JP2008270341A - Polishing agent for flattening semiconductor - Google Patents

Polishing agent for flattening semiconductor Download PDF

Info

Publication number
JP2008270341A
JP2008270341A JP2007108112A JP2007108112A JP2008270341A JP 2008270341 A JP2008270341 A JP 2008270341A JP 2007108112 A JP2007108112 A JP 2007108112A JP 2007108112 A JP2007108112 A JP 2007108112A JP 2008270341 A JP2008270341 A JP 2008270341A
Authority
JP
Japan
Prior art keywords
semiconductor
polishing
cerium oxide
abrasive
polishing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007108112A
Other languages
Japanese (ja)
Inventor
Daisuke Hosaka
大祐 保坂
Takashi Sakurada
剛史 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007108112A priority Critical patent/JP2008270341A/en
Publication of JP2008270341A publication Critical patent/JP2008270341A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing agent for flattening a semiconductor, capable of assuring high-speed polishing of the front surface of the semiconductor in a wiring forming process, excellent surface flatness and scratch reduction. <P>SOLUTION: The polishing agent for flattening the semiconductor includes cerium oxide particle having a half-value width in a range of 0.28 to 0.32 degrees of the main peak of the powder X-ray diffraction pattern and water. In this polishing agent, the center value of the diameter of cerium oxide particle is within the range of 100 to 2,000 nm. It is also possible to use the polishing agent for flattening the semiconductor which can be obtained by adding a dispersion agent to the above polishing agent for flattening the semiconductor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、研磨剤に係るものであり、特に半導体平坦化用研磨剤に関する。   The present invention relates to an abrasive, and more particularly to an abrasive for planarizing a semiconductor.

素材表面を精密に研磨加工することが必要な用例として光ディスク基板、磁気ディスク、フラットパネルディスプレイ用ガラス基板、時計板、カメラレンズ、光学部品用の各種レンズに用いられるガラス素材やフィルタ類などの結晶素材、半導体用のシリコンウエハ等の基板、半導体デバイス製造の各工程において形成された絶縁膜、金属層、バリア層等がある。   Examples of applications that require precise polishing of the surface of the material: crystals such as optical disks, magnetic disks, glass substrates for flat panel displays, watch plates, camera lenses, and various lenses used for optical components. There are materials, substrates such as semiconductor silicon wafers, insulating films, metal layers, barrier layers and the like formed in each process of semiconductor device manufacturing.

これらの素材表面は、高精度に研磨することが要求される。このために例えばシリカ、酸化ジルコニウム、アルミナ等を単独で又は二種類以上を組み合わせて研磨粒子として用いる研磨剤が一般的に用いられている。   The surface of these materials is required to be polished with high accuracy. For this purpose, for example, an abrasive that uses silica, zirconium oxide, alumina or the like alone or in combination of two or more as abrasive particles is generally used.

研磨剤の形態としては、例えば、研磨粒子を液体中に分散させてスラリー状にしたものや、研磨粒子を樹脂その他の結着剤と共に固めたもの、研磨粒子を繊維、樹脂、金属等の基材表面に微粒子のみで結着剤と共に、付着及び/又は固定したものを研磨剤として用いるのが一般的である。   As the form of the abrasive, for example, abrasive particles are dispersed in a liquid to form a slurry, abrasive particles are solidified with a resin or other binder, and the abrasive particles are based on a fiber, resin, metal, or the like. In general, the surface of the material, which is adhered and / or fixed together with a binder only with fine particles, is used as an abrasive.

特に、シリカ微粒子を研磨粒子として用いたシリカ研磨剤は、被研磨面のスクラッチ発生などが少ないことから広く半導体集積回路(以下、半導体という)の製造における配線形成などの精密研磨用研磨剤として普及しているが、研磨速度が遅いことから、近年、研磨速度が早い酸化セリウムを含む酸化セリウム研磨剤が注目されている(例えば、特許文献1、特許文献2参照)。   In particular, silica abrasives using silica fine particles as abrasive particles are widely used as precision polishing abrasives for wiring formation in the manufacture of semiconductor integrated circuits (hereinafter referred to as semiconductors) because they produce less scratches on the surface to be polished. However, since the polishing rate is low, in recent years, a cerium oxide abrasive containing cerium oxide having a high polishing rate has attracted attention (see, for example, Patent Document 1 and Patent Document 2).

しかし、酸化セリウム研磨剤はシリカ研磨剤と比較してスクラッチが多いという課題がある。   However, the cerium oxide abrasive has a problem that it has more scratches than the silica abrasive.

酸化セリウム研磨剤は、古くからガラス研磨用に用いられてきたが、半導体の製造において行われる、TEOS−CVD法等の方法で形成されるSiO絶縁膜等無機絶縁膜の平坦化に適用するためには不純物混入を極力避ける必要があった。そこで、希土類原料を一旦精製し、セリウム塩を経由して、高純度の酸化セリウムを得ている。 A cerium oxide abrasive has been used for glass polishing for a long time, but is applied to planarization of an inorganic insulating film such as a SiO 2 insulating film formed by a method such as a TEOS-CVD method, which is performed in semiconductor manufacturing. Therefore, it was necessary to avoid contamination with impurities as much as possible. Therefore, the rare earth material is once purified to obtain high-purity cerium oxide via a cerium salt.

セリウム塩としては炭酸セリウム、蓚酸セリウム、硝酸セリウム等が用いられる。
これらのセリウム塩を焼成、粉砕した酸化セリウムを分散して、半導体平坦化用研磨剤が製造されていた。
Examples of cerium salts include cerium carbonate, cerium oxalate, and cerium nitrate.
A cerium oxide obtained by firing and pulverizing these cerium salts is dispersed to produce an abrasive for planarizing a semiconductor.

SiO絶縁膜などの研磨に使用する酸化セリウム研磨剤は、研磨粒子の一次粒子径が大きく結晶歪みが少ないほど、すなわち結晶性がよいほど高速研磨が可能であるが、スクラッチが入りやすい傾向がある。しかし、研磨速度とスクラッチに対する結晶性の関係は、概念的に理解されていたにとどまり、その最適値に関しては、十分な検討がなされていなかった。 The cerium oxide abrasive used for polishing SiO 2 insulating film, etc., is capable of high-speed polishing as the primary particle diameter of the abrasive particles is large and the crystal distortion is small, that is, the better the crystallinity, but there is a tendency that scratches are likely to occur. is there. However, the relationship between the polishing rate and the crystallinity with respect to scratch has been conceptually understood, and the optimum value has not been sufficiently studied.

一方で半導体の高集積化が進行し、配線等の加工寸法は100nmまで微細化している。加工が微細化するにつれてスクラッチ等の欠陥低減要求はますます強く、研磨速度、平坦化、スクラッチ低減のすべてを満たす研磨剤が要求されている。   On the other hand, higher integration of semiconductors has progressed, and the processing dimensions of wiring and the like have been reduced to 100 nm. As processing becomes finer, the demand for reducing defects such as scratches is increasing, and an abrasive that satisfies all of the polishing speed, flattening, and scratch reduction is required.

特開2000−026840号公報JP 2000-026840 A 特開平02−371267号公報Japanese Patent Laid-Open No. 02-371267

本発明は、配線形成工程における半導体表面を高速で研磨することができ、かつ平坦性が良好でスクラッチを低減することが可能な半導体平坦化用研磨剤を提供することを目的とするものである。   An object of the present invention is to provide a semiconductor planarization polishing agent capable of polishing a semiconductor surface at a high speed in a wiring formation step, having good flatness and reducing scratches. .

本発明者らは、半導体平坦化用研磨剤による研磨の高速化とスクラッチの低減について鋭意検討した結果、結晶性を適切な範囲に調製した酸化セリウムを研磨剤として用いることで、高い研磨速度を維持しつつスクラッチを低減させられることを見出し、本発明を完成するに至った。   As a result of intensive investigations on the speeding up of polishing and the reduction of scratches by the polishing agent for semiconductor flattening, the present inventors have used a cerium oxide prepared in a suitable range of crystallinity as a polishing agent. The present inventors have found that scratches can be reduced while maintaining the present invention and have completed the present invention.

本発明は、粉末X線回折パターンの主ピークの半値幅が0.28〜0.32°である酸化セリウム粒子及び水を含み、かつ酸化セリウム粒子径の中央値が100〜2000nmである半導体平坦化用研磨剤に関する。
また、本発明は、粒子径3μm以上の酸化セリウム粒子含有量が、重量比で固体中の500ppm以下である上記の半導体平坦化用研磨剤に関する。
The present invention includes a semiconductor flat having a cerium oxide particle having a half-value width of 0.28 to 0.32 ° of a main peak of a powder X-ray diffraction pattern and water, and having a median cerium oxide particle diameter of 100 to 2000 nm. The present invention relates to a polishing abrasive.
The present invention also relates to the above-described polishing agent for planarizing a semiconductor, wherein the content of cerium oxide particles having a particle diameter of 3 μm or more is 500 ppm or less in the solid by weight.

また、本発明は、上記の半導体平坦化用研磨剤に、さらに分散剤を含む半導体平坦化用研磨剤に関する。
さらに、本発明は、酸化セリウム粒子全体の99体積%が、粒子径1μm以下である上記の半導体平坦化用研磨剤に関する。
The present invention also relates to a semiconductor flattening polishing slurry further containing a dispersing agent in the semiconductor flattening polishing slurry.
Furthermore, the present invention relates to the above-described polishing agent for planarizing a semiconductor, wherein 99% by volume of the entire cerium oxide particles have a particle diameter of 1 μm or less.

本発明によれば、配線形成工程における半導体表面を高速で研磨でき、かつ平坦性が良好でスクラッチを低減することが可能となる。   According to the present invention, the semiconductor surface in the wiring forming process can be polished at high speed, and the flatness is good, and scratches can be reduced.

以下、発明を実施するための最良の形態について詳細に説明する。
なお、本発明になる半導体平坦化用研磨剤(以下、研磨剤ともいう)は、酸化セリウム粒子及び水を含むことを特徴とする。
Hereinafter, the best mode for carrying out the invention will be described in detail.
The semiconductor planarization abrasive (hereinafter also referred to as abrasive) according to the present invention is characterized by containing cerium oxide particles and water.

一般に酸化セリウムは、炭酸塩、蓚酸塩、硝酸塩等のセリウム化合物を焼成することによって得られる。
TEOS−CVD法等で形成されるSiO絶縁膜の研磨に使用する酸化セリウム研磨剤は、研磨粒子を構成する一次粒子径が大きく結晶歪が少ないほど、すなわち結晶性がよいほど高速研磨が可能であるが、スクラッチが入りやすい傾向がある。
In general, cerium oxide is obtained by firing cerium compounds such as carbonates, oxalates, and nitrates.
The cerium oxide abrasive used for polishing the SiO 2 insulating film formed by TEOS-CVD method, etc. can be polished at a higher speed as the primary particle diameter of the abrasive particles is larger and the crystal distortion is smaller, that is, the crystallinity is better. However, there is a tendency for scratches to easily enter.

そこで、本発明で用いる酸化セリウム粒子は、あまり結晶性を上げないで作製される。
また、半導体素子研磨に使用することから、アルカリ金属及びハロゲン類の含有率は酸化セリウム粒子中10ppm以下に抑えることが好ましい。
Therefore, the cerium oxide particles used in the present invention are produced without increasing crystallinity.
Moreover, since it uses for semiconductor element grinding | polishing, it is preferable to suppress the content rate of an alkali metal and halogens to 10 ppm or less in a cerium oxide particle.

本発明において、酸化セリウム粒子を作製する方法として焼成法が使用できる。ただし、スクラッチが入らない粒子を作製するためにできるだけ結晶性を上げない低温焼成が好ましい。   In the present invention, a firing method can be used as a method for producing cerium oxide particles. However, low temperature firing that does not increase crystallinity as much as possible is preferable in order to produce particles that do not contain scratches.

セリウム化合物の酸化温度が300℃であることから、焼成温度は600℃以上、900℃以下が好ましい。炭酸セリウムを600℃以上、900℃以下で、5〜300分、酸素ガスなどの酸化雰囲気で焼成することが好ましい。   Since the oxidation temperature of the cerium compound is 300 ° C, the firing temperature is preferably 600 ° C or higher and 900 ° C or lower. It is preferable to burn cerium carbonate in an oxidizing atmosphere such as oxygen gas at 600 ° C. or higher and 900 ° C. or lower for 5 to 300 minutes.

上記の方法により製造された酸化セリウム粒子は、ジェットミルなどによる乾式粉砕や遊星ビーズミルなどによる湿式粉砕で粉砕できる。   The cerium oxide particles produced by the above method can be pulverized by dry pulverization using a jet mill or the like, or wet pulverization using a planetary bead mill or the like.

本発明になる研磨剤は、前記酸化セリウム粒子、分散剤及び水を含む組成であるのが好ましい。例えば、上記方法にて作製した酸化セリウム粒子、分散剤を含んでなる組成物を水に分散させることによって得られる。
酸化セリウム粒子の濃度に制限はないが、分散液状の研磨剤の取り扱いやすさから、0.1重量%以上、20重量%以下の範囲が好ましい。
The abrasive according to the present invention preferably has a composition containing the cerium oxide particles, a dispersant and water. For example, it can be obtained by dispersing a composition containing cerium oxide particles and a dispersant prepared by the above method in water.
Although there is no restriction | limiting in the density | concentration of a cerium oxide particle, From the ease of handling of a dispersion | distribution liquid abrasive | polishing agent, the range of 0.1 to 20 weight% is preferable.

分散剤としては、半導体素子研磨に使用することからナトリウムイオン、カリウムイオン等のアルカリ金属及びハロゲンの含有率を10ppm以下に抑えることが好ましいので、例えば、ポリアクリル酸アンモニウム塩などの高分子分散剤が好ましい。   As the dispersant, since it is preferably used for polishing semiconductor elements, it is preferable to suppress the content of alkali metals such as sodium ions and potassium ions and halogens to 10 ppm or less. For example, polymer dispersants such as ammonium polyacrylate Is preferred.

分散剤添加量は、研磨剤中の粒子の分散性及び沈降防止、さらにスクラッチと分散剤添加量との関係から酸化セリウム粒子100重量部に対して、0.01重量部以上、5.0重量部以下の範囲が好ましい。   The added amount of the dispersant is 0.01 parts by weight or more and 5.0 parts by weight with respect to 100 parts by weight of the cerium oxide particles due to the dispersibility of the particles in the abrasive and the prevention of settling, and the relationship between the scratch and the added amount of the dispersant. A range of parts or less is preferred.

分散剤の重量平均分子量は、100〜50,000が好ましく、1,000〜10,000がより好ましい。分散剤の分子量が100未満の場合は、SiO膜又は窒化珪素膜を研磨するときに、十分な研磨速度が得られにくく、分散剤の分子量が50,000を超えた場合は、粘度が高くなり、研磨剤の保存安定性が低下する傾向があるためである。
なお、本発明において、重量平均分子量は、ゲルパーミエーションクロマトグラフィーで測定し、標準ポリスチレン換算した値である。
The weight average molecular weight of the dispersant is preferably from 100 to 50,000, and more preferably from 1,000 to 10,000. When the molecular weight of the dispersant is less than 100, it is difficult to obtain a sufficient polishing rate when polishing the SiO 2 film or the silicon nitride film, and when the molecular weight of the dispersant exceeds 50,000, the viscosity is high. This is because the storage stability of the abrasive tends to decrease.
In the present invention, the weight average molecular weight is a value measured by gel permeation chromatography and converted to standard polystyrene.

これらの酸化セリウム粒子を水中に分散させる方法としては、通常の撹拌機による分散処理のほかにホモジナイザー、超音波分散機、湿式ボールミルなどを用いることができる。   As a method for dispersing these cerium oxide particles in water, a homogenizer, an ultrasonic disperser, a wet ball mill or the like can be used in addition to a dispersion treatment using a normal stirrer.

本発明になる研磨剤に分散される酸化セリウム粒子は、粉末X線回折パターンの主ピークの半値幅が0.28〜0.32°である。半値幅が0.32°を超えて大きい場合は、SiO膜又は窒化珪素膜を高速に研磨することができず、半値幅が0.28°未満の場合は、被研磨膜表面にスクラッチが生じやすくなるからである。 In the cerium oxide particles dispersed in the abrasive according to the present invention, the half width of the main peak of the powder X-ray diffraction pattern is 0.28 to 0.32 °. When the full width at half maximum exceeds 0.32 °, the SiO 2 film or the silicon nitride film cannot be polished at high speed. When the full width at half maximum is less than 0.28 °, scratches are generated on the surface of the film to be polished. This is because it tends to occur.

本発明になる研磨剤中の固体全体に占める粒子径3μm以上の粗大粒子含有量は少ないことが好ましい。前記3μm以上の粗大粒子とは、本発明では孔径3μmのフィルタでろ過することで捕捉される粒子をいう。   The content of coarse particles having a particle diameter of 3 μm or more in the entire solid in the abrasive according to the present invention is preferably small. In the present invention, the coarse particles of 3 μm or more mean particles captured by filtering with a filter having a pore diameter of 3 μm.

本発明では、研磨剤中の固体全体に占める粒子径3μm以上の粒子含有量が重量比で500ppm以下であることが好ましく、これによりスクラッチ低減効果が明らかである。固体全体に占める3μm以上の粒子含有量が、200ppm以下の場合スクラッチ低減効果が大きく、より好ましい。固体全体に占める3μm以上の粒子含有量が100ppm以下の場合にはスクラッチ低減効果が最も大きく、さらに好ましい。   In the present invention, the content of particles having a particle diameter of 3 μm or more in the entire solid in the abrasive is preferably 500 ppm or less by weight, and the scratch reducing effect is clear. When the content of particles of 3 μm or more in the entire solid is 200 ppm or less, the effect of reducing scratches is large, which is more preferable. When the content of particles of 3 μm or more occupying the whole solid is 100 ppm or less, the effect of reducing scratches is the largest and more preferable.

3μm以上の粗大粒子含有量は、孔径3μmのフィルタでろ過することで捕捉される粒子を重量測定で求めることができる。研磨剤中の固体全体の含有量は、別途、研磨剤を乾燥させて測定しておく。例えば、10gの研磨剤を150℃で1時間乾燥させた残りを重量測定して固体濃度を得る。   The coarse particle content of 3 μm or more can be obtained by gravimetric measurement of particles captured by filtering with a filter having a pore diameter of 3 μm. The content of the entire solid in the abrasive is measured by drying the abrasive separately. For example, 10 g of an abrasive is dried at 150 ° C. for 1 hour, and the remainder is weighed to obtain a solid concentration.

そして、孔径3μmのフィルタでのろ過に用いる研磨剤の質量に前記固体濃度を乗じて、固体全体の含有量が得られる。
粗大粒子含有量を低減する手段としては、ろ過、分級が可能であるが、これに制限するものではない。
And the content of the whole solid is obtained by multiplying the mass of the abrasive used for filtration with a filter having a pore diameter of 3 μm by the solid concentration.
As means for reducing the coarse particle content, filtration and classification are possible, but not limited thereto.

本発明になる研磨剤中の酸化セリウム粒子の二次粒子径は分布を持つため、酸化セリウム二次粒子径の中央値が、100〜2000nm(0.1〜2.0μm)であることが好ましく、0.1〜0.5μmであることがさらに好ましく、特に0.1〜0.3μmであることが好ましい。二次粒子径の中央値が0.1μmm未満であると研磨速度が低くなる傾向があり、2.0μmを超えると被研磨膜表面にスクラッチが生じやすくなるからである。   Since the secondary particle diameter of the cerium oxide particles in the abrasive according to the present invention has a distribution, the median value of the cerium oxide secondary particle diameter is preferably 100 to 2000 nm (0.1 to 2.0 μm). 0.1 to 0.5 μm is more preferable, and 0.1 to 0.3 μm is particularly preferable. This is because if the median value of the secondary particle diameter is less than 0.1 μm, the polishing rate tends to be low, and if it exceeds 2.0 μm, scratches are likely to occur on the surface of the film to be polished.

前記酸化セリウム粒子の全体の99体積%(以下、D99という。)は、粒子径1μm以下であることが好ましい。D99が1μmを超えるとスクラッチ発生が多くなる。D99が0.7μm以下の場合、スクラッチを少なくできるため、さらに好ましい。   It is preferable that 99% by volume (hereinafter referred to as D99) of the cerium oxide particles has a particle diameter of 1 μm or less. When D99 exceeds 1 μm, the generation of scratches increases. When D99 is 0.7 μm or less, scratches can be reduced, which is more preferable.

研磨剤中の酸化セリウム粒子についての二次粒子径の中央値及び上記D99は、光散乱法、例えば、粒度分布計(例えば、マルバーン インストルメンツ社製、マスターサイザー マイクロ・プラス)で測定することができる。   The median secondary particle diameter of the cerium oxide particles in the abrasive and the D99 can be measured by a light scattering method, for example, a particle size distribution meter (for example, Mastersizer Micro Plus manufactured by Malvern Instruments Inc.). it can.

また、研磨剤には、平坦性、分散性を更に向上させる高分子添加剤を加えることができる。以下の添加剤に限定されるわけではないが、例えばアクリル酸エステル誘導体、アクリル酸、アクリル酸塩等のポリマーを加えることができる。
高分子添加剤の添加量は、特に制限はないが、酸化セリウム粒子100重量部に対して、5重量部以上、20重量部以下が好ましい。
In addition, a polymer additive that further improves the flatness and dispersibility can be added to the abrasive. Although not limited to the following additives, for example, polymers such as acrylic acid ester derivatives, acrylic acid, and acrylates can be added.
The addition amount of the polymer additive is not particularly limited, but is preferably 5 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the cerium oxide particles.

また、高分子添加剤の重量平均分子量は、100〜50,000が好ましく、1,000〜10,000がより好ましい。分子量が100未満の場合は、SiO膜又は窒化珪素膜を研磨するときに、十分な研磨速度が得られにくく、分子量が50,000を超えた場合は、粘度が高くなり、研磨剤の保存安定性が低下する傾向があるためである。 The weight average molecular weight of the polymer additive is preferably 100 to 50,000, more preferably 1,000 to 10,000. When the molecular weight is less than 100, it is difficult to obtain a sufficient polishing rate when polishing the SiO 2 film or the silicon nitride film. When the molecular weight exceeds 50,000, the viscosity becomes high and the abrasive is stored. This is because the stability tends to decrease.

研磨剤のpHは、3以上、9以下であることが好ましく、5以上、8以下であることがより好ましい。pHが3未満であると化学的作用力が小さくなり、研磨速度が低下する傾向がある。pHが9を超えて大きいと化学的作用が強すぎ被研磨面が皿状に窪む(ディッシング)おそれがある。   The pH of the abrasive is preferably 3 or more and 9 or less, and more preferably 5 or more and 8 or less. If the pH is less than 3, the chemical action force tends to be small, and the polishing rate tends to decrease. If the pH is higher than 9, the chemical action is too strong and the surface to be polished may be dished (dishing).

pHは、pHメータ(例えば、横河電機株式会社製の Model pH81)で測定した値である。標準緩衝液〔フタル酸塩pH緩衝液pH:4.21(25℃)、中性りん酸塩pH緩衝液pH6.86(25℃)〕を用いて、2点校正した後、電極を研磨液に入れて、2分以上経過して安定した後の値を測定できる。   The pH is a value measured with a pH meter (for example, Model pH81 manufactured by Yokogawa Electric Corporation). After calibrating two points using a standard buffer solution (phthalate pH buffer solution pH: 4.21 (25 ° C.), neutral phosphate pH buffer solution pH 6.86 (25 ° C.)), the electrode was polished. The value can be measured after 2 minutes or more have elapsed and stabilized.

本発明になる研磨剤は、例えば、酸化セリウム粒子、分散剤、高分子添加剤及び水から構成される一液式研磨剤として調製することもでき、また酸化セリウム粒子、分散剤及び水からなる酸化セリウムスラリーと、高分子添加剤及び水からなる添加液とを分けた二液式研磨剤として調製することもできる。いずれの場合も、安定した特性を得ることができる。   The abrasive according to the present invention can be prepared, for example, as a one-part abrasive composed of cerium oxide particles, a dispersant, a polymer additive, and water, and also consists of cerium oxide particles, a dispersant, and water. It can also be prepared as a two-component abrasive that separates a cerium oxide slurry and an additive solution composed of a polymer additive and water. In either case, stable characteristics can be obtained.

酸化セリウムスラリーと添加液とを分けた二液式研磨剤として保存する場合、これら二液の配合を任意に変えられることにより平坦化特性と研磨速度の調整が可能となる。二液式の場合、添加液と酸化セリウムスラリーとを別々の配管で任意の流量で送液し、これらの配管を合流させて、すなわち供給配管出口の直前で両者を混合して、研磨定盤上に供給する方法(直前混合方式)か、予め任意の割合で両者を容器内で混合してから供給する方法(事前混合方式)がとられる。   When storing as a two-component abrasive in which the cerium oxide slurry and the additive solution are separated, the blending of these two components can be arbitrarily changed to adjust the planarization characteristics and polishing rate. In the case of the two-component system, the additive solution and the cerium oxide slurry are sent at different flow rates through separate pipes, and these pipes are merged, that is, both are mixed just before the supply pipe outlet, and the polishing surface plate Either a method of supplying the sample at the top (immediate mixing method) or a method of supplying the two after mixing them in a container in advance (pre-mixing method) is used.

本発明になる研磨剤は、基体に形成されている被研磨膜と、研磨パッドとの間に研磨液を供給しながら、基体を研磨パッドに押しあて加圧し、被研磨膜と研磨パッドとを相対的に動かして被研磨膜を平坦に研磨する研磨に使用できる。   The polishing agent according to the present invention presses and presses the substrate against the polishing pad while supplying a polishing liquid between the polishing film formed on the substrate and the polishing pad. It can be used for polishing to move the film relatively and polish the film to be polished flat.

基体として、例えば半導体装置の形成工程に関する基板、具体的には回路素子と配線パターンが形成された段階の半導体基板、回路素子が形成された段階の半導体基板等の基板上に、無機絶縁層が形成された基板などが挙げられる。そして、被研磨膜は、無機絶縁層、例えばSiO膜層又は窒化珪素膜層などが挙げられる。 As the substrate, for example, an inorganic insulating layer is formed on a substrate related to a semiconductor device formation process, specifically, a semiconductor substrate at a stage where a circuit element and a wiring pattern are formed, a semiconductor substrate at a stage where a circuit element is formed, or the like. Examples include a formed substrate. Examples of the film to be polished include an inorganic insulating layer such as a SiO 2 film layer or a silicon nitride film layer.

以下、本発明を、実施例により具体的に説明するが、本発明はこれらに制限するものではない。
(実施例1)
市販の炭酸セリウム6kgをアルミナ製容器に入れ、空気雰囲気下850℃で2時間保持し、その後500℃で2時間保持する焼成により黄白色の粉末を3kg得た。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
Example 1
6 kg of commercially available cerium carbonate was put in an alumina container, held at 850 ° C. for 2 hours in an air atmosphere, and then heated at 500 ° C. for 2 hours to obtain 3 kg of yellowish white powder.

この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。焼成粉末粒子径は30〜100μmであった。
さらに、得られた酸化セリウム粉末3kgを、ジェットミルを用いて乾式粉砕し、酸化セリウム粒子を得た。
When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide. The fired powder particle size was 30 to 100 μm.
Further, 3 kg of the obtained cerium oxide powder was dry-ground using a jet mill to obtain cerium oxide particles.

上記作製した酸化セリウム粒子1000g、ポリアクリル酸アンモニウム塩水溶液(40重量%)80g及び脱イオン水3920gを混合し、撹拌しながら超音波分散を10分間施した。   1000 g of the produced cerium oxide particles, 80 g of an aqueous polyacrylic acid ammonium salt solution (40% by weight) and 3920 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring.

得られた分散液を室温(25℃)で100時間静置沈降させ、上澄みを採取した。この上澄み液を孔径0.7μmのフィルタでろ過した後、再び0.7μmのフィルタでろ過し、脱イオン水を加えて固形分濃度を5重量%に調整して、半導体平坦化用研磨剤を作製した。   The obtained dispersion was allowed to settle at room temperature (25 ° C.) for 100 hours, and the supernatant was collected. This supernatant is filtered through a 0.7 μm filter, then filtered through a 0.7 μm filter again, and deionized water is added to adjust the solids concentration to 5% by weight. Produced.

得られた半導体平坦化用研磨剤を乾燥後に、粉末X線回折パターンを測定した結果、その主ピークの半値幅は0.284°であった。X線回折の測定は、リガク電機(株)製のRAD−2Cを用いて行なった。   As a result of measuring the powder X-ray diffraction pattern after drying the obtained polishing agent for semiconductor flattening, the full width at half maximum of its main peak was 0.284 °. X-ray diffraction was measured using RAD-2C manufactured by Rigaku Electric Co., Ltd.

得られた半導体平坦化用研磨剤の粒子径をレーザ回折式粒度分布計(マルバーン インストルメンツ社製、マスターサイザー マイクロ・プラス)を用い、屈折率:1.9285、光源:He−Neレーザ、吸収0の条件で、半導体平坦化用研磨剤原液について測定した結果、二次粒子径の中央値は160nm、D99は0.5μmであった。   Using a laser diffraction particle size distribution meter (manufactured by Malvern Instruments, Mastersizer Micro Plus), the particle size of the obtained semiconductor flattening abrasive was measured using a refractive index of 1.9285, a light source: a He—Ne laser, and an absorption. As a result of measuring the polishing slurry stock solution for semiconductor flattening under the condition of 0, the median value of the secondary particle diameter was 160 nm and D99 was 0.5 μm.

粗大粒子含有量を調べるために、得られた半導体平坦化用研磨剤を15倍希釈し、3μmフィルタ(ワットマン社製サイクロポア トラック エッチ メンブランフィルタ)で30gろ過した。   In order to examine the content of coarse particles, the obtained semiconductor flattening polishing slurry was diluted 15-fold, and 30 g was filtered through a 3 μm filter (a cyclopore track etch membrane filter manufactured by Whatman).

ろ過後、フィルタを室温で乾燥させて、フィルタの重量を測定し、ろ過前後の重量増加分から3μm以上の粗大粒子量を求めた。
別途、この研磨剤10gを150℃で1時間乾燥させて研磨剤中の固体濃度を算出した。その結果、3μm以上の粗大粒子量(重量比)は固体中50ppmであった。
After filtration, the filter was dried at room temperature, the weight of the filter was measured, and the amount of coarse particles of 3 μm or more was determined from the weight increase before and after filtration.
Separately, 10 g of this abrasive was dried at 150 ° C. for 1 hour, and the solid concentration in the abrasive was calculated. As a result, the amount of coarse particles (weight ratio) of 3 μm or more was 50 ppm in the solid.

また、上記で得た半導体平坦化用研磨剤を脱イオン水で5倍に希釈し、以下の方法で研磨を行った。研磨速度は350nm/min、光学顕微鏡でウエハ表面を観察したところ、200mmウエハ全面にスクラッチは20個観察された。   Moreover, the polishing agent for semiconductor flattening obtained above was diluted 5 times with deionized water, and was polished by the following method. When the polishing speed was 350 nm / min and the wafer surface was observed with an optical microscope, 20 scratches were observed on the entire surface of the 200 mm wafer.

(研磨試験方法)
・研磨荷重:30kPa
・研磨パッド:ロデール社製発泡ポリウレタン樹脂(IC−1000)
・回転数:定盤75min−1、パッド75min−1
・研磨剤供給速度:200mL/min
・研磨対象物:P−TEOS成膜Siウェハ(200mm)
(Polishing test method)
・ Polishing load: 30 kPa
Polishing pad: Rodel foam polyurethane resin (IC-1000)
・ Rotation speed: surface plate 75 min −1 , pad 75 min −1
・ Abrasive supply rate: 200 mL / min
・ Polishing object: Si wafer with P-TEOS film (200mm)

(実施例2)
市販の炭酸セリウム6kgをアルミナ製容器に入れ、空気雰囲気下750℃で2時間保持し、その後500℃で2時間保持する焼成により黄白色の粉末を3kg得た。
この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。焼成粉末粒子径は30〜100μmであった。
(Example 2)
6 kg of commercially available cerium carbonate was put in an alumina container, held at 750 ° C. for 2 hours in an air atmosphere, and then heated at 500 ° C. for 2 hours to obtain 3 kg of yellowish white powder.
When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide. The fired powder particle size was 30 to 100 μm.

さらに、得られた酸化セリウム粉末3kgを、ジェットミルを用いて乾式粉砕し、酸化セリウム粒子を得た。
この酸化セリウムを用い、実施例1と同じ方法で半導体平坦化用研磨剤を作製した。
Further, 3 kg of the obtained cerium oxide powder was dry-ground using a jet mill to obtain cerium oxide particles.
Using this cerium oxide, a semiconductor planarizing abrasive was produced in the same manner as in Example 1.

得られた半導体平坦化用研磨剤を乾燥後に、実施例1と同様にして粉末X線回折パターンを測定した結果、その主ピークの半値幅は0.317°であった。   After drying the obtained semiconductor planarizing abrasive, the powder X-ray diffraction pattern was measured in the same manner as in Example 1. As a result, the half width of the main peak was 0.317 °.

また、上記半導体平坦化用研磨剤の粒子径を実施例1と同様にして測定した結果、二次粒子径の中央値は160nm、D99は0.5μmであった。
粗大粒子含有量を調べるために、得られた半導体平坦化用研磨剤を実施例1と同様にしてろ過前後の重量増加分から3μm以上の粗大粒子量を求めた。その結果、3μm以上の粗大粒子量は固体中50ppmであった。
Moreover, as a result of measuring the particle diameter of the above-mentioned polishing agent for semiconductor flattening in the same manner as in Example 1, the median value of the secondary particle diameter was 160 nm and D99 was 0.5 μm.
In order to examine the content of coarse particles, the amount of coarse particles of 3 μm or more was determined from the weight increase before and after filtration of the obtained polishing slurry for semiconductor planarization in the same manner as in Example 1. As a result, the amount of coarse particles of 3 μm or more was 50 ppm in the solid.

また、上記半導体平坦化用研磨剤を脱イオン水で5倍に希釈し、実施例1と同じ研磨試験方法で研磨を行った。研磨速度は320nm/min、光学顕微鏡でウエハ表面を観察したところ、200mmウエハ全面にスクラッチは10個観察された。   Further, the above-mentioned polishing agent for planarizing the semiconductor was diluted 5 times with deionized water, and was polished by the same polishing test method as in Example 1. When the polishing speed was 320 nm / min and the wafer surface was observed with an optical microscope, ten scratches were observed on the entire surface of the 200 mm wafer.

(比較例1)
市販の炭酸セリウム6kgをアルミナ製容器に入れ、空気雰囲気下950℃で1時間保持し、その後500℃で2時間保持する焼成により黄白色の粉末を3kg得た。
この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。焼成粉末粒子径は30〜100μmであった。
(Comparative Example 1)
6 kg of commercially available cerium carbonate was put in an alumina container, held at 950 ° C. for 1 hour in an air atmosphere, and then heated at 500 ° C. for 2 hours to obtain 3 kg of yellowish white powder.
When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide. The fired powder particle size was 30 to 100 μm.

さらに、得られた酸化セリウム粉末3kgを、ジェットミルを用いて乾式粉砕し、酸化セリウム粒子を得た。
この酸化セリウムを用い、実施例1と同じ方法で半導体平坦化用研磨剤を作製した。
Further, 3 kg of the obtained cerium oxide powder was dry-ground using a jet mill to obtain cerium oxide particles.
Using this cerium oxide, a semiconductor planarizing abrasive was produced in the same manner as in Example 1.

得られた半導体平坦化用研磨剤を乾燥後に、実施例1と同様にして粉末X線回折パターンを測定した結果、その主ピークの半値幅は0.242°であった。   After drying the obtained semiconductor planarization abrasive, the powder X-ray diffraction pattern was measured in the same manner as in Example 1. As a result, the half width of the main peak was 0.242 °.

また、上記半導体平坦化用研磨剤の粒子径を実施例1と同様にして測定した結果、二次粒子径の中央値は160nm、D99は0.5μmであった。
粗大粒子含有量を調べるために、得られた半導体平坦化用研磨剤を実施例1と同様にしてろ過前後の重量増加分から3μm以上の粗大粒子量を求めた。その結果、3μm以上の粗大粒子量は固体中50ppmであった。
Moreover, as a result of measuring the particle diameter of the above-mentioned polishing agent for semiconductor flattening in the same manner as in Example 1, the median value of the secondary particle diameter was 160 nm and D99 was 0.5 μm.
In order to examine the content of coarse particles, the amount of coarse particles of 3 μm or more was determined from the weight increase before and after filtration of the obtained polishing slurry for semiconductor planarization in the same manner as in Example 1. As a result, the amount of coarse particles of 3 μm or more was 50 ppm in the solid.

また、上記半導体平坦化用研磨剤を脱イオン水で5倍に希釈し、実施例1と同じ研磨試験方法で研磨を行った。研磨速度は380nm/min、光学顕微鏡でウエハ表面を観察したところ、200mmウエハ全面にスクラッチは70個観察された。   Further, the above-mentioned polishing agent for planarizing the semiconductor was diluted 5 times with deionized water, and was polished by the same polishing test method as in Example 1. When the polishing speed was 380 nm / min and the wafer surface was observed with an optical microscope, 70 scratches were observed on the entire surface of the 200 mm wafer.

(比較例2)
市販の炭酸セリウム6kgをアルミナ製容器に入れ、空気雰囲気下550℃で4時間保持し、その後500℃で2時間保持する焼成により黄白色の粉末を3kg得た。
この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。焼成粉末粒子径は30〜100μmであった。
(Comparative Example 2)
6 kg of commercially available cerium carbonate was put in an alumina container, held at 550 ° C. for 4 hours in an air atmosphere, and then heated at 500 ° C. for 2 hours to obtain 3 kg of yellowish white powder.
When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide. The fired powder particle size was 30 to 100 μm.

さらに、得られた酸化セリウム粉末3kgを、ジェットミルを用いて乾式粉砕し、酸化セリウム粒子を得た。
この酸化セリウムを用い、実施例1と同じ方法で半導体平坦化用研磨剤を作製した。
Further, 3 kg of the obtained cerium oxide powder was dry-ground using a jet mill to obtain cerium oxide particles.
Using this cerium oxide, a semiconductor planarizing abrasive was produced in the same manner as in Example 1.

得られた半導体平坦化用研磨剤を乾燥後に、実施例1と同様にして粉末X線回折パターンを測定した結果、その主ピークの半値幅は0.363°であった。   After drying the obtained semiconductor planarization abrasive, the powder X-ray diffraction pattern was measured in the same manner as in Example 1. As a result, the half width of the main peak was 0.363 °.

また、上記半導体平坦化用研磨剤の粒子径を実施例1と同様にして測定した結果、二次粒子径の中央値は160nm、D99は0.5μmであった。
粗大粒子含有量を調べるために、得られた半導体平坦化用研磨剤を実施例1と同様にしてろ過前後の重量増加分から3μm以上の粗大粒子量を求めた。その結果、3μm以上の粗大粒子量は固体中50ppmであった。
Moreover, as a result of measuring the particle diameter of the above-mentioned polishing agent for semiconductor flattening in the same manner as in Example 1, the median value of the secondary particle diameter was 160 nm and D99 was 0.5 μm.
In order to examine the content of coarse particles, the amount of coarse particles of 3 μm or more was determined from the weight increase before and after filtration of the obtained polishing slurry for semiconductor planarization in the same manner as in Example 1. As a result, the amount of coarse particles of 3 μm or more was 50 ppm in the solid.

また、上記半導体平坦化用研磨剤を脱イオン水で5倍に希釈し、実施例1と同じ研磨試験方法で研磨を行った。研磨速度は250nm/min、光学顕微鏡でウエハ表面を観察したところ、200mmウエハ全面にスクラッチは45個観察された。   Further, the above-mentioned polishing agent for planarizing the semiconductor was diluted 5 times with deionized water, and was polished by the same polishing test method as in Example 1. When the polishing speed was 250 nm / min and the wafer surface was observed with an optical microscope, 45 scratches were observed on the entire surface of the 200 mm wafer.

(比較例3)
比較例1と同じ方法で作製した酸化セリウム粒子1000g、ポリアクリル酸アンモニウム塩水溶液(40重量%)80g及び脱イオン水3920gを混合し、撹拌しながら超音波分散を10分間施した。
(Comparative Example 3)
1000 g of cerium oxide particles produced by the same method as in Comparative Example 1, 80 g of an aqueous solution of ammonium polyacrylate (40% by weight) and 3920 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring.

得られた分散液を室温で4時間静置沈降させ、上澄みを採取した。この上澄み液を孔径10μmのフィルタでろ過した後、脱イオン水を加えて固形分濃度を5重量%に調整して、半導体平坦化用研磨剤を作製した。   The obtained dispersion was allowed to settle at room temperature for 4 hours, and the supernatant was collected. The supernatant was filtered with a filter having a pore size of 10 μm, and then deionized water was added to adjust the solid content concentration to 5% by weight to prepare a semiconductor planarization abrasive.

得られた半導体平坦化用研磨剤を乾燥後に、実施例1と同様にして粉末X線回折パターンを測定した結果、その主ピークの半値幅は0.238°であった。
また、上記半導体平坦化用研磨剤の粒子径を実施例1と同様にして測定した結果、二次粒子径の中央値は240nm、D99は2.5μmであった。
After drying the obtained semiconductor planarization abrasive, the powder X-ray diffraction pattern was measured in the same manner as in Example 1. As a result, the half width of the main peak was 0.238 °.
Moreover, as a result of measuring the particle diameter of the polishing agent for semiconductor flattening in the same manner as in Example 1, the median value of the secondary particle diameter was 240 nm, and D99 was 2.5 μm.

粗大粒子含有量を調べるために、得られた半導体平坦化用研磨剤を実施例1と同様にしてろ過前後の重量増加分から3μm以上の粗大粒子量を求めた。その結果、3μm以上の粗大粒子量は固体中1200ppmであった。   In order to examine the content of coarse particles, the amount of coarse particles of 3 μm or more was determined from the weight increase before and after filtration of the obtained polishing slurry for semiconductor planarization in the same manner as in Example 1. As a result, the amount of coarse particles of 3 μm or more was 1200 ppm in the solid.

また、上記半導体平坦化用研磨剤を脱イオン水で5倍に希釈し、実施例1と同じ研磨試験方法で研磨を行った。研磨速度は650nm/min、光学顕微鏡でウエハ表面を観察したところ、200mmウエハ全面にスクラッチは100個観察された。   Further, the above-mentioned polishing agent for planarizing the semiconductor was diluted 5 times with deionized water, and was polished by the same polishing test method as in Example 1. When the polishing speed was 650 nm / min and the wafer surface was observed with an optical microscope, 100 scratches were observed on the entire surface of the 200 mm wafer.

Claims (4)

粉末X線回折パターンの主ピークの半値幅が0.28〜0.32°である酸化セリウム粒子及び水を含み、かつ酸化セリウム粒子径の中央値が100〜2000nmである半導体平坦化用研磨剤。   A polishing agent for planarizing a semiconductor, comprising cerium oxide particles and a water having a half-value width of 0.28 to 0.32 ° of a main peak of a powder X-ray diffraction pattern, and having a median cerium oxide particle diameter of 100 to 2000 nm . 粒子径3μm以上の酸化セリウム粒子含有量が、重量比で固体中の500ppm以下である請求項1記載の半導体平坦化用研磨剤。   The polishing slurry for semiconductor planarization according to claim 1, wherein the content of cerium oxide particles having a particle diameter of 3 µm or more is 500 ppm or less in the solid by weight. 請求項1又は2記載の半導体平坦化用研磨剤に、さらに分散剤を含む半導体平坦化用研磨剤。   A polishing agent for semiconductor flattening, further comprising a dispersing agent in the polishing agent for flattening semiconductor according to claim 1 or 2. 酸化セリウム粒子全体の99体積%が、粒子径1μm以下である請求項1〜3のいずれかに記載の半導体平坦化用研磨剤。   The polishing slurry for semiconductor planarization according to any one of claims 1 to 3, wherein 99% by volume of the entire cerium oxide particles has a particle diameter of 1 µm or less.
JP2007108112A 2007-04-17 2007-04-17 Polishing agent for flattening semiconductor Pending JP2008270341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007108112A JP2008270341A (en) 2007-04-17 2007-04-17 Polishing agent for flattening semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007108112A JP2008270341A (en) 2007-04-17 2007-04-17 Polishing agent for flattening semiconductor

Publications (1)

Publication Number Publication Date
JP2008270341A true JP2008270341A (en) 2008-11-06

Family

ID=40049494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007108112A Pending JP2008270341A (en) 2007-04-17 2007-04-17 Polishing agent for flattening semiconductor

Country Status (1)

Country Link
JP (1) JP2008270341A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182756A1 (en) * 2014-05-30 2015-12-03 日立化成株式会社 Polishing liquid for cmp, polishing liquid set for cmp, and polishing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182756A1 (en) * 2014-05-30 2015-12-03 日立化成株式会社 Polishing liquid for cmp, polishing liquid set for cmp, and polishing method
KR20170012290A (en) 2014-05-30 2017-02-02 히타치가세이가부시끼가이샤 Polishing liquid for cmp, polishing liquid set for cmp, and polishing method
JPWO2015182756A1 (en) * 2014-05-30 2017-05-25 日立化成株式会社 Polishing liquid for CMP, polishing liquid set for CMP, and polishing method
US9966269B2 (en) 2014-05-30 2018-05-08 Hitachi Chemical Company, Ltd. Polishing liquid for CMP, polishing liquid set for CMP, and polishing method
KR20220165842A (en) 2014-05-30 2022-12-15 쇼와덴코머티리얼즈가부시끼가이샤 Polishing liquid for cmp, polishing liquid set for cmp, and polishing method

Similar Documents

Publication Publication Date Title
US8439995B2 (en) Abrasive compounds for semiconductor planarization
JP5023626B2 (en) Polishing method of cerium oxide slurry and substrate
KR20130089598A (en) Manufacture of synthetic quartz glass substrate
JP5516594B2 (en) CMP polishing liquid, and polishing method and semiconductor substrate manufacturing method using the same
JP2005048125A (en) Cmp abrasive, polishing method, and production method for semiconductor device
JP5353238B2 (en) Method for producing oxide particles, slurry, abrasive and method for polishing substrate
JP2008270341A (en) Polishing agent for flattening semiconductor
JP4776387B2 (en) Cerium oxide abrasive and substrate polishing method
JP2006324309A (en) Polishing agent for planarizing semiconductor
JP2010030041A (en) Cerium oxide abrasive and method of polishing substrate
JP4776388B2 (en) Cerium oxide abrasive and substrate polishing method
JP2004289170A (en) Cerium oxide polishing agent and method of polishing substrate
JP5369610B2 (en) Method for producing cerium oxide particles, method for producing polishing liquid, and method for polishing substrate
JP2011224751A (en) Cerium oxide abrasive and polishing method of substrate using the same
JP2005048122A (en) Cmp abrasive, polishing method, and production method for semiconductor device
JP2010280020A (en) Cerium oxide abrasive, and polishing method for substrate using this abrasive
JP4445820B2 (en) Cerium oxide abrasive and substrate polishing method
JP2004336082A (en) Cerium oxide abrasive and method of grinding substrate
JP2004277474A (en) Cmp abrasive, polishing method, and production method for semiconductor device
JP2002280334A (en) Cerium oxide polishing agent and polishing of substrate using the same
JP2011104680A (en) Polishing liquid containing cerium oxide particle and polishing method using the same
JP2005039286A (en) Cerium oxide abrasive and method for polishing substrate
JP2012054545A (en) Cmp liquid and method of manufacturing the same, as well as polishing method using cmp liquid
JP2004250714A (en) Cerium oxide abrasive and method for grinding substrate
JP2005039287A (en) Cerium oxide abrasive and method for polishing substrate