JP2007067097A - Wound type lithium ion capacitor - Google Patents
Wound type lithium ion capacitor Download PDFInfo
- Publication number
- JP2007067097A JP2007067097A JP2005249927A JP2005249927A JP2007067097A JP 2007067097 A JP2007067097 A JP 2007067097A JP 2005249927 A JP2005249927 A JP 2005249927A JP 2005249927 A JP2005249927 A JP 2005249927A JP 2007067097 A JP2007067097 A JP 2007067097A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- negative electrode
- positive electrode
- current collector
- positive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
本発明は、エネルギー密度、出力密度が高い高容量の捲回型リチウムイオンキャパシタに関する。 The present invention relates to a high-capacity wound lithium ion capacitor having high energy density and high output density.
近年、グラファイト等の炭素材料を負極に用い、正極にLiCoO2等のリチウム含有金属酸化物を用いた電池が提案されている。この電池は、電池組立後、充電することにより正極のリチウム含有金属酸化物から負極にリチウムイオンを供給し、更に放電では負極からリチウムイオンを正極に戻すという、いわゆるロッキングチェア型電池であり、負極に金属リチウムを使用せずリチウムイオンのみが充放電に関与することから、リチウムイオン二次電池と呼ばれ、リチウム金属を用いるリチウム電池とは区別されている。この電池は、高電圧及び高容量、高安全性を有することを特長としている。 In recent years, a battery using a carbon material such as graphite for the negative electrode and a lithium-containing metal oxide such as LiCoO 2 for the positive electrode has been proposed. This battery is a so-called rocking chair type battery in which lithium ions are supplied from the lithium-containing metal oxide of the positive electrode to the negative electrode by charging after the battery is assembled, and lithium ions are returned from the negative electrode to the positive electrode in the discharge. This is called a lithium ion secondary battery and is distinguished from a lithium battery using lithium metal because only lithium ions are involved in charging and discharging without using metallic lithium. This battery is characterized by high voltage, high capacity, and high safety.
また、環境問題がクローズアップされる中、太陽光発電や風力発電によるクリーンエネルギーの貯蔵システムや、ガソリン車に代わる電気自動車用又はハイブリッド電気自動車用の電源の開発が盛んに行われている。さらに、最近ではパワーウインドウやIT関連機器など車載装置や設備が高性能・高機能化してきたこともあり、エネルギー密度、出力密度の点から新しい電源が求められるようになってきている。 In addition, while environmental issues are being highlighted, development of a clean energy storage system using solar power generation or wind power generation, and a power source for an electric vehicle or a hybrid electric vehicle that replaces a gasoline vehicle are being actively conducted. Furthermore, recently, in-vehicle devices and equipment such as power windows and IT-related equipment have become more sophisticated and functional, and new power sources are being demanded in terms of energy density and output density.
こうした高エネルギー密度、高出力特性を必要とする用途に対応する蓄電装置として、近年、リチウムイオン二次電池と電気二重層キャパシタの蓄電原理を組み合わせた、ハイブリッドキャパシタと呼ばれる蓄電装置が注目されている。その一つとして、リチウムイオンを吸蔵、脱離し得る炭素材料に、予め化学的方法又は電気化学的方法でリチウムイオンを吸蔵、担持(以下、ドーピングということもある)させて、負極電位を下げることによりエネルギー密度を大幅に大きくできる炭素材料を負極に用いる有機電解質キャパシタが提案されている(例えば、特許文献1参照)。 In recent years, a power storage device called a hybrid capacitor, which combines the power storage principles of a lithium ion secondary battery and an electric double layer capacitor, has been attracting attention as a power storage device for such applications that require high energy density and high output characteristics. . As one of them, a lithium ion can be occluded and desorbed in advance by occlusion and support (hereinafter sometimes referred to as doping) of lithium ions by a chemical method or an electrochemical method to lower the negative electrode potential. An organic electrolyte capacitor using a carbon material that can significantly increase the energy density as a negative electrode has been proposed (see, for example, Patent Document 1).
この種の有機電解質キャパシタでは、高性能が期待されるものの、負極に予めリチウムイオンをドーピングさせる場合に、極めて長時間を要することや負極全体にリチウムイオンを均一に担持させることに問題を有し、特に電極を捲回した円筒型電池や複数枚の電極を積層した角型電池のような大型の高容量セルでは、実用化は困難とされていた。 Although this type of organic electrolyte capacitor is expected to have high performance, there are problems in that it takes a very long time when lithium ions are doped in advance on the negative electrode and that lithium ions are uniformly supported on the entire negative electrode. In particular, it has been considered difficult to put into practical use in a large-sized high-capacity cell such as a cylindrical battery in which electrodes are wound or a square battery in which a plurality of electrodes are stacked.
このような問題の解決方法として、正極集電体及び負極集電体がそれぞれ表裏面に貫通する孔を備え、負極活物質がリチウムイオンを可逆的に担持可能であり、負極あるいは正極と対向して配置されたリチウム金属との電気化学的接触により負極にリチウムイオンが担持される有機電解質電池が提案されている(例えば、特許文献2参照)。 As a method for solving such a problem, the positive electrode current collector and the negative electrode current collector each have a hole penetrating the front and back surfaces, the negative electrode active material can reversibly carry lithium ions, and faces the negative electrode or the positive electrode. There has been proposed an organic electrolyte battery in which lithium ions are supported on a negative electrode by electrochemical contact with lithium metal disposed in a row (see, for example, Patent Document 2).
上記有機電解質電池においては、電極集電体に表裏面を貫通する孔を設けることにより、リチウムイオンが電極集電体に遮断されることなく電極の表裏間を移動できるため、積層枚数の多いセル構成の蓄電装置においても、該貫通孔を通じて、リチウム金属近傍に配置された負極だけでなくリチウム金属から離れて配置された負極にもリチウムイオンを電気化学的に担持させることが可能となる。 In the above-mentioned organic electrolyte battery, since the electrode current collector is provided with holes that penetrate the front and back surfaces, lithium ions can move between the front and back surfaces of the electrode current collector without being blocked by the electrode current collector. Also in the power storage device having the configuration, lithium ions can be electrochemically supported not only on the negative electrode arranged in the vicinity of the lithium metal but also on the negative electrode arranged away from the lithium metal through the through hole.
上述のように、リチウムイオンを吸蔵、脱離しうる炭素材料等に予めリチウムイオンを吸蔵させた負極は、負極が電気二重層キャパシタに用いられる活性炭よりも電位が卑になるので、正極活性炭と組み合わせたセルの耐電圧は向上し、また負極の容量は活性炭に比較し非常に大きいため、該負極を備えた有機電解質キャパシタ(リチウムイオンキャパシタ)はエネルギー密度が高くなる。 As described above, the negative electrode in which lithium ions are previously occluded in a carbon material that can occlude and desorb lithium ions has a lower potential than the activated carbon used in the electric double layer capacitor, so it is combined with the positive activated carbon. In addition, since the withstand voltage of the cell is improved and the capacity of the negative electrode is much larger than that of the activated carbon, the organic electrolyte capacitor (lithium ion capacitor) provided with the negative electrode has a high energy density.
上記リチウムイオンキャパシタにおいて、セルは正極と負極とをセパレータを介して交互に積層した電極捲回ユニットとして構成され、負極にはこの電極捲回ユニットの外部に正極及び/又は負極に対向して配置したリチウム金属からリチウムイオンが電極集電体の貫通孔を通して順次ドーピングされる。この場合、負極には予め負極にドーピングするリチウムイオン量に応じて設定したリチウム金属のすべてがリチウムイオンとして均一にドーピングされることが好ましい。 In the lithium ion capacitor, the cell is configured as an electrode winding unit in which a positive electrode and a negative electrode are alternately stacked via a separator, and the negative electrode is disposed outside the electrode winding unit so as to face the positive electrode and / or the negative electrode. Lithium ions are sequentially doped through the through holes of the electrode current collector from the lithium metal. In this case, it is preferable that all of the lithium metal previously set according to the amount of lithium ions doped in the negative electrode is uniformly doped as lithium ions in the negative electrode.
捲回型リチウムイオンキャパシタの電極捲回ユニットは、リボン状の正極と負極とをセパレータを介して捲回して構成される。この場合、リボン状の正極と負極は、表裏面を貫通する孔を有するリボン状の電極集電体の集電面に電極層を形成することによって得られる。図7はこのようにして得られた従来の典型的な負極を示す。図7に示す如く従来の負極2は、リボン状の負極集電体2aの表裏集電面に電極層を塗工する際、間欠塗工によって未塗工部12を設け、該未塗後部に電極端子を接続している。図示はしないが、リボン状の集電体に未塗工部を設けるこのような電極構造は、正極も負極とまったく同様である。捲回型リチウムイオンキャパシタは、このように形成されたリボン状の正極と負極を前記未塗工部12に接続した電極端子を揃えながら捲回して組み立てられる。
An electrode winding unit of a wound lithium ion capacitor is configured by winding a ribbon-like positive electrode and a negative electrode through a separator. In this case, the ribbon-like positive electrode and the negative electrode can be obtained by forming an electrode layer on the current collecting surface of a ribbon-like electrode current collector having holes penetrating the front and back surfaces. FIG. 7 shows a typical conventional negative electrode thus obtained. As shown in FIG. 7, the conventional
捲回型リチウムイオンキャパシタにおいて、このように集電体に電極端子を取り付けるための未塗工部を設けることは、電極層を集電体の両面でずれないように塗工しなければならないため、特に本発明の集電体のように多孔体(例えば多孔箔)では塗工作業が煩雑となり、セルの生産性が悪化し、コスト高騰の要因になっている。 In a wound type lithium ion capacitor, providing an uncoated portion for attaching an electrode terminal to a current collector in this way requires that the electrode layer be coated so that it does not shift on both sides of the current collector. In particular, in the case of a porous body (for example, a porous foil) like the current collector of the present invention, the coating work becomes complicated, the productivity of the cell deteriorates, and the cost increases.
本発明は、このような問題を解消するもので、リボン状集電体に電極層を間欠に塗工して電極未塗工部を設けることなく、電極端子を集電体に接続してキャパシタを組み立てできる捲回型リチウムイオンキャパシタを提供することを目的とする。 The present invention solves such a problem, and the capacitor is formed by connecting the electrode terminal to the current collector without intermittently applying the electrode layer to the ribbon-shaped current collector to provide the electrode uncoated portion. An object of the present invention is to provide a wound lithium ion capacitor that can be assembled.
本発明は、上記課題を解決するためになされたもので、次の捲回型リチウムイオンキャパシタを提供する。
(1) リチウムイオン及び/又はアニオンを可逆的に担持可能な正極活物質からなる正極と、リチウムイオンを可逆的に担持可能な負極活物質からなる負極と、電解液としてリチウム塩の非プロトン性有機溶媒電解質溶液とを備えているリチウムイオンキャパシタであって、前記正極及び負極がそれぞれ表裏面を貫通する孔を有する集電体の片面に電極層として形成されており、該正極及び負極のそれぞれの電極層が形成されていない集電体面に正極端子及び負極端子が接続されており、かつ該正極及び負極がセパレータを介して捲回されて電極捲回ユニットを形成しており、負極及び/又は正極とリチウムイオン供給源との電気化学的接触によってリチウムイオンが負極及び/又は正極にドーピングされ、正極と負極を短絡させた後の正極の電位が2.0V以下になることを特徴とする捲回型リチウムイオンキャパシタ。
(2) 正極端子及び負極端子がステッチングまたはコールドウェルディングにより集電体と接続されている上記(1)の捲回型リチウムイオンキャパシタ。
(3) 負極活物質は、正極活物質に比べて、単位重量あたりの静電容量が3倍以上を有し、かつ正極活物質の重量が負極活物質の重量よりも大きいことを特徴とする上記(1)又は(2)の捲回型リチウムイオンキャパシタ。
(4) 前記電極捲回ユニットの最外周に、負極集電体が電極層の形成されていない集電体面を外側にして配置されており、該負極集電体にリチウムイオン供給源を接触させて設けることを特徴とする上記(1)〜(3)のいずれかの捲回型リチウムイオンキャパシタ。
(5) 電極捲回ユニットは負極の電極層と正極の電極層とがセパレータを介して対向している上記(1)〜(4)のいずれかの捲回型リチウムイオンキャパシタ。
(6) 前記電極捲回ユニットの外側にリチウムイオン供給源及び/又はセパレータを配置し、又は配置しないで、外側からテープで固定する上記(1)〜(5)のいずれかの捲回型リチウムイオンキャパシタ。
(7) 前記電極捲回ユニットの外周を所定のリチウムイオン供給源を貼り付けた粘着テープにて巻き止めする上記(6)の捲回型リチウムイオンキャパシタ。
The present invention has been made to solve the above problems, and provides the following wound type lithium ion capacitor.
(1) A positive electrode made of a positive electrode active material capable of reversibly carrying lithium ions and / or anions, a negative electrode made of a negative electrode active material capable of reversibly carrying lithium ions, and an aprotic lithium salt as an electrolyte A lithium ion capacitor comprising an organic solvent electrolyte solution, wherein the positive electrode and the negative electrode are each formed as an electrode layer on one side of a current collector having holes penetrating the front and back surfaces, and each of the positive electrode and the negative electrode The positive electrode terminal and the negative electrode terminal are connected to the current collector surface on which no electrode layer is formed, and the positive electrode and the negative electrode are wound through a separator to form an electrode winding unit. Or the positive electrode after lithium ion is doped to the negative electrode and / or the positive electrode by electrochemical contact between the positive electrode and the lithium ion supply source, and the positive electrode and the negative electrode are short-circuited The wound type lithium ion capacitor is characterized in that the potential of the battery becomes 2.0 V or less.
(2) The wound lithium ion capacitor according to (1), wherein the positive electrode terminal and the negative electrode terminal are connected to the current collector by stitching or cold welding.
(3) The negative electrode active material has a capacitance per unit weight of 3 times or more as compared with the positive electrode active material, and the weight of the positive electrode active material is larger than the weight of the negative electrode active material. The wound type lithium ion capacitor according to the above (1) or (2).
(4) The negative electrode current collector is disposed on the outermost periphery of the electrode winding unit with the current collector surface on which no electrode layer is formed facing outside, and a lithium ion supply source is brought into contact with the negative electrode current collector. The wound type lithium ion capacitor according to any one of (1) to (3) above, wherein
(5) The wound type lithium ion capacitor according to any one of (1) to (4), wherein the electrode winding unit has a negative electrode layer and a positive electrode layer facing each other with a separator interposed therebetween.
(6) The wound type lithium according to any one of (1) to (5), wherein a lithium ion supply source and / or a separator is disposed on the outside of the electrode winding unit, or is fixed with a tape from the outside without being disposed. Ion capacitor.
(7) The wound lithium ion capacitor according to (6), wherein the outer periphery of the electrode winding unit is fastened with an adhesive tape to which a predetermined lithium ion supply source is attached.
本発明によれば、上記したように正極及び負極がそれぞれ表裏面を貫通する孔を有するリボン状集電体の片面のみに電極層として形成されているので、集電体に電極層を間欠に塗工することにより電極端子を接続するための電極未塗工部を設けなくても、正極端子及び負極端子を該正極及び負極のそれぞれの電極層が形成されていない集電体面に接続して捲回型リチウムイオンキャパシタを組み立てできる。 According to the present invention, as described above, since the positive electrode and the negative electrode are formed as electrode layers only on one side of the ribbon-like current collector having holes penetrating the front and back surfaces, the electrode layers are intermittently provided on the current collector. Even without providing an electrode uncoated portion for connecting the electrode terminal by coating, the positive electrode terminal and the negative electrode terminal are connected to the current collector surface on which the respective electrode layers of the positive electrode and the negative electrode are not formed. A wound type lithium ion capacitor can be assembled.
これにより、電極塗工は多孔材からなる集電体の片面だけに行えばよく、塗工の作業性が向上できるとともに、多孔箔のような集電体にも電極端子を良好に接続できる。さらに、電極端子を電極層が形成されていない集電体面に接続できるので、内部抵抗を低減できる。また、上記したように集電体に電極未塗工部を設けないので、捲回型リチウムイオンキャパシタの小型化が図りやすくなり、かつ高性能のキャパシタが得られる。 Thereby, electrode coating should just be performed to the single side | surface of the electrical power collector which consists of porous materials, and while the workability | operativity of coating can be improved, an electrode terminal can be favorably connected also to electrical power collectors, such as porous foil. Furthermore, since the electrode terminal can be connected to the current collector surface on which no electrode layer is formed, the internal resistance can be reduced. Further, as described above, since the electrode uncoated portion is not provided on the current collector, it is easy to reduce the size of the wound lithium ion capacitor, and a high performance capacitor can be obtained.
本発明の捲回型リチウムイオンキャパシタ(以下、LICということもある)は、リチウムイオン及び/又はアニオンを可逆的に担持可能な物質からなる正極と、リチウムイオンを可逆的に担持可能な物質からなる負極と、電解液としてリチウム塩の非プロトン性有機電解液とを備えている。そして、本発明のLICでは正極と負極を短絡させた後の正極及び負極電位が2.0V以下になっている。 The wound lithium ion capacitor of the present invention (hereinafter sometimes referred to as LIC) includes a positive electrode made of a material capable of reversibly supporting lithium ions and / or anions and a material capable of reversibly supporting lithium ions. And an aprotic organic electrolyte solution of lithium salt as the electrolyte solution. In the LIC of the present invention, the potential of the positive electrode and the negative electrode after the positive electrode and the negative electrode are short-circuited is 2.0 V or less.
従来の電気二重層キャパシタでは、通常、正極と負極に同じ活物質(主に活性炭)をほぼ同量用いている。この活物質はセルの組立て時には約3Vの電位を有しており、キャパシタを充電することにより、正極表面にはアニオンが電気二重層を形成して正極電位は上昇し、一方負極表面にはカチオンが電気二重層を形成して電位が降下する。逆に、放電時には正極からアニオンが、負極からはカチオンがそれぞれ電解液中に放出されて電位はそれぞれ下降、上昇し、3V近傍に戻ってくる。このように通常の炭素材料は約3Vの電位を有しているため、正極、負極ともに炭素材料を用いた有機電解質キャパシタは、正極と負極を短絡させた後の正極及び負極の電位はいずれも約3Vとなる。 In conventional electric double layer capacitors, the same active material (mainly activated carbon) is usually used in substantially the same amount for the positive electrode and the negative electrode. This active material has a potential of about 3 V when the cell is assembled. When the capacitor is charged, an anion forms an electric double layer on the positive electrode surface, and the positive electrode potential rises, while the negative electrode surface has a cation. Forms an electric double layer and the potential drops. Conversely, during discharge, anions are released from the positive electrode and cations from the negative electrode into the electrolyte, respectively, and the potential decreases and rises to return to around 3V. As described above, since the normal carbon material has a potential of about 3 V, the organic electrolyte capacitor using the carbon material for both the positive electrode and the negative electrode has both the positive electrode and negative electrode potentials after the positive electrode and the negative electrode are short-circuited. It becomes about 3V.
これに対し、本発明のLICでは上記したように正極と負極を短絡した後の正極の電位は2.0V(Li/Li+、以下同じ)以下である。すなわち、本発明では正極にリチウムイオン及び/又はアニオンを可逆的に担持可能な活物質を用い、また負極にリチウムイオンを可逆的に担持可能な活物質を用い、正極と負極を短絡させた後に正極と負極の電位が2.0V以下になるように、負極及び/又は正極に予めリチウムイオンを担持させている。 On the other hand, in the LIC of the present invention, as described above, the potential of the positive electrode after short-circuiting the positive electrode and the negative electrode is 2.0 V (Li / Li + , the same shall apply hereinafter) or less. That is, in the present invention, after using an active material capable of reversibly supporting lithium ions and / or anions for the positive electrode and using an active material capable of reversibly supporting lithium ions for the negative electrode, the positive electrode and the negative electrode are short-circuited. Lithium ions are previously supported on the negative electrode and / or the positive electrode so that the potential between the positive electrode and the negative electrode is 2.0 V or less.
なお、本発明で、正極と負極を短絡させた後の正極の電位が2V以下とは、以下の(A)又は(B)の2つのいずれかの方法で求められる正極の電位が2V以下の場合をいう。即ち、(A)リチウムイオンによるドープピングの後、キャパシタセルの正極端子と負極端子を導線で直接結合させた状態で12時間以上放置した後に短絡を解除し、0.5〜1.5時間内に測定した正極電位、(B)充放電試験機にて12時間以上かけて0Vまで定電流放電させた後に正極端子と負極端子を導線で結合させた状態で12時間以上放置した後に短絡を解除し、0.5〜1.5時間内に測定した正極電位、が2V以下であることをいう。 In the present invention, the potential of the positive electrode after the positive electrode and the negative electrode are short-circuited is 2 V or less. The potential of the positive electrode determined by one of the following two methods (A) or (B) is 2 V or less. Refers to cases. That is, (A) After doping with lithium ions, the positive electrode terminal and the negative electrode terminal of the capacitor cell are directly coupled with a conductive wire and left for 12 hours or more, then the short circuit is released, and within 0.5 to 1.5 hours Measured positive electrode potential, (B) Charge-discharge tester discharges constant current to 0V over 12 hours and then leaves positive electrode terminal and negative electrode terminal connected with lead wire for 12 hours or more, then releases short circuit The positive electrode potential measured within 0.5 to 1.5 hours is 2 V or less.
また、本発明において、正極と負極とを短絡させた後の正極電位が2.0V以下というのは、リチウムイオンがドーピングされたすぐ後だけに限られるものではなく、充電状態、放電状態あるいは充放電を繰り返した後に短絡した場合など、いずれかの状態で短絡後の正極電位が2.0V以下となることである。 In the present invention, the positive electrode potential after the positive electrode and the negative electrode are short-circuited is 2.0 V or less, not only immediately after the lithium ions are doped, but in the charged state, discharged state or charged state. The positive electrode potential after short-circuiting is 2.0 V or less in any state, such as when short-circuiting after repeating discharge.
本発明において、正極と負極とを短絡させた後の正極電位が2.0V以下になるということに関し、以下に詳細に説明する。上述のように活性炭や炭素材は通常3V(Li/Li+)前後の電位を有しており、正極、負極ともに活性炭を用いてセルを組んだ場合、いずれの電位も約3Vとなるため、短絡しても正極電位はかわらず約3Vである。また、正極に活性炭、負極にリチウムイオン二次電池にて使用されている黒鉛や難黒鉛化炭素のような炭素材を用いた、いわゆるハイブリットキャパシタの場合も同様であり、いずれの電位も約3Vとなるため、短絡しても正極電位はかわらず約3Vである。正極と負極の重量バランスにもよるが充電すると負極電位が0V近傍まで推移するので、充電電圧を高くすることが可能となるため高電圧、高エネルギー密度を有したキャパシタとなる。一般的に充電電圧の上限は正極電位の上昇による電解液の分解が起こらない電圧に決められるので、正極電位を上限にした場合、負極電位が低下する分、充電電圧を高めることが可能となる。 In the present invention, the fact that the positive electrode potential after the positive electrode and the negative electrode are short-circuited is 2.0 V or less will be described in detail below. As described above, activated carbon and carbon materials usually have a potential of about 3 V (Li / Li + ), and when the cell is assembled using activated carbon for both the positive electrode and the negative electrode, both potentials are about 3 V. Even if it is short-circuited, the positive electrode potential is about 3 V regardless. The same applies to a so-called hybrid capacitor using activated carbon as the positive electrode and carbon material such as graphite or non-graphitizable carbon used in the lithium ion secondary battery as the negative electrode. Therefore, even if a short circuit occurs, the positive electrode potential is about 3 V regardless. Although depending on the weight balance between the positive electrode and the negative electrode, when charged, the potential of the negative electrode transitions to around 0 V, so that the charging voltage can be increased, so that the capacitor has a high voltage and a high energy density. Generally, the upper limit of the charging voltage is determined to be a voltage at which the electrolyte solution does not decompose due to the increase in the positive electrode potential. Therefore, when the positive electrode potential is set as the upper limit, the charging voltage can be increased by the amount of decrease in the negative electrode potential. .
しかしながら、短絡時に正極電位が約3Vとなる上述のハイブリットキャパシタでは、正極の上限電位が例えば4.0Vとした場合、放電時の正極電位は3.0Vまでであり、正極の電位変化は1.0V程度と正極の容量を充分利用できていない。更に、負極にリチウムイオンを挿入(充電)、脱離(放電)した場合、初期の充放電効率が低い場合が多く、放電時に脱離できないリチウムイオンが存在していることが知られている。これは、負極表面にて電解液の分解に消費される場合や、炭素材の構造欠陥部にトラップされる等の説明がなされているが、この場合正極の充放電効率に比べ負極の充放電効率が低くなり、充放電を繰り返した後にセルを短絡させると正極電位は3Vよりも高くなり、さらに利用容量は低下する。すなわち、正極は4.0Vから2.0Vまで放電可能であるところ、4.0Vから3.0Vまでしか使えない場合、利用容量として半分しか使っていないこととなり、高電圧にはなるが高容量にはならないのである。 However, in the above-described hybrid capacitor in which the positive electrode potential is about 3 V at the time of short circuit, when the upper limit potential of the positive electrode is 4.0 V, for example, the positive electrode potential at the time of discharge is up to 3.0 V, and the potential change of the positive electrode is 1. The capacity of the positive electrode of about 0 V is not fully utilized. Furthermore, when lithium ions are inserted (charged) and desorbed (discharged) into the negative electrode, the initial charge / discharge efficiency is often low, and it is known that there are lithium ions that cannot be desorbed during discharge. This is explained when it is consumed in the decomposition of the electrolyte solution on the negative electrode surface or trapped in the structural defect part of the carbon material. In this case, the charge / discharge of the negative electrode is compared with the charge / discharge efficiency of the positive electrode. When the efficiency is lowered and the cell is short-circuited after repeated charging and discharging, the positive electrode potential becomes higher than 3 V, and the utilization capacity further decreases. That is, the positive electrode can be discharged from 4.0 V to 2.0 V. However, when only 4.0 V to 3.0 V can be used, only half of the usage capacity is used. It will not be.
ハイブリットキャパシタを高電圧、高エネルギー密度だけでなく、高容量そして更にエネルギー密度を高めるためには、正極の利用容量を向上させることが必要である。 In order to increase not only high voltage and high energy density but also high capacity and energy density of the hybrid capacitor, it is necessary to improve the capacity of the positive electrode.
短絡後の正極電位が3.0Vよりも低下すればそれだけ利用容量が増え、高容量になるということである。2.0V以下になるためには、セルの充放電により充電される量だけでなく、別途リチウム金属などのリチウムイオン供給源から負極にリチウムイオンを充電することが好ましい。正極と負極以外からリチウムイオンが供給されるので、短絡させた時には、正極、負極、リチウム金属が平衡電位になるため、正極電位、負極電位ともに3.0V以下になる。リチウム金属の量が多くなる程に平衡電位は低くなる。負極材、正極材が変われば平衡電位も変わるので、短絡後の正極電位が2.0V以下になるように、負極材、正極材の特性を鑑みて負極に担持させるリチウムイオン量の調整が必要である。 If the positive electrode potential after the short circuit falls below 3.0V, the utilization capacity increases and the capacity increases. In order to be 2.0 V or less, it is preferable to charge not only the amount charged by charging / discharging the cell but also separately charging lithium ions from a lithium ion supply source such as lithium metal to the negative electrode. Since lithium ions are supplied from other than the positive electrode and the negative electrode, the positive electrode, the negative electrode, and the lithium metal have an equilibrium potential when they are short-circuited, so that both the positive electrode potential and the negative electrode potential are 3.0 V or less. As the amount of lithium metal increases, the equilibrium potential decreases. If the negative electrode material and the positive electrode material change, the equilibrium potential also changes. Therefore, it is necessary to adjust the amount of lithium ions supported on the negative electrode in view of the characteristics of the negative electrode material and the positive electrode material so that the positive electrode potential after the short circuit becomes 2.0 V or less. It is.
本発明のLICにおいて、正極と負極を短絡させた後の正極電位が2.0V以下になるということは、上記したように該LICの正極及び負極以外から正極及び/又は負極にリチウムイオンが供給されているということである。リチウムイオンの供給は負極と正極の片方あるいは両方いずれでもよいが、例えば正極に活性炭を用いた場合、リチウムイオンの担持量が多くなり正極電位が低くなると、リチウムイオンを不可逆的に消費してしまい、セルの容量が低下するなどの不具合が生じる場合があるので、負極と正極に供給するリチウムイオンの量は不具合が生じないよう適宜制御が必要である。いずれの場合でも、予め正極及び/又は負極に供給されたリチウムイオンはセルの充電により負極に供給されるので、負極電位は低下する。 In the LIC of the present invention, the positive electrode potential after the positive electrode and the negative electrode are short-circuited is 2.0 V or less, as described above, lithium ions are supplied to the positive electrode and / or the negative electrode from other than the positive electrode and the negative electrode of the LIC. It is that it has been. The supply of lithium ions may be either one or both of the negative electrode and the positive electrode. For example, when activated carbon is used for the positive electrode, if the amount of lithium ion supported increases and the positive electrode potential decreases, the lithium ion is irreversibly consumed. Since problems such as a reduction in cell capacity may occur, the amount of lithium ions supplied to the negative electrode and the positive electrode needs to be appropriately controlled so as not to cause problems. In any case, since the lithium ions previously supplied to the positive electrode and / or the negative electrode are supplied to the negative electrode by charging the cell, the negative electrode potential decreases.
また、正極と負極を短絡させた後の正極電位が2.0Vよりも高い場合は、正極及び/又は負極に供給されたリチウムイオンの量が少ないためセルのエネルギー密度は小さい。リチウムイオンの供給量が多くなるほどに正極と負極を短絡させた後の正極電位は低くなりエネルギー密度は向上する。高いエネルギー密度を得るには2.0V以下が好ましく、更に高いエネルギー密度を得るには1.0V(Li/Li+)以下が好ましい。正極と負極を短絡させた後の正極電位が低くなるということは、言い換えると、セルの充電により負極に供給されるリチウムイオンの量が多くなるということであり、負極の静電容量が増大するとともに負極の電位変化量が小さくなり、結果的に正極の電位変化量が大きくなってセルの静電容量及び容量が大きくなり、高いエネルギー密度が得られるのである。 When the positive electrode potential after the positive electrode and the negative electrode are short-circuited is higher than 2.0 V, the energy density of the cell is small because the amount of lithium ions supplied to the positive electrode and / or the negative electrode is small. As the supply amount of lithium ions increases, the potential of the positive electrode after the positive electrode and the negative electrode are short-circuited becomes lower and the energy density is improved. In order to obtain a high energy density, 2.0 V or less is preferable, and in order to obtain a higher energy density, 1.0 V (Li / Li + ) or less is preferable. In other words, the positive electrode potential after the positive electrode and the negative electrode are short-circuited is reduced, which means that the amount of lithium ions supplied to the negative electrode by charging the cell increases, and the capacitance of the negative electrode increases. At the same time, the potential change amount of the negative electrode is reduced, and as a result, the potential change amount of the positive electrode is increased, the capacitance and capacity of the cell are increased, and a high energy density is obtained.
また、正極電位が1.0Vを下回ると正極活物質にもよるが、ガス発生や、リチウムイオンを不可逆に消費してしまう等の不具合が生じるため、正極電位の測定が困難となる。また、正極電位が低くなりすぎる場合は負極重量が過剰ということであり、逆にエネルギー密度は低下する。したがって、一般的には正極電位は0.1V以上であり、好ましくは0.3V以上である。 Further, when the positive electrode potential is less than 1.0 V, although depending on the positive electrode active material, problems such as gas generation and irreversible consumption of lithium ions occur, so that it is difficult to measure the positive electrode potential. On the other hand, when the positive electrode potential becomes too low, the negative electrode weight is excessive, and the energy density is decreased. Therefore, in general, the positive electrode potential is 0.1 V or more, preferably 0.3 V or more.
なお、本発明において静電容量、容量は次のように定義する。セルの静電容量とは、セルの放電カーブの傾きを示し単位はF(ファラッド)、セルの単位重量当たりの静電容量とはセルの静電容量をセル内に充填している正極活物質重量と負極活物質重量の合計重量にて割った値であり、単位はF/g、正極の静電容量とは正極の放電カーブの傾きを示し単位はF、正極の単位重量当たりの静電容量とは正極の静電容量をセル内に充填している正極活物質重量にて割った値であり、単位はF/g、負極の静電容量とは負極の静電容量をセル内に充填している負極活物質重量にて割った値であり、単位はF/gである。 In the present invention, the capacitance and capacitance are defined as follows. The capacitance of the cell indicates the slope of the discharge curve of the cell, the unit is F (farad), and the capacitance per unit weight of the cell is the positive electrode active material in which the capacitance of the cell is filled in the cell It is the value divided by the total weight of the weight and the weight of the negative electrode active material, the unit is F / g, the capacitance of the positive electrode is the slope of the discharge curve of the positive electrode, the unit is F, the electrostatic capacity per unit weight of the positive electrode The capacity is a value obtained by dividing the capacitance of the positive electrode by the weight of the positive electrode active material filled in the cell. The unit is F / g. The capacitance of the negative electrode is the capacitance of the negative electrode in the cell. The value is divided by the weight of the filled negative electrode active material, and the unit is F / g.
更に、セル容量とはセルの放電開始電圧と放電終了電圧の差、すなわち電圧変化量とセルの静電容量の積であり単位はC(クーロン)であるが、1Cは1秒間に1Aの電流が流れたときの電荷量であるので、本特許においては換算してmAh表示することとした。正極容量とは放電開始時の正極電位と放電終了時の正極電位の差(正極電位変化量)と正極の静電容量の積であり、単位はC又はmAh、同時に負極容量とは放電開始時の負極電位と放電終了時の負極電位の差(負極電位変化量)と負極の静電容量の積であり、単位はC又はmAhである。これらセル容量と正極容量、負極容量とは一致する。 Further, the cell capacity is the difference between the discharge start voltage and the discharge end voltage of the cell, that is, the product of the voltage change amount and the cell capacitance, and the unit is C (coulomb). 1C is 1 A current per second. Therefore, in this patent, it was converted to mAh and displayed. The positive electrode capacity is the product of the difference between the positive electrode potential at the start of discharge and the positive electrode potential at the end of discharge (amount of change in positive electrode potential) and the capacitance of the positive electrode. The unit is C or mAh. Is the product of the difference between the negative electrode potential and the negative electrode potential at the end of discharge (amount of change in negative electrode potential) and the capacitance of the negative electrode, and the unit is C or mAh. These cell capacity, positive electrode capacity, and negative electrode capacity coincide with each other.
次に、本発明の捲回型リチウムイオンキャパシタの構成を図面に従って説明する。以下に示す図面は本発明の好ましい実施の態様を例示したものであり、本発明はこれに限定されない。図1は本発明に係わる捲回型リチウムイオンキャパシタ(以下、セルということもある)の代表的な円柱型(円筒型)の型セルの断面図を示す。 Next, the configuration of the wound lithium ion capacitor of the present invention will be described with reference to the drawings. The drawings shown below illustrate preferred embodiments of the present invention, and the present invention is not limited thereto. FIG. 1 is a sectional view of a typical cylindrical (cylindrical) type cell of a wound lithium ion capacitor (hereinafter also referred to as a cell) according to the present invention.
本例のセルは、図1に示すように正極1、負極2をセパレータ3を介して交互に積層して同心的に捲回して電極捲回ユニット6を形成し、該電極捲回ユニット6の例えば外側にリチウムイオン供給源としてリチウム金属(リチウム極)4を配置し、これらを外装容器5内に収容して内部に電解液を充填し構成される。正極1及び負極2は、後述するように表裏面を貫通する孔が設けられた多孔材からなる集電体に形成されており、このように集電体を多孔材にすることによって、リチウム金属4が電極捲回ユニット6の例えば外周部に配置されていても、リチウムイオンはリチウム金属4から電極捲回ユニット6の集電体の貫通孔を通って自由に各電極間を移動し、電極捲回ユニット6のすべての負極及び/又は正極にリチウムイオンをドーピングできる。
上記外装容器5は、円筒型、角型、ラミネート型等を適宜使用でき特に限定されるものでなく、捲回型リチウムイオンキャパシタはかかる外装容器内に電極捲回ユニットを有するリチウムイオンキャパシタであり、該電極捲回ユニットとしてはリボン状の正極と負極をセパレータを介して積層させ千鳥状に折り重ねた電極ユニットをも包含している。
In the cell of this example, as shown in FIG. 1,
The
上記リチウム金属4は、リチウム極集電体にリチウム金属を圧着して貼り付けすることにより形成できる。このリチウム極集電体としては、リチウム金属を圧着しやすくし、必要に応じてリチウムイオンが通りぬけできるように、正極1と負極2の集電体と同様な多孔構造のものが好ましい。また、該リチウム極集電体にはリチウム極端子が設けてあって、該リチウム極端子は例えば負極端子に溶接し導通されている。
The
このように構成されたセル内にリチウムイオンを移送可能な電解液(電解質)を注入して封止し、この状態で所定時間(例えば10日間)放置しておくと、リチウム金属4と負極2とが短絡されているので、負極2に予めリチウムイオンをドーピングすることができる。なお、本発明において、「正極」とは放電の際に電流が流出し、充電の際に電流が流入する側の極、「負極」とは放電の際に電流が流入し、充電の際に電流が流出する側の極を意味する。
When an electrolyte (electrolyte) capable of transporting lithium ions is injected into the thus configured cell and sealed, and left in this state for a predetermined time (for example, 10 days), the
上記電極捲回ユニット6において正極1と負極2とは電極構造が実質的に同一であるので、以下負極2について説明する。図2は上記電極捲回ユニット6の捲回を解いて展開したときの負極2の平面図で、一部を切り欠いて示している。図3は図2のA−A矢視における拡大断面図である。図示のように負極2は、リボン状の負極集電体2aの片面〈図1,2では上面〉に後述の負極活物質を塗工してなる電極層(図にはこの負極電極層を負極2として示している)として形成され、上記負極集電体2aの電極層が形成されていない集電体面に負極端子9が接続されている。
Since the electrode structure of the
上記負極集電体2aは、表裏面を貫通する孔7を有する多孔材で、負極端子9は該負極集電体2aの負極2が形成されていない集電体面にステッチング又はコールドウェルディングにより接続されるのが好ましい。負極2が形成されている集電体面、すなわち電極層表面であっても、負極端子9の接続は可能であるが、端子が電極層を介して接続されるため、内部抵抗が大きくなる。本発明では負極2が形成されていない集電体面に負極端子2を直にステッチング又はコールドウェルディング等で接続するので、負極端子9の接続作業が容易であり、かつ内部抵抗を低減できる。負極端子9を負極集電体2aのどこの位置に接続するかは、電極捲回ユニット6における負極端子9の取り出し位置によって決まり限定されないが、通常はリボン状の集電体の例えば端部から所定の距離だけ内側に入った集電体面に接続するのが好ましい。
The negative electrode
なお、負極端子と正極端子は電極捲回ユニット6の両端に分けて設けてもよいし、一方の端部にまとめて取り出すように設けてもよい。また、1枚のリボン状集電体(電極)に設ける電極端子の個数は、セルの大きさなどによって適宜決めることができ限定されない。例えば、小型セルでは1枚の集電体に対し1個設ければ足りるが、大型セルでは端子が多い方が内部抵抗を小さくできるので、複数個を設けるのが好ましい。負極及び正極の各電極端子の材質としては、それぞれ負極集電体及び正極集電体と同質のものが接続性や膨張性などの点から好ましく使用できるが、同質のものに限定されない。
The negative electrode terminal and the positive electrode terminal may be provided separately at both ends of the
負極集電体2aに負極活物質を塗工して負極2を形成する場合、図3に示すように負極集電体2aの塗工面に導電性材料の下地層8を形成するのが好ましい。負極集電体2aが多孔材であるために、該集電体に負極活物質を直接に塗工すると、負極活物質が集電体の孔7から洩れ出したり、あるいは塗工面が平滑でないため負極2を均一な厚さに形成できなくなるおそれがある。集電体の塗工面に下地層8が形成されていると、孔7を下地層8で塞ぎかつ塗工面を平滑にできるので、負極活物質が塗工しやすくなるとともに均一な厚さの負極2を得ることができる。図示はしないが、正極1は同じように多孔材の正極集電体の片面に正極活物質を塗工して電極層を形成し、電極層が形成されていない他面に正極端子を接続することによって得られる。
When the negative electrode active material is applied to the negative electrode
図4は図1に示す電極捲回ユニット6のX部の部分拡大図である。本例の捲回型リチウムイオンキャパシタでは、電極捲回ユニット6の最外周(最外層)に負極2が負極集電体2aを外側にして配置され、該負極集電体2aの外側にリチウムイオン供給源としてリチウム金属4が例えば集電体面に圧着して捲装されている。このように負極集電体2aに圧着されたリチウム金属4は負極2に短絡した状態となるので、負極2と該リチウム金属4との電気化学的接触によってリチウムイオンが負極2にドーピングされる。
FIG. 4 is a partially enlarged view of a portion X of the
本発明の捲回型リチウムイオンキャパシタは、本例のように電極捲回ユニット6の最外周を負極2とし、かつ該負極2の電極層の形成されていない集電体面を外側にして配置し、該集電体面にリチウム金属4を接触させるのが好ましい。電極捲回ユニット6の最外周を負極2にすることによって、負極2とリチウム金属4とが短絡しても問題を生じなくさせることができると共に、リチウム金属のセル内への配置が簡便となる等の利点が得られる。また、負極2が形成されていない負極集電体2aを外側にして配置し、該負極集電体2aにリチウム金属4を直接圧着させることにより、リチウム極集電体を負極集電体2aに兼ねさせることが可能となるので、リチウム極集電体が不要となり同時にリチウム金属と負極とを短絡させるための接続が省けるので、エネルギー密度が向上したり、セル構造の簡素化や工程の簡略化がなされる。しかし、リチウム金属4は、リチウム極集電体に圧着して用いてもよい。
The wound lithium ion capacitor of the present invention is arranged with the outermost periphery of the
また、上記電極捲回ユニット6において負極2の電極層と正極1の電極層とは、図4に示すようにセパレータ2を介して対向しているのが好ましい。負極2と正極1とをこのように配置することによって両極の電極層がセパレータ3の両側に面合しているので、セルの充放電時におけるリチウムイオンの離脱と吸蔵がより円滑かつ確実となる。しかし、電極捲回ユニット6における負極2と正極1の配置の仕方はこれに限定されないで、負極2の電極層と正極1の正極集電体1aとがセパレータ3を介して対向するようにしてもよい。
In the
なお、リチウム金属4は電極捲回ユニット6の最外周の負極2(正確には負極集電体2a)の外側にセパレータ3を介して設けてもよいし、必要に応じて電極捲回ユニット6に捲きつけたリチウム金属4の外側にセパレータ3を設けてもよい。
The
本発明の好ましい実施形態では、図5に示すように電極捲回ユニット6とリチウム金属4とを外側からテープ11で固定するのが好ましい。電極捲回ユニット6の最外部にセパレータが設けられているときは、このセパレータの上からテープ11で止める。このように電極捲回ユニット6の外側をテープ11で固定することにより、外装容器5への挿入が容易となるので、セルの組立て作業性が向上する。なお、図5では負極端子9と正極端子10とを電極捲回ユニット6の両端に分けて設けている。
In a preferred embodiment of the present invention, it is preferable to fix the
本発明において上記のテープ止めは次の方法によってもできる。すなわち、図示はしないが例えば電極捲回ユニット6の製造時又は製造後における解れを防止するために、電極捲回ユニット6の最外周をテープ止めすることができ、この場合にはリチウム金属4を該電極捲回ユニット6の巻き止めテープに重ならないようにかつリチウム金属面が内側(リチウム極集電体が外側)になるように配置するのが好ましい。また、他の方法はリチウム金属4を貼り付けた粘着テープで電極捲回ユニット6を巻き止めするもので、電極捲回ユニットの巻き止めとリチウム金属4の配置を同時に行うことができる利点が得られる。
In the present invention, the above-described tape fastening can be performed by the following method. That is, although not shown, the outermost periphery of the
上記テープ11としては、電解液に対し耐久性があり、セルに悪影響を与えないものであれば材質は特に限定されないが、セパレータと同質材料のテープが最適である。また、テープ11の厚さや幅としては、厚さ50〜100μm程度、幅5〜10mm程度のものが、電極捲回ユニットを安定して固定でき、かつ作業性もよいので好ましい。テープ11で固定する位置や数は、主として電極捲回ユニット6の寸法に応じて適宜決められるが、電極捲回ユニット6の高さT(図5参照)が例えば50〜100mmであるときは2又は3箇所で安定的に止めることができる。
The material of the
図6は本発明の他の実施の形態である電極捲回ユニット6の断面図である。本例の電極捲回ユニット6は、リボン状の正極1と負極2をセパレータ3を介在させて捲回した扁平状の捲層体であり、該電極捲回ユニット6の芯部に負極2との間にセパレータ3を設けてリチウム金属4が設けられている。該電極捲回ユニット6の正極1及び負極2は、いずれも前記した図1の円柱状の電極捲回ユニット6における電極と同様に多孔材の電極集電体の片面に電極層が形成されており、かつそれぞれの電極層が形成されていない集電体面に電極端子が接続されている。またリチウム金属4は板状のリチウム極集電体4aの両側に形成されており、該リチウム金属4がリチウム極集電体4aに設けた取り出し端子を通して例えば負極2と短絡されており、セル芯部に配置したリチウム金属4から取り出されたリチウムイオンが正負両集電体の孔を通って外方向に移動し、捲回された電極捲回ユニット6の負極2にドーピングされるようになっている。
FIG. 6 is a cross-sectional view of an
なお、本例では扁平状の電極捲回ユニット6の芯部にリチウム金属4を設けているが、リチウム金属4は電極捲回ユニット6の外周部に設けてもよい。また、電極捲回ユニット6の外側は必要に応じてセパレータを介して又はセパレータを介さずにテープ止めしてもよく、リチウム金属4を電極捲回ユニット6の外周部に配置している場合にはリチウム金属4の上からテープ止めすることができる。
In this example, the
以下に、本発明のリチウムイオンキャパシタを構成する主要素について順次説明する。
本発明の正極集電体及び負極集電体としては、一般に有機電解質電池などの用途で提案されている種々の材質を用いることができ、正極集電体にはアルミニウム、ステンレス等、負極集電体にはステンレス、銅、ニッケル等をそれぞれ好適に用いることができ、箔状、ネット状等各種形状のものを用いることができる。特に負極及び/又は正極に予めリチウイオンを担持させるためには、表裏面を貫通する孔を備えたものが好ましく、例えばエキスパンドメタル、パンチングメタル、金属網、発泡体、あるいはエッチングにより貫通孔を付与した多孔質箔等を挙げることができる。電極集電体の貫通孔は丸状、角状、その他適宜設定できる。
Below, the main elements which comprise the lithium ion capacitor of this invention are demonstrated one by one.
As the positive electrode current collector and the negative electrode current collector of the present invention, various materials generally proposed for applications such as organic electrolyte batteries can be used. The positive electrode current collector is made of aluminum, stainless steel, or the like. Stainless steel, copper, nickel and the like can be suitably used for the body, and various shapes such as foil and net can be used. In particular, in order to support lithium ions in advance on the negative electrode and / or the positive electrode, those having holes penetrating the front and back surfaces are preferable. For example, expanded metal, punching metal, metal net, foam, or through holes are provided by etching. A porous foil etc. can be mentioned. The through-hole of the electrode current collector can be appropriately set to be round, square, or the like.
更に好ましくは、電極を形成する前に、当該電極集電体の貫通孔を、脱落しにくい導電性材料を用いて少なくとも一部を閉塞し、その上に正極及び負極を形成することにより、電極の生産性を向上させるとともに、電極の脱落によるキャパシタの信頼性低下の問題を解決し、更には、集電体を含む電極の厚さを薄くして、高エネルギー密度、高出力密度を実現できる。
電極集電体の貫通孔の形態、数等は、後述する電解液中のリチウムイオンが電極集電体に遮断されることなく電極の表裏間を移動できるように、また、導電性材料によって閉塞し易いように適宜設定することができる。
More preferably, before forming the electrode, at least a part of the through hole of the electrode current collector is blocked with a conductive material that does not easily fall off, and the positive electrode and the negative electrode are formed thereon, thereby forming the electrode In addition to improving the productivity of the capacitor, it solves the problem of reduced reliability of the capacitor due to electrode dropping, and furthermore, the electrode including the current collector can be made thinner to achieve high energy density and high output density. .
The shape and number of through-holes in the electrode current collector are blocked by a conductive material so that lithium ions in the electrolyte described later can move between the front and back of the electrode without being blocked by the electrode current collector. It can be set as appropriate so as to facilitate.
この電極集電体の気孔率は、{1―(集電体重量/集電体真比重)/(集電体見かけ体積)}の比を百分率に換算して得られるものと定義する。本発明に用いる電極集電体の気孔率は、通常、10〜79%、好ましくは20〜60%である。電極集電体の気孔率や孔径は、セルの構造や生産性を考慮し、上述の範囲で適宜選定することが望ましい。 The porosity of this electrode current collector is defined as that obtained by converting the ratio of {1- (current collector weight / current collector true specific gravity) / (current collector apparent volume)} into a percentage. The porosity of the electrode current collector used in the present invention is usually 10 to 79%, preferably 20 to 60%. It is desirable that the porosity and the pore diameter of the electrode current collector are appropriately selected within the above-mentioned range in consideration of the cell structure and productivity.
上記負極活物質としては、リチウムイオンを可逆的に担持できるものであれば特に限定されず、例えば黒鉛、難黒鉛化炭素、芳香族系縮合ポリマーの熱処理物であって水素原子/炭素原子の原子数比(以下H/Cと記す)が0.50〜0.05であるポリアセン系骨格構造を有するポリアセン系有機半導体(PAS)等を挙げることができる。中でもPASは高容量が得られる点でより好ましい。例えばH/C=0.2程度のPASに400mAh/gのリチウムイオンを担持(充電)させた後に放電させると650F/g以上の静電容量が得られ、また、500mAh/g以上のリチウムイオンを充電させると750F/g以上の静電容量が得られる。このことから、PASが非常に大きな静電容量を持つことがわかる。 The negative electrode active material is not particularly limited as long as it can reversibly carry lithium ions, and is, for example, a heat-treated product of graphite, non-graphitizable carbon, aromatic condensation polymer, and hydrogen atoms / carbon atoms. A polyacene organic semiconductor (PAS) having a polyacene skeleton structure having a number ratio (hereinafter referred to as H / C) of 0.50 to 0.05 can be given. Among these, PAS is more preferable in that a high capacity can be obtained. For example, if a PAS with H / C = 0.2 is loaded (charged) with 400 mAh / g of lithium ions, and then discharged, a capacitance of 650 F / g or more is obtained, and a lithium ion of 500 mAh / g or more is obtained. Is charged, a capacitance of 750 F / g or more is obtained. From this, it can be seen that PAS has a very large capacitance.
本発明の好ましい形態において、PASのようなアモルファス構造を有する活物質を負極に用いた場合、担持させるリチウムイオン量を増加させるほど電位が低下するので、得られる蓄電装置の耐電圧(充電電圧)が高くなり、また、放電における電圧の上昇速度(放電カーブの傾き)が低くなるため、求められる蓄電装置の使用電圧に応じて、リチウムイオン量は活物質のリチウムイオン吸蔵能力の範囲内にて適宜設定することが望ましい。 In a preferred embodiment of the present invention, when an active material having an amorphous structure such as PAS is used for the negative electrode, the potential decreases as the amount of lithium ions to be carried increases, so that the withstand voltage (charging voltage) of the obtained power storage device In addition, the rate of increase in voltage during discharge (the slope of the discharge curve) decreases, so that the amount of lithium ions is within the range of lithium ion storage capacity of the active material, depending on the required operating voltage of the power storage device. It is desirable to set appropriately.
また、PASはアモルファス構造を有することから、リチウムイオンの挿入・脱離に対して膨潤・収縮といった構造変化がないためサイクル特性に優れ、またリチウムイオンの挿入・脱離に対して等方的な分子構造(高次構造)であるため、急速充電、急速放電にも優れた特性を有することから負極材として好適である。 In addition, since PAS has an amorphous structure, there is no structural change such as swelling / shrinkage with respect to insertion / extraction of lithium ions, so that cycle characteristics are excellent, and isotropic to insertion / extraction of lithium ions. Since it has a molecular structure (higher order structure), it is suitable as a negative electrode material because it has excellent characteristics in rapid charge and rapid discharge.
PASの前駆体である芳香族系縮合ポリマーとは、芳香族炭化水素化合物とアルデヒド類との縮合物である。芳香族炭化水素化合物としては、例えばフェノール、クレゾール、キシレノール等の如き、いわゆるフェノール類を好適に用いることができる。例えば、下記式 The aromatic condensation polymer that is a precursor of PAS is a condensate of an aromatic hydrocarbon compound and an aldehyde. As the aromatic hydrocarbon compound, so-called phenols such as phenol, cresol, xylenol and the like can be suitably used. For example, the following formula
(ここで、x及びyはそれぞれ独立に、0、1又は2である)
で表されるメチレン・ビスフェノール類であることができ、あるいはヒドロキシ・ビフェニル類、ヒドロキシナフタレン類であることもできる。これらの中でも、実用的にはフェノール類、特にフェノールが好適である。
(Where x and y are each independently 0, 1 or 2)
Or a biphenyl or a hydroxynaphthalene. Among these, phenols, particularly phenol, are preferable for practical use.
また、上記芳香族系縮合ポリマ−としては、上記のフェノール性水酸基を有する芳香族炭化水素化合物の1部をフェノール性水酸基を有さない芳香族炭化水素化合物、例えばキシレン、トルエン、アニリン等で置換した変成芳香族系縮合ポリマー、例えばフェノールとキシレンとホルムアルデヒドとの縮合物を用いることもできる。更に、メラミン、尿素で置換した変成芳香族系ポリマーを用いることもでき、フラン樹脂も好適である。 As the aromatic condensed polymer, a part of the aromatic hydrocarbon compound having a phenolic hydroxyl group is substituted with an aromatic hydrocarbon compound having no phenolic hydroxyl group, such as xylene, toluene, aniline, etc. It is also possible to use a modified aromatic condensation polymer such as a condensate of phenol, xylene and formaldehyde. Furthermore, a modified aromatic polymer substituted with melamine or urea can be used, and a furan resin is also suitable.
本発明においてPASは不溶不融性基体として使用され、該不溶不融性基体は例えば上記芳香族系縮合ポリマーから次のようにして製造することもできる。すなわち、上記芳香族系縮合ポリマーを、非酸化性雰囲気下(真空も含む)中で400〜800°Cの適当な温度まで徐々に加熱することにより、H/Cが0.5〜0.05、好ましくは0.35〜0.10の不溶不融性基体を得ることができる。 In the present invention, PAS is used as an insoluble and infusible substrate, and the insoluble and infusible substrate can also be produced, for example, from the aromatic condensation polymer as follows. That is, by gradually heating the aromatic condensation polymer to an appropriate temperature of 400 to 800 ° C. in a non-oxidizing atmosphere (including vacuum), H / C is 0.5 to 0.05. Preferably, an insoluble and infusible substrate of 0.35 to 0.10 can be obtained.
しかし、不溶不融性基体の製造方法はこれに限定されることなく、例えば、特公平3−24024号公報等に記載されている方法で、上記H/Cを有し、かつ600m2/g以上のBET法による比表面積を有する不溶不融性基体を得ることもできる。 However, the method for producing an insoluble and infusible substrate is not limited to this, and is, for example, a method described in Japanese Patent Publication No. 3-24024, etc., and has the above H / C and 600 m 2 / g It is also possible to obtain an insoluble and infusible substrate having a specific surface area by the above BET method.
本発明に用いる不溶不融性基体は、X線回折(CuKα)によれば、メイン・ピークの位置は2θで表して24°以下に存在し、また該メイン・ピークの他に41〜46°の間にブロードな他のピークが存在している。すなわち、上記不溶不融性基体は、芳香族系多環構造が適度に発達したポリアセン系骨格構造を有し、かつアモルファス構造を有し、リチウムを安定にドーピングすることができることから、リチウム蓄電装置用の活物質として好適する。 According to X-ray diffraction (CuKα), the insoluble and infusible substrate used in the present invention has a main peak position represented by 2θ of 24 ° or less, and 41 to 46 ° in addition to the main peak. There are other broad peaks in between. That is, the insoluble infusible substrate has a polyacene skeleton structure in which an aromatic polycyclic structure is appropriately developed, has an amorphous structure, and can be stably doped with lithium. Suitable as an active material.
本発明において負極活物質は、細孔直径3nm以上で細孔容積を0.10mL/g以上有するものが好ましく、その細孔直径の上限は限定されないが、通常は3〜50nmの範囲である。また、細孔容積の範囲についても特に限定されないが、通常0.10〜0.5mL/gであり、好ましくは0.15〜0.5mL/gである。 In the present invention, the negative electrode active material preferably has a pore diameter of 3 nm or more and a pore volume of 0.10 mL / g or more, and the upper limit of the pore diameter is not limited, but is usually in the range of 3 to 50 nm. Moreover, although it does not specifically limit about the range of pore volume, Usually, it is 0.10-0.5 mL / g, Preferably it is 0.15-0.5 mL / g.
本発明において負極は、上記の炭素材料やPAS等の負極活物質粉末から負極集電体上に形成されるが、その方法は特定されず既知の方法が使用できる。具体的には、負極活物質粉末、バインダー及び必要に応じて導電性粉末を水系又は有機溶媒中に分散させてスラリーとし、該スラリーを前記集電体に塗布するか、又は上記スラリーを予めシート状に成形し、これを集電体に貼り付けることによって形成できる。ここで使用されるバインダーとしては、例えばSBR等のゴム系バインダーやポリ四フッ化エチレン、ポリフッ化ビニリデン等の合フッ素系樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂を用いることができる。中でもフッ素系バインダーが好ましく、特にフッ素原子/炭素原子の原子比(以下、F/Cとする)が0.75以上、1.5未満であるフッ素系バインダーを用いることが好ましく、0.75以上、1.3未満のフッ素系バインダーが更に好ましい。バインダーの使用量は、負極活物質の種類や電極形状等により異なるが、負極活物質に対して1〜20重量%、好ましくは2〜10重量%である。 In the present invention, the negative electrode is formed on the negative electrode current collector from the above-mentioned carbon material or negative electrode active material powder such as PAS, but the method is not specified and a known method can be used. Specifically, the negative electrode active material powder, the binder and, if necessary, the conductive powder are dispersed in an aqueous or organic solvent to form a slurry, and the slurry is applied to the current collector, or the slurry is preliminarily sheeted. It can form by shape | molding in a shape and sticking this on a collector. As the binder used here, for example, a rubber-based binder such as SBR, a synthetic fluorine-based resin such as polytetrafluoroethylene or polyvinylidene fluoride, or a thermoplastic resin such as polypropylene or polyethylene can be used. Among them, a fluorine-based binder is preferable, and it is particularly preferable to use a fluorine-based binder having a fluorine atom / carbon atom ratio (hereinafter referred to as F / C) of 0.75 or more and less than 1.5. More preferred is a fluorine-based binder of less than 1.3. Although the usage-amount of a binder changes with kinds, electrode shape, etc. of a negative electrode active material, it is 1-20 weight% with respect to a negative electrode active material, Preferably it is 2-10 weight%.
また、必要に応じて使用される導電性材料としては、アセチレンブラック、グラファイト、金属粉末等が挙げられる。導電性材料の使用量は負極活物質の電気伝導度、電極形状等により異なるが、負極活物質に対して2〜40重量%の割合で加えるのが適当である。
なお、負極活物質の厚さは、セルのエネルギー密度を確保できるように正極活物質との厚さのバランスで設計されるが、セルの出力密度とエネルギー密度、工業的生産性等を考慮すると、集電体の片面で通常、15〜100μm、好ましくは20〜80μmである。
Moreover, as an electroconductive material used as needed, acetylene black, a graphite, a metal powder, etc. are mentioned. The amount of the conductive material used varies depending on the electrical conductivity of the negative electrode active material, the electrode shape, etc., but it is appropriate to add it in a proportion of 2 to 40% by weight with respect to the negative electrode active material.
In addition, the thickness of the negative electrode active material is designed with a balance of the thickness with the positive electrode active material so that the energy density of the cell can be secured, but considering the output density and energy density of the cell, industrial productivity, etc. The thickness of one side of the current collector is usually 15 to 100 μm, preferably 20 to 80 μm.
本発明のLICにおいて、正極は、リチウムイオン及び/又は、例えばテトラフルオロボレートのようなアニオンを可逆的に担持できる正極活物質を含有する。 In the LIC of the present invention, the positive electrode contains a positive electrode active material capable of reversibly supporting lithium ions and / or anions such as tetrafluoroborate.
上記正極活物質としては、リチウムイオン及び/又はアニオンを可逆的に担持できるものであれば特には限定されず、例えば活性炭、導電性高分子、芳香族系縮合ポリマーの熱処理物であってH/Cが0.05〜0.50であるポリアセン系骨格構造を有するポリアセン系有機半導体(PAS)等を挙げることができる。 The positive electrode active material is not particularly limited as long as it can reversibly carry lithium ions and / or anions. For example, the positive electrode active material is a heat-treated product of activated carbon, conductive polymer, aromatic condensation polymer, and H / Examples thereof include a polyacene organic semiconductor (PAS) having a polyacene skeleton structure in which C is 0.05 to 0.50.
なお、上記正極活物質を用いて正極集電体に正極を形成する方法は、前記した負極の場合と実質的に同じであるので、詳細な説明は省略する。 The method for forming the positive electrode on the positive electrode current collector using the positive electrode active material is substantially the same as in the case of the negative electrode described above, and a detailed description thereof will be omitted.
また、本発明のLICでは、負極活物質の単位重量当たりの静電容量が正極活物質の単位重量当たりの静電容量の3倍以上を有し、かつ正極活物質重量が負極活物質重量よりも大きいのが好ましい。使用する正極の静電容量を考慮して負極へのリチウムイオンの充填量(プレドープ量)を適切に制御することにより、正極単位重量当たり静電容量の3倍以上の静電容量を確保し、かつ正極活物質重量が負極活物質重量よりも重くすることができる。これにより、従来の電気二重層キャパシタよりも高電圧かつ高容量のキャパシタが得られる。さらに、正極の単位重量当たりの静電容量よりも大きい単位重量当たりの静電容量を持つ負極を用いる場合には、負極の電位変化量を変えずに負極活物質重量を減らすことが可能となるため、正極活物質の充填量が多くなりセルの静電容量及び容量を大きくできる。正極活物質重量は負極活物質重量に対して大きいことが好ましいが、1.1倍〜10倍であることが更に好ましい。1.1倍未満であれば容量差が小さくなり、10倍を超えると逆に容量が小さくなる場合もあり、また正極と負極の厚み差が大きくなり過ぎるのでセル構成上好ましくない。 Further, in the LIC of the present invention, the capacitance per unit weight of the negative electrode active material has more than three times the capacitance per unit weight of the positive electrode active material, and the positive electrode active material weight is more than the negative electrode active material weight. Is also preferably large. In consideration of the capacitance of the positive electrode to be used, by appropriately controlling the filling amount (pre-doping amount) of lithium ions into the negative electrode, a capacitance more than three times the capacitance per unit weight of the positive electrode is secured, In addition, the weight of the positive electrode active material can be heavier than the weight of the negative electrode active material. Thereby, a capacitor having a higher voltage and a higher capacity than the conventional electric double layer capacitor can be obtained. Furthermore, when a negative electrode having a capacitance per unit weight larger than the capacitance per unit weight of the positive electrode is used, the negative electrode active material weight can be reduced without changing the potential change amount of the negative electrode. Therefore, the filling amount of the positive electrode active material is increased, and the capacitance and capacity of the cell can be increased. The weight of the positive electrode active material is preferably larger than the weight of the negative electrode active material, but more preferably 1.1 times to 10 times. If it is less than 1.1 times, the capacity difference becomes small, and if it exceeds 10 times, the capacity may be reduced, and the thickness difference between the positive electrode and the negative electrode becomes too large, which is not preferable in terms of the cell structure.
本発明の電解質としては、リチウムイオンを移送可能な電解質を用いる。このような電解質は、通常液状であってセパレータに含浸できるものが好ましい。この電解質の溶媒としては、非プロトン性有機溶媒電解質溶液を形成できる非プロトン性有機溶媒が好ましく使用できる。この非プロトン性有機溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γーブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、スルホラン等が挙げられる。更に、これら非プロトン性有機溶媒の二種以上を混合した混合液を用いることもできる。 As the electrolyte of the present invention, an electrolyte capable of transporting lithium ions is used. Such an electrolyte is preferably a liquid that can be impregnated in a separator. As the electrolyte solvent, an aprotic organic solvent capable of forming an aprotic organic solvent electrolyte solution can be preferably used. Examples of the aprotic organic solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride, sulfolane and the like. Furthermore, a mixed solution in which two or more of these aprotic organic solvents are mixed can also be used.
また、かかる溶媒に溶解させる電解質としては、リチウムイオンを移送可能で高電圧でも電気分解を起こさず、リチウムイオンが安定に存在できるものであれば使用できる。このような電解質としては、例えばLiClO4、LiAsF6、LiBF4、LiPF6、Li(C2F5SO2)2N等のリチウム塩を好適に用いることができる。 As an electrolyte to be dissolved in such a solvent, any electrolyte can be used as long as it can transfer lithium ions, does not cause electrolysis even at a high voltage, and can stably exist. As such an electrolyte, lithium salts such as LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6, and Li (C 2 F 5 SO 2 ) 2 N can be preferably used.
上記の電解質及び溶媒は、充分に脱水された状態で混合して電解液とするが、電解液中の電解質の濃度は、電解液による内部抵抗を小さくするため少なくとも0.1モル/L以上とすることが好ましく、0.5〜1.5モル/Lの範囲内とすることが更に好ましい。 The electrolyte and solvent are mixed in a sufficiently dehydrated state to obtain an electrolytic solution. The concentration of the electrolyte in the electrolytic solution is at least 0.1 mol / L or more in order to reduce the internal resistance due to the electrolytic solution. It is preferable to make it within a range of 0.5 to 1.5 mol / L.
また、セパレータとしては、電解液あるいは電極活物質等に対して耐久性のある連通気孔を有する電気伝導性のない多孔体等を用いることができる。このセパレータの材質としては、セルロース(紙)、ポリエチレン、ポリプロピレン、などが挙げられ、既知のものが使用できる。これらの中でセルロース(紙)が耐久性と経済性の点で優れている。セパレータの厚さは限定されないが、通常は20〜50μm程度が好ましい。 Further, as the separator, a non-electrically conductive porous body having continuous vent holes that are durable against an electrolytic solution or an electrode active material can be used. Examples of the material of the separator include cellulose (paper), polyethylene, and polypropylene, and known materials can be used. Among these, cellulose (paper) is excellent in terms of durability and economy. Although the thickness of a separator is not limited, Usually, about 20-50 micrometers is preferable.
本発明において、リチウム金属は、導電性多孔体からなるリチウム極集電体上に形成することが好ましい。ここで、リチウム極集電体となる導電性多孔体としては、ステンレスメッシュ等のリチウムイオン供給源と反応しない金属多孔体を用いることが好ましい。例えばリチウムイオン供給源としてリチウム金属を用い、リチウム極集電体としてステンレスメッシュ等の導電性多孔体を用いる場合、リチウム金属の少なくとも一部、好ましくは80重量%以上がリチウム極集電体の気孔部に埋め込まれていることが好ましい。これにより、リチウムイオンが負極に担持された後も、リチウム金属の消失によって電極間に生じる隙間が少なくなり、LICの信頼性をより確実に保持できる。 In the present invention, the lithium metal is preferably formed on a lithium electrode current collector made of a conductive porous body. Here, it is preferable to use a porous metal body that does not react with a lithium ion supply source, such as a stainless mesh, as the conductive porous body serving as the lithium electrode current collector. For example, when lithium metal is used as the lithium ion supply source and a conductive porous material such as stainless steel mesh is used as the lithium electrode current collector, at least a portion of the lithium metal, preferably 80% by weight or more, is a pore of the lithium electrode current collector. It is preferably embedded in the part. Thereby, even after lithium ions are supported on the negative electrode, gaps generated between the electrodes due to the disappearance of the lithium metal are reduced, and the reliability of the LIC can be more reliably maintained.
リチウム極集電体に圧着するリチウム金属の厚さとしては、負極に予め担持するリチウムイオン量を考慮して適宜決められるため限定されないが、通常は50〜300μm程度が好ましい。 The thickness of the lithium metal to be pressure-bonded to the lithium electrode current collector is not limited because it can be appropriately determined in consideration of the amount of lithium ions supported in advance on the negative electrode, but is usually preferably about 50 to 300 μm.
本発明の捲回型キャパシタにおいて外装容器の材質は特に限定されず、一般に電池又はキャパシタに用いられている種々の材質を用いることができ、例えば鉄、アルミニウム等の金属材料、プラスチック材料、あるいはそれらを積層した複合材料等を使用できる。また、外装容器の形状も特に限定されず、前記したように円筒型や角型など、用途に応じて適宜選択することができるが、円柱状の電極捲回ユニットは円筒型、扁平状の電極捲回ユニットは角型が好ましい。LICの小型化、軽量化の観点からは、アルミニウムとナイロン、ポリプロピレンなどの高分子材料とのラミネートフィルムを用いたフィルム型の外装容器も使用することができる。 In the wound capacitor of the present invention, the material of the outer container is not particularly limited, and various materials generally used for batteries or capacitors can be used. For example, metal materials such as iron and aluminum, plastic materials, or those materials The composite material etc. which laminated | stacked can be used. Further, the shape of the outer container is not particularly limited, and can be appropriately selected depending on the application, such as a cylindrical shape or a rectangular shape as described above, but the columnar electrode winding unit is a cylindrical, flat electrode. The winding unit is preferably square. From the viewpoint of reducing the size and weight of the LIC, a film-type exterior container using a laminate film of aluminum and a polymer material such as nylon or polypropylene can also be used.
以下、本発明のLICの製造方法の一例を示す。LICの電極集電体の貫通孔は、導電性材料で塞がれても塞がれなくてもよいが、本例では塞ぐ場合について説明する。電極集電体の貫通孔は、例えばカーボン系の導電性材料を用いて、スプレー法などの公知の手法によって塞ぐことができる。 Hereafter, an example of the manufacturing method of LIC of this invention is shown. The through hole of the electrode collector of the LIC may or may not be blocked with a conductive material, but in this example, the case of blocking will be described. The through hole of the electrode current collector can be closed by a known method such as a spray method using, for example, a carbon-based conductive material.
次に、貫通孔を導電性材料で塞がれた電極集電体の片面に、正極、負極を形成する。正極は正極活物質をバインダー樹脂と混合してスラリーとし、正極集電体上にコーティングして乾燥させることにより電極層を形成する。負極も同様に、負極活物質をバインダー樹脂と混合してスラリーとし、負極集電体上にコーティングして乾燥させることにより形成する。 Next, a positive electrode and a negative electrode are formed on one surface of the electrode current collector in which the through hole is closed with a conductive material. In the positive electrode, a positive electrode active material is mixed with a binder resin to form a slurry, which is coated on a positive electrode current collector and dried to form an electrode layer. Similarly, the negative electrode is formed by mixing a negative electrode active material with a binder resin to form a slurry, coating the negative electrode current collector, and drying.
リチウムイオン供給源は、リチウム金属を導電性多孔体からなるリチウム極集電体上に圧着することにより形成する。リチウム極集電体の厚さは10〜200μm程度、リチウム金属の厚さは使用する負極活物質量にもよるが、一般的には50〜300μm程度である。 The lithium ion supply source is formed by pressure bonding lithium metal on a lithium electrode current collector made of a conductive porous body. The thickness of the lithium current collector is about 10 to 200 μm, and the thickness of the lithium metal is generally about 50 to 300 μm, although it depends on the amount of the negative electrode active material used.
各電極は乾燥させた後に所定のサイズにカットし、カットされた電極の電極層が形成されていない集電体面に電極端子を例えばステッチングで接続する。 Each electrode is dried and then cut into a predetermined size, and an electrode terminal is connected by stitching, for example, to the current collector surface where the electrode layer of the cut electrode is not formed.
ついで、電極を形成した電極集電体を、正極と負極とを対向させて互いが直接接触しないようにセパレータを挟み込みながら捲回して円柱状の電極捲回ユニットを組み立てる。このとき電極捲回ユニットの最外周に負極集電体が電極層の形成されていない集電体面を外側になるように位置しており、該電極捲回ユニットの外側にリチウム金属を前記負極集電体に接触させて配置し、その外側をテープで止める。正極、負極の電極端子は電極捲回ユニットの両端に取り出し、前記リチウム金属のリチウム極集電体に設けた端子を負極の電極端子に接続する。 Next, the electrode current collector on which the electrode is formed is wound while sandwiching the separator so that the positive electrode and the negative electrode are opposed to each other, and a cylindrical electrode winding unit is assembled. At this time, the negative electrode current collector is positioned on the outermost periphery of the electrode winding unit so that the current collector surface on which no electrode layer is formed is on the outside, and lithium metal is placed on the outer side of the electrode winding unit. Place it in contact with the electrical body and tape the outside. The electrode terminals of the positive electrode and the negative electrode are taken out at both ends of the electrode winding unit, and the terminals provided on the lithium metal lithium electrode current collector are connected to the electrode terminals of the negative electrode.
ついで、テープで固定した電極捲回ユニットを外装容器の内部へ挿入し、電解液を注入する。その後、ゴム製のガスケットから電極端子を外部へ出した後、該ガスケットにて外装容器を密閉し、かしめることにより、本発明の捲回型(円筒型)リチウムイオンキャパシタが得られる。 Next, the electrode winding unit fixed with tape is inserted into the outer container, and the electrolytic solution is injected. Thereafter, the electrode terminal is taken out from the rubber gasket, and then the outer container is sealed and caulked with the gasket, whereby the wound type (cylindrical) lithium ion capacitor of the present invention is obtained.
電解液を注入すると、すべての負極とリチウム金属が電気化学的に接触し、リチウム金属から電解液中に溶出したリチウムイオンは時間の経過とともに負極に移動し、所定量のリチウムイオンが負極に担持される。負極へのリチウムイオンの担持の際、負極へのリチウムイオンの浸入によりひずみが生じてもテープで固定しているので、負極の変形を防止できる。 When the electrolyte is injected, all the negative electrode and lithium metal are in electrochemical contact, and the lithium ions eluted from the lithium metal into the electrolyte move to the negative electrode over time, and a predetermined amount of lithium ion is carried on the negative electrode. Is done. When lithium ions are supported on the negative electrode, even if distortion occurs due to the penetration of lithium ions into the negative electrode, the negative electrode can be prevented from being deformed because it is fixed with tape.
かくして、本発明の好ましい実施形態のLICは、正極にはリチウムイオン及び/又はアニオンを可逆的に担持可能な活物質を用いており、そして電解質にはリチウム塩の非プロトン性有機溶媒溶液を用い、負極としては正極活物質の単位重量当たりの静電容量の3倍以上の静電容量を有し、かつ正極活物質重量が負極活物質重量よりも大きく、負極にリチウムを予め担持させるリチウム金属がセルに設けられ、充電前の負極に予めリチウムイオンをドーピングできる。 Thus, the LIC of a preferred embodiment of the present invention uses an active material capable of reversibly supporting lithium ions and / or anions for the positive electrode, and uses an aprotic organic solvent solution of lithium salt for the electrolyte. The negative electrode is a lithium metal having a capacitance more than three times the capacitance per unit weight of the positive electrode active material, the positive electrode active material weight is larger than the negative electrode active material weight, and the lithium is previously supported on the negative electrode Is provided in the cell, and the negative electrode before charging can be previously doped with lithium ions.
また、正極の単位重量当たりの静電容量に対して大きな単位重量当たりの静電容量を持つ負極を用いたことにより、負極の電位変化量を変えずに負極活物質重量を減らすことが可能となるため、正極活物質の充填量が多くなりセルの静電容量及び容量が大きくなる。また、負極の静電容量が大きいために負極の電位変化量が小さくなり、結果的に正極の電位変化量が大きくなりセルの静電容量及び容量が大きくなる。 In addition, by using a negative electrode having a capacitance per unit weight that is larger than the capacitance per unit weight of the positive electrode, the weight of the negative electrode active material can be reduced without changing the potential change amount of the negative electrode. Therefore, the filling amount of the positive electrode active material is increased, and the capacitance and capacity of the cell are increased. In addition, since the negative electrode has a large capacitance, the potential change amount of the negative electrode is reduced, and as a result, the potential change amount of the positive electrode is increased, and the capacitance and capacitance of the cell are increased.
さらに、従来の電気二重層キャパシタでは放電時に正極電位は約3Vまでしか電位が下がらないが、本発明のリチウムイオンキャパシタでは負極電位が低いことにより正極電位が3V以下まで低下できるので、従来の電気二重層キャパシタの構成より高容量になる。 Further, in the conventional electric double layer capacitor, the potential of the positive electrode drops only to about 3V at the time of discharge, but in the lithium ion capacitor of the present invention, the negative electrode potential is low, so that the positive electrode potential can be lowered to 3V or less. The capacity is higher than that of the double layer capacitor.
さらにまた、負極容量として必要な容量を得るために所定量のリチウムイオンを予め負極に担持させることにより、通常のキャパシタの使用電圧が2.3〜2.7V程度であるのに対し、3V以上に高く設定でき、エネルギー密度が向上する。
以下具体的な実施例により詳細を説明する。
Furthermore, in order to obtain a required capacity as a negative electrode capacity, a predetermined amount of lithium ions is supported on the negative electrode in advance, so that the operating voltage of a normal capacitor is about 2.3 to 2.7 V, whereas 3 V or more The energy density is improved.
Details will be described below with reference to specific examples.
(実施例1)
(負極1の製造法)
厚さ0.5mmのフェノール樹脂成形板をシリコニット電気炉中に入れ、窒素雰囲気下で500℃まで50℃/時間の速度で、更に10℃/時間の速度で660℃まで昇温し、熱処理し、PASを合成した。かくして得られたPAS板をディスクミルで粉砕することにより、PAS粉体を得た。このPAS粉体のH/C比は0.21であった。
Example 1
(Production method of negative electrode 1)
A 0.5 mm thick phenolic resin molded plate is placed in a siliconite electric furnace, heated to 500 ° C. at a rate of 50 ° C./hour, and further at a rate of 10 ° C./hour to 660 ° C. in a nitrogen atmosphere, followed by heat treatment. PAS was synthesized. The PAS plate thus obtained was pulverized with a disk mill to obtain a PAS powder. The H / C ratio of this PAS powder was 0.21.
次に、上記PAS粉体100重量部と、ポリフッ化ビニリデン粉末10重量部をN−メチルピロリドン80重量部に溶解した溶液とを充分に混合することによりスラリーを得た。該スラリーを厚さ18μmの銅箔の片面に固形分にして約7mg/cm2程度になるよう塗工し、乾燥、プレス後PAS負極1を得た。
Next, 100 parts by weight of the PAS powder and a solution prepared by dissolving 10 parts by weight of polyvinylidene fluoride powder in 80 parts by weight of N-methylpyrrolidone were sufficiently mixed to obtain a slurry. The slurry was applied on one side of a 18 μm thick copper foil to a solid content of about 7 mg / cm 2 , dried and pressed to obtain a PAS
(正極1の製造法)
市販の比表面積が1950m2/g活性炭粉末100重量部とポリフッ化ビニリデン粉末10重量部をN−メチルピロリドン100重量部に溶解した溶液とを充分に混合することによりスラリーを得た。該スラリーをカーボン系導電塗料をコーティングした厚さ20μmのアルミニウム箔の片面に固形分にして約7mg/cm2程度になるよう塗工し、乾燥、プレス後正極1を得た。
(Method for producing positive electrode 1)
A slurry was obtained by thoroughly mixing 100 parts by weight of a commercially available specific surface area of 1950 m 2 / g activated carbon powder and 10 parts by weight of polyvinylidene fluoride powder in 100 parts by weight of N-methylpyrrolidone. The slurry was applied on one side of an aluminum foil having a thickness of 20 μm coated with a carbon-based conductive paint to a solid content of about 7 mg / cm 2 , dried and pressed to obtain a
(正極1の単位重量当たりの静電容量測定)
上記正極を1.5×2.0cm2サイズに切り出し、評価用正極とした。正極と対極として1.5×2.0cm2サイズ、厚さ200μmの金属リチウムを用いて、厚さ50μmのポリエチレン製不織布をセパレータとして介し模擬セルを組んだ。参照極として金属リチウムを用いた。電解液としては、プロピレンカーボネートに、1モル/lの濃度にLiPF6を溶解した溶液を用いた。
(Capacitance measurement per unit weight of positive electrode 1)
The positive electrode was cut into a size of 1.5 × 2.0 cm 2 and used as a positive electrode for evaluation. Using a lithium metal of 1.5 × 2.0 cm 2 size and a thickness of 200 μm as a positive electrode and a counter electrode, a simulated cell was assembled through a non-woven fabric made of polyethylene having a thickness of 50 μm as a separator. Metallic lithium was used as a reference electrode. As the electrolytic solution, a solution obtained by dissolving LiPF 6 in propylene carbonate at a concentration of 1 mol / l was used.
充電電流1mAにて3.6Vまで充電しその後定電圧充電を行い、総充電時間1時間の後、1mAにて2.5Vまで放電を行った。3.5V〜2.5V間の放電時間より正極1の単位重量当たりの静電容量を求めたところ92F/gであった。
The battery was charged to 3.6 V at a charging current of 1 mA and then charged at a constant voltage. After a total charging time of 1 hour, the battery was discharged to 2.5 V at 1 mA. The capacitance per unit weight of the
(負極1の単位重量当たりの静電容量測定)
上記負極を1.5×2.0cm2サイズに4枚切り出し、評価用負極とした。負極と対極として1.5×2.0cm2サイズ、厚み200μmの金属リチウムを用いて、厚さ50μmのポリエチレン製不織布をセパレータとして介し模擬セルを組んだ。参照極として金属リチウムを用いた。電解液としては、プロピレンカーボネートに、1モル/lの濃度にLiPF6を溶解した溶液を用いた。
(Capacitance measurement per unit weight of negative electrode 1)
Four negative electrodes were cut into 1.5 × 2.0 cm 2 sizes, and used as negative electrodes for evaluation. Using a lithium metal of 1.5 × 2.0 cm 2 size and a thickness of 200 μm as a negative electrode and a counter electrode, a simulated cell was assembled through a non-woven fabric made of polyethylene having a thickness of 50 μm as a separator. Metallic lithium was used as a reference electrode. As the electrolytic solution, a solution obtained by dissolving LiPF 6 in propylene carbonate at a concentration of 1 mol / l was used.
充電電流1mAにて負極活物質重量に対して280mAh/g、350mAh/g、400mAh/g、500mAh/g分のリチウムイオンを充電し、その後1mAにて1.5Vまで放電を行った。放電開始後1分後の負極の電位から0.2V電位変化する間の放電時間より負極1の単位重量当たりの静電容量を求めた。結果を表1に示す。
Lithium ions for 280 mAh / g, 350 mAh / g, 400 mAh / g, and 500 mAh / g were charged with respect to the weight of the negative electrode active material at a charging current of 1 mA, and then discharged to 1.5 V at 1 mA. The electrostatic capacity per unit weight of the
ここでの充電量は負極に流れた充電電流の積算値を負極活物質重量にて割った値であり、単位はmAh/g。 The amount of charge here is a value obtained by dividing the integrated value of the charging current flowing through the negative electrode by the weight of the negative electrode active material, and the unit is mAh / g.
(負極2の製造法)
厚さ32μm(気孔率50%)の銅製エキスパンドメタル(日本金属工業株式会社製)の片面に上記負極1のスラリーをダイコーターにて成形し、プレス後負極全体の厚さ(片面の負極電極層厚さと負極集電体厚さの合計)が82μmの負極2を得た。
(Production method of negative electrode 2)
The slurry of the
(正極2の製造法)
厚さ35μm(気孔率50%)のアルミニウム製エキスパンドメタル(日本金属工業株式会社製)の片面に非水系のカーボン系導電塗料(日本アチソン株式会社製:EB−815)をスプレー方式にてコーティングし、乾燥することにより導電層が形成された正極用集電体を得た。全体の厚み(集電体厚みと導電層厚みの合計)は45μmであり貫通孔はほぼ導電塗料により閉塞された。上記正極1のスラリーをロールコーターにて該正極集電体の導電塗料が形成された面に成形し、プレス後正極全体の厚さ(片面の正極電極層厚さと片面の導電層厚さと正極集電体厚さの合計)が175μmの正極2を得た。
(Method for producing positive electrode 2)
A non-aqueous carbon-based conductive paint (Nippon Acheson Co., Ltd .: EB-815) is coated on one side of an aluminum expanded metal (manufactured by Nippon Metal Industry Co., Ltd.) with a thickness of 35 μm (porosity 50%) by a spray method. The positive electrode current collector on which the conductive layer was formed was obtained by drying. The total thickness (the sum of the current collector thickness and the conductive layer thickness) was 45 μm, and the through holes were almost blocked by the conductive paint. The
(電極捲回ユニット1の作製)
厚さ82μmの負極2を幅3.0×長さ58.0cm2にカットし、銅製の端子を負極電極層が形成されていない負極集電体上に配置し、ステッチングにより端子を負極集電体に接続した。また、厚さ175μmの正極2を幅3.0×長さ56.0cm2にカットし、アルミニウム製の端子を正極電極層が形成されていない正極集電体上に配置し、ステッチングにより端子を正極集電体に接続した。セパレータとして厚さ35μmのセルロース/レーヨン混合不織布を用いて、正極、負極の各端子が同じ方向になるよう、また最外周がセパレータとなるよう捲回しテープ止めして電極捲回ユニット1を3本作製した。
(Production of electrode winding unit 1)
The
(セル1の作製)
リチウム極として、リチウム金属箔(128μm、3.0×4.0cm2、400mAh/g相当)をリチウム極集電体としての厚さ32μm(気孔率50%)の銅製エキスパンドメタルに圧着したものを用い、該リチウム極を電極捲回ユニット1の巻き止めテープに重ならないように、かつリチウム極のリチウム金属面が内側になるよう最外周に配置させ、リチウム極集電体の端子溶接部を負極端子溶接部に抵抗溶接し、三極捲回ユニットを得た。
(Production of cell 1)
As a lithium electrode, a lithium metal foil (128 μm, 3.0 × 4.0 cm 2 , equivalent to 400 mAh / g) is bonded to a copper expanded metal having a thickness of 32 μm (porosity 50%) as a lithium electrode current collector. The lithium electrode is placed on the outermost circumference so that it does not overlap the winding tape of the
上記三極捲回ユニットを外径18mmΦ、高さ40mmのアルミニウム製外装缶の内部へ挿入し、電解液としてエチレンカーボネート、ジエチルカーボネートおよびプロピレンカーボネートを重量比で3:4:1とした混合溶媒に、1モル/lの濃度にLiPF6を溶解した溶液を真空含浸させた後、ブチルゴム製のキャップを被せて外装缶をかしめることにより円筒型のリチウムイオンキャパシタセル1を3セル組み立てた。尚、セル内に配置されたリチウム金属は負極活物質重量当たり400mAh/g相当である。
The triode winding unit is inserted into an aluminum outer can having an outer diameter of 18 mmΦ and a height of 40 mm, and a mixed solvent in which ethylene carbonate, diethyl carbonate, and propylene carbonate are used at a weight ratio of 3: 4: 1 as an electrolytic solution. Three impregnated lithium
(セルの初期評価)
セル組み立て後20日間放置後に1セル分解したところ、リチウム金属はいずれも完全に無くなっていたことから、負極活物質の単位重量当たりに660F/g以上の静電容量を得るためのリチウムイオンが予備充電されたと判断した。負極の静電容量は正極の静電容量の7.2倍となる。
(Initial evaluation of the cell)
When one cell was disassembled after being left for 20 days after cell assembly, all the lithium metal was completely lost. Therefore, lithium ions for obtaining a capacitance of 660 F / g or more per unit weight of the negative electrode active material were preliminarily used. Judged that it was charged. The capacitance of the negative electrode is 7.2 times that of the positive electrode.
(セルの特性評価)
400mAの定電流でセル電圧が3.6Vになるまで充電し、その後3.6Vの定電圧を印加する定電流−定電圧充電を1時間行った。次いで、40mAの定電流でセル電圧が1.9Vになるまで放電した。この3.6V−1.9Vのサイクルを繰り返し、10回目の放電におけるセル容量及びエネルギー密度、内部抵抗を評価した。結果を表2に示す。ただし、データは2セルの平均である。
(Characteristic evaluation of cells)
The battery was charged at a constant current of 400 mA until the cell voltage reached 3.6 V, and then a constant current-constant voltage charge in which a constant voltage of 3.6 V was applied was performed for 1 hour. Next, the battery was discharged at a constant current of 40 mA until the cell voltage reached 1.9V. This cycle of 3.6V-1.9V was repeated, and the cell capacity, energy density, and internal resistance in the 10th discharge were evaluated. The results are shown in Table 2. However, the data is an average of two cells.
上記測定終了後に1セルの正極と負極を短絡させ正極の電位を測定したところ、0.95V程度であり、2.0V以下であった。正極と負極を短絡させた時の正極電位が2.0V以下になるよう負極および/または正極に予めリチウムイオンを担持させることにより、高いエネルギー密度を有したキャパシタが得られた。また、表裏面に貫通孔を有する集電体の片面に電極層を連続的に形成することは、極めて簡便な工程であり、安価なリチウムイオンキャパシタが提供できるため好ましい。 When the positive electrode and negative electrode of one cell were short-circuited after the measurement was completed, and the potential of the positive electrode was measured, it was about 0.95 V, and was 2.0 V or less. A capacitor having a high energy density was obtained by previously supporting lithium ions on the negative electrode and / or the positive electrode so that the positive electrode potential when the positive electrode and the negative electrode were short-circuited was 2.0 V or less. In addition, it is preferable to continuously form an electrode layer on one side of a current collector having through holes on the front and back surfaces because this is an extremely simple process and an inexpensive lithium ion capacitor can be provided.
(比較例1)
(負極3の製造法)
厚さ32μm(気孔率50%)の銅製エキスパンドメタル(日本金属工業株式会社製)の両面に上記負極1のスラリーをダイコーターにて成形し、プレス後負極全体の厚さ(両面の負極電極層厚さと負極集電体厚さの合計)が148μmの負極3を得た。
(Comparative Example 1)
(Method for producing negative electrode 3)
The slurry of the
(正極3の製造法)
厚さ35μm(気孔率50%)のアルミニウム製エキスパンドメタル(日本金属工業株式会社製)の両面に非水系のカーボン系導電塗料(日本アチソン株式会社製:EB−815)をスプレー方式にてコーティングし、乾燥することにより導電層が形成された正極用集電体を得た。全体の厚み(集電体厚みと導電層厚みの合計)は52μmであり貫通孔はほぼ導電塗料により閉塞された。上記正極1のスラリーをロールコーターにて該正極集電体の両面に成形し、プレス後正極全体の厚さ(両面の正極電極層厚さと両面の導電層厚さと正極集電体厚さの合計)が312μmの正極3を得た。
(Production method of positive electrode 3)
Non-aqueous carbon conductive paint (Nippon Acheson Co., Ltd .: EB-815) is coated on both sides of an aluminum expanded metal (manufactured by Nippon Metal Industry Co., Ltd.) with a thickness of 35 μm (porosity 50%) by a spray method. The positive electrode current collector on which the conductive layer was formed was obtained by drying. The total thickness (the sum of the current collector thickness and the conductive layer thickness) was 52 μm, and the through-hole was almost blocked by the conductive paint. The
(電極捲回ユニット2の作製)
厚さ148μmの負極3を幅3.0×長さ36.0cm2にカットし、銅製の端子を負極電極層上に配置し、ステッチングにより端子を負極に接続した。また、厚さ312μmの正極3を幅3.0×長さ34.0cm2にカットし、アルミニウム製の端子を正極電極層上に配置し、ステッチングにより端子を正極に接続した。セパレータとして厚さ35μmのセルロース/レーヨン混合不織布を用いて、正極、負極の各端子が同じ方向になるよう捲回し、最外周をテープ止めして電極捲回ユニット2を3本作製した。
(Preparation of electrode winding unit 2)
A
(セル2の作製)
リチウム極として、リチウム金属箔(159μm、3.0×4.0cm2、400mAh/g相当)をリチウム極集電体としての厚さ32μm(気孔率50%)の銅製エキスパンドメタルに圧着したものを用い、該リチウム極を電極捲回ユニット2の巻き止めテープに重ならないように、かつリチウム極のリチウム金属面が内側になるよう最外周に配置させ、リチウム極集電体の端子溶接部を負極端子溶接部に抵抗溶接し、三極捲回ユニットを得た。
(Production of cell 2)
As a lithium electrode, a lithium metal foil (159 μm, 3.0 × 4.0 cm 2 , equivalent to 400 mAh / g) is bonded to a copper expanded metal having a thickness of 32 μm (porosity 50%) as a lithium electrode current collector. The lithium electrode is placed on the outermost periphery so that it does not overlap the winding tape of the
上記三極捲回ユニットを外径18mmΦ、高さ40mmのアルミニウム製外装缶の内部へ挿入し、電解液としてエチレンカーボネート、ジエチルカーボネートおよびプロピレンカーボネートを重量比で3:4:1とした混合溶媒に、1モル/lの濃度にLiPF6を溶解した溶液を真空含浸させた後、ブチルゴム製のキャップを被せて外装缶をかしめることにより円筒型のリチウムイオンキャパシタセル2を3セル組み立てた。尚、セル内に配置されたリチウム金属は負極活物質重量当たり400mAh/g相当である。
The triode winding unit is inserted into an aluminum outer can having an outer diameter of 18 mmΦ and a height of 40 mm, and a mixed solvent in which ethylene carbonate, diethyl carbonate, and propylene carbonate are used at a weight ratio of 3: 4: 1 as an electrolytic solution. Three impregnated lithium
(セルの初期評価)
セル組み立て後20日間放置後に1セル分解したところ、リチウム金属はいずれも完全に無くなっていたことから、負極活物質の単位重量当たりに660F/g以上の静電容量を得るためのリチウムイオンが予備充電されたと判断した。負極の静電容量は正極の静電容量の7.2倍となる。
(Initial evaluation of the cell)
When one cell was disassembled after being left for 20 days after cell assembly, all the lithium metal was completely lost. Therefore, lithium ions for obtaining a capacitance of 660 F / g or more per unit weight of the negative electrode active material were preliminarily used. Judged that it was charged. The capacitance of the negative electrode is 7.2 times that of the positive electrode.
(セルの特性評価)
300mAの定電流でセル電圧が3.6Vになるまで充電し、その後3.6Vの定電圧を印加する定電流−定電圧充電を1時間行った。次いで、30mAの定電流でセル電圧が1.9Vになるまで放電した。この3.6V−1.9Vのサイクルを繰り返し、10回目の放電におけるセル容量及びエネルギー密度、内部抵抗を評価した。結果を表3に示す。ただし、データは2セルの平均である。
(Characteristic evaluation of cells)
The battery was charged at a constant current of 300 mA until the cell voltage reached 3.6 V, and then a constant current-constant voltage charge in which a constant voltage of 3.6 V was applied was performed for 1 hour. Next, the battery was discharged at a constant current of 30 mA until the cell voltage reached 1.9V. This cycle of 3.6V-1.9V was repeated, and the cell capacity, energy density, and internal resistance in the 10th discharge were evaluated. The results are shown in Table 3. However, the data is an average of two cells.
上記測定終了後に1セルの正極と負極を短絡させ正極の電位を測定したところ、0.95V程度であり、2.0V以下であった。正極と負極を短絡させた時の正極電位が2.0V以下になるよう負極および/または正極に予めリチウムイオンを担持させることにより、高いエネルギー密度を有したキャパシタが得られた。また、表裏面に貫通孔を有する集電体の両面に電極層を連続的に形成することは簡便な工程であり、安価なリチウムイオンキャパシタが提供できるため好ましいが、集電体上に形成された電極の上から端子を溶接してもセルの内部抵抗が大きくなり好ましくない。片面塗工され、電極層の形成されていない集電体上に端子を配置させ接続させることが内部抵抗を低減させる上で特に好ましい。 When the positive electrode and negative electrode of one cell were short-circuited after the measurement was completed, and the potential of the positive electrode was measured, it was about 0.95 V, and was 2.0 V or less. A capacitor having a high energy density was obtained by previously supporting lithium ions on the negative electrode and / or the positive electrode so that the positive electrode potential when the positive electrode and the negative electrode were short-circuited was 2.0 V or less. In addition, it is preferable to continuously form electrode layers on both sides of a current collector having through holes on the front and back surfaces because it is a simple process and an inexpensive lithium ion capacitor can be provided, but it is formed on the current collector. Even if the terminal is welded from above the electrode, the internal resistance of the cell increases, which is not preferable. In order to reduce internal resistance, it is particularly preferable to place and connect terminals on a current collector that is coated on one side and on which no electrode layer is formed.
(比較例2)
(負極4の製造法)
厚さ32μm(気孔率50%)の銅製エキスパンドメタル(日本金属工業株式会社製)の両面に上記負極1のスラリーをダイコーターにて間欠塗工し、塗工部長さ35.5cm、未塗工部10.0cmになるように負極をパターン成形し、プレス後負極全体の厚さ(両面の負極電極層厚さと負極集電体厚さの合計)が148μmの負極4を得た。
(Comparative Example 2)
(Method for producing negative electrode 4)
The slurry of the
(正極4の製造法)
厚さ35μm(気孔率50%)のアルミニウム製エキスパンドメタル(日本金属工業株式会社製)の両面に非水系のカーボン系導電塗料(日本アチソン株式会社製:EB−815)をダイコーターにて両面に間欠塗工し、塗工部長さ33.5cm、未塗工部10.0cmになるように導電層をパターン成形し、乾燥することにより正極用集電体を得た。全体の厚み(集電体厚みと導電層厚みの合計)は52μmであり塗工部の貫通孔はほぼ導電塗料により閉塞された。更に、上記正極1のスラリーをダイコーターにて両面の導電層上に間欠塗工し、塗工部長さ33.5cm、未塗工部10.0cmになるように正極層をパターン成形し、プレス後正極全体の厚さ(両面の正極電極層厚さと両面の導電層厚さと正極集電体厚さの合計)が312μmの正極4を得た。
(Method for producing positive electrode 4)
A non-aqueous carbon-based conductive paint (Nippon Acheson Co., Ltd .: EB-815) is applied to both sides of an aluminum expanded metal (manufactured by Nippon Metal Industry Co., Ltd.) having a thickness of 35 μm (porosity 50%) on both sides using a die coater. The positive electrode current collector was obtained by intermittently coating, patterning the conductive layer so that the coated part length was 33.5 cm, and the uncoated part was 10.0 cm, and drying. The total thickness (the total of the current collector thickness and the conductive layer thickness) was 52 μm, and the through-holes in the coating part were almost blocked by the conductive paint. Furthermore, the slurry of the
(電極捲回ユニット3の作製)
厚さ148μmの負極4を端部から10mmの位置に未塗工部を含むように幅3.0×長さ36.5cm2にカットし、銅製の端子を未塗工部集電体上に配置し、ステッチングにより端子を負極集電体に接続した。また、厚さ312μmの正極4を端部から10mmの位置に未塗工部を含むように幅3.0×長さ34.5cm2にカットし、アルミニウム製の端子を未塗工部集電体上に配置し、ステッチングにより端子を正極集電体に接続した。セパレータとして厚さ35μmのセルロース/レーヨン混合不織布を用いて、正極、負極の各端子が同じ方向になるよう捲回し、最外周をテープ止めして電極捲回ユニット3を3本作製した。
(Preparation of electrode winding unit 3)
The
(セル3の作製)
リチウム極として、リチウム金属箔(159μm、3.0×4.0cm2、400mAh/g相当)をリチウム極集電体としての厚さ32μm(気孔率50%)の銅製エキスパンドメタルに圧着したものを用い、該リチウム極を電極捲回ユニット3の巻き止めテープに重ならないように、かつリチウム極のリチウム金属面が内側になるよう最外周に配置させ、リチウム極集電体の端子溶接部を負極端子溶接部に抵抗溶接し、三極捲回ユニットを得た。
(Production of cell 3)
As a lithium electrode, a lithium metal foil (159 μm, 3.0 × 4.0 cm 2 , equivalent to 400 mAh / g) is bonded to a copper expanded metal having a thickness of 32 μm (porosity 50%) as a lithium electrode current collector. The lithium electrode is placed on the outermost circumference so that it does not overlap the winding tape of the
上記三極捲回ユニットを外径18mmΦ、高さ40mmのアルミニウム製外装缶の内部へ挿入し、電解液としてエチレンカーボネート、ジエチルカーボネートおよびプロピレンカーボネートを重量比で3:4:1とした混合溶媒に、1モル/lの濃度にLiPF6を溶解した溶液を真空含浸させた後、ブチルゴム製のキャップを被せて外装缶をかしめることにより円筒型のリチウムイオンキャパシタセル3を3セル組み立てた。尚、セル内に配置されたリチウム金属は負極活物質重量当たり400mAh/g相当である。
The triode winding unit is inserted into an aluminum outer can having an outer diameter of 18 mmΦ and a height of 40 mm, and a mixed solvent in which ethylene carbonate, diethyl carbonate, and propylene carbonate are used at a weight ratio of 3: 4: 1 as an electrolytic solution. Three cylindrical lithium
(セルの初期評価)
セル組み立て後20日間放置後に1セル分解したところ、リチウム金属はいずれも完全に無くなっていたことから、負極活物質の単位重量当たりに660F/g以上の静電容量を得るためのリチウムイオンが予備充電されたと判断した。負極の静電容量は正極の静電容量の7.2倍となる。
(Initial evaluation of the cell)
When one cell was disassembled after being left for 20 days after cell assembly, all the lithium metal was completely lost. Therefore, lithium ions for obtaining a capacitance of 660 F / g or more per unit weight of the negative electrode active material were preliminarily used. Judged that it was charged. The capacitance of the negative electrode is 7.2 times that of the positive electrode.
(セルの特性評価)
300mAの定電流でセル電圧が3.6Vになるまで充電し、その後3.6Vの定電圧を印加する定電流−定電圧充電を1時間行った。次いで、30mAの定電流でセル電圧が1.9Vになるまで放電した。この3.6V−1.9Vのサイクルを繰り返し、10回目の放電におけるセル容量及びエネルギー密度、内部抵抗を評価した。結果を表4に示す。ただし、データは2セルの平均である。
(Characteristic evaluation of cells)
The battery was charged at a constant current of 300 mA until the cell voltage reached 3.6 V, and then a constant current-constant voltage charge in which a constant voltage of 3.6 V was applied was performed for 1 hour. Next, the battery was discharged at a constant current of 30 mA until the cell voltage reached 1.9V. This cycle of 3.6V-1.9V was repeated, and the cell capacity, energy density, and internal resistance in the 10th discharge were evaluated. The results are shown in Table 4. However, the data is an average of two cells.
上記測定終了後に1セルの正極と負極を短絡させ正極の電位を測定したところ、0.95V程度であり、2.0V以下であった。正極と負極を短絡させた時の正極電位が2.0V以下になるよう負極および/または正極に予めリチウムイオンを担持させることにより、高いエネルギー密度を有したキャパシタが得られた。また、未塗工部の集電体上に端子を溶接したためセルの内部抵抗も小さくなった。しかしながら、表裏面に貫通孔を有した集電体に電極層を間欠塗工する工程は極めて困難であり、安価なリチウムイオンキャパシタを提供できない。 When the positive electrode and negative electrode of one cell were short-circuited after the measurement was completed, and the potential of the positive electrode was measured, it was about 0.95 V, and was 2.0 V or less. A capacitor having a high energy density was obtained by previously supporting lithium ions on the negative electrode and / or the positive electrode so that the positive electrode potential when the positive electrode and the negative electrode were short-circuited was 2.0 V or less. Moreover, since the terminal was welded onto the current collector in the uncoated part, the internal resistance of the cell was also reduced. However, the process of intermittently applying an electrode layer to a current collector having through holes on the front and back surfaces is extremely difficult, and an inexpensive lithium ion capacitor cannot be provided.
(実施例2)
(セル4の作製)
電極捲回ユニットの最外周が負極集電体となるよう捲回し、最外周の負極集電体に直接リチウム金属箔(128μm、3.0×4.0cm2、400mAh/g相当)を圧着し、テープ止めする以外は実施例1と同様にして円筒型のリチウムイオンキャパシタセル4を3セル組み立てた。尚、セル内に配置されたリチウム金属は負極活物質重量当たり400mAh/g相当である。
(Example 2)
(Production of cell 4)
The electrode winding unit is wound so that the outermost periphery becomes a negative electrode current collector, and a lithium metal foil (equivalent to 128 μm, 3.0 × 4.0 cm 2 , 400 mAh / g) is directly bonded to the outermost negative electrode current collector. Three cylindrical lithium
(セルの初期評価)
セル組み立て後20日間放置後に1セル分解したところ、リチウム金属はいずれも完全に無くなっていたことから、負極活物質の単位重量当たりに660F/g以上の静電容量を得るためのリチウムイオンが予備充電されたと判断した。負極の静電容量は正極の静電容量の7.2倍となる。
(Initial evaluation of the cell)
When one cell was disassembled after being left for 20 days after cell assembly, all the lithium metal was completely lost. Therefore, lithium ions for obtaining a capacitance of 660 F / g or more per unit weight of the negative electrode active material were preliminarily used. Judged that it was charged. The capacitance of the negative electrode is 7.2 times that of the positive electrode.
(セルの特性評価)
400mAの定電流でセル電圧が3.6Vになるまで充電し、その後3.6Vの定電圧を印加する定電流−定電圧充電を1時間行った。次いで、40mAの定電流でセル電圧が1.9Vになるまで放電した。この3.6V−1.9Vのサイクルを繰り返し、10回目の放電におけるセル容量及びエネルギー密度、内部抵抗を評価した。結果を表5に示す。ただし、データは2セルの平均である。
(Characteristic evaluation of cells)
The battery was charged at a constant current of 400 mA until the cell voltage reached 3.6 V, and then a constant current-constant voltage charge in which a constant voltage of 3.6 V was applied was performed for 1 hour. Next, the battery was discharged at a constant current of 40 mA until the cell voltage reached 1.9V. This cycle of 3.6V-1.9V was repeated, and the cell capacity, energy density, and internal resistance in the 10th discharge were evaluated. The results are shown in Table 5. However, the data is an average of two cells.
上記測定終了後に1セルの正極と負極を短絡させ正極の電位を測定したところ、0.95V程度であり、2.0V以下であった。正極と負極を短絡させた時の正極電位が2.0V以下になるよう負極および/または正極に予めリチウムイオンを担持させることにより、高いエネルギー密度を有したキャパシタが得られた。また、片面電極の場合は電極の長さを調整することにより最外周に負極の集電体が位置させることが可能であるため、リチウム金属のセル内への配置が簡便となり、より安価なリチウムイオンキャパシタが提供できるため好ましい。 When the positive electrode and negative electrode of one cell were short-circuited after the measurement was completed, and the potential of the positive electrode was measured, it was about 0.95 V, and was 2.0 V or less. A capacitor having a high energy density was obtained by previously supporting lithium ions on the negative electrode and / or the positive electrode so that the positive electrode potential when the positive electrode and the negative electrode were short-circuited was 2.0 V or less. Also, in the case of a single-sided electrode, the negative electrode current collector can be positioned on the outermost periphery by adjusting the length of the electrode. Since an ion capacitor can be provided, it is preferable.
(実施例3)
(セル5の作製)
電極捲回ユニットの最外周が負極集電体となるよう捲回し、予め、厚さ128μm、幅3.0×長さ4.0cm2のリチウム金属を貼り付けた、幅3.0×長さ6.0cm2の粘着テープにて最外周をテープ止めする以外は実施例1と同様にして円筒型のリチウムイオンキャパシタセル5を3セル組み立てた。尚、セル内に配置されたリチウム金属は負極活物質重量当たり400mAh/g相当である。
(Example 3)
(Production of cell 5)
The electrode winding unit was wound so that the outermost periphery was a negative electrode current collector, and a lithium metal having a thickness of 128 μm, a width of 3.0 × a length of 4.0 cm 2 was previously attached, and a width of 3.0 × length Three cylindrical lithium
(セルの初期評価)
セル組み立て後20日間放置後に1セル分解したところ、リチウム金属はいずれも完全に無くなっていたことから、負極活物質の単位重量当たりに660F/g以上の静電容量を得るためのリチウムイオンが予備充電されたと判断した。負極の静電容量は正極の静電容量の7.2倍となる。
(Initial evaluation of the cell)
When one cell was disassembled after being left for 20 days after cell assembly, all the lithium metal was completely lost. Therefore, lithium ions for obtaining a capacitance of 660 F / g or more per unit weight of the negative electrode active material were preliminarily used. Judged that it was charged. The capacitance of the negative electrode is 7.2 times that of the positive electrode.
(セルの特性評価)
400mAの定電流でセル電圧が3.6Vになるまで充電し、その後3.6Vの定電圧を印加する定電流−定電圧充電を1時間行った。次いで、40mAの定電流でセル電圧が1.9Vになるまで放電した。この3.6V−1.9Vのサイクルを繰り返し、10回目の放電におけるセル容量及びエネルギー密度、内部抵抗を評価した。結果を表6に示す。ただし、データは2セルの平均である。
(Characteristic evaluation of cells)
The battery was charged at a constant current of 400 mA until the cell voltage reached 3.6 V, and then a constant current-constant voltage charge in which a constant voltage of 3.6 V was applied was performed for 1 hour. Next, the battery was discharged at a constant current of 40 mA until the cell voltage reached 1.9V. This cycle of 3.6V-1.9V was repeated, and the cell capacity, energy density, and internal resistance in the 10th discharge were evaluated. The results are shown in Table 6. However, the data is an average of two cells.
上記測定終了後に1セルの正極と負極を短絡させ正極の電位を測定したところ、0.95V程度であり、2.0V以下であった。正極と負極を短絡させた時の正極電位が2.0V以下になるよう負極および/または正極に予めリチウムイオンを担持させることにより、高いエネルギー密度を有したキャパシタが得られた。また、片面電極の長さを調整し最外周に負極の集電体を位置させ、所定のリチウム金属を貼り付けた粘着テープにて巻き止めすることにより、電極捲回ユニットの巻き止めと、リチウム金属の配置を同時に行うことが可能となるため、より安価なリチウムイオンキャパシタが提供できるため特に好ましい。 When the positive electrode and negative electrode of one cell were short-circuited after the measurement was completed, and the potential of the positive electrode was measured, it was about 0.95 V, and was 2.0 V or less. A capacitor having a high energy density was obtained by previously supporting lithium ions on the negative electrode and / or the positive electrode so that the positive electrode potential when the positive electrode and the negative electrode were short-circuited was 2.0 V or less. In addition, the length of the single-sided electrode is adjusted, the negative electrode current collector is positioned on the outermost periphery, and is wound with an adhesive tape to which a predetermined lithium metal is attached, thereby preventing the winding of the electrode winding unit and the lithium Since it becomes possible to arrange | position metal simultaneously, since a cheaper lithium ion capacitor can be provided, it is especially preferable.
(比較例3)
(セル6の作製)
正極として厚さ175μm、幅30.0×44.0cm2の正極2、負極として厚さ175μm、幅30.0×46.0cm2の正極2を用い、リチウム極を配置しないこと以外は実施例1と同様にして円筒型のリチウムイオンキャパシタセル6を2セル組み立てた。
(Comparative Example 3)
(Production of cell 6)
Thickness 175 .mu.m, the
(セルの特性評価)
400mAの定電流でセル電圧が2.5Vになるまで充電し、その後2.5Vの定電圧を印加する定電流−定電圧充電を1時間行った。次いで、40mAの定電流でセル電圧が0Vになるまで放電した。この2.5V−0Vのサイクルを繰り返し、10回目の放電におけるセル容量及びエネルギー密度、内部抵抗を評価した。結果を表7に示す。ただし、データは2セルの平均である。
(Characteristic evaluation of cells)
The battery was charged with a constant current of 400 mA until the cell voltage reached 2.5 V, and then a constant current-constant voltage charge in which a constant voltage of 2.5 V was applied was performed for 1 hour. Next, the battery was discharged at a constant current of 40 mA until the cell voltage reached 0V. The cycle of 2.5V-0V was repeated, and the cell capacity, energy density, and internal resistance in the 10th discharge were evaluated. The results are shown in Table 7. However, the data is an average of two cells.
上記測定終了後に1セルの正極と負極を短絡させ正極の電位を測定したところ、約3Vであり、2.0V以上であった。正極および負極に活性炭を用いた電気二重層キャパシタは上限電圧が3.0V以下と低く、正極と負極を短絡させた時の正極電位が2.0V以下になるよう負極および/または正極に予めリチウムイオンをドーピングさせるリチウムイオンキャパシタと比較してエネルギー密度が低いことがわかる。 When the positive electrode and negative electrode of one cell were short-circuited after the measurement was completed, and the potential of the positive electrode was measured, it was about 3 V, which was 2.0 V or more. The electric double layer capacitor using activated carbon for the positive electrode and the negative electrode has an upper limit voltage as low as 3.0 V or less, and the positive electrode potential when the positive electrode and the negative electrode are short-circuited is 2.0 V or less in advance. It can be seen that the energy density is lower than that of a lithium ion capacitor doped with ions.
本発明のリチウムイオンキャパシタは、電気自動車、ハイブリッド電気自動車などの駆動用または補助用蓄電源として極めて有効である。また、電動自転車、電動車椅子などの駆動用蓄電源、ソーラーエネルギーや風力発電などの各種エネルギーの蓄電装置、あるいは家庭用電気器具の蓄電源などとして好適に用いることができる。 The lithium ion capacitor of the present invention is extremely effective as a drive or auxiliary storage power source for electric vehicles, hybrid electric vehicles and the like. Further, it can be suitably used as a storage power source for driving such as an electric bicycle or an electric wheelchair, a power storage device for various energy such as solar energy or wind power generation, or a storage power source for household electric appliances.
1:正極 1a:正極集電体 2:負極
2a:負極集電体 3:セパレータ 4:リチウム金属
4a:リチウム極集電体 5:外装容器 6:電極捲回ユニット
7:孔 8:下地層 9:負極端子
10:正極端子 11:テープ 12:未塗工部
1:
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005249927A JP2007067097A (en) | 2005-08-30 | 2005-08-30 | Wound type lithium ion capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005249927A JP2007067097A (en) | 2005-08-30 | 2005-08-30 | Wound type lithium ion capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007067097A true JP2007067097A (en) | 2007-03-15 |
Family
ID=37928953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005249927A Pending JP2007067097A (en) | 2005-08-30 | 2005-08-30 | Wound type lithium ion capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007067097A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009141114A (en) * | 2007-12-06 | 2009-06-25 | Mitsubishi Electric Corp | Electric double layer capacitor and manufacturing method thereof |
JP2010186782A (en) * | 2009-02-10 | 2010-08-26 | Shin Kobe Electric Mach Co Ltd | Method of manufacturing lithium ion capacitor |
JP2010192853A (en) * | 2009-02-20 | 2010-09-02 | Shin Kobe Electric Mach Co Ltd | Lithium ion capacitor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0794211A (en) * | 1993-09-21 | 1995-04-07 | Matsushita Electric Ind Co Ltd | Manufacture of battery and electrode plate for battery |
WO1998033227A1 (en) * | 1997-01-27 | 1998-07-30 | Kanebo Limited | Organic electrolytic battery |
JPH11283676A (en) * | 1998-03-31 | 1999-10-15 | Fuji Film Celltec Kk | Nonaqueous electrolyte lithium secondary battery and its manufacture |
JPH11297578A (en) * | 1998-04-10 | 1999-10-29 | Mitsubishi Chemical Corp | Electric double-layer capacitor |
JP2002353072A (en) * | 2001-05-22 | 2002-12-06 | Nec Tokin Corp | Coil-type electric double layer capacitor |
WO2003003395A1 (en) * | 2001-06-29 | 2003-01-09 | Kanebo, Limited | Organic electrolyte capacitor |
-
2005
- 2005-08-30 JP JP2005249927A patent/JP2007067097A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0794211A (en) * | 1993-09-21 | 1995-04-07 | Matsushita Electric Ind Co Ltd | Manufacture of battery and electrode plate for battery |
WO1998033227A1 (en) * | 1997-01-27 | 1998-07-30 | Kanebo Limited | Organic electrolytic battery |
JPH11283676A (en) * | 1998-03-31 | 1999-10-15 | Fuji Film Celltec Kk | Nonaqueous electrolyte lithium secondary battery and its manufacture |
JPH11297578A (en) * | 1998-04-10 | 1999-10-29 | Mitsubishi Chemical Corp | Electric double-layer capacitor |
JP2002353072A (en) * | 2001-05-22 | 2002-12-06 | Nec Tokin Corp | Coil-type electric double layer capacitor |
WO2003003395A1 (en) * | 2001-06-29 | 2003-01-09 | Kanebo, Limited | Organic electrolyte capacitor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009141114A (en) * | 2007-12-06 | 2009-06-25 | Mitsubishi Electric Corp | Electric double layer capacitor and manufacturing method thereof |
JP2010186782A (en) * | 2009-02-10 | 2010-08-26 | Shin Kobe Electric Mach Co Ltd | Method of manufacturing lithium ion capacitor |
JP2010192853A (en) * | 2009-02-20 | 2010-09-02 | Shin Kobe Electric Mach Co Ltd | Lithium ion capacitor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4732072B2 (en) | Winding type lithium ion capacitor | |
JP4842633B2 (en) | Method for producing lithium metal foil for battery or capacitor | |
JP4833065B2 (en) | Lithium ion capacitor | |
JP5236765B2 (en) | Organic electrolyte capacitor | |
US7697264B2 (en) | Lithium ion capacitor | |
US7817403B2 (en) | Lithium ion capacitor | |
JP5081214B2 (en) | Organic electrolyte capacitor | |
KR101573106B1 (en) | Wound-type accumulator | |
JP4813168B2 (en) | Lithium ion capacitor | |
JP5317688B2 (en) | Winding type accumulator and method for manufacturing the same | |
JP2006286919A (en) | Lithium ion capacitor | |
JP5317687B2 (en) | Winding type power storage | |
JP5308646B2 (en) | Lithium ion capacitor | |
JP5576654B2 (en) | Power storage device | |
JP2007067097A (en) | Wound type lithium ion capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080414 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101124 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110322 |