JP5353238B2 - Method for producing oxide particles, slurry, abrasive and method for polishing substrate - Google Patents
Method for producing oxide particles, slurry, abrasive and method for polishing substrate Download PDFInfo
- Publication number
- JP5353238B2 JP5353238B2 JP2008512164A JP2008512164A JP5353238B2 JP 5353238 B2 JP5353238 B2 JP 5353238B2 JP 2008512164 A JP2008512164 A JP 2008512164A JP 2008512164 A JP2008512164 A JP 2008512164A JP 5353238 B2 JP5353238 B2 JP 5353238B2
- Authority
- JP
- Japan
- Prior art keywords
- acid
- oxide
- cerium
- abrasive
- carbonate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002245 particle Substances 0.000 title claims description 159
- 238000000034 method Methods 0.000 title claims description 62
- 238000005498 polishing Methods 0.000 title claims description 61
- 238000004519 manufacturing process Methods 0.000 title claims description 51
- 239000002002 slurry Substances 0.000 title claims description 46
- 239000000758 substrate Substances 0.000 title claims description 23
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 140
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 140
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 72
- 239000002253 acid Substances 0.000 claims description 49
- GHLITDDQOMIBFS-UHFFFAOYSA-H cerium(3+);tricarbonate Chemical group [Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O GHLITDDQOMIBFS-UHFFFAOYSA-H 0.000 claims description 49
- 239000004065 semiconductor Substances 0.000 claims description 39
- 239000000203 mixture Substances 0.000 claims description 38
- 238000010438 heat treatment Methods 0.000 claims description 37
- 229910052751 metal Inorganic materials 0.000 claims description 32
- 239000002184 metal Substances 0.000 claims description 32
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 31
- 239000007787 solid Substances 0.000 claims description 30
- 150000007524 organic acids Chemical class 0.000 claims description 26
- 235000006408 oxalic acid Nutrition 0.000 claims description 24
- 238000002156 mixing Methods 0.000 claims description 22
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 19
- 239000002270 dispersing agent Substances 0.000 claims description 16
- 238000010494 dissociation reaction Methods 0.000 claims description 16
- 230000005593 dissociations Effects 0.000 claims description 16
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 15
- 238000010298 pulverizing process Methods 0.000 claims description 15
- 239000003795 chemical substances by application Substances 0.000 claims description 13
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 10
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 claims description 10
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 10
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 10
- 229910044991 metal oxide Inorganic materials 0.000 claims description 10
- 150000004706 metal oxides Chemical class 0.000 claims description 10
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 claims description 10
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 claims description 10
- -1 carbonates cerium carbonate Chemical class 0.000 claims description 9
- 239000012736 aqueous medium Substances 0.000 claims description 8
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 7
- 229910052684 Cerium Inorganic materials 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 229920002125 Sokalan® Polymers 0.000 claims description 6
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000004584 polyacrylic acid Substances 0.000 claims description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 6
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 claims description 5
- 239000005711 Benzoic acid Substances 0.000 claims description 5
- 229920002845 Poly(methacrylic acid) Polymers 0.000 claims description 5
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 5
- 239000001361 adipic acid Substances 0.000 claims description 5
- 235000011037 adipic acid Nutrition 0.000 claims description 5
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 claims description 5
- 239000011668 ascorbic acid Substances 0.000 claims description 5
- 229960005070 ascorbic acid Drugs 0.000 claims description 5
- 235000010323 ascorbic acid Nutrition 0.000 claims description 5
- 235000010233 benzoic acid Nutrition 0.000 claims description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims description 5
- 235000015165 citric acid Nutrition 0.000 claims description 5
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 5
- 239000011976 maleic acid Substances 0.000 claims description 5
- 239000001630 malic acid Substances 0.000 claims description 5
- 235000011090 malic acid Nutrition 0.000 claims description 5
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 claims description 5
- 229960004889 salicylic acid Drugs 0.000 claims description 5
- 239000011975 tartaric acid Substances 0.000 claims description 5
- 235000002906 tartaric acid Nutrition 0.000 claims description 5
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 5
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 4
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 3
- 239000003082 abrasive agent Substances 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims 1
- 239000011973 solid acid Substances 0.000 claims 1
- 239000000843 powder Substances 0.000 description 105
- 239000011362 coarse particle Substances 0.000 description 47
- 238000001878 scanning electron micrograph Methods 0.000 description 36
- 239000010419 fine particle Substances 0.000 description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 32
- 238000002441 X-ray diffraction Methods 0.000 description 22
- 239000008367 deionised water Substances 0.000 description 22
- 229910021641 deionized water Inorganic materials 0.000 description 22
- XHUUWBOPPIDIBL-UHFFFAOYSA-H cerium(3+) tricarbonate octahydrate Chemical compound O.O.O.O.O.O.O.O.[Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O XHUUWBOPPIDIBL-UHFFFAOYSA-H 0.000 description 18
- 238000002360 preparation method Methods 0.000 description 18
- 239000006228 supernatant Substances 0.000 description 14
- 239000007864 aqueous solution Substances 0.000 description 11
- 238000001914 filtration Methods 0.000 description 11
- 239000011163 secondary particle Substances 0.000 description 11
- 239000006185 dispersion Substances 0.000 description 10
- 239000011148 porous material Substances 0.000 description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 9
- 239000011324 bead Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 8
- 229920000058 polyacrylate Polymers 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 238000010998 test method Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 238000001238 wet grinding Methods 0.000 description 5
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000001099 ammonium carbonate Substances 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 3
- 241000403354 Microplus Species 0.000 description 3
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- GEVPUGOOGXGPIO-UHFFFAOYSA-N oxalic acid;dihydrate Chemical compound O.O.OC(=O)C(O)=O GEVPUGOOGXGPIO-UHFFFAOYSA-N 0.000 description 3
- 150000000703 Cerium Chemical class 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 229960001759 cerium oxalate Drugs 0.000 description 2
- ZMZNLKYXLARXFY-UHFFFAOYSA-H cerium(3+);oxalate Chemical compound [Ce+3].[Ce+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O ZMZNLKYXLARXFY-UHFFFAOYSA-H 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000001384 succinic acid Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910017569 La2(CO3)3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- WPKYZIPODULRBM-UHFFFAOYSA-N azane;prop-2-enoic acid Chemical compound N.OC(=O)C=C WPKYZIPODULRBM-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- NZPIUJUFIFZSPW-UHFFFAOYSA-H lanthanum carbonate Chemical compound [La+3].[La+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O NZPIUJUFIFZSPW-UHFFFAOYSA-H 0.000 description 1
- 229960001633 lanthanum carbonate Drugs 0.000 description 1
- AFCUGQOTNCVYSW-UHFFFAOYSA-H lanthanum(3+);tricarbonate;hydrate Chemical compound O.[La+3].[La+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O AFCUGQOTNCVYSW-UHFFFAOYSA-H 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
- C01B13/145—After-treatment of oxides or hydroxides, e.g. pulverising, drying, decreasing the acidity
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
- C01B13/18—Methods for preparing oxides or hydroxides in general by thermal decomposition of compounds, e.g. of salts or hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/20—Compounds containing only rare earth metals as the metal element
- C01F17/206—Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/20—Compounds containing only rare earth metals as the metal element
- C01F17/206—Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
- C01F17/224—Oxides or hydroxides of lanthanides
- C01F17/235—Cerium oxides or hydroxides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1409—Abrasive particles per se
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1454—Abrasive powders, suspensions and pastes for polishing
- C09K3/1463—Aqueous liquid suspensions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/31051—Planarisation of the insulating layers
- H01L21/31053—Planarisation of the insulating layers involving a dielectric removal step
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Description
本発明は、酸化物粒子の製造方法、それにより得られるスラリーおよび研磨剤、基板の研磨方法を提供するものである。 The present invention provides a method for producing oxide particles, a slurry and an abrasive obtained thereby, and a method for polishing a substrate.
金属酸化物の微粒子は様々な用途に用いられ、例えば酸化セリウムは研磨剤、触媒、紫外線遮断剤等、酸化コバルトはコンデンサ、バリスタ、二次電池等、酸化ニッケルはフェライト等、酸化チタンは光触媒、顔料等の材料に用いられる。 Metal oxide fine particles are used in various applications, for example, cerium oxide is an abrasive, catalyst, ultraviolet blocking agent, cobalt oxide is a capacitor, varistor, secondary battery, nickel oxide is ferrite, etc., titanium oxide is a photocatalyst, Used for materials such as pigments.
特に、酸化セリウムの微粒子は半導体集積回路の精密研磨用研磨剤として近年、急速に普及している。この精密研磨用研磨剤として用いられる酸化セリウム微粒子は平均粒子径が数ナノメートルから数百ナノメートルの範囲が一般的である。このような酸化セリウム微粒子を得るために種々の方法が提案されている。 Particularly, fine particles of cerium oxide have been rapidly spread in recent years as abrasives for precise polishing of semiconductor integrated circuits. The cerium oxide fine particles used as the precision polishing abrasive generally have an average particle diameter in the range of several nanometers to several hundred nanometers. Various methods have been proposed for obtaining such cerium oxide fine particles.
まず、硝酸セリウム水溶液等のセリウム塩溶液に炭酸アンモニウムや炭酸水素アンモニウムを加えて、炭酸セリウムの沈殿を得る。次にこの沈殿を洗浄、ろ過、乾燥し、加熱することで酸化セリウムを得る。加熱温度としては炭酸セリウムを熱分解させるために400℃以上が必要である。ここで得られる酸化セリウム粒子の大きさは、炭酸セリウム粒子の大きさと大きく変わらない。例えば板状結晶の集合体で平均粒子径が数十マイクロメートルの炭酸セリウムを700℃に加熱して得られる酸化セリウムの平均粒子径は数十マイクロメートルで形状も板状粒子の集合体になる。次に得られた酸化セリウムをジェットミル等の乾式粉砕あるいはビーズミル等の湿式粉砕を行うことで、平均粒子径が数ナノメートルから数百ナノメートルの範囲まで微粒子化する。 First, ammonium carbonate or ammonium hydrogen carbonate is added to a cerium salt solution such as an aqueous cerium nitrate solution to obtain a precipitate of cerium carbonate. Next, this precipitate is washed, filtered, dried, and heated to obtain cerium oxide. As heating temperature, 400 degreeC or more is required in order to thermally decompose cerium carbonate. The size of the cerium oxide particles obtained here is not significantly different from the size of the cerium carbonate particles. For example, an average particle diameter of cerium oxide obtained by heating cerium carbonate having an average particle diameter of several tens of micrometers to 700 ° C. in an aggregate of plate crystals is an aggregate of plate-like particles having a shape of several tens of micrometers. . Next, the obtained cerium oxide is subjected to dry pulverization such as a jet mill or wet pulverization such as a bead mill, so that the average particle diameter is reduced to a range of several nanometers to several hundred nanometers.
しかし、この方法では粉砕に要する労力が大きく、粉砕機の能力によっては粗大な酸化セリウム粒子が残存してしまう可能性がある。また、粉砕を長時間続けると粉砕機の部品が磨耗し、磨耗粉が研磨剤中に混入する可能性が高まる。粗大な酸化セリウム粒子や磨耗粉は研磨傷の原因となり好ましくない。 However, this method requires much labor for pulverization, and coarse cerium oxide particles may remain depending on the ability of the pulverizer. Further, if the pulverization is continued for a long time, the parts of the pulverizer are worn, and the possibility that the abrasion powder is mixed into the abrasive increases. Coarse cerium oxide particles and wear powder are undesirable because they cause polishing scratches.
また、硝酸セリウム水溶液等のセリウム塩溶液にシュウ酸を加えて、シュウ酸セリウムの沈殿を得る方法がある。この方法もシュウ酸セリウムを加熱し、酸化セリウムを得て、粉砕を行うことで微粒子化するため、上記と同様な理由で研磨傷が発生する可能性がある。 There is also a method in which cerium oxalate is precipitated by adding oxalic acid to a cerium salt solution such as an aqueous cerium nitrate solution. This method also heats cerium oxalate, obtains cerium oxide, and pulverizes it into fine particles, which may cause polishing scratches for the same reason as described above.
また、硝酸セリウム水溶液と炭酸水素アンモニウム水溶液の濃度と反応温度を最適化して微細な炭酸セリウムの沈殿が生成し、その沈殿を加熱することで、粉砕を行うことなく平均粒子径が50ナノメートル以下の球状酸化セリウムを得る方法もある(日本国特開2004−107186号公報参照)。しかし、この方法では沈殿物が微細なためアンモニウムを保持しやすく、洗浄に時間を要する。さらに沈殿物が微細なため水も保持しやすいので、乾燥にも時間を要する。加えて、加熱温度が高いと酸化セリウム粒子が微細なため一部焼結し、粗大な酸化セリウム粒子が生成する可能性がある。 Also, by optimizing the concentration and reaction temperature of cerium nitrate aqueous solution and ammonium hydrogen carbonate aqueous solution, a fine cerium carbonate precipitate is generated, and the precipitate is heated, so that the average particle size is 50 nanometers or less without grinding. There is also a method for obtaining spherical cerium oxide (see Japanese Patent Application Laid-Open No. 2004-107186). However, in this method, since the precipitate is fine, it is easy to retain ammonium, and it takes time for washing. Furthermore, since the precipitate is fine and water is easily retained, it takes time for drying. In addition, when the heating temperature is high, the cerium oxide particles are fine, so that some of them are sintered and coarse cerium oxide particles may be generated.
また、炭酸セリウムを水中で加熱することで微細なモノオキシ炭酸セリウムの沈殿を得て、ろ過、乾燥し、300℃以上に加熱し、粉砕を行うことで粗大な粒子を含まない酸化セリウム粒子を得る方法がある(日本国特開2005−126253号公報参照)。しかし、この方法では炭酸セリウムを水中で加熱する工程が2〜48時間、モノオキシ炭酸セリウムの沈殿を乾燥させる工程が5〜96時間と、処理に時間を要する。 Also, by heating cerium carbonate in water, fine cerium monooxycarbonate precipitate is obtained, filtered, dried, heated to 300 ° C. or higher, and pulverized to obtain cerium oxide particles that do not contain coarse particles. There is a method (see Japanese Patent Application Laid-Open No. 2005-126253). However, in this method, the process of heating cerium carbonate in water takes 2 to 48 hours, and the process of drying the precipitate of cerium monooxycarbonate takes 5 to 96 hours.
このように従来の製造方法で得られる酸化セリウム微粒子は、粗大な粒子を含む可能性や粉砕機からの磨耗粉の混入の可能性がある。また、粗大な粒子を含まない製造方法も報告されているが、製造に時間を要する点が難点である。 As described above, the cerium oxide fine particles obtained by the conventional production method may contain coarse particles or may be mixed with wear powder from a pulverizer. Moreover, although the manufacturing method which does not contain coarse particle | grains is also reported, the point which requires time for manufacture is a difficulty.
上記の問題点に鑑み、本発明は、粗大な粒子や磨耗粉を含まない微粒子を迅速に得ることが可能な、酸化物粒子の製造方法を提供するものである。さらに、その酸化物粒子を用いて、適切な研磨速度を維持しつつ、スクラッチの発生を低減し、半導体表面を精密に研磨可能な研磨剤を提供するものである。 In view of the above problems, the present invention provides a method for producing oxide particles, which can quickly obtain coarse particles and fine particles containing no abrasion powder. Further, the present invention provides an abrasive capable of reducing the generation of scratches and maintaining a semiconductor surface precisely while maintaining an appropriate polishing rate by using the oxide particles.
本発明は、炭酸塩をそのまま加熱して得られる酸化物と比較して、炭酸塩に酸を添加し、加熱した場合、酸化物の形状が大きく変化する事を発見したことによりなされたものである。 The present invention was made by discovering that when an acid was added to a carbonate and heated, the shape of the oxide changed significantly compared to an oxide obtained by heating the carbonate as it was. is there.
本発明は、次のものに関する。 The present invention relates to the following.
(1) 金属の炭酸塩と酸とを混合して混合物を得る工程、
前記混合物を加熱して金属酸化物を得る工程、
前記金属酸化物を粉砕する工程を含むことを特徴とする酸化物粒子の製造方法。(1) A step of mixing a metal carbonate and an acid to obtain a mixture,
Heating the mixture to obtain a metal oxide;
The manufacturing method of the oxide particle characterized by including the process of grind | pulverizing the said metal oxide.
(2) 金属の炭酸塩が、炭酸セリウムである前項(1)記載の酸化物粒子の製造方法。 (2) The method for producing oxide particles according to (1), wherein the metal carbonate is cerium carbonate.
(3) 酸が、25℃において固体である前項(1)又は(2)記載の酸化物粒子の製造方法。 (3) The method for producing oxide particles according to (1) or (2), wherein the acid is solid at 25 ° C.
(4) 酸が、25℃において粉末状である前項(3)記載の酸化物粒子の製造方法。 (4) The method for producing oxide particles according to (3), wherein the acid is powdery at 25 ° C.
(5) 酸が、有機酸である前項(1)〜(4)のいずれか記載の酸化物粒子の製造方法。 (5) The method for producing oxide particles according to any one of (1) to (4), wherein the acid is an organic acid.
(6) 有機酸が、炭素原子、酸素原子及び水素原子から構成される前項(5)記載の酸化物粒子の製造方法。 (6) The method for producing oxide particles according to (5), wherein the organic acid is composed of a carbon atom, an oxygen atom, and a hydrogen atom.
(7) 有機酸の酸解離定数pKaが炭酸の酸解離定数pKa1よりも小さい前項(5)又は(6)記載の酸化物粒子の製造方法。(7) The method for producing oxide particles according to (5) or (6), wherein the acid dissociation constant pKa of the organic acid is smaller than the acid dissociation constant pKa 1 of carbonic acid.
(8) 有機酸の酸解離定数pKaが6以下である前項(7)記載の酸化物粒子の製造方法。 (8) The method for producing oxide particles according to (7), wherein the acid dissociation constant pKa of the organic acid is 6 or less.
(9) 有機酸が、コハク酸、マロン酸、クエン酸、酒石酸、リンゴ酸、シュウ酸、マレイン酸、アジピン酸、サリチル酸、安息香酸、フタル酸、グリコール酸、アスコルビン酸、これらの異性体、重合体もしくは共重合体、ポリアクリル酸、ポリメタクリル酸から選ばれる少なくとも1種である前項(5)〜(8)のいずれか記載の酸化物粒子の製造方法。 (9) The organic acid is succinic acid, malonic acid, citric acid, tartaric acid, malic acid, oxalic acid, maleic acid, adipic acid, salicylic acid, benzoic acid, phthalic acid, glycolic acid, ascorbic acid, their isomers, heavy The method for producing oxide particles according to any one of (5) to (8) above, which is at least one selected from a coalesced or copolymer, polyacrylic acid, and polymethacrylic acid.
(10) 金属の炭酸塩が炭酸セリウム、有機酸がシュウ酸であって、炭酸セリウムとシュウ酸の混合比が、炭酸セリウム1モルに対してシュウ酸が0.5〜6モルである前項(5)〜(9)のいずれか記載の酸化物粒子の製造方法。 (10) The foregoing item wherein the metal carbonate is cerium carbonate, the organic acid is oxalic acid, and the mixing ratio of cerium carbonate and oxalic acid is 0.5 to 6 mol of oxalic acid with respect to 1 mol of cerium carbonate. The manufacturing method of the oxide particle in any one of 5)-(9).
(11) 前項(1)〜(10)のいずれか記載の酸化物粒子の製造方法により得られた金属酸化物粒子を水性媒体に分散して含むスラリー。 (11) A slurry containing metal oxide particles obtained by the method for producing oxide particles according to any one of (1) to (10) above, dispersed in an aqueous medium.
(12) 金属がセリウムで酸がシュウ酸である前項(1)〜(10)のいずれか記載の酸化物粒子の製造方法により得られた酸化セリウム粒子を水性媒体に分散して含む研磨剤。 (12) An abrasive comprising cerium oxide particles dispersed by an aqueous medium obtained by the method for producing oxide particles according to any one of (1) to (10) above, wherein the metal is cerium and the acid is oxalic acid.
(13) 炭酸セリウムとシュウ酸との混合物を加熱して得られる酸化セリウムを粉砕した粒子が、水性媒体に含まれる研磨剤。 (13) An abrasive in which particles obtained by pulverizing cerium oxide obtained by heating a mixture of cerium carbonate and oxalic acid are contained in an aqueous medium.
(14) 酸化セリウム粒子径の中央値が100〜2000nmである前項(12)または(13)記載の研磨剤。 (14) The abrasive according to (12) or (13) above, wherein the median value of the cerium oxide particle diameter is 100 to 2000 nm.
(15) 粒径3μm以上の酸化セリウム粒子が、固体中の500ppm以下である前項(14)記載の研磨剤。 (15) The abrasive according to item (14), wherein the cerium oxide particles having a particle diameter of 3 μm or more are 500 ppm or less in the solid.
(16) さらに分散剤を含有する前項(14)または(15)のいずれかに記載の研磨剤。 (16) The abrasive according to any one of (14) and (15), further containing a dispersant.
(17) 酸化セリウム粒子が、全体の99体積%が粒径1.0μm以下である前項(14)〜(16)のいずれかに記載の研磨剤。 (17) The abrasive according to any one of (14) to (16), wherein 99% by volume of the cerium oxide particles have a particle size of 1.0 μm or less.
(18) 前項(12)〜(17)のいずれかに記載の研磨剤で所定の基板を研磨することを特徴とする基板の研磨方法。 (18) A method for polishing a substrate, comprising polishing a predetermined substrate with the abrasive according to any one of (12) to (17).
(19) 所定の基板が、少なくとも酸化珪素膜が形成された半導体基板である前項(18)記載の基板の研磨方法。 (19) The method for polishing a substrate according to (18), wherein the predetermined substrate is a semiconductor substrate on which at least a silicon oxide film is formed.
本願の開示は、2006年4月21日に出願された特願2006−117772、および2006年6月16日に出願された特願2006−167283に記載の主題と関連しており、それらの開示内容は引用によりここに援用される。 The disclosure of the present application is related to the subject matter described in Japanese Patent Application No. 2006-117772 filed on Apr. 21, 2006 and Japanese Patent Application No. 2006-167283 filed on Jun. 16, 2006. The contents are incorporated herein by reference.
本発明の酸化物粒子の製造方法は、金属の炭酸塩と酸とを混合して混合物を得る工程、前記の混合物を加熱して金属酸化物を得る工程、得られた前記金属酸化物を粉砕する工程を含むことを特徴としている。一般に金属の炭酸塩のみを加熱すると、炭酸塩が熱分解し、その金属の酸化物が得られる。その際、炭酸塩と酸化物の形状に大きな違いは無いことが多い。しかし、酸と金属の炭酸塩を混合して加熱を行うと、酸と金属の炭酸塩との化学反応が起こり、炭酸イオンが置換され、新たな金属塩の生成を経て熱分解し、その金属の酸化物が得られる。その際、炭酸塩と酸化物の形状は大きく異なり、酸化物は微細な粒子の集合体となる。この酸化物は微細な粒子の集合体であるために容易に短時間で粉砕され、酸化物微粒子となる。 The method for producing oxide particles of the present invention includes a step of mixing a metal carbonate and an acid to obtain a mixture, a step of heating the mixture to obtain a metal oxide, and crushing the obtained metal oxide It is characterized by including the process to perform. Generally, when only a metal carbonate is heated, the carbonate is thermally decomposed to obtain an oxide of the metal. In that case, there is often no significant difference between the carbonate and oxide shapes. However, when an acid and a metal carbonate are mixed and heated, a chemical reaction occurs between the acid and the metal carbonate, the carbonate ion is replaced, and the metal is pyrolyzed through the formation of a new metal salt. Is obtained. At that time, the carbonate and oxide have greatly different shapes, and the oxide becomes an aggregate of fine particles. Since this oxide is an aggregate of fine particles, it is easily pulverized in a short time to form oxide fine particles.
本発明における金属の炭酸塩は一種類の金属元素しか含まない炭酸塩だけではなく、数種類の金属イオン、炭酸イオン、その他の陽イオン、陰イオンからなる複塩でも構わない。これらの複塩と酸との混合物を加熱すると、複塩の成分中の炭酸イオンが置換され、新たな金属塩の生成を経て熱分解し、微細な粒子の集合体である酸化物が得られる。同様な理由で、金属の炭酸塩は不純物を含んでいても構わない。 The metal carbonate in the present invention is not limited to a carbonate containing only one kind of metal element, but may be a double salt composed of several kinds of metal ions, carbonate ions, other cations and anions. When a mixture of these double salts and acids is heated, carbonate ions in the components of the double salts are replaced and pyrolyzed through the formation of new metal salts to obtain oxides that are aggregates of fine particles. . For the same reason, the metal carbonate may contain impurities.
炭酸塩を形成する金属は、セリウム、コバルト、ニッケル等が挙げられる。特に、後述するように酸化物を研磨剤に使用する場合、金属はセリウムであることが好ましい。炭酸セリウムの製造方法としては、例えば3価のセリウムの硝酸塩水溶液に炭酸水素アンモニウム水溶液を混合し、炭酸セリウムを沈殿させ、ろ過、洗浄して得る方法があるが、特に限定されない。もちろん炭酸セリウムは他の金属の炭酸塩や不純物を含んでいても構わない。 Examples of the metal forming the carbonate include cerium, cobalt, and nickel. In particular, when an oxide is used for the abrasive as described later, the metal is preferably cerium. Examples of the method for producing cerium carbonate include, but are not limited to, a method in which an aqueous ammonium hydrogen carbonate solution is mixed with a trivalent cerium nitrate aqueous solution to precipitate cerium carbonate, which is filtered and washed. Of course, cerium carbonate may contain carbonates and impurities of other metals.
本発明における酸は25℃で固体であることが好ましい、酸が気体であると酸の取り扱いや、金属の炭酸塩との混合が困難であり好ましくない。また、酸が液体または溶液状態であると、金属の炭酸塩との混合物が液状になり、加熱して酸化物を得る前に乾燥させる必要があり、時間を要する。 The acid in the present invention is preferably a solid at 25 ° C. If the acid is a gas, it is not preferable because it is difficult to handle the acid or to mix it with a metal carbonate. In addition, when the acid is in a liquid or solution state, the mixture with the metal carbonate becomes liquid and needs to be dried before heating to obtain an oxide, which takes time.
さらに、本発明における酸は粉末状であることが、金属の炭酸塩と混合しやすいことから好ましい。粉末の大きさは特に限定されるものではない。 Furthermore, the acid in the present invention is preferably in the form of a powder because it is easily mixed with a metal carbonate. The size of the powder is not particularly limited.
本発明における酸は有機酸であることが好ましい。また、25℃で粉末状の有機酸であることがより好ましい。硝酸や硫酸などの無機酸を金属の炭酸塩と混合した場合、化学反応が激しく二酸化炭素が急激に発生し制御が困難であると共に、加熱温度が低いと硝酸イオンや硫酸イオンが脱離せず酸化物中に残存する可能性がある。 The acid in the present invention is preferably an organic acid. Moreover, it is more preferable that it is a powdery organic acid at 25 degreeC. When an inorganic acid such as nitric acid or sulfuric acid is mixed with a metal carbonate, the chemical reaction is intense and carbon dioxide is generated abruptly, making it difficult to control. If the heating temperature is low, the nitrate and sulfate ions are not desorbed and oxidized. There is a possibility of remaining in the object.
本発明における有機酸は炭素原子、酸素原子及び水素原子から構成されることが好ましい。この他に窒素原子や硫黄原子を含んでいても良いが、加熱時に硝酸イオンや硫酸イオンとなり、加熱温度が低い場合は脱離せず酸化物中に残存する可能性がある。 The organic acid in the present invention is preferably composed of a carbon atom, an oxygen atom and a hydrogen atom. In addition to this, it may contain nitrogen atoms or sulfur atoms, but when heated, it becomes nitrate ions or sulfate ions, and when the heating temperature is low, there is a possibility that it will not be detached and remain in the oxide.
本発明における有機酸は、その酸解離定数pKaは、炭酸の一段目の酸解離定数pKa1より小さい、つまり炭酸よりも強酸の有機酸が好ましい。有機酸のpKaが6以下であるのがさらに好ましい。なお、有機酸が多段解離する場合は、一段目の酸解離定数pKa1と炭酸のpKa1とを比較する。酸解離定数pKaが炭酸の酸解離定数pKa1より小さい有機酸を金属の炭酸塩と混合し加熱すると、炭酸イオンと有機酸の共役塩基が置換され、二酸化炭素が発生し、金属の有機酸塩が生成する。さらに加熱を続けると金属の有機酸塩が熱分解し、微細な粒子の集合体である酸化物が得られる。なお、本発明において酸解離定数は、実際の酸解離定数Kaの逆数の常用対数値pKaで示すものとする。また、有機酸が多段解離する場合は、一段目の酸解離定数pKa1の値で示すものとする。The organic acid in the present invention has an acid dissociation constant pKa smaller than the acid dissociation constant pKa 1 of the first stage of carbonic acid, that is, an organic acid that is a stronger acid than carbonic acid is preferable. More preferably, the pKa of the organic acid is 6 or less. In the case where the organic acid is multistage dissociation compares the pKa 1 of the first stage of the acid dissociation constant pKa 1 and carbonate. When an organic acid whose acid dissociation constant pKa is smaller than the acid dissociation constant pKa of carbonic acid 1 is mixed with metal carbonate and heated, the conjugate base of carbonate ion and organic acid is displaced, carbon dioxide is generated, and the metal organic acid salt Produces. When the heating is further continued, the metal organic acid salt is thermally decomposed to obtain an oxide which is an aggregate of fine particles. In the present invention, the acid dissociation constant is represented by a common logarithmic value pKa that is the reciprocal of the actual acid dissociation constant Ka. Further, if the organic acid is multistage dissociation, it shall indicate the value of the acid dissociation constant pKa 1 of the first stage.
本発明における有機酸は、コハク酸、マロン酸、クエン酸、酒石酸、リンゴ酸、シュウ酸、マレイン酸、アジピン酸、サリチル酸、安息香酸、フタル酸、グリコール酸、アスコルビン酸、これらの異性体、重合体もしくは共重合体、ポリアクリル酸、ポリメタクリル酸から選ばれる少なくとも1種以上であることが好ましい。これらの有機酸は室温で固体であり、粉末が容易に入手可能である。特に下記の理由からシュウ酸が好ましい。すなわちシュウ酸は、炭酸セリウムとの混合物を焼成して得られる酸化セリウムが粉末状であり、粉砕工程が容易である。 The organic acid in the present invention is succinic acid, malonic acid, citric acid, tartaric acid, malic acid, oxalic acid, maleic acid, adipic acid, salicylic acid, benzoic acid, phthalic acid, glycolic acid, ascorbic acid, isomers thereof, heavy acid It is preferably at least one selected from a coalescence or copolymer, polyacrylic acid, and polymethacrylic acid. These organic acids are solid at room temperature and powders are readily available. In particular, oxalic acid is preferred for the following reasons. That is, oxalic acid is a powder of cerium oxide obtained by firing a mixture with cerium carbonate, and the pulverization process is easy.
一方、他の有機酸と炭酸セリウムの混合物を焼成すると、得られる酸化セリウムが塊状になることがあり、粉砕工程に時間が掛かる場合がある。 On the other hand, when a mixture of another organic acid and cerium carbonate is baked, the obtained cerium oxide may be agglomerated, and the pulverization process may take time.
また、シュウ酸は燃焼熱が小さいため、加熱時の温度制御が容易である。 Further, since oxalic acid has a small heat of combustion, temperature control during heating is easy.
さらに、シュウ酸は、酸の価数あたりの炭素量が少なく、燃焼時に地球温暖化ガスである二酸化炭素の発生量が少ない。 Furthermore, oxalic acid has a small amount of carbon per valence of the acid and generates a small amount of carbon dioxide, which is a global warming gas, during combustion.
酸の混合量としては、例えば、炭酸セリウムと混合する場合、炭酸セリウム1モルに対してn価の酸を1/nモル〜12/nモル混合することが好ましい。酸の混合量が少ない場合、反応が十分に進行しない懸念があり、酸の混合量が多い場合、反応に寄与しない酸が加熱時に燃焼するなどして加熱装置を傷める懸念があるので、炭酸セリウム1モルに対してn価の酸を3/nモル〜9/nモル混合することがさらに好ましい。 As a mixing amount of the acid, for example, when mixing with cerium carbonate, it is preferable to mix n-valent acid with respect to 1 mol of cerium carbonate. There is a concern that the reaction does not proceed sufficiently when the amount of acid mixed is small, and there is a concern that the acid that does not contribute to the reaction may burn during heating and damage the heating device when the amount of acid mixed is large. It is more preferable to mix 3 / n mol to 9 / n mol of n-valent acid with respect to 1 mol.
例えば炭酸セリウムとシュウ酸の場合の混合比は、炭酸セリウム1モルに対してシュウ酸が0.5〜6モルであるのが好ましい。より好ましくは3〜5モルである。 For example, the mixing ratio in the case of cerium carbonate and oxalic acid is preferably 0.5 to 6 mol of oxalic acid per 1 mol of cerium carbonate. More preferably, it is 3-5 mol.
本発明における金属の炭酸塩と酸の混合方法に制限は無いが、シュウ酸など、酸の種類によっては混合中に二酸化炭素が発生するので、密閉されていない容器に両者を投入し、攪拌する方法が好ましい。混合時間によって、その後生成する酸化物の形状が変化するが、混合さえすれば混合時間に因らず容易に短時間で粉砕される効果が得られる。 Although there is no limitation on the method of mixing the metal carbonate and acid in the present invention, depending on the type of acid such as oxalic acid, carbon dioxide is generated during mixing, so both are put into a non-sealed container and stirred. The method is preferred. Depending on the mixing time, the shape of the oxide to be produced thereafter changes, but if mixed, the effect of being easily pulverized in a short time regardless of the mixing time can be obtained.
本発明における加熱温度は例えば炭酸セリウムの場合、350℃以上が好ましく、さらに好ましくは400℃〜1000℃である。 In the present invention, for example, in the case of cerium carbonate, the heating temperature is preferably 350 ° C. or higher, more preferably 400 ° C. to 1000 ° C.
本発明における酸化物は微細な粒子の集合体であるために粉砕が容易であるため、粉砕方法に制限は無いが、平均粒子径を数マイクロメートル以下にする必要があるのであればジェットミル等による乾式粉砕や、対向衝突式やビーズミルによる湿式粉砕が好ましい。 Since the oxide in the present invention is an aggregate of fine particles and is easily pulverized, there is no limitation on the pulverization method, but if the average particle diameter needs to be several micrometers or less, a jet mill or the like Dry pulverization by means of the above, wet pulverization by opposing collision type or bead mill is preferred.
本発明において得られた金属酸化物粒子は水性媒体に分散させてスラリーとすることが出来る。酸化物粒子を水性媒体に分散させる方法としては、通常の攪拌機による分散処理のほかに、ホモジナイザー、超音波分散機、湿式粉砕機などを用いることが出来る。また、分散剤を用いる場合は、例えば、共重合成分としてアクリル酸アンモニウムを含む高分子分散剤を用いることが出来る。 The metal oxide particles obtained in the present invention can be dispersed in an aqueous medium to form a slurry. As a method for dispersing the oxide particles in the aqueous medium, a homogenizer, an ultrasonic disperser, a wet pulverizer, or the like can be used in addition to the dispersion treatment with a normal stirrer. When a dispersant is used, for example, a polymer dispersant containing ammonium acrylate as a copolymerization component can be used.
本発明において得られるスラリーは研磨剤として使用することが出来る。特に、酸化セリウム粒子を含む研磨剤は半導体集積回路の精密研磨用研磨剤として用いることが出来る。半導体集積回路中の被研磨膜としては、酸化珪素膜、窒化珪素膜、ホウ素リン添加酸化珪素膜などが挙げられる。 The slurry obtained in the present invention can be used as an abrasive. In particular, an abrasive containing cerium oxide particles can be used as an abrasive for precision polishing of semiconductor integrated circuits. Examples of the film to be polished in the semiconductor integrated circuit include a silicon oxide film, a silicon nitride film, and a boron phosphorus-added silicon oxide film.
本発明の研磨剤は、炭酸セリウムとシュウ酸との混合物を焼成して得られる酸化セリウムを粉砕した酸化セリウム粒子及び水を含むのが好ましい。 The abrasive of the present invention preferably contains cerium oxide particles obtained by pulverizing cerium oxide obtained by firing a mixture of cerium carbonate and oxalic acid, and water.
本発明になる研磨剤は、前記酸化セリウム粒子及び水の他に分散剤を含む組成であることが好ましい。例えば、上記方法で作製した酸化セリウム粒子及び分散剤を含んだ組成物を水に分散させることによって得られる。 The abrasive according to the present invention preferably has a composition containing a dispersant in addition to the cerium oxide particles and water. For example, it can be obtained by dispersing a composition containing cerium oxide particles and a dispersant prepared by the above method in water.
酸化セリウム粒子の濃度に制限はないが、分散液状の研磨剤の取り扱いやすさから、0.1重量%以上20重量%以下の範囲が好ましい。 Although there is no restriction | limiting in the density | concentration of a cerium oxide particle, From the ease of handling of a dispersion | distribution liquid abrasive | polishing agent, the range of 0.1 to 20 weight% is preferable.
分散剤としては、半導体素子研磨に使用することから、ナトリウムイオン、カリウムイオン等のアルカリ金属及びハロゲンの含有率を10ppm以下に抑えることが可能な分散剤であることが好ましく、例えば、ポリアクリル酸アンモニウム塩などの高分子分散剤が好ましい。 The dispersant is preferably a dispersant capable of suppressing the content of alkali metals such as sodium ions and potassium ions and halogen to 10 ppm or less because it is used for polishing semiconductor elements. For example, polyacrylic acid Polymeric dispersants such as ammonium salts are preferred.
分散剤の添加量は、研磨剤中の粒子の分散性及び沈降防止、さらに研磨傷(スクラッチ)と分散剤添加量との関係から酸化セリウム粒子100重量部に対して、0.01重量部以上5.0重量部以下の範囲が好ましい。 The added amount of the dispersant is 0.01 parts by weight or more with respect to 100 parts by weight of the cerium oxide particles from the relationship between the dispersibility of the particles in the abrasive and settling prevention, and the relationship between the scratches and the added amount of the dispersant A range of 5.0 parts by weight or less is preferred.
分散剤の重量平均分子量は、100〜50,000が好ましく、1,000〜10,000がより好ましい。分散剤の分子量が100未満であると、酸化珪素膜又は窒化珪素膜を研磨するときに、十分な研磨速度が得られにくい傾向があり、分散剤の分子量が50,000を超えると、粘度が高くなり、研磨剤の保存安定性が低下する傾向がある。なお、本発明において、重量平均分子量は、ゲルパーミエーションクロマトグラフィーで測定し、標準ポリスチレン換算した値である。 The weight average molecular weight of the dispersant is preferably from 100 to 50,000, and more preferably from 1,000 to 10,000. When the molecular weight of the dispersant is less than 100, when polishing the silicon oxide film or the silicon nitride film, a sufficient polishing rate tends to be difficult to obtain. When the molecular weight of the dispersant exceeds 50,000, the viscosity is low. The storage stability of the abrasive tends to decrease. In the present invention, the weight average molecular weight is a value measured by gel permeation chromatography and converted to standard polystyrene.
酸化セリウム粒子を水中に分散させる方法としては、通常の撹拌機による分散処理の他にホモジナイザー、超音波分散機、湿式ボールミル等を用いることができる。 As a method of dispersing the cerium oxide particles in water, a homogenizer, an ultrasonic disperser, a wet ball mill, or the like can be used in addition to a dispersion treatment using a normal stirrer.
このようして作製された研磨剤中の酸化セリウム粒子の二次粒子径は、粒径分布を持つため、酸化セリウム粒子の全体の99体積%(以下、D99という)が、粒径1.0μm以下であることが好ましい。D99が1.0μmを超えるとスクラッチ発生が多くなる。D99が0.7μm以下であると、スクラッチを少なくできるため、さらに好ましい。 Since the secondary particle diameter of the cerium oxide particles in the abrasive thus prepared has a particle size distribution, 99 volume% (hereinafter referred to as D99) of the entire cerium oxide particles has a particle size of 1.0 μm. The following is preferable. When D99 exceeds 1.0 μm, the generation of scratches increases. It is further preferable that D99 is 0.7 μm or less because scratches can be reduced.
研磨剤中の前記酸化セリウム粒子の二次粒子径の中央値(以下、D50ともいう)は、100nm以上が好ましく、より好ましくは150nm以上である。また2000nm以下が好ましく、より好ましくは500nm以下である。二次粒子径の中央値が100nm未満であると研磨速度が低くなる傾向があり、2000nmを超えると被研磨膜表面に研磨傷が生じやすくなる傾向がある。 研磨剤中の酸化セリウム粒子の二次粒子径の中央値(D50)及びD99は、光散乱法、例えば、粒度分布計(例えば、マルバーン インストルメンツ社製、マスターサイザー マイクロ・プラス)で測定することができる。 The median value of the secondary particle diameter (hereinafter also referred to as D50) of the cerium oxide particles in the abrasive is preferably 100 nm or more, more preferably 150 nm or more. Moreover, 2000 nm or less is preferable, More preferably, it is 500 nm or less. When the median value of the secondary particle diameter is less than 100 nm, the polishing rate tends to be low, and when it exceeds 2000 nm, there is a tendency that polishing scratches are likely to occur on the surface of the film to be polished. The median value (D50) and D99 of the secondary particle diameter of cerium oxide particles in the abrasive should be measured by a light scattering method, for example, a particle size distribution meter (for example, Mastersizer Micro Plus manufactured by Malvern Instruments). Can do.
本発明では、研磨剤中の固体全体に占める粒径3μm以上の粒子含有量が重量比で500ppm以下であることが好ましい。これによりスクラッチ低減効果が明らかである。前記3μm以上の粗大粒子とは、本発明では孔径3μmのフィルタでろ過することで捕捉される粒子をいう。固体全体に占める3μm以上の粒子含有量が200ppm以下の場合スクラッチ低減効果が大きく、より好ましく、固体全体に占める3μm以上の粒子含有量が100ppm以下であるとスクラッチ低減効果が最も大きく、さらに好ましい。 In the present invention, the content of particles having a particle diameter of 3 μm or more in the entire solid in the abrasive is preferably 500 ppm or less by weight. Thereby, the scratch reduction effect is clear. In the present invention, the coarse particles of 3 μm or more mean particles captured by filtering with a filter having a pore diameter of 3 μm. When the content of particles of 3 μm or more in the whole solid is 200 ppm or less, the effect of reducing scratches is large, more preferably, and when the content of particles of 3 μm or more in the whole solid is 100 ppm or less, the effect of reducing scratches is the largest and further preferable.
3μm以上の粗大粒子含有量は、孔径3μmのフィルタでろ過することで捕捉される粒子を重量測定で求めることができる。研磨剤中の固体全体の含有量は、別途、研磨剤を乾燥させて測定しておく。例えば、10gの研磨剤を150℃で1時間乾燥させた残りを重量測定して固体濃度を得る。そして、孔径3μmのフィルタでのろ過に用いる研磨剤の質量に前記固体濃度を乗じて、固体全体の含有量を得られる。 The coarse particle content of 3 μm or more can be obtained by gravimetric measurement of particles captured by filtering with a filter having a pore diameter of 3 μm. The content of the entire solid in the abrasive is measured by drying the abrasive separately. For example, 10 g of an abrasive is dried at 150 ° C. for 1 hour, and the remainder is weighed to obtain a solid concentration. And the content of the whole solid can be obtained by multiplying the mass of the abrasive used for filtration with a filter having a pore diameter of 3 μm by the solid concentration.
粗大粒子含有量を低減する手段としては、ろ過、分級が可能であるが、これに制限するものではない。 As means for reducing the coarse particle content, filtration and classification are possible, but not limited thereto.
本発明になる研磨剤は、例えば、酸化セリウム粒子、分散剤、高分子等の添加剤及び水から構成される一液式研磨剤として調製することもでき、また酸化セリウム粒子、分散剤及び水からなる酸化セリウムスラリーと、添加剤及び水からなる添加液とを分けた二液式研磨剤として調製することもできる。いずれの場合も、安定した特性を得ることができる。 The abrasive according to the present invention can be prepared, for example, as a one-component abrasive comprising an additive such as cerium oxide particles, a dispersant, a polymer, and water, and the cerium oxide particles, the dispersant, and water. It is also possible to prepare a two-component abrasive that separates a cerium oxide slurry made of the above and an additive liquid made of an additive and water. In either case, stable characteristics can be obtained.
酸化セリウムスラリーと添加液とを分けた二液式研磨剤として保存する場合、これら二液の配合を任意に変えられることにより平坦化特性と研磨速度の調整が可能となる。二液式の場合、添加液と酸化セリウムスラリーとを別々の配管で任意の流量で送液し、これらの配管を合流させて、すなわち供給配管出口の直前で両者を混合して、研磨定盤上に供給する方法(直前混合方式)か、予め任意の割合で両者を容器内で混合してから供給する方法(事前混合方式)がとられる。 When storing as a two-component abrasive in which the cerium oxide slurry and the additive solution are separated, the blending of these two components can be arbitrarily changed to adjust the planarization characteristics and polishing rate. In the case of the two-component system, the additive solution and the cerium oxide slurry are sent at different flow rates through separate pipes, and these pipes are merged, that is, both are mixed just before the supply pipe outlet, and the polishing surface plate Either a method of supplying the sample at the top (immediate mixing method) or a method of supplying the two after mixing them in a container in advance (pre-mixing method) is used.
本発明になる研磨剤は、所定の基板を研磨する基板の研磨方法に使用できる。例えば、基板に形成されている被研磨膜と、研磨布との間に研磨液を供給しながら、基板を研磨布に押しあて加圧し、被研磨膜と研磨布とを相対的に動かして被研磨膜を平坦に研磨する研磨に使用できる。 The abrasive | polishing agent which becomes this invention can be used for the grinding | polishing method of the board | substrate which grind | polishes a predetermined board | substrate. For example, while supplying the polishing liquid between the film to be polished formed on the substrate and the polishing cloth, the substrate is pressed against the polishing cloth and pressurized, and the film to be polished and the polishing cloth are moved relatively to each other. It can be used for polishing to polish the polishing film flat.
基板として、例えば半導体装置の形成工程に関する基板、具体的には回路素子が形成された段階の半導体基板上に無機絶縁層が形成された基板、シャロー・トレンチ素子分離形成工程において基板上に無機絶縁層が埋め込まれた基板などが挙げられる。そして、被研磨膜である前記無機絶縁層としては、少なくとも酸化珪素膜からなる絶縁層が挙げられる。 As a substrate, for example, a substrate related to a semiconductor device formation process, specifically, a substrate in which an inorganic insulating layer is formed on a semiconductor substrate at a stage where circuit elements are formed, or an inorganic insulation on a substrate in a shallow trench element separation formation process Examples include a substrate in which a layer is embedded. And as the said inorganic insulating layer which is a to-be-polished film | membrane, the insulating layer which consists of a silicon oxide film at least is mentioned.
以下、本発明の実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。また、実施例中で用いられている化学物質は和光純薬工業株式会社の試薬である。 EXAMPLES Hereinafter, although an Example of this invention is given and this invention is demonstrated further more concretely, this invention is not limited to these Examples. Moreover, the chemical substance used in the Examples is a reagent of Wako Pure Chemical Industries, Ltd.
実施例1
(酸化物の作製)
金属の炭酸塩と酸として炭酸セリウム八水和物100gとコハク酸52gをポリエチレン製容器に入れ、攪拌羽を毎分20回転させ、10分間、攪拌混合した。混合物をアルミナ製容器に入れ、750℃で1時間、空気中で加熱することにより黄白色の粉末を約50g得た。図1はこうして得られた粉末の走査型電子顕微鏡写真である。後述する比較例1の有機酸を混合しない場合と比較して形状が変化している。この粉末をX線回折法で解析し、酸化セリウムであることを確認した。Example 1
(Production of oxide)
100 g of cerium carbonate octahydrate and 52 g of succinic acid as a metal carbonate and acid were placed in a polyethylene container, and the stirring blade was rotated at 20 rpm for 10 minutes. The mixture was put in an alumina container and heated in air at 750 ° C. for 1 hour to obtain about 50 g of a yellowish white powder. FIG. 1 is a scanning electron micrograph of the powder thus obtained. The shape changes compared to the case where the organic acid of Comparative Example 1 described later is not mixed. This powder was analyzed by an X-ray diffraction method and confirmed to be cerium oxide.
(酸化物微粒子の作製)
酸化物の作製で得られた酸化セリウム40gとポリアクリル酸アンモニウム塩水溶液(40質量%)1gと脱イオン水759gを混合し、10分間攪拌した後、対向衝突式湿式粉砕機マイクロフルイダイザー(マイクロフルイディック社製)で30分間粉砕を行った。得られたスラリー中の酸化セリウム粒子をレーザ回折式粒度分布計マスターサイザーマイクロ・プラス(マルバーン インスツルメンツ社製)を用い、測定した結果、平均粒子径は300nmであった。また、スラリーを乾燥させ、酸化セリウム粒子を走査型電子顕微鏡で観察したところ、3マイクロメートル以上の粗大な粒子や酸化セリウム以外の磨耗粉と考えられる粒子は認められなかった。(Preparation of oxide fine particles)
After mixing 40 g of cerium oxide obtained by the production of oxide, 1 g of ammonium polyacrylate aqueous solution (40% by mass) and 759 g of deionized water and stirring for 10 minutes, a counter collision type wet pulverizer microfluidizer (microfluidizer (micro Pulverization was performed for 30 minutes. As a result of measuring the cerium oxide particles in the obtained slurry using a laser diffraction particle size distribution meter Mastersizer Micro Plus (manufactured by Malvern Instruments Inc.), the average particle size was 300 nm. Further, when the slurry was dried and the cerium oxide particles were observed with a scanning electron microscope, coarse particles of 3 micrometers or more and particles considered to be wear powder other than cerium oxide were not recognized.
実施例2
(酸化物の作製)
金属の炭酸塩と酸として炭酸セリウム八水和物100gとマロン酸45gを用いた以外は実施例1と同様にして黄白色の粉末を約50g得た。図2はこうして得られた粉末の走査型電子顕微鏡写真である。この粉末をX線回折法で解析し、酸化セリウムであることを確認した。Example 2
(Production of oxide)
About 50 g of yellowish white powder was obtained in the same manner as in Example 1 except that 100 g of cerium carbonate octahydrate and 45 g of malonic acid were used as the metal carbonate and acid. FIG. 2 is a scanning electron micrograph of the powder thus obtained. This powder was analyzed by an X-ray diffraction method and confirmed to be cerium oxide.
(酸化物微粒子の作製)
実施例1と全く同様な方法でスラリーを作製したところ、平均粒子径は230nmであった。また、スラリーを乾燥させ、酸化セリウム粒子を走査型電子顕微鏡で観察したところ、3マイクロメートル以上の粗大な粒子や酸化セリウム以外の磨耗粉と考えられる粒子は認められなかった。(Preparation of oxide fine particles)
When a slurry was prepared in the same manner as in Example 1, the average particle size was 230 nm. Further, when the slurry was dried and the cerium oxide particles were observed with a scanning electron microscope, coarse particles of 3 micrometers or more and particles considered to be wear powder other than cerium oxide were not recognized.
実施例3
(酸化物の作製)
炭酸セリウム八水和物100gとクエン酸56gを用いた以外は実施例1と同様にして黄白色の粉末を約50g得た。図3はこうして得られた粉末の走査型電子顕微鏡写真である。この粉末をX線回折法で解析し、酸化セリウムであることを確認した。Example 3
(Production of oxide)
About 50 g of a yellowish white powder was obtained in the same manner as in Example 1 except that 100 g of cerium carbonate octahydrate and 56 g of citric acid were used. FIG. 3 is a scanning electron micrograph of the powder thus obtained. This powder was analyzed by an X-ray diffraction method and confirmed to be cerium oxide.
(酸化物微粒子の作製)
実施例1と全く同様な方法でスラリーを作製したところ、平均粒子径は210nmであった。また、スラリーを乾燥させ、酸化セリウム粒子を走査型電子顕微鏡で観察したところ、3マイクロメートル以上の粗大な粒子や酸化セリウム以外の磨耗粉と考えられる粒子は認められなかった。(Preparation of oxide fine particles)
When a slurry was prepared in the same manner as in Example 1, the average particle size was 210 nm. Further, when the slurry was dried and the cerium oxide particles were observed with a scanning electron microscope, coarse particles of 3 micrometers or more and particles considered to be wear powder other than cerium oxide were not recognized.
実施例4
(酸化物の作製)
炭酸セリウム八水和物100gと酒石酸65gを用いた以外は実施例1と同様にして黄白色の粉末を約50g得た。図4はこうして得られた粉末の走査型電子顕微鏡写真である。この粉末をX線回折法で解析し、酸化セリウムであることを確認した。Example 4
(Production of oxide)
About 50 g of yellowish white powder was obtained in the same manner as in Example 1 except that 100 g of cerium carbonate octahydrate and 65 g of tartaric acid were used. FIG. 4 is a scanning electron micrograph of the powder thus obtained. This powder was analyzed by an X-ray diffraction method and confirmed to be cerium oxide.
(酸化物微粒子の作製)
実施例1と全く同様な方法でスラリーを作製したところ、平均粒子径は230nmであった。また、スラリーを乾燥させ、酸化セリウム粒子を走査型電子顕微鏡で観察したところ、3マイクロメートル以上の粗大な粒子や酸化セリウム以外の磨耗粉と考えられる粒子は認められなかった。(Preparation of oxide fine particles)
When a slurry was prepared in the same manner as in Example 1, the average particle size was 230 nm. Further, when the slurry was dried and the cerium oxide particles were observed with a scanning electron microscope, coarse particles of 3 micrometers or more and particles considered to be wear powder other than cerium oxide were not recognized.
実施例5
(酸化物の作製)
炭酸セリウム八水和物100gとリンゴ酸58gを用いた以外は実施例1と同様にして黄白色の塊状物を約50g得た。この塊状物を乳鉢で粉砕した。図5はこうして得られた粉末の走査型電子顕微鏡写真である。この粉末をX線回折法で解析し、酸化セリウムであることを確認した。Example 5
(Production of oxide)
About 50 g of a yellowish white block was obtained in the same manner as in Example 1 except that 100 g of cerium carbonate octahydrate and 58 g of malic acid were used. This lump was pulverized in a mortar. FIG. 5 is a scanning electron micrograph of the powder thus obtained. This powder was analyzed by an X-ray diffraction method and confirmed to be cerium oxide.
(酸化物微粒子の作製)
実施例1と全く同様な方法でスラリーを作製したところ、平均粒子径は290nmであった。また、スラリーを乾燥させ、酸化セリウム粒子を走査型電子顕微鏡で観察したところ、3マイクロメートル以上の粗大な粒子や酸化セリウム以外の磨耗粉と考えられる粒子は認められなかった。(Preparation of oxide fine particles)
When a slurry was prepared in the same manner as in Example 1, the average particle size was 290 nm. Further, when the slurry was dried and the cerium oxide particles were observed with a scanning electron microscope, coarse particles of 3 micrometers or more and particles considered to be wear powder other than cerium oxide were not recognized.
実施例6
(酸化物の作製)
炭酸セリウム八水和物100gとシュウ酸二水和物55gを用いた以外は実施例1と同様にして黄白色の粉末を約50g得た。図6はこうして得られた粉末の走査型電子顕微鏡写真である。この粉末をX線回折法で解析し、酸化セリウムであることを確認した。Example 6
(Production of oxide)
About 50 g of yellowish white powder was obtained in the same manner as in Example 1 except that 100 g of cerium carbonate octahydrate and 55 g of oxalic acid dihydrate were used. FIG. 6 is a scanning electron micrograph of the powder thus obtained. This powder was analyzed by an X-ray diffraction method and confirmed to be cerium oxide.
(酸化物微粒子の作製)
実施例1と全く同様な方法でスラリーを作製したところ、平均粒子径は210nmであった。また、スラリーを乾燥させ、酸化セリウム粒子を走査型電子顕微鏡で観察したところ、3マイクロメートル以上の粗大な粒子や酸化セリウム以外の磨耗粉と考えられる粒子は認められなかった。(Preparation of oxide fine particles)
When a slurry was prepared in the same manner as in Example 1, the average particle size was 210 nm. Further, when the slurry was dried and the cerium oxide particles were observed with a scanning electron microscope, coarse particles of 3 micrometers or more and particles considered to be wear powder other than cerium oxide were not recognized.
実施例7
(酸化物の作製)
炭酸セリウム八水和物100gとマレイン酸51gを用いた以外は実施例1と同様にして黄白色の粉末を約50g得た。図7はこうして得られた粉末の走査型電子顕微鏡写真である。この粉末をX線回折法で解析し、酸化セリウムであることを確認した。Example 7
(Production of oxide)
About 50 g of a yellowish white powder was obtained in the same manner as in Example 1 except that 100 g of cerium carbonate octahydrate and 51 g of maleic acid were used. FIG. 7 is a scanning electron micrograph of the powder thus obtained. This powder was analyzed by an X-ray diffraction method and confirmed to be cerium oxide.
(酸化物微粒子の作製)
実施例1と全く同様な方法でスラリーを作製したところ、平均粒子径は280nmであった。また、スラリーを乾燥させ、酸化セリウム粒子を走査型電子顕微鏡で観察したところ、3マイクロメートル以上の粗大な粒子や酸化セリウム以外の磨耗粉と考えられる粒子は認められなかった。(Preparation of oxide fine particles)
When a slurry was prepared in the same manner as in Example 1, the average particle size was 280 nm. Further, when the slurry was dried and the cerium oxide particles were observed with a scanning electron microscope, coarse particles of 3 micrometers or more and particles considered to be wear powder other than cerium oxide were not recognized.
実施例8
(酸化物の作製)
炭酸セリウム八水和物100gとアジピン酸64gを用いた以外は実施例1と同様にして黄白色の塊状物を約50g得た。この塊状物を乳鉢で粉砕した。図8はこうして得られた粉末の走査型電子顕微鏡写真である。この粉末をX線回折法で解析し、酸化セリウムであることを確認した。Example 8
(Production of oxide)
About 50 g of yellowish white block was obtained in the same manner as in Example 1 except that 100 g of cerium carbonate octahydrate and 64 g of adipic acid were used. This lump was pulverized in a mortar. FIG. 8 is a scanning electron micrograph of the powder thus obtained. This powder was analyzed by an X-ray diffraction method and confirmed to be cerium oxide.
(酸化物微粒子の作製)
実施例1と全く同様な方法でスラリーを作製したところ、平均粒子径は280nmであった。また、スラリーを乾燥させ、酸化セリウム粒子を走査型電子顕微鏡で観察したところ、3マイクロメートル以上の粗大な粒子や酸化セリウム以外の磨耗粉と考えられる粒子は認められなかった。(Preparation of oxide fine particles)
When a slurry was prepared in the same manner as in Example 1, the average particle size was 280 nm. Further, when the slurry was dried and the cerium oxide particles were observed with a scanning electron microscope, coarse particles of 3 micrometers or more and particles considered to be wear powder other than cerium oxide were not recognized.
実施例9
(酸化物の作製)
炭酸セリウム八水和物100gとサリチル酸60gを用いた以外は実施例1と同様にして黄白色の粉末を約50g得た。図9はこうして得られた粉末の走査型電子顕微鏡写真である。この粉末をX線回折法で解析し、酸化セリウムであることを確認した。Example 9
(Production of oxide)
About 50 g of yellowish white powder was obtained in the same manner as in Example 1 except that 100 g of cerium carbonate octahydrate and 60 g of salicylic acid were used. FIG. 9 is a scanning electron micrograph of the powder thus obtained. This powder was analyzed by an X-ray diffraction method and confirmed to be cerium oxide.
(酸化物微粒子の作製)
実施例1と全く同様な方法でスラリーを作製したところ、平均粒子径は250nmであった。また、スラリーを乾燥させ、酸化セリウム粒子を走査型電子顕微鏡で観察したところ、3マイクロメートル以上の粗大な粒子や酸化セリウム以外の磨耗粉と考えられる粒子は認められなかった。(Preparation of oxide fine particles)
When a slurry was prepared in the same manner as in Example 1, the average particle size was 250 nm. Further, when the slurry was dried and the cerium oxide particles were observed with a scanning electron microscope, coarse particles of 3 micrometers or more and particles considered to be wear powder other than cerium oxide were not recognized.
実施例10
(酸化物の作製)
炭酸セリウム八水和物100gと安息香酸105gを用いた以外は実施例1と同様にして黄白色の粉末を約50g得た。図10はこうして得られた粉末の走査型電子顕微鏡写真である。この粉末をX線回折法で解析し、酸化セリウムであることを確認した。Example 10
(Production of oxide)
About 50 g of yellowish white powder was obtained in the same manner as in Example 1 except that 100 g of cerium carbonate octahydrate and 105 g of benzoic acid were used. FIG. 10 is a scanning electron micrograph of the powder thus obtained. This powder was analyzed by an X-ray diffraction method and confirmed to be cerium oxide.
(酸化物微粒子の作製)
実施例1と全く同様な方法でスラリーを作製したところ、平均粒子径は250nmであった。また、スラリーを乾燥させ、酸化セリウム粒子を走査型電子顕微鏡で観察したところ、3マイクロメートル以上の粗大な粒子や酸化セリウム以外の磨耗粉と考えられる粒子は認められなかった。(Preparation of oxide fine particles)
When a slurry was prepared in the same manner as in Example 1, the average particle size was 250 nm. Further, when the slurry was dried and the cerium oxide particles were observed with a scanning electron microscope, coarse particles of 3 micrometers or more and particles considered to be wear powder other than cerium oxide were not recognized.
実施例11
(酸化物の作製)
炭酸セリウム八水和物100gとフタル酸72gを用いた以外は実施例1と同様にして黄白色の粉末を約50g得た。図11はこうして得られた粉末の走査型電子顕微鏡写真である。この粉末をX線回折法で解析し、酸化セリウムであることを確認した。Example 11
(Production of oxide)
About 50 g of yellowish white powder was obtained in the same manner as in Example 1 except that 100 g of cerium carbonate octahydrate and 72 g of phthalic acid were used. FIG. 11 is a scanning electron micrograph of the powder thus obtained. This powder was analyzed by an X-ray diffraction method and confirmed to be cerium oxide.
(酸化物微粒子の作製)
実施例1と全く同様な方法でスラリーを作製したところ、平均粒子径は240nmであった。また、スラリーを乾燥させ、酸化セリウム粒子を走査型電子顕微鏡で観察したところ、3マイクロメートル以上の粗大な粒子や酸化セリウム以外の磨耗粉と考えられる粒子は認められなかった。(Preparation of oxide fine particles)
When a slurry was prepared in the same manner as in Example 1, the average particle size was 240 nm. Further, when the slurry was dried and the cerium oxide particles were observed with a scanning electron microscope, coarse particles of 3 micrometers or more and particles considered to be wear powder other than cerium oxide were not recognized.
実施例12
(酸化物の作製)
炭酸セリウム八水和物100gとグリコール酸33gを用いた以外は実施例1と同様にして黄白色の粉末を約50g得た。図12はこうして得られた粉末の走査型電子顕微鏡写真である。この粉末をX線回折法で解析し、酸化セリウムであることを確認した。Example 12
(Production of oxide)
About 50 g of yellowish white powder was obtained in the same manner as in Example 1 except that 100 g of cerium carbonate octahydrate and 33 g of glycolic acid were used. FIG. 12 is a scanning electron micrograph of the powder thus obtained. This powder was analyzed by an X-ray diffraction method and confirmed to be cerium oxide.
(酸化物微粒子の作製)
実施例1と全く同様な方法でスラリーを作製したところ、平均粒子径は200nmであった。また、スラリーを乾燥させ、酸化セリウム粒子を走査型電子顕微鏡で観察したところ、3マイクロメートル以上の粗大な粒子や酸化セリウム以外の磨耗粉と考えられる粒子は認められなかった。(Preparation of oxide fine particles)
When a slurry was prepared in the same manner as in Example 1, the average particle size was 200 nm. Further, when the slurry was dried and the cerium oxide particles were observed with a scanning electron microscope, coarse particles of 3 micrometers or more and particles considered to be wear powder other than cerium oxide were not recognized.
実施例13
(酸化物の作製)
炭酸セリウム八水和物100gとアスコルビン酸77gを用いた以外は実施例1と同様にして黄白色の粉末を約50g得た。図13はこうして得られた粉末の走査型電子顕微鏡写真である。この粉末をX線回折法で解析し、酸化セリウムであることを確認した。Example 13
(Production of oxide)
About 50 g of yellowish white powder was obtained in the same manner as in Example 1 except that 100 g of cerium carbonate octahydrate and 77 g of ascorbic acid were used. FIG. 13 is a scanning electron micrograph of the powder thus obtained. This powder was analyzed by an X-ray diffraction method and confirmed to be cerium oxide.
(酸化物微粒子の作製)
実施例1と全く同様な方法でスラリーを作製したところ、平均粒子径は280nmであった。また、スラリーを乾燥させ、酸化セリウム粒子を走査型電子顕微鏡で観察したところ、3マイクロメートル以上の粗大な粒子や酸化セリウム以外の磨耗粉と考えられる粒子は認められなかった。(Preparation of oxide fine particles)
When a slurry was prepared in the same manner as in Example 1, the average particle size was 280 nm. Further, when the slurry was dried and the cerium oxide particles were observed with a scanning electron microscope, coarse particles of 3 micrometers or more and particles considered to be wear powder other than cerium oxide were not recognized.
実施例14
(酸化物の作製)
炭酸セリウム八水和物100gと平均分子量25000のポリアクリル酸63gを用いた以外は実施例1と同様にして黄白色の粉末を約50g得た。図14はこうして得られた粉末の走査型電子顕微鏡写真である。この粉末をX線回折法で解析し、酸化セリウムであることを確認した。Example 14
(Production of oxide)
About 50 g of a yellowish white powder was obtained in the same manner as in Example 1 except that 100 g of cerium carbonate octahydrate and 63 g of polyacrylic acid having an average molecular weight of 25000 were used. FIG. 14 is a scanning electron micrograph of the powder thus obtained. This powder was analyzed by an X-ray diffraction method and confirmed to be cerium oxide.
(酸化物微粒子の作製)
実施例1と全く同様な方法でスラリーを作製したところ、平均粒子径は270nmであった。また、スラリーを乾燥させ、酸化セリウム粒子を走査型電子顕微鏡で観察したところ、3マイクロメートル以上の粗大な粒子や酸化セリウム以外の磨耗粉と考えられる粒子は認められなかった。(Preparation of oxide fine particles)
When a slurry was prepared in the same manner as in Example 1, the average particle size was 270 nm. Further, when the slurry was dried and the cerium oxide particles were observed with a scanning electron microscope, coarse particles of 3 micrometers or more and particles considered to be wear powder other than cerium oxide were not recognized.
実施例15
(酸化物の作製)
炭酸セリウム八水和物100gとポリメタクリル酸75gを用いた以外は実施例1と同様にして黄白色の粉末を約50g得た。図15はこうして得られた粉末の走査型電子顕微鏡写真である。この粉末をX線回折法で解析し、酸化セリウムであることを確認した。Example 15
(Production of oxide)
About 50 g of yellowish white powder was obtained in the same manner as in Example 1 except that 100 g of cerium carbonate octahydrate and 75 g of polymethacrylic acid were used. FIG. 15 is a scanning electron micrograph of the powder thus obtained. This powder was analyzed by an X-ray diffraction method and confirmed to be cerium oxide.
(酸化物微粒子の作製)
実施例1と全く同様な方法でスラリーを作製したところ、平均粒子径は290nmであった。また、スラリーを乾燥させ、酸化セリウム粒子を走査型電子顕微鏡で観察したところ、3マイクロメートル以上の粗大な粒子や酸化セリウム以外の磨耗粉と考えられる粒子は認められなかった。(Preparation of oxide fine particles)
When a slurry was prepared in the same manner as in Example 1, the average particle size was 290 nm. Further, when the slurry was dried and the cerium oxide particles were observed with a scanning electron microscope, coarse particles of 3 micrometers or more and particles considered to be wear powder other than cerium oxide were not recognized.
実施例16
(酸化物の作製)
炭酸セリウム八水和物90gと炭酸ランタン水和物10gとマロン酸45gを用いた以外は実施例1と同様にして黄白色の粉末を約50g得た。図16はこうして得られた粉末の走査型電子顕微鏡写真である。この粉末をX線回折法で解析し、酸化セリウムと酸化ランタンの混合物であることを確認した。Example 16
(Production of oxide)
About 50 g of a yellowish white powder was obtained in the same manner as in Example 1 except that 90 g of cerium carbonate octahydrate, 10 g of lanthanum carbonate hydrate, and 45 g of malonic acid were used. FIG. 16 is a scanning electron micrograph of the powder thus obtained. This powder was analyzed by an X-ray diffraction method and confirmed to be a mixture of cerium oxide and lanthanum oxide.
(酸化物微粒子の作製)
実施例1と全く同様な方法でスラリーを作製したところ、平均粒子径は220nmであった。また、スラリーを乾燥させ、酸化セリウム及び酸化ランタン粒子を走査型電子顕微鏡で観察したところ、3マイクロメートル以上の粗大な粒子や酸化セリウム及び酸化ランタン粒子以外の磨耗粉と考えられる粒子は認められなかった。(Preparation of oxide fine particles)
When a slurry was prepared in the same manner as in Example 1, the average particle size was 220 nm. Moreover, when the slurry was dried and the cerium oxide and lanthanum oxide particles were observed with a scanning electron microscope, coarse particles of 3 micrometers or more and particles considered to be wear powder other than cerium oxide and lanthanum oxide particles were not recognized. It was.
比較例1
(酸化物の作製)
酸なしで炭酸セリウム八水和物100gのみを用いた以外は実施例1と同様にして黄白色の粉末を約50g得た。図17はこうして得られた粉末の走査型電子顕微鏡写真である。この粉末をX線回折法で解析し、酸化セリウムであることを確認した。Comparative Example 1
(Production of oxide)
About 50 g of yellowish white powder was obtained in the same manner as in Example 1 except that only 100 g of cerium carbonate octahydrate was used without acid. FIG. 17 is a scanning electron micrograph of the powder thus obtained. This powder was analyzed by an X-ray diffraction method and confirmed to be cerium oxide.
(酸化物微粒子の作製)
実施例1と全く同様な方法でスラリーを作製したところ、平均粒子径は340nmであった。また、スラリーを乾燥させ、酸化セリウム粒子を走査型電子顕微鏡で観察したところ、3マイクロメートル以上の粗大な粒子が観察された。また、他に観察された不定形の粒子をエネルギー分散型X線元素分析装置で分析したところ、鉄を含む粒子であることを確認した。粉砕前の粒子をエネルギー分散型X線元素分析装置で分析しても鉄を含む粒子は確認できなかったので、鉄を含む不定形の粒子は酸化セリウム以外の磨耗粉に由来すると考えられる。(Preparation of oxide fine particles)
When a slurry was prepared in the same manner as in Example 1, the average particle size was 340 nm. Moreover, when the slurry was dried and the cerium oxide particles were observed with a scanning electron microscope, coarse particles of 3 micrometers or more were observed. In addition, when the other irregularly-shaped particles observed were analyzed with an energy dispersive X-ray elemental analyzer, they were confirmed to be particles containing iron. Even if the particles before pulverization were analyzed with an energy dispersive X-ray elemental analyzer, particles containing iron could not be confirmed, so it is considered that the amorphous particles containing iron are derived from wear powder other than cerium oxide.
比較例2
(酸化物の作製)
酸なしで、炭酸セリウム八水和物100gと酸ではない平均分子量400のポリエチレングリコール50gとを用いた以外は実施例1と同様にして黄白色の粉末を約50g得た。図18はこうして得られた粉末の走査型電子顕微鏡写真である。この粉末をX線回折法で解析し、酸化セリウムであることを確認した。Comparative Example 2
(Production of oxide)
About 50 g of a yellowish white powder was obtained in the same manner as in Example 1 except that 100 g of cerium carbonate octahydrate and 50 g of polyethylene glycol having an average molecular weight of 400 that was not an acid were used without an acid. FIG. 18 is a scanning electron micrograph of the powder thus obtained. This powder was analyzed by an X-ray diffraction method and confirmed to be cerium oxide.
(酸化物微粒子の作製)
実施例1と全く同様な方法でスラリーを作製したところ、平均粒子径は340nmであった。また、スラリーを乾燥させ、酸化セリウム粒子を走査型電子顕微鏡で観察し、エネルギー分散型X線元素分析装置で分析したところ、比較例1と同様に3マイクロメートル以上の粗大な粒子や酸化セリウム以外の磨耗粉と考えられる粒子が認められた。(Preparation of oxide fine particles)
When a slurry was prepared in the same manner as in Example 1, the average particle size was 340 nm. Further, the slurry was dried, and the cerium oxide particles were observed with a scanning electron microscope and analyzed with an energy dispersive X-ray elemental analyzer. Similar to Comparative Example 1, except for coarse particles of 3 micrometers or more and cerium oxide Particles that were considered to be wear powders were observed.
実施例17
市販の炭酸セリウム6kg及びシュウ酸二水和物3.3kgをガス抜きの穴を開けたポリエチレン製容器に入れ、振盪機で5分間振盪し、混合した。混合物をアルミナ製容器に入れ、800℃、空気中で2時間焼成して黄白色の粉末を3kg得た。この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。Example 17
6 kg of commercially available cerium carbonate and 3.3 kg of oxalic acid dihydrate were placed in a polyethylene container with a vent hole and shaken for 5 minutes with a shaker and mixed. The mixture was placed in an alumina container and calcined in air at 800 ° C. for 2 hours to obtain 3 kg of a yellowish white powder. When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide.
上記で得た酸化セリウム粒子1000g、ポリアクリル酸アンモニウム塩水溶液(40質量%)80g及び脱イオン水5600gを混合し、10分間撹拌した後、ビーズミル(アシザワ・ファインテック社製)で30分間湿式粉砕を行った。得られた分散液を室温で20時間静置沈降させ、上澄みを採取した。この上澄み液を孔径1.0μmのフィルタでろ過した後、再び1.0μmのフィルタでろ過し、脱イオン水を加えて固形分濃度を5%に調整して、半導体平坦化用の酸化セリウム研磨剤を得た。 After mixing 1000 g of the cerium oxide particles obtained above, 80 g of ammonium polyacrylate aqueous solution (40% by mass) and 5600 g of deionized water and stirring for 10 minutes, wet milling with a bead mill (manufactured by Ashizawa Finetech) for 30 minutes Went. The resulting dispersion was allowed to settle at room temperature for 20 hours, and the supernatant was collected. The supernatant is filtered through a 1.0 μm pore size filter, then filtered again through a 1.0 μm filter, deionized water is added to adjust the solid content concentration to 5%, and cerium oxide polishing for semiconductor planarization. An agent was obtained.
得られた半導体平坦化用の酸化セリウム研磨剤の粒径をレーザ回折式粒度分布計(マルバーン インストルメンツ社製、マスターサイザー マイクロ・プラス)を用い、屈折率:1.9285、光源:He−Neレーザ、吸収0の条件で、半導体平坦化用の酸化セリウム研磨剤原液について測定した結果、二次粒子径の中央値(D50)は190nm及びD99は0.7μmであった。 The particle size of the obtained cerium oxide abrasive for semiconductor planarization was measured using a laser diffraction particle size distribution meter (manufactured by Malvern Instruments, Mastersizer Micro Plus), refractive index: 1.9285, light source: He-Ne. As a result of measuring the cerium oxide abrasive stock solution for semiconductor flattening under the conditions of laser and zero absorption, the median value of the secondary particle diameter (D50) was 190 nm and D99 was 0.7 μm.
粗大粒子含有量を調べるために、得られた半導体平坦化用の酸化セリウム研磨剤を15倍に希釈し、3μmフィルタ(ワットマン社製サイクロポア トラック エッチ メンブランフィルタ)で30gろ過した。ろ過後、フィルタを室温で乾燥させて、フィルタの質量を測定し、ろ過前後の質量増加分から3μm以上の粗大粒子量を求めた。別途、この研磨剤10gを150℃で1時間乾燥させて研磨剤中の固体濃度を算出した。その結果、3μm以上の粗大粒子量(質量比)は固体中300ppmであった。 In order to examine the content of coarse particles, the obtained cerium oxide abrasive for planarizing the semiconductor was diluted 15 times, and 30 g was filtered through a 3 μm filter (a cyclopore track etch membrane filter manufactured by Whatman). After filtration, the filter was dried at room temperature, the mass of the filter was measured, and the amount of coarse particles of 3 μm or more was determined from the mass increase before and after filtration. Separately, 10 g of this abrasive was dried at 150 ° C. for 1 hour, and the solid concentration in the abrasive was calculated. As a result, the amount of coarse particles (mass ratio) of 3 μm or more was 300 ppm in the solid.
また、上記半導体平坦化用の酸化セリウム研磨剤を脱イオン水で5倍に希釈し、以下の方法で研磨を行った。研磨速度は650nm/min、光学顕微鏡でウエハ表面を観察したところ、200mmウエハ全面にスクラッチは20個観察された。 Further, the cerium oxide abrasive for planarizing the semiconductor was diluted 5 times with deionized water and polished by the following method. When the polishing speed was 650 nm / min and the wafer surface was observed with an optical microscope, 20 scratches were observed on the entire surface of the 200 mm wafer.
(研磨試験方法)
研磨荷重:30kPa
研磨パッド:ロデール社製発泡ポリウレタン樹脂(IC−1000)
回転数:定盤75min−1、パッド75min−1
研磨剤供給速度:200mL/min
研磨対象物:P−TEOS成膜Siウェハ(200mm)(Polishing test method)
Polishing load: 30 kPa
Polishing pad: Rodel foam polyurethane resin (IC-1000)
Number of rotations: surface plate 75 min −1 , pad 75 min −1
Abrasive supply rate: 200 mL / min
Polishing object: Si wafer with P-TEOS film (200mm)
実施例18
実施例17で得た酸化セリウム粒子1000g、ポリアクリル酸アンモニウム塩水溶液(40質量%)80g及び脱イオン水5600gを混合し、10分間撹拌した後、ビーズミル(アシザワ・ファインテック社製)で30分間湿式粉砕を行った。得られた分散液を室温で100時間静置沈降させ、上澄みを採取した。この上澄み液を孔径0.7μmのフィルタでろ過した後、再び0.7μmのフィルタでろ過し、脱イオン水を加えて固形分濃度を5%に調整して、半導体平坦化用の酸化セリウム研磨剤を得た。Example 18
After mixing 1000 g of cerium oxide particles obtained in Example 17, 80 g of an aqueous solution of ammonium polyacrylate (40% by mass) and 5600 g of deionized water, stirring for 10 minutes, a bead mill (manufactured by Ashizawa Finetech) for 30 minutes. Wet grinding was performed. The obtained dispersion was allowed to settle at room temperature for 100 hours, and the supernatant was collected. This supernatant is filtered through a filter with a pore size of 0.7 μm, then filtered again with a 0.7 μm filter, deionized water is added to adjust the solid content concentration to 5%, and cerium oxide polishing for semiconductor planarization An agent was obtained.
得られた半導体平坦化用の酸化セリウム研磨剤の粒径を、実施例17と同様の方法で測定した結果、二次粒子径の中央値(D50)は160nm及びD99は0.5μmであった。 As a result of measuring the particle diameter of the obtained cerium oxide abrasive for semiconductor planarization by the same method as in Example 17, the median value (D50) of the secondary particle diameter was 160 nm and D99 was 0.5 μm. .
粗大粒子含有量を調べるために、得られた半導体平坦化用の酸化セリウム研磨剤を実施例1と同様の方法で過前後の質量増加分から3μm以上の粗大粒子量を求めた。その結果、3μm以上の粗大粒子量は固体中20ppmであった。 In order to examine the content of coarse particles, the amount of coarse particles of 3 μm or more was determined from the increase in mass before and after the obtained cerium oxide abrasive for planarizing a semiconductor in the same manner as in Example 1. As a result, the amount of coarse particles of 3 μm or more was 20 ppm in the solid.
また、上記半導体平坦化用の酸化セリウム研磨剤を脱イオン水で5倍に希釈し、実施例1と同様の研磨試験方法で研磨を行った。研磨速度は350nm/min、光学顕微鏡でウエハ表面を観察したところ、200mmウエハ全面にスクラッチは10個観察された。 Further, the cerium oxide abrasive for planarizing the semiconductor was diluted 5 times with deionized water and polished by the same polishing test method as in Example 1. When the polishing speed was 350 nm / min and the wafer surface was observed with an optical microscope, ten scratches were observed on the entire surface of the 200 mm wafer.
実施例19
市販の炭酸セリウム6kg及びシュウ酸二水和物4.9kgをガス抜きの穴を開けたポリエチレン製容器に入れ、振盪機で12時間振盪し、混合した。混合物をアルミナ製容器に入れ、800℃、空気中で2時間焼成して黄白色の粉末を3kg得た。この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。Example 19
6 kg of commercially available cerium carbonate and 4.9 kg of oxalic acid dihydrate were placed in a polyethylene container with a vent hole, shaken with a shaker for 12 hours, and mixed. The mixture was placed in an alumina container and calcined in air at 800 ° C. for 2 hours to obtain 3 kg of a yellowish white powder. When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide.
上記で得た酸化セリウム粒子1000g、ポリアクリル酸アンモニウム塩水溶液(40質量%)80g及び脱イオン水5600gを混合し、10分間撹拌した後、ビーズミル(アシザワ・ファインテック社製)で30分間湿式粉砕を行った。得られた分散液を室温で100時間静置沈降させ、上澄みを採取した。この上澄み液を孔径0.7μmのフィルタでろ過した後、再び0.7μmのフィルタでろ過し、脱イオン水を加えて固形分濃度を5%に調整して、半導体平坦化用の酸化セリウム研磨剤を得た。 After mixing 1000 g of the cerium oxide particles obtained above, 80 g of ammonium polyacrylate aqueous solution (40% by mass) and 5600 g of deionized water and stirring for 10 minutes, wet milling with a bead mill (manufactured by Ashizawa Finetech) for 30 minutes Went. The obtained dispersion was allowed to settle at room temperature for 100 hours, and the supernatant was collected. This supernatant is filtered through a filter with a pore size of 0.7 μm, then filtered again with a 0.7 μm filter, deionized water is added to adjust the solid content concentration to 5%, and cerium oxide polishing for semiconductor planarization An agent was obtained.
得られた半導体平坦化用の酸化セリウム研磨剤の粒径を、実施例17と同様の方法で測定した結果、二次粒子径の中央値(D50)は160nm及びD99は0.5μmであった。 As a result of measuring the particle diameter of the obtained cerium oxide abrasive for semiconductor planarization by the same method as in Example 17, the median value (D50) of the secondary particle diameter was 160 nm and D99 was 0.5 μm. .
粗大粒子含有量を調べるために、得られた半導体平坦化用の酸化セリウム研磨剤を実施例17と同様の方法でろ過前後の質量増加分から3μm以上の粗大粒子量を求めた。その結果、3μm以上の粗大粒子量は固体中20ppmであった。 In order to examine the content of coarse particles, the amount of coarse particles of 3 μm or more was determined from the mass increase before and after filtration of the obtained cerium oxide abrasive for planarizing a semiconductor in the same manner as in Example 17. As a result, the amount of coarse particles of 3 μm or more was 20 ppm in the solid.
また、上記半導体平坦化用の酸化セリウム研磨剤を脱イオン水で5倍に希釈し、実施例17と同様の研磨試験方法で研磨を行った。研磨速度は350nm/min、光学顕微鏡でウエハ表面を観察したところ、200mmウエハ全面にスクラッチは10個観察された。 Further, the cerium oxide abrasive for planarizing the semiconductor was diluted 5 times with deionized water, and was polished by the same polishing test method as in Example 17. When the polishing speed was 350 nm / min and the wafer surface was observed with an optical microscope, ten scratches were observed on the entire surface of the 200 mm wafer.
実施例20
市販の炭酸セリウム6kg及びシュウ酸(無水)2.4kgをガス抜きの穴を開けたポリエチレン製容器に入れ、振盪機で5分間振盪し、混合した。混合物をアルミナ製容器に入れ、800℃、空気中で2時間焼成して黄白色の粉末を3kg得た。この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。Example 20
6 kg of commercially available cerium carbonate and 2.4 kg of oxalic acid (anhydrous) were placed in a polyethylene container with a vent hole, shaken for 5 minutes with a shaker, and mixed. The mixture was placed in an alumina container and calcined in air at 800 ° C. for 2 hours to obtain 3 kg of a yellowish white powder. When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide.
上記で得た酸化セリウム粒子1000g、ポリアクリル酸アンモニウム塩水溶液(40質量%)80g及び脱イオン水5600gを混合し、10分間撹拌した後、ビーズミル(アシザワ・ファインテック社製)で30分間湿式粉砕を行った。得られた分散液を室温で100時間静置沈降させ、上澄みを採取した。この上澄み液を孔径0.7μmのフィルタでろ過した後、再び0.7μmのフィルタでろ過し、脱イオン水を加えて固形分濃度を5%に調整して、半導体平坦化用の酸化セリウム研磨剤を得た。 After mixing 1000 g of the cerium oxide particles obtained above, 80 g of ammonium polyacrylate aqueous solution (40% by mass) and 5600 g of deionized water and stirring for 10 minutes, wet milling with a bead mill (manufactured by Ashizawa Finetech) for 30 minutes Went. The obtained dispersion was allowed to settle at room temperature for 100 hours, and the supernatant was collected. This supernatant is filtered through a filter with a pore size of 0.7 μm, then filtered again with a 0.7 μm filter, deionized water is added to adjust the solid content concentration to 5%, and cerium oxide polishing for semiconductor planarization An agent was obtained.
得られた半導体平坦化用の酸化セリウム研磨剤の粒径を、実施例17と同様の方法で測定した結果、二次粒子径の中央値(D50)は160nm及びD99は0.5μmであった。 As a result of measuring the particle diameter of the obtained cerium oxide abrasive for semiconductor planarization by the same method as in Example 17, the median value (D50) of the secondary particle diameter was 160 nm and D99 was 0.5 μm. .
粗大粒子含有量を調べるために、得られた半導体平坦化用研磨剤を実施例17と同様の方法でろ過前後の質量増加分から3μm以上の粗大粒子量を求めた。その結果、3μm以上の粗大粒子量は固体中20ppmであった。 In order to examine the coarse particle content, the amount of coarse particles of 3 μm or more was determined from the mass increase before and after filtration of the obtained semiconductor planarization abrasive in the same manner as in Example 17. As a result, the amount of coarse particles of 3 μm or more was 20 ppm in the solid.
また、上記半導体平坦化用の酸化セリウム研磨剤を脱イオン水で5倍に希釈し、実施例17と同様の研磨試験方法で研磨を行った。研磨速度は350nm/min、光学顕微鏡でウエハ表面を観察したところ、200mmウエハ全面にスクラッチは10個観察された。 Further, the cerium oxide abrasive for planarizing the semiconductor was diluted 5 times with deionized water, and was polished by the same polishing test method as in Example 17. When the polishing speed was 350 nm / min and the wafer surface was observed with an optical microscope, ten scratches were observed on the entire surface of the 200 mm wafer.
比較例3
市販の炭酸セリウム6kgをアルミナ製容器に入れ、800℃、空気中で2時間焼成して黄白色の粉末を3kg得た。この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。Comparative Example 3
6 kg of commercially available cerium carbonate was put in an alumina container and calcined in air at 800 ° C. for 2 hours to obtain 3 kg of yellowish white powder. When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide.
実施例17と同様に、上記で得た酸化セリウム粒子1000g、ポリアクリル酸アンモニウム塩水溶液(40質量%)80g及び脱イオン水5600gを混合し、10分間撹拌した後、ビーズミル(アシザワ・ファインテック社製)で30分間湿式粉砕を行った。得られた分散液を室温で20時間静置沈降させ、上澄みを採取した。この上澄み液を孔径1.0μmのフィルタでろ過した後、再び1.0μmのフィルタでろ過し、脱イオン水を加えて固形分濃度を5%に調整して、半導体平坦化用の酸化セリウム研磨剤を得た。 Similarly to Example 17, 1000 g of the cerium oxide particles obtained above, 80 g of ammonium polyacrylate aqueous solution (40% by mass) and 5600 g of deionized water were mixed, stirred for 10 minutes, and then bead mill (Ashizawa Finetech Co., Ltd.). For 30 minutes. The resulting dispersion was allowed to settle at room temperature for 20 hours, and the supernatant was collected. The supernatant is filtered through a 1.0 μm pore size filter, then filtered again through a 1.0 μm filter, deionized water is added to adjust the solid content concentration to 5%, and cerium oxide polishing for semiconductor planarization. An agent was obtained.
得られた半導体平坦化用の酸化セリウム研磨剤の粒径を、実施例17と同様の方法で測定した結果、二次粒子径の中央値(D50)は190nm及びD99は0.7μmであった。 As a result of measuring the particle diameter of the obtained cerium oxide abrasive for semiconductor planarization by the same method as in Example 17, the median value of the secondary particle diameter (D50) was 190 nm and D99 was 0.7 μm. .
粗大粒子含有量を調べるために、得られた半導体平坦化用の酸化セリウム研磨剤を実施例17と同様の方法でろ過前後の質量増加分から3μm以上の粗大粒子量を求めた。その結果、3μm以上の粗大粒子量は固体中500ppmであった。 In order to examine the content of coarse particles, the amount of coarse particles of 3 μm or more was determined from the mass increase before and after filtration of the obtained cerium oxide abrasive for planarizing a semiconductor in the same manner as in Example 17. As a result, the amount of coarse particles of 3 μm or more was 500 ppm in the solid.
また、上記半導体平坦化用の酸化セリウム研磨剤を脱イオン水で5倍に希釈し、実施例17と同様の研磨試験方法で研磨を行った。研磨速度は650nm/min、光学顕微鏡でウエハ表面を観察したところ、200mmウエハ全面にスクラッチは50個観察された。 Further, the cerium oxide abrasive for planarizing the semiconductor was diluted 5 times with deionized water, and was polished by the same polishing test method as in Example 17. When the polishing speed was 650 nm / min and the wafer surface was observed with an optical microscope, 50 scratches were observed on the entire surface of the 200 mm wafer.
比較例4
実施例18と同様に、上記比較例3で得た酸化セリウム粒子1000g、ポリアクリル酸アンモニウム塩水溶液(40質量%)80g及び脱イオン水5600gを混合し、10分間撹拌した後、ビーズミル(アシザワ・ファインテック社製)で30分間湿式粉砕を行った。得られた分散液を室温で100時間静置沈降させ、上澄みを採取した。この上澄み液を孔径0.7μmのフィルタでろ過した後、再び0.7μmのフィルタでろ過し、脱イオン水を加えて固形分濃度を5%に調整して、半導体平坦化用の酸化セリウム研磨剤を作製した。Comparative Example 4
Similarly to Example 18, 1000 g of the cerium oxide particles obtained in Comparative Example 3 above, 80 g of ammonium polyacrylate aqueous solution (40% by mass) and 5600 g of deionized water were mixed and stirred for 10 minutes, and then a bead mill (Ashizawa For 30 minutes. The obtained dispersion was allowed to settle at room temperature for 100 hours, and the supernatant was collected. This supernatant is filtered through a filter with a pore size of 0.7 μm, then filtered again with a 0.7 μm filter, deionized water is added to adjust the solid content concentration to 5%, and cerium oxide polishing for semiconductor planarization An agent was prepared.
得られた半導体平坦化用の酸化セリウム研磨剤の粒径を、実施例17と同様の方法で測定した結果、二次粒子径の中央値(D50)は160nm及びD99は0.5μmであった。 As a result of measuring the particle diameter of the obtained cerium oxide abrasive for semiconductor planarization by the same method as in Example 17, the median value (D50) of the secondary particle diameter was 160 nm and D99 was 0.5 μm. .
粗大粒子含有量を調べるために、得られた半導体平坦化用の酸化セリウム研磨剤を実施例17と同様の方法でろ過前後の質量増加分から3μm以上の粗大粒子量を求めた。その結果、3μm以上の粗大粒子量は固体中50ppmであった。 In order to examine the content of coarse particles, the amount of coarse particles of 3 μm or more was determined from the mass increase before and after filtration of the obtained cerium oxide abrasive for planarizing a semiconductor in the same manner as in Example 17. As a result, the amount of coarse particles of 3 μm or more was 50 ppm in the solid.
また、上記半導体平坦化用の酸化セリウム研磨剤を脱イオン水で5倍に希釈し、実施例17と同様の研磨試験方法で研磨を行った。研磨速度は350nm/min、光学顕微鏡でウエハ表面を観察したところ、200mmウエハ全面にスクラッチは15個観察された。 Further, the cerium oxide abrasive for planarizing the semiconductor was diluted 5 times with deionized water, and was polished by the same polishing test method as in Example 17. When the polishing speed was 350 nm / min and the wafer surface was observed with an optical microscope, 15 scratches were observed on the entire surface of the 200 mm wafer.
比較例5
比較例3で得た酸化セリウム粒子1000g、ポリアクリル酸アンモニウム塩水溶液(40質量%)80g及び脱イオン水5600gを混合し、10分間撹拌した後、ビーズミル(アシザワ・ファインテック社製)で2時間湿式粉砕を行った。実施例18と同様に、得られた分散液を室温で100時間静置沈降させ、上澄みを採取した。この上澄み液を孔径0.7μmのフィルタでろ過した後、再び0.7μmのフィルタでろ過し、脱イオン水を加えて固形分濃度を5%に調整して、半導体平坦化用の酸化セリウム研磨剤を作製した。Comparative Example 5
After mixing 1000 g of cerium oxide particles obtained in Comparative Example 3, 80 g of ammonium polyacrylate aqueous solution (40% by mass) and 5600 g of deionized water and stirring for 10 minutes, the mixture was stirred for 2 hours with a bead mill (manufactured by Ashizawa Finetech). Wet grinding was performed. In the same manner as in Example 18, the obtained dispersion was allowed to settle at room temperature for 100 hours, and the supernatant was collected. This supernatant is filtered through a filter with a pore size of 0.7 μm, then filtered again with a 0.7 μm filter, deionized water is added to adjust the solid content concentration to 5%, and cerium oxide polishing for semiconductor planarization An agent was prepared.
得られた半導体平坦化用の酸化セリウム研磨剤の粒径を、実施例17と同様の方法で測定した結果、二次粒子径の中央値(D50)は160nm及びD99は0.5μmであった。 As a result of measuring the particle diameter of the obtained cerium oxide abrasive for semiconductor planarization by the same method as in Example 17, the median value (D50) of the secondary particle diameter was 160 nm and D99 was 0.5 μm. .
粗大粒子含有量を調べるために、得られた半導体平坦化用の酸化セリウム研磨剤を実施例17と同様の方法でろ過前後の質量増加分から3μm以上の粗大粒子量を求めた。その結果、3μm以上の粗大粒子量は固体中30ppmであった。 In order to examine the content of coarse particles, the amount of coarse particles of 3 μm or more was determined from the mass increase before and after filtration of the obtained cerium oxide abrasive for planarizing a semiconductor in the same manner as in Example 17. As a result, the amount of coarse particles of 3 μm or more was 30 ppm in the solid.
また、上記半導体平坦化用の酸化セリウム研磨剤を脱イオン水で5倍に希釈し、実施例17と同様の研磨試験方法で研磨を行った。研磨速度は350nm/min、光学顕微鏡でウエハ表面を観察したところ、200mmウエハ全面にスクラッチは30個観察された。 Further, the cerium oxide abrasive for planarizing the semiconductor was diluted 5 times with deionized water, and was polished by the same polishing test method as in Example 17. When the polishing speed was 350 nm / min and the wafer surface was observed with an optical microscope, 30 scratches were observed on the entire surface of the 200 mm wafer.
本発明により、粗大な粒子や磨耗粉を含まない微粒子を迅速に得ることが可能な、酸化物粒子の製造方法、それにより得られるスラリーを提供することができる。また、適切な研磨速度を維持しつつ、スクラッチを低減し、かつ配線形成工程における半導体表面を平坦性良好に研磨可能な研磨剤および基板の研磨方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for producing oxide particles capable of quickly obtaining coarse particles and fine particles containing no wear powder, and a slurry obtained thereby. Further, it is possible to provide a polishing agent and a substrate polishing method capable of reducing scratches while maintaining an appropriate polishing rate and polishing the semiconductor surface in the wiring formation step with good flatness.
Claims (18)
前記混合物を加熱して金属酸化物を得る工程、
前記金属酸化物を粉砕する工程を含むことを特徴とする酸化物粒子の製造方法。 Obtaining a mixture by mixing the solid acid in carbonate and 25 ° C. of the metal solid,
Heating the mixture to obtain a metal oxide;
The manufacturing method of the oxide particle characterized by including the process of grind | pulverizing the said metal oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008512164A JP5353238B2 (en) | 2006-04-21 | 2007-04-20 | Method for producing oxide particles, slurry, abrasive and method for polishing substrate |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006117772 | 2006-04-21 | ||
JP2006117772 | 2006-04-21 | ||
JP2006167283 | 2006-06-16 | ||
JP2006167283 | 2006-06-16 | ||
JP2008512164A JP5353238B2 (en) | 2006-04-21 | 2007-04-20 | Method for producing oxide particles, slurry, abrasive and method for polishing substrate |
PCT/JP2007/058629 WO2007123203A1 (en) | 2006-04-21 | 2007-04-20 | Method for producing oxide particle, slurry, polishing agent and method for polishing substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2007123203A1 JPWO2007123203A1 (en) | 2009-09-03 |
JP5353238B2 true JP5353238B2 (en) | 2013-11-27 |
Family
ID=38625103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008512164A Expired - Fee Related JP5353238B2 (en) | 2006-04-21 | 2007-04-20 | Method for producing oxide particles, slurry, abrasive and method for polishing substrate |
Country Status (6)
Country | Link |
---|---|
US (1) | US8328893B2 (en) |
JP (1) | JP5353238B2 (en) |
KR (1) | KR101361921B1 (en) |
CN (1) | CN102633288A (en) |
TW (1) | TWI372729B (en) |
WO (1) | WO2007123203A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5369610B2 (en) * | 2008-02-19 | 2013-12-18 | 日立化成株式会社 | Method for producing cerium oxide particles, method for producing polishing liquid, and method for polishing substrate |
JP6228765B2 (en) * | 2013-06-19 | 2017-11-08 | 小林 博 | Method for producing nanoparticles |
CN106745165A (en) * | 2016-11-22 | 2017-05-31 | 常州思宇知识产权运营有限公司 | A kind of preparation method of high-purity isotypy nano-cerium oxide |
KR20190106679A (en) * | 2018-03-07 | 2019-09-18 | 가부시키가이샤 후지미인코퍼레이티드 | Polishing composition |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09188516A (en) * | 1996-01-08 | 1997-07-22 | Shin Etsu Chem Co Ltd | Agglomerated lump-shaped rare earth oxide and its production |
JP2000186277A (en) * | 1998-12-22 | 2000-07-04 | Hitachi Chem Co Ltd | Cerium oxide abrasive and method for polishing substrate |
JP2002309236A (en) * | 2000-05-16 | 2002-10-23 | Mitsui Mining & Smelting Co Ltd | Cerium-containing abrasive, raw material therefor, and manufacturing method therefor |
JP2005126253A (en) * | 2003-10-21 | 2005-05-19 | Mitsui Mining & Smelting Co Ltd | Cerium oxide, cerium oxide for abrasive material, and their production method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2263241C (en) * | 1996-09-30 | 2004-11-16 | Masato Yoshida | Cerium oxide abrasive and method of abrading substrates |
US5759917A (en) * | 1996-12-30 | 1998-06-02 | Cabot Corporation | Composition for oxide CMP |
US6196480B1 (en) * | 1999-03-22 | 2001-03-06 | Fukuda Metal Foil & Powder Co., Ltd. | Ball mill, a method for preparing fine metal powder, and fine metal powder prepared by the method |
ATE292167T1 (en) * | 1999-08-13 | 2005-04-15 | Cabot Microelectronics Corp | POLISHING SYSTEM WITH STOP AGENT AND METHOD OF USE THEREOF |
AU762001B2 (en) * | 2000-05-16 | 2003-06-12 | Mitsui Mining & Smelting Co., Ltd. | Cerium based abrasive material, raw material thereof and method for their preparation |
CN1311009C (en) * | 2001-11-15 | 2007-04-18 | 三星电子株式会社 | Additive compositon, slurry composition including the same, and method of polishing an object using the slurry composition |
JP3861144B2 (en) | 2002-09-20 | 2006-12-20 | 独立行政法人物質・材料研究機構 | Method for producing easily sinterable nanospherical ceria compound powder |
US20080219130A1 (en) | 2003-08-14 | 2008-09-11 | Mempile Inc. C/O Phs Corporate Services, Inc. | Methods and Apparatus for Formatting and Tracking Information for Three-Dimensional Storage Medium |
-
2007
- 2007-04-20 CN CN2012100495128A patent/CN102633288A/en active Pending
- 2007-04-20 JP JP2008512164A patent/JP5353238B2/en not_active Expired - Fee Related
- 2007-04-20 TW TW096113965A patent/TWI372729B/en not_active IP Right Cessation
- 2007-04-20 US US12/226,545 patent/US8328893B2/en not_active Expired - Fee Related
- 2007-04-20 KR KR1020087028358A patent/KR101361921B1/en not_active IP Right Cessation
- 2007-04-20 WO PCT/JP2007/058629 patent/WO2007123203A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09188516A (en) * | 1996-01-08 | 1997-07-22 | Shin Etsu Chem Co Ltd | Agglomerated lump-shaped rare earth oxide and its production |
JP2000186277A (en) * | 1998-12-22 | 2000-07-04 | Hitachi Chem Co Ltd | Cerium oxide abrasive and method for polishing substrate |
JP2002309236A (en) * | 2000-05-16 | 2002-10-23 | Mitsui Mining & Smelting Co Ltd | Cerium-containing abrasive, raw material therefor, and manufacturing method therefor |
JP2005126253A (en) * | 2003-10-21 | 2005-05-19 | Mitsui Mining & Smelting Co Ltd | Cerium oxide, cerium oxide for abrasive material, and their production method |
Also Published As
Publication number | Publication date |
---|---|
KR101361921B1 (en) | 2014-02-12 |
US8328893B2 (en) | 2012-12-11 |
CN102633288A (en) | 2012-08-15 |
JPWO2007123203A1 (en) | 2009-09-03 |
TWI372729B (en) | 2012-09-21 |
WO2007123203A1 (en) | 2007-11-01 |
TW200804189A (en) | 2008-01-16 |
US20090165396A1 (en) | 2009-07-02 |
KR20090013788A (en) | 2009-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4851524B2 (en) | Cerium oxide powder for one-component CMP slurry, method for producing the same, one-component CMP slurry composition containing the same, and method for separating shallow trench elements using the slurry | |
US20070240366A1 (en) | Composition for Polishing | |
JP4555944B2 (en) | Semiconductor flattening abrasive and method for producing the same | |
CN102965025A (en) | Polishing agent for silicon oxide, liquid additive, and method of polishing | |
WO2006035779A1 (en) | Cmp polishing compound and method for polishing substrate | |
KR20160099616A (en) | Liquid suspension of cerium oxide particles | |
WO2009102615A2 (en) | Ceria material and method of forming same | |
JP6827318B2 (en) | Cerium oxide abrasive grains | |
JP5353238B2 (en) | Method for producing oxide particles, slurry, abrasive and method for polishing substrate | |
TWI668189B (en) | Composite particle for polishing, method for producing composite particle for polishing, and slurry for polishing | |
CN105800660A (en) | Preparation method of cerium oxide and CMP polishing solution containing cerium oxide abrasive | |
KR101396252B1 (en) | Polishing slurry for removal of initial step height and substrate or wafer polishing method using the same | |
Fan et al. | Nd-doped porous CeO2 abrasives for chemical mechanical polishing of SiO2 films | |
JP7348098B2 (en) | Ceria-based composite fine particle dispersion, its manufacturing method, and polishing abrasive grain dispersion containing the ceria-based composite fine particle dispersion | |
CN101426730A (en) | Method for producing oxide particle, slurry, polishing agent and method for polishing substrate | |
JP4117448B2 (en) | Crystalline ceric oxide sol and process for producing the same | |
JP5369610B2 (en) | Method for producing cerium oxide particles, method for producing polishing liquid, and method for polishing substrate | |
JP5726501B2 (en) | Polishing material, polishing composition and polishing method | |
JP4666138B2 (en) | Polishing composition containing aqueous zirconia sol | |
TW201533184A (en) | Polishing agent, polishing method, and manufacturing method of semiconductor integrated circuit device | |
JP2011224751A (en) | Cerium oxide abrasive and polishing method of substrate using the same | |
KR100637403B1 (en) | Abrasive particles, slurry for polishing and method of manufacturing the same | |
KR100599329B1 (en) | Slurry for polishing and method of polishing substrates | |
JP2008270341A (en) | Polishing agent for flattening semiconductor | |
JP2011104680A (en) | Polishing liquid containing cerium oxide particle and polishing method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130730 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130812 |
|
LAPS | Cancellation because of no payment of annual fees |