示す。ただし、データは3セルの平均である。   In the same manner as in Example 1, the battery was charged at a constant current of 2000 mA until the cell voltage reached 3.6 V, and then a constant current-constant voltage charge in which a constant voltage of 3.6 V was applied was performed for 1 hour. Next, the battery was discharged at a constant current of 200 mA until the cell voltage reached 1.9V. This cycle of 3.6V-1.9V was repeated, and the cell capacity and energy density were evaluated in the third discharge. The results are shown in Table 5. However, the data is an average of 3 cells.

Figure 2006286919
Figure 2006286919

上記測定終了後に正極と負極を短絡させ正極の電位を測定したところ、0.95Vであり、2.0V以下であった。正極と負極を短絡させた時の正極電位が2.0V以下になるよう負極および/または正極に予めリチウムイオンを担持させることにより、高いエネルギー密度を有したキャパシタが得られた。   When the positive electrode and the negative electrode were short-circuited after the measurement was completed, and the potential of the positive electrode was measured, it was 0.95 V and was 2.0 V or less. A capacitor having a high energy density was obtained by previously supporting lithium ions on the negative electrode and / or the positive electrode so that the positive electrode potential when the positive electrode and the negative electrode were short-circuited was 2.0 V or less.

リチウム金属の面積が負極面積と同じ場合、すなわちリチウム金属の負極との対向面積の負極面積に対する比率が100%である場合は、負極とリチウム金属を完全に対向させ、リチウム金属を負極からはみ出さないように配置させることにより、実施例1と同様に高容量、高エネルギー密度が得られた。しかしながら、リチウム金属が82μmと非常に薄く、取扱が困難であるため作業は難航した。リチウム金属の負極との対向面積の負極面積に対する比率が100%である場合は作業性が落ちるため、生産には好ましくない。   When the area of the lithium metal is the same as the area of the negative electrode, that is, when the ratio of the area facing the negative electrode of the lithium metal to the negative electrode area is 100%, the negative electrode and the lithium metal are completely opposed, and the lithium metal protrudes from the negative electrode. By arranging them so that they do not exist, high capacity and high energy density were obtained as in Example 1. However, the work was difficult because lithium metal was very thin at 82 μm and it was difficult to handle. When the ratio of the area facing the negative electrode of lithium metal to the negative electrode area is 100%, workability is lowered, which is not preferable for production.

本発明のリチウムイオンキャパシタは、電気自動車、ハイブリッド電気自動車などの駆動用または補助用蓄電源として極めて有効である。また、電動自転車、電動車椅子などの駆動用蓄電源、ソーラーエネルギーや風力発電などの各種エネルギーの蓄電装置、あるいは家庭用電気器具の蓄電源などとして好適に用いることができる。   The lithium ion capacitor of the present invention is extremely effective as a drive or auxiliary storage power source for electric vehicles, hybrid electric vehicles and the like. Further, it can be suitably used as a storage power source for driving such as an electric bicycle or an electric wheelchair, a power storage device for various energy such as solar energy or wind power generation, or a storage power source for household electric appliances.

本発明の好ましい実施の形態であるリチウムイオンキャパシタの断面図で、図2のA−A部の断面を示す。It is sectional drawing of the lithium ion capacitor which is preferable embodiment of this invention, and shows the cross section of the AA part of FIG. 図1の平面図。The top view of FIG. 負極の一部を切り欠いた斜視図である。It is the perspective view which notched a part of negative electrode. 図1のセルを構成する電極積層体とリチウム金属の関係を模式的に示す断面図である。It is sectional drawing which shows typically the relationship between the electrode laminated body which comprises the cell of FIG. 1, and lithium metal. 本発明の他の実施の形態に係わる電極積層体の断面図である。It is sectional drawing of the electrode laminated body concerning other embodiment of this invention. 本発明の別の実施の形態に係わる電極積層体の断面図である。It is sectional drawing of the electrode laminated body concerning another embodiment of this invention. 本発明の他の実施形態であるリチウムイオンキャパシタの模式的断面図である。It is typical sectional drawing of the lithium ion capacitor which is other embodiment of this invention. 本発明の別の実施形態であるリチウムイオンキャパシタの模式的断面図である。It is typical sectional drawing of the lithium ion capacitor which is another embodiment of this invention.

符号の説明Explanation of symbols

1:正極 1a:正極集電体 2:負極
2a:負極集電体 3:セパレータ 4:リチウム金属
4a:リチウム極集電体 5:外装容器 6、7:取出し部
8:リチウム極取出し部 9:正極接続端子 10:負極接続端子
11:電極積層体 12:孔
1: Positive electrode 1a: Positive electrode current collector 2: Negative electrode 2a: Negative electrode current collector 3: Separator 4: Lithium metal 4a: Lithium electrode current collector 5: Exterior container 6, 7: Extraction unit 8: Lithium electrode extraction unit 9: Positive electrode connection terminal 10: Negative electrode connection terminal 11: Electrode laminate 12: Hole

Claims (6)

正極、負極および電解液としてリチウム塩の非プロトン性有機溶媒液を備え、正極活物質がリチウムイオンおよび/またはアニオンを可逆的に担持可能な物質であり、かつ負極活物質がリチウムイオンを可逆的に担持可能な物質であり、正極と負極を短絡させた後の正極電位が2.0V以下となるリチウムイオンキャパシタであって、正極集電体および負極集電体が、それぞれ表裏面を貫通する孔を備え、正極と負極をセパレータを介して捲回、もしくは交互に3層以上積層したセル構成を有し、捲回もしくは積層された負極、正極に対向して配置されたリチウムイオン供給源と負極および/または正極との電気化学的接触により予め負極および/または正極にリチウムイオンが担持されるようになっており、リチウムイオン供給源と負極の対向面積が負極面積の75%以上、100%未満であることを特徴とするリチウムイオンキャパシタ。   A positive electrode, a negative electrode, and an aprotic organic solvent solution of lithium salt as an electrolytic solution, a positive electrode active material capable of reversibly supporting lithium ions and / or anions, and a negative electrode active material reversible of lithium ions A lithium ion capacitor having a positive electrode potential of 2.0 V or less after the positive electrode and the negative electrode are short-circuited, and the positive electrode current collector and the negative electrode current collector penetrate the front and back surfaces, respectively. A lithium ion supply source provided with a hole and having a cell configuration in which a positive electrode and a negative electrode are wound through a separator, or alternately stacked three or more layers, and are disposed facing the wound or laminated negative electrode and the positive electrode; The lithium ion is supported on the negative electrode and / or the positive electrode in advance by electrochemical contact with the negative electrode and / or the positive electrode. Direction area is more than 75% of the negative electrode area, a lithium ion capacitor, which is a less than 100%. リチウムイオン供給源がリチウムイオン供給源に対向する負極からはみ出さないように配置されていることを特徴とする請求項1に記載のリチウムイオンキャパシタ。   The lithium ion capacitor according to claim 1, wherein the lithium ion supply source is disposed so as not to protrude from the negative electrode facing the lithium ion supply source. リチウムイオン供給源と負極が曲面状であるときの、リチウムイオン供給源と負極の対向面積は、それぞれの対向部分の投影面積であることを特徴とする請求項1または2に記載のリチウムイオンキャパシタ。   3. The lithium ion capacitor according to claim 1, wherein when the lithium ion supply source and the negative electrode are curved, the facing area between the lithium ion supply source and the negative electrode is a projected area of each facing portion. . 正極と負極をセパレータを介して捲回、もしくは交互に積層した電極積層体の最外部がセパレータであり、セパレータの内側が負極であり、該負極にリチウムイオン供給源が対向している請求項1、2または3に記載のリチウムイオンキャパシタ。   2. The outermost part of an electrode laminate in which a positive electrode and a negative electrode are wound or alternately laminated via a separator is a separator, the inner side of the separator is a negative electrode, and a lithium ion supply source faces the negative electrode. 2. The lithium ion capacitor according to 2 or 3. 負極が、芳香族系縮合ポリマーの熱処理物であって水素原子/炭素原子の原子比が0.50〜0.05であるポリアセン系骨格構造を有するポリアセン系有機半導体(PAS)であることを特徴とする請求項1〜4のいずれかに記載のリチウムイオンキャパシタ。   The negative electrode is a polyacene organic semiconductor (PAS) which is a heat-treated product of an aromatic condensation polymer and has a polyacene skeleton structure having a hydrogen atom / carbon atom ratio of 0.50 to 0.05. The lithium ion capacitor according to any one of claims 1 to 4. 負極活物質は、正極活物質に比べて、単位重量あたりの静電容量が3倍以上を有し、かつ正極活物質の重量が負極活物質の重量より大きいことを特徴とする請求項1〜5のいずれかに記載のリチウムイオンキャパシタ。   The negative electrode active material has a capacitance per unit weight of at least three times that of the positive electrode active material, and the weight of the positive electrode active material is greater than the weight of the negative electrode active material. The lithium ion capacitor according to any one of 5.
JP2005104676A 2005-03-31 2005-03-31 Lithium ion capacitor Pending JP2006286919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104676A JP2006286919A (en) 2005-03-31 2005-03-31 Lithium ion capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104676A JP2006286919A (en) 2005-03-31 2005-03-31 Lithium ion capacitor

Publications (1)

Publication Number Publication Date
JP2006286919A true JP2006286919A (en) 2006-10-19

Family

ID=37408496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104676A Pending JP2006286919A (en) 2005-03-31 2005-03-31 Lithium ion capacitor

Country Status (1)

Country Link
JP (1) JP2006286919A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103596A (en) * 2006-10-20 2008-05-01 Fuji Heavy Ind Ltd Lithium-ion capacitor
JP2008130734A (en) * 2006-11-20 2008-06-05 Hitachi Aic Inc Electric double layer capacitor
JP2008166342A (en) * 2006-12-27 2008-07-17 Fuji Heavy Ind Ltd Lithium ion capacitor
JP2008311363A (en) * 2007-06-13 2008-12-25 Advanced Capacitor Technologies Inc Method for predoping lithium ion and method for manufacturing lithium ion capacitor storage element
JP2009054971A (en) * 2007-08-29 2009-03-12 Sumitomo Heavy Ind Ltd Electric double layer capacitor
JP2009059732A (en) * 2007-08-29 2009-03-19 Jm Energy Corp Lithium ion capacitor
JP2009088131A (en) * 2007-09-28 2009-04-23 Fdk Corp Storage element
JP2009123374A (en) * 2007-11-12 2009-06-04 Fdk Corp Nonaqueous electrolyte power storage device
EP2086044A2 (en) 2008-02-04 2009-08-05 Fuji Jukogyo Kabushiki Kaisha Electric storage device
EP2088637A2 (en) 2008-02-06 2009-08-12 Fuji Jukogyo Kabushiki Kaisha Electric storage device
US20100053846A1 (en) * 2007-02-02 2010-03-04 Meidensha Corporation Electric double layer capacitor
JP2010141217A (en) * 2008-12-15 2010-06-24 Shin Kobe Electric Mach Co Ltd Laminate, lithium ion capacitor, and method of manufacturing lithium ion capacitor
WO2010073930A1 (en) * 2008-12-26 2010-07-01 Jmエナジー株式会社 Wound-type accumulator
JP2010157540A (en) * 2008-12-26 2010-07-15 Jm Energy Corp Wound-type accumulator
JP2010157541A (en) * 2008-12-26 2010-07-15 Jm Energy Corp Wound-type accumulator
US20110128672A1 (en) * 2007-06-13 2011-06-02 Panasonic Corporation Capacitor
KR101067158B1 (en) 2009-09-04 2011-09-22 삼성전기주식회사 Chip-type Eelectric Double Layer Capacitor and Method for Manufacturing The Same
JP2011216600A (en) * 2010-03-31 2011-10-27 Jm Energy Corp Energy storage device
JP2011258911A (en) * 2010-06-08 2011-12-22 Samsung Electro-Mechanics Co Ltd Electrode for secondary power source and method of manufacturing electrode for secondary power source
JP2012009626A (en) * 2010-06-24 2012-01-12 Shin Kobe Electric Mach Co Ltd Laminated body, lithium ion capacitor using the same, and method for manufacturing the lithium ion capacitor
JP2012049538A (en) * 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd Supercapacitor
US8173289B2 (en) 2007-11-19 2012-05-08 Mitsubishi Electric Corporation Electrical energy storage cell and electrical energy storage module including the same
JP2013175793A (en) * 2013-06-11 2013-09-05 Shin Kobe Electric Mach Co Ltd Lithium ion capacitor
US8617744B2 (en) 2009-06-02 2013-12-31 Nec Corporation Electricity storage device
WO2014007188A1 (en) * 2012-07-04 2014-01-09 住友電気工業株式会社 Lithium ion capacitor
CN104246941A (en) * 2012-03-29 2014-12-24 住友电气工业株式会社 Electrode material, and capacitor and secondary battery using said electrode material
CN104599859A (en) * 2013-10-30 2015-05-06 张彩欣 Lithium ion capacitor and manufacturing method thereof
JP2017098451A (en) * 2015-11-26 2017-06-01 株式会社ジェイテクト Power storage device and manufacturing method thereof
KR20170095729A (en) * 2016-02-15 2017-08-23 다이요 유덴 가부시키가이샤 Electrochemical device and method of manufacturing electrochemical device
JP2018181981A (en) * 2017-04-07 2018-11-15 太陽誘電株式会社 Electrochemical device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60263419A (en) * 1984-06-12 1985-12-26 松下電器産業株式会社 Method of producing electric double layer capacitor
JPH11297578A (en) * 1998-04-10 1999-10-29 Mitsubishi Chemical Corp Electric double-layer capacitor
JP2000003729A (en) * 1998-06-15 2000-01-07 Asahi Glass Co Ltd Manufacture of secondary power supply
JP2000182671A (en) * 1998-12-11 2000-06-30 Fuji Photo Film Co Ltd Non-aqueous secondary battery
WO2003003395A1 (en) * 2001-06-29 2003-01-09 Kanebo, Limited Organic electrolyte capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60263419A (en) * 1984-06-12 1985-12-26 松下電器産業株式会社 Method of producing electric double layer capacitor
JPH11297578A (en) * 1998-04-10 1999-10-29 Mitsubishi Chemical Corp Electric double-layer capacitor
JP2000003729A (en) * 1998-06-15 2000-01-07 Asahi Glass Co Ltd Manufacture of secondary power supply
JP2000182671A (en) * 1998-12-11 2000-06-30 Fuji Photo Film Co Ltd Non-aqueous secondary battery
WO2003003395A1 (en) * 2001-06-29 2003-01-09 Kanebo, Limited Organic electrolyte capacitor

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101412337B1 (en) * 2006-10-20 2014-06-25 후지 쥬코교 가부시키가이샤 Lithium ion capacitor
JP2008103596A (en) * 2006-10-20 2008-05-01 Fuji Heavy Ind Ltd Lithium-ion capacitor
JP2008130734A (en) * 2006-11-20 2008-06-05 Hitachi Aic Inc Electric double layer capacitor
JP2008166342A (en) * 2006-12-27 2008-07-17 Fuji Heavy Ind Ltd Lithium ion capacitor
US20100053846A1 (en) * 2007-02-02 2010-03-04 Meidensha Corporation Electric double layer capacitor
US8154852B2 (en) * 2007-02-02 2012-04-10 Meidensha Corporation Electric double layer capacitor
JP2008311363A (en) * 2007-06-13 2008-12-25 Advanced Capacitor Technologies Inc Method for predoping lithium ion and method for manufacturing lithium ion capacitor storage element
US20110128672A1 (en) * 2007-06-13 2011-06-02 Panasonic Corporation Capacitor
US8693166B2 (en) 2007-06-13 2014-04-08 Panasonic Corporation Capacitor
JP2009059732A (en) * 2007-08-29 2009-03-19 Jm Energy Corp Lithium ion capacitor
JP2009054971A (en) * 2007-08-29 2009-03-12 Sumitomo Heavy Ind Ltd Electric double layer capacitor
JP2009088131A (en) * 2007-09-28 2009-04-23 Fdk Corp Storage element
JP2009123374A (en) * 2007-11-12 2009-06-04 Fdk Corp Nonaqueous electrolyte power storage device
US8173289B2 (en) 2007-11-19 2012-05-08 Mitsubishi Electric Corporation Electrical energy storage cell and electrical energy storage module including the same
US8329328B2 (en) 2007-11-19 2012-12-11 Mitsubishi Electric Corporation Electrical energy storage cell and electrical energy storage module including the same
EP2086044A2 (en) 2008-02-04 2009-08-05 Fuji Jukogyo Kabushiki Kaisha Electric storage device
EP2086044A3 (en) * 2008-02-04 2010-01-20 Fuji Jukogyo Kabushiki Kaisha Electric storage device
US8148002B2 (en) 2008-02-04 2012-04-03 Fuji Jukogyo Kabushiki Kaisha Electric storage device
EP2088637A3 (en) * 2008-02-06 2010-01-06 Fuji Jukogyo Kabushiki Kaisha Electric storage device
US8263258B2 (en) 2008-02-06 2012-09-11 Fuji Jukogyo Kabushiki Kaisha Electric storage device
KR101625672B1 (en) 2008-02-06 2016-05-30 후지 주코교 카부시키카이샤 Electrical storage device
EP2088637A2 (en) 2008-02-06 2009-08-12 Fuji Jukogyo Kabushiki Kaisha Electric storage device
JP2009188140A (en) * 2008-02-06 2009-08-20 Fuji Heavy Ind Ltd Electrical accumulation device
JP2010141217A (en) * 2008-12-15 2010-06-24 Shin Kobe Electric Mach Co Ltd Laminate, lithium ion capacitor, and method of manufacturing lithium ion capacitor
JP2010157541A (en) * 2008-12-26 2010-07-15 Jm Energy Corp Wound-type accumulator
JP2010157540A (en) * 2008-12-26 2010-07-15 Jm Energy Corp Wound-type accumulator
WO2010073930A1 (en) * 2008-12-26 2010-07-01 Jmエナジー株式会社 Wound-type accumulator
CN102301439A (en) * 2008-12-26 2011-12-28 Jm能源股份有限公司 Wound-type accumulator
US9496584B2 (en) 2008-12-26 2016-11-15 Jm Energy Corporation Wound-type accumulator having simplified arrangement of a lithium ion source
US8617744B2 (en) 2009-06-02 2013-12-31 Nec Corporation Electricity storage device
KR101067158B1 (en) 2009-09-04 2011-09-22 삼성전기주식회사 Chip-type Eelectric Double Layer Capacitor and Method for Manufacturing The Same
JP2011216600A (en) * 2010-03-31 2011-10-27 Jm Energy Corp Energy storage device
JP2011258911A (en) * 2010-06-08 2011-12-22 Samsung Electro-Mechanics Co Ltd Electrode for secondary power source and method of manufacturing electrode for secondary power source
JP2012009626A (en) * 2010-06-24 2012-01-12 Shin Kobe Electric Mach Co Ltd Laminated body, lithium ion capacitor using the same, and method for manufacturing the lithium ion capacitor
JP2012049538A (en) * 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd Supercapacitor
CN104246941A (en) * 2012-03-29 2014-12-24 住友电气工业株式会社 Electrode material, and capacitor and secondary battery using said electrode material
WO2014007188A1 (en) * 2012-07-04 2014-01-09 住友電気工業株式会社 Lithium ion capacitor
JP2013175793A (en) * 2013-06-11 2013-09-05 Shin Kobe Electric Mach Co Ltd Lithium ion capacitor
CN104599859A (en) * 2013-10-30 2015-05-06 张彩欣 Lithium ion capacitor and manufacturing method thereof
JP2017098451A (en) * 2015-11-26 2017-06-01 株式会社ジェイテクト Power storage device and manufacturing method thereof
CN106952735A (en) * 2015-11-26 2017-07-14 株式会社捷太格特 The manufacture method of electric energy storage device and electric energy storage device
JP2021057607A (en) * 2015-11-26 2021-04-08 株式会社ジェイテクト Power storage device and manufacturing method thereof
CN113871208A (en) * 2015-11-26 2021-12-31 株式会社捷太格特 Power storage device and method for manufacturing power storage device
JP7024850B2 (en) 2015-11-26 2022-02-24 株式会社ジェイテクト Power storage device and manufacturing method of power storage device
KR20170095729A (en) * 2016-02-15 2017-08-23 다이요 유덴 가부시키가이샤 Electrochemical device and method of manufacturing electrochemical device
JP2018181981A (en) * 2017-04-07 2018-11-15 太陽誘電株式会社 Electrochemical device

Similar Documents

Publication Publication Date Title
JP4833064B2 (en) Lithium ion capacitor
JP4833065B2 (en) Lithium ion capacitor
JP4732072B2 (en) Winding type lithium ion capacitor
JP5236765B2 (en) Organic electrolyte capacitor
KR100990467B1 (en) Lithium ion capacitor
JP2006286919A (en) Lithium ion capacitor
JP5081214B2 (en) Organic electrolyte capacitor
JP4705566B2 (en) Electrode material and manufacturing method thereof
KR101573106B1 (en) Wound-type accumulator
KR101127326B1 (en) Lithium ion capacitor
JP4813168B2 (en) Lithium ion capacitor
EP1400996A1 (en) Organic electrolyte capacitor
JPWO2004059672A1 (en) Power storage device and method for manufacturing power storage device
JP5308646B2 (en) Lithium ion capacitor
JP2005109199A (en) Film type electric storage device
JP2007067097A (en) Wound type lithium ion capacitor
KR20070021126A (en) Lithium ion capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101029

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405