JP2004277474A - Cmp abrasive, polishing method, and production method for semiconductor device - Google Patents

Cmp abrasive, polishing method, and production method for semiconductor device Download PDF

Info

Publication number
JP2004277474A
JP2004277474A JP2003067692A JP2003067692A JP2004277474A JP 2004277474 A JP2004277474 A JP 2004277474A JP 2003067692 A JP2003067692 A JP 2003067692A JP 2003067692 A JP2003067692 A JP 2003067692A JP 2004277474 A JP2004277474 A JP 2004277474A
Authority
JP
Japan
Prior art keywords
polishing
cerium oxide
abrasive
cmp
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003067692A
Other languages
Japanese (ja)
Inventor
Masato Yoshida
誠人 吉田
Masato Fukazawa
正人 深沢
Naoyuki Koyama
直之 小山
Koji Haga
浩二 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2003067692A priority Critical patent/JP2004277474A/en
Publication of JP2004277474A publication Critical patent/JP2004277474A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a CMP (chemical mechanical polishing) abrasive excellent in dispersibility of cerium oxide particles; a polishing method capable of achieving global flatness in polishing an uneven substrate; and a production method for a semiconductor device having a polished surface with a high machining accuracy. <P>SOLUTION: The CMP abrasive contains water, cerium oxide particles, and polyethyleneimine as a dispersant. Preferably, 0.01-1 pt.wt. polyethyleneimine is contained based on 100 pts.wt. cerium oxide particles. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子等の半導体装置の製造技術等で使用される研磨剤、これを用いた研磨方法及び半導体装置の製造方法に関する。より詳しくは、酸化セリウムと特定分散剤とを用いるCMP研磨剤、これを用いた研磨方法、及び半導体装置の製造方法に関する。
【0002】
【従来の技術】
現在の超々大規模集積回路では、実装密度を高める傾向にあり、種々の微細加工技術が研究、開発されている。既に、デザインルールは、サブハーフミクロンのオーダーになっている。このような厳しい微細化の要求を満足するために開発されている技術の一つにCMP(ケミカルメカニカルポリッシング)技術がある。この技術は、半導体装置の製造工程において、露光を施す層を完全に平坦化し、露光技術の負担を軽減し、歩留まりを安定させることができるため、例えば、層間絶縁膜の平坦化、シャロー・トレンチ分離等を行う際に必須となる技術である。
【0003】
従来、半導体装置の製造工程において、プラズマ−CVD(ChemicalVapor Deposition、化学的蒸着法)、低圧−CVD等の方法で形成される酸化珪素絶縁膜等の無機絶縁膜層を平坦化するためのCMP研磨剤として、フュームドシリカ系の研磨剤が一般的に検討されていた。フュームドシリカ系の研磨剤は、シリカ粒子を四塩化珪酸に熱分解する等の方法で粒成長させ、pH調整を行って製造している。しかしながら、この様な研磨剤は無機絶縁膜の研磨速度が十分な速度をもたず、実用化には低研磨速度という技術課題があった。
【0004】
一方、フォトマスクやレンズ等のガラス表面研磨剤として、酸化セリウム研磨剤が用いられている。酸化セリウム粒子はシリカ粒子やアルミナ粒子に比べ硬度が低く、したがって、研磨表面に傷が入りにくいことから、仕上げ鏡面研磨に有用である。また、シリカ研磨剤に比べ、研磨速度が早い利点がある。近年、高純度酸化セリウム砥粒を用いた半導体用CMP研磨剤が使用されている。例えば、その技術は特許文献1に開示されている。
しかしながら、酸化セリウム粒子はシリカ粒子に比べ密度が高く、沈降しやすいという課題がある。それに対して適当な分散剤を使用することによって分散性が良く、高速研磨性に優れた研磨剤が使用されている。例えば、この技術は特許文献2に開示されている。また、酸化セリウム研磨液の研磨速度を制御し、グローバルな平坦性を向上させるために添加剤を加えることが知られている。例えば、この技術は特許文献3に開示されている。
【0005】
【特許文献1】
特開平10−106994号公報
【特許文献2】
特開平10−152673号公報
【特許文献3】
特開平8−22970号公報
【0006】
【発明が解決しようとする課題】
しかしながら、これらのような酸化セリウム研磨剤には、加える添加剤の種類、添加する量によって粒子の再凝集が起こり、沈降しやすくなる等の分散性が損なわれる場合がある。分散性が損なわれると、研磨装置に均一濃度で供給されないこととなり、被研磨面の加工精度が低下することになる。
【0007】
以上に鑑み、本発明は、酸化セリウム粒子の分散性を良好にし、かつグローバルな平坦性を向上させる酸化セリウムを含むCMP研磨剤およびこれを用いた研磨方法、さらにこれらを用いる半導体装置の製造方法を提供することがその課題である。
【0008】
【課題を解決するための手段】
この課題を解決するために、本発明では、ポリエチレンイミンを分散剤として含む酸化セリウム研磨剤を提供することをその特徴としており、これによれば、酸化セリウム粒子の分散性が良好な酸化セリウム研磨剤の提供が可能になる。更に、この酸化セリウム研磨剤を用いることで、凹凸を有する基体をグローバルな平坦化により平滑に研磨することが可能になる。
すなわち本発明は、次の(1)〜(6)に関する。
(1) 水、酸化セリウム粒子およびその分散剤としてポリエチレンイミンを含むことを特徴とするCMP研磨剤。
(2) 前記酸化セリウム結晶子径の中央値が5nm以上300nm以下である上記(1)記載のCMP研磨剤。
(3) 前記ポリエチレンイミンの添加量が前記酸化セリウム粒子100重量部に対して0.01重量部以上1重量部以下である上記(1)又は(2)記載のCMP研磨剤。
(4) pH値が6以上10以下である上記(1)〜(3)のいずれか一つに記載のCMP研磨剤。
(5) 被研磨膜を形成した基体を研磨布に押しあて加圧し、上記(1)〜(4)のいずれか一つに記載のCMP研磨剤を被研磨膜と研磨布との間に供給しながら、被研磨膜と研磨布とを相対的に動かして被研磨膜を研磨することを特徴とする研磨方法。
(6) 上記(1)〜(4)のいずれか一つに記載の研磨剤を使用して研磨する工程、または上記(5)記載の研磨方法で研磨する工程を含むことを特徴とする半導体装置の製造方法。
【0009】
【発明の実施の形態】
一般に酸化セリウムは、炭酸塩、硝酸塩、硫酸塩、しゅう酸塩のセリウム化合物を酸化することによって得られる。TEOS−CVD法等で形成される酸化珪素膜の研磨に使用する酸化セリウム研磨剤は、結晶子径(一次粒子径)が大きく、かつ結晶ひずみが少ないほど、すなわち結晶性が良いほど高速研磨が可能であるが、研磨傷が入りやすくなる。
なお、本発明において、酸化セリウム粒子の結晶子径は、必要に応じて酸化セリウムスラリーを適当な濃度に希釈し、さらに乾燥後、走査型電子顕微鏡(例えば株式会社日立製作所製 S−900)によって、粒界に囲まれた酸化セリウム結晶子径を測定し、中央値は体積分布の中央値を採用する。
【0010】
そこで、本発明で用いる酸化セリウム粒子は、その製造方法を限定するものではないが、酸化セリウム結晶子径の中央値は5nm以上300nm以下であることが好ましい。5nm未満では結晶性が低く、研磨速度が低下し、また、300nmを超えると結晶性が高く、被研磨面に研磨傷を導入するという問題がある。より好ましくは70nm〜250nmである。また、半導体装置の製造に係る研磨に使用することから、アルカリ金属及びハロゲン類の含有率は酸化セリウム粒子中10ppm以下に抑えることが好ましい。
【0011】
本発明において、酸化セリウム粉末を作製する方法として焼成または過酸化水素等による酸化法が使用できる。焼成温度は350℃以上900℃以下が好ましい。
【0012】
上記の方法により製造された酸化セリウム粒子は凝集しているため、機械的に粉砕することが好ましい。粉砕方法として、ジェットミル等による乾式粉砕や遊星ビーズミル等による湿式粉砕方法が好ましい。ジェットミルは例えば化学工業論文集第6巻第5号(1980)527〜532頁に説明されている。結晶子サイズの微粒子を得るには、粉砕後に乾式サイクロン分級処理を用いることが好ましい。
【0013】
これらの酸化セリウム粒子を水中に分散させる方法としては、通常の撹拌機による分散処理の他にホモジナイザー、超音波分散機、湿式ボールミルなどを用いることができる。
【0014】
本発明におけるCMP研磨剤は、水、酸化セリウム粒子に加えて、分散剤としてポリエチレンイミンを含むことを特徴とする。
本発明の研磨剤中の酸化セリウム粒子の濃度に制限はないが、研磨剤の取り扱いやすさから0.5重量%以上20重量%以下の範囲が好ましい。
【0015】
本発明における分散剤はポリエチレンイミンが好ましい。ポリエチレンイミンの分子量(重量平均分子量)は10,000以上300,000以下が好ましい。分散剤の分子量が10,000未満の場合は、分散剤としての効果を発揮せず酸化セリウム粒子の沈降を促進し、研磨速度の不安定性を引き起こす。分散剤の分子量が300,000を超えた場合は、分散剤分子が粒子−粒子間の凝集を引き起こし、研磨剤の保存安定性が低下するからである。
【0016】
また、分散剤量は酸化セリウム粒子100重量部に対して、0.01重量部以上1重量部以下であることが好ましい。分散剤量が0.01重量部未満であると、分散性が悪く、沈降しやすい。また、凹凸を有する基板表面を平滑化しにくい。また、分散剤量が1重量部より大きいと分散剤が研磨を阻害する。
【0017】
また、研磨剤には、分散性を更に向上させる助剤を加えることができ、以下限定されるわけではないが、例えばアクリル酸エステル誘導体を加えることが出来る。その内でもメタクリル酸2−ヒドロキシルエチルが好ましい。助剤の添加量は、酸化セリウム粒子100重量部に対して0.5量部以上20重量部以下が好ましい。
【0018】
こうして作製されたCMP研磨剤中の酸化セリウム粒子、すなわち結晶子から構成される多結晶体あるいは結晶子が凝集した二次粒子、の平均粒径(以下、粒子径ともいう。)は、0.01μm〜1.0μmであることが好ましい。酸化セリウム粒子の平均粒径が0.01μm未満であると研磨速度が低くなりすぎ、1.0μmを超えると研磨する膜に傷がつきやすくなるためである。
【0019】
本発明のCMP研磨剤には上述した材料の他に、染料、顔料等の着色剤や、pH調整剤、水以外の溶媒などの、一般に研磨剤に添加される添加剤を、研磨剤の作用効果を損なわない範囲で添加しても良い。
【0020】
研磨剤の分散性の評価方法の一例として、研磨剤の粒子のゼータ電位を測定することが挙げられる。測定には、例えばマルバーン社製商品名ゼータサイザー3000HSを使用でき、例えば、研磨剤を15000rpm、10分間遠心分離し、その上澄み液のゼータ電位を測定することができる。良好な分散性を得るためには、ゼータ電位は10〜70mVの範囲内であることが好ましい。
【0021】
本発明のCMP研磨剤のpHは6以上、10以下の範囲にあるのが好ましく、より好ましくは6〜8の範囲である。pHが低すぎても高すぎても研磨剤の保存安定性の低下に繋がり傷発生の原因となるため好ましくない。pHは酸成分、またはアンモニア、水酸化ナトリウム、テトラメチルアンモニウムヒドロキシド(TMAH)等のアルカリ成分の添加によって調整可能である。
本発明の研磨剤のpHは、pHメータ(例えば、横河電機株式会社製の ModelpH81)で測定した。標準緩衝液(フタル酸塩pH緩衝液pH:4.21(25℃)、中性りん酸塩pH緩衝液pH6.86(25℃))を用いて、2点校正した後、電極を研磨剤に入れて、2分以上経過して安定した後の値を測定した。
【0022】
本発明のCMP研磨剤は、例えば、酸化セリウム粒子、ポリエチレンイミン、アクリル酸エステル誘導体等の添加剤、水から構成される一液式研磨剤として調製することも、
また、酸化セリウム粒子、ポリエチレンイミン、及び水からなる酸化セリウムスラリーと、添加剤及び水からなる添加液とを分けた二液式CMP研磨剤として調製することもできる。いずれの場合も、安定した特性を得ることができる。
酸化セリウムスラリーと添加液とを分けた二液式CMP研磨剤として保存する場合、これら二液の配合を任意に変えられることにより平坦化特性と研磨速度の調整が可能となる。二液式の場合、添加液は、酸化セリウムスラリーと別々に研磨定盤上に供給し、研磨定盤上で混合する方法か、研磨直前に酸化セリウムスラリーと混合する方法がとられる。
【0023】
本発明の研磨方法は、被研磨膜を形成した基体を研磨布に押しあて加圧し、本発明の研磨剤を被研磨膜と研磨布との間に供給しながら、基体の被研磨膜と研磨布とを相対的に動かして被研磨膜を研磨することを特徴とする。
基体として、半導体装置製造に係る基板、例えば回路素子と配線パターンが形成された段階の半導体基板、回路素子が形成された段階の半導体基板等の半導体基板上に、無機絶縁層が形成された基板などが挙げられる。そして、被研磨膜は、前記無機絶縁層、例えば酸化珪素(SiO)膜層あるいは窒化珪素(SiN)膜層及び酸化珪素膜層等が挙げられる。
以下、被研磨膜として窒化珪素膜層及び酸化珪素膜層が形成された半導体基板の場合を例に挙げて研磨方法を説明する。
【0024】
本発明の研磨方法において、使用出来る研磨装置としては、被研磨膜を有する基板を保持するホルダーと、研磨布(パッド)を貼り付けられ、回転数が変更可能なモータ等を取り付けてある研磨定盤とを有する一般的な研磨装置が使用できる。例えば、荏原製作所株式会社製研磨装置:型番EPO111が使用できる。
【0025】
研磨定盤上の研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。また、研磨布にはCMP研磨剤がたまるような溝加工を施すことが好ましい。研磨条件に制限はないが、定盤の回転速度は半導体基板が飛び出さないように200rpm以下の低回転が好ましく、半導体基板にかける圧力は研磨後に傷が発生しないように1kg/cm(98kPa)以下が好ましい。研磨速度の被研磨面内均一性及びパターンの平坦性を満足するためには、5kPa〜50kPaであることがより好ましい。
【0026】
基板の被研磨膜を研磨布に押圧した状態で研磨布と被研磨膜とを相対的に動かすには、具体的には基板と研磨定盤との少なくとも一方を動かせば良い。研磨定盤を回転させる他に、ホルダーを回転や揺動させて研磨しても良い。また、研磨定盤を遊星回転させる研磨方法、ベルト状の研磨布を長尺方向の一方向に直線状に動かす研磨方法等が挙げられる。なお、ホルダーは固定、回転、揺動のいずれの状態でも良い。これらの研磨方法は、研磨布と被研磨膜とを相対的に動かすのであれば、被研磨面や研磨装置により適宜選択できる。
【0027】
研磨している間、研磨布と被研磨膜の間にはスラリー状の本発明の研磨剤をポンプ等で連続的に供給する。この供給量に制限はないが、研磨布の表面が常に研磨剤で覆われていることが好ましい。具体的には、研磨布面積1cm当たり、0.005〜0.40ミリリットル供給されることが好ましい。二液式研磨剤の供給形態は、上記したように別々でも直前混合でもよい。
【0028】
研磨終了後の半導体基板は、流水中で良く洗浄後、スピンドライヤ等を用いて半導体基板上に付着した水滴を払い落としてから乾燥させることが好ましい。
このように被研磨膜である無機絶縁層を上記研磨剤で研磨することによって、表面の凹凸を解消し、半導体基板全面にわたって平滑な面とすることができる。
【0029】
本発明のCMP研磨剤および研磨方法が適用される無機絶縁膜の作製方法として、低圧CVD法、プラズマCVD法等が挙げられる。
例えば、低圧CVD法による酸化珪素膜形成は、Si源としてモノシラン:SiH、酸素源として酸素:Oを用いる。このSiH−O系酸化反応を400℃以下の低温で行わせることにより得られる。場合によっては、CVD後1000℃またはそれ以下の温度で熱処理される。高温リフローによる表面平坦化を図るためにリン:Pをドープするときには、SiH−O−PH系反応ガスを用いることが好ましい。
また、低圧CVD法による窒化珪素膜形成は、Si源としてジクロルシラン:SiHCl、窒素源としてアンモニア:NHを用いる。このSiHCl−NH系酸化反応を900℃の高温で行わせることにより得られる。
【0030】
プラズマCVD法は、通常の熱平衡下では高温を必要とする化学反応が低温でできる利点を有する。プラズマ発生法には、容量結合型と誘導結合型の2つが挙げられる。反応ガスとしては、Si源としてSiH、酸素源としてNOを用いたSiH−NO系ガスとテトラエトキシシラン(TEOS)をSi源に用いたTEOS−O系ガス(TEOS−プラズマCVD法)が挙げられる。基板温度は250℃〜400℃、反応圧力は67〜400Paの範囲が好ましい。また、反応ガスとしては、Si源としてSiH、窒素源としてNHを用いたSiH−NH系ガスが挙げられる。基板温度は300℃〜400℃が好ましい。
【0031】
このように、本発明の研磨剤及び研磨方法が適用されるこれらの無機絶縁膜等にはリン、ホウ素等の元素がドープされていても良い。
【0032】
本発明のCMP研磨剤及び研磨方法は、半導体基板に形成された酸化珪素膜の研磨だけでなく、各種半導体装置の製造プロセス内において適用することができる。すなわち、本発明の半導体装置の製造方法は、本発明の研磨剤を使用して研磨する工程、または本発明の研磨方法で研磨する工程を含むことを特徴とする。例えば所定の配線を有する配線板に形成された酸化珪素膜、ガラス、窒化珪素等の無機絶縁膜、ポリシリコン、Al、Cu、Ti、TiN、W、Ta、TaN等を主として含有する膜、フォトマスク・レンズ・プリズムなどの光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバーの端面、シンチレータ等の光学用単結晶、固体レーザ単結晶、青色レーザLED用サファイヤ基板、SiC、GaP、GaAs等の半導体単結晶を研磨する工程に適用できる。さらに磁気ディスク用ガラス基板、磁気ヘッド等の研磨工程にも適用することができる。
【0033】
【実施例】
以下、実施例により本発明をさらに詳細に説明する。
(実施例1)
(酸化セリウム粒子の作製)
炭酸セリウム水和物2kgを白金製容器に入れ、800℃で2時間空気中で焼成することにより黄白色の粉末を約1kg得た。この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。焼成粉末粒子径は30〜100μmであった。焼成粉末粒子表面を走査型電子顕微鏡で観察したところ、酸化セリウムの粒界が観察された。粒界に囲まれた酸化セリウム結晶子径を測定したところ、体積分布の中央値が190nm、最大値が500nmであった。酸化セリウム粉末1kgを、ジェットミルを用いて乾式粉砕を行った。粉砕粒子について走査型電子顕微鏡で観察したところ、結晶子径と同等サイズの微粒子の他に、1〜3μmの大きな多結晶粒子と0.5〜1μmの多結晶粒子が混在していた。
【0034】
(酸化セリウムスラリーの作製)
上記作製の酸化セリウム粒子1kgとポリエチレンイミン(重量平均分子量:70000)1gと脱イオン水8999gを混合し、攪拌しながら超音波分散を10分間施して中間体スラリーを得た。得られた中間体スラリーを1ミクロンフィルターでろ過をし、さらに脱イオン水を加えることにより酸化セリウム1重量%のスラリー状研磨剤を得た。研磨剤pHは7.1であった。
研磨剤中のスラリー粒子の粒子径(多結晶体または結晶子の凝集粒子の平均粒径)をレーザ回折式粒度分布計で測定した結果、平均粒子径は242nmであった。また、適当な濃度に希釈して、乾燥後に粒子表面を走査型電子顕微鏡で観察したところ、酸化セリウムの粒界が観察された。粒界に囲まれた酸化セリウム結晶子径を測定したところ、体積分布の中央値は109nmであった。
スラリー粒子のゼータ電位を測定するため、研磨剤を15000rpm、10分間遠心分離し、その上澄み液をマルバーン社製商品名ゼータサイザー3000HSでゼータ電位を測定した。その結果、45.4mVと分散性は良好であった。また、1ヶ月後、3ヶ月後、6ヶ月後に、スラリーを十分攪拌した後に、粒子径およびゼータ電位を測定したところ、作製時と顕著な差は見られなかった。
【0035】
(絶縁膜層の研磨)
図1に本発明の実施例に使用した評価用ウエハの概略図を示す。すなわち、図1の(a)の平面図及び(b)の縦断面図に示すように、φ200mmのシリコン(Si)基板1上に100nmの窒化珪素(SiN)膜2を成膜し、さらにトレンチ3を形成した。次いで、図1の(c)に縦断面図で示すように、そのトレンチ3を酸化珪素(SiO)の絶縁膜4で埋め込んだ狭素子分離(STI)絶縁膜CMP評価用試験ウエハを作製した。
絶縁膜4の初期膜厚量は凸部で610nm、凹部で650nmであった。またトレンチ3の深さは、460nmであった。また、100μm角の窒化珪素膜の部分と隣の部分との間隔は59μmとした。
研磨装置の、保持する基板取り付け用の吸着パッドを貼り付けたホルダーに上記パターンウエハをセットし、一方、φ600mmの研磨定盤に多孔質ウレタン樹脂製の研磨パッドを貼り付けた。該パッド上に絶縁膜4面を下にして前記ホルダーを載せ、さらに加工荷重300gf/cm(29.4kPa)に設定した。定盤上に上記酸化セリウム研磨剤(固形分:1重量%)を200cc/分の速度で滴下しながら、定盤とウエハとをそれぞれ50rpmで作動させて2、3、4、5、6分間それぞれ絶縁膜を研磨した。研磨後のウエハを純水で良く洗浄後、乾燥した。その後、光干渉式膜厚装置を用いて、凹部の絶縁膜4の残膜厚、凸部の絶縁膜の残膜厚、あるいはSiN膜2の残膜厚を測定した。研磨時間によるこれらの残膜厚の測定結果を図2及び図3にグラフで示す。また図1(c)を一部拡大し、研磨前の各膜厚を前記グラフと対応させるために並べて示す。
【0036】
その結果凹部は、図2に示すように4分以降は、残膜厚の変化が見られず、殆ど研磨が進行していないことが分かった。
また、凸部は図3に示すように4分で絶縁膜を削りきり、SiN膜が露出した。4分間以降では、SiN膜残膜厚は変化が見られず、殆ど研磨が進行していないことが分かった。4分間以上過剰研磨しても凹凸部の削り過ぎも見られないことが分かった。
【0037】
(比較例1)
実施例1で作製した酸化セリウム粒子1kgとポリアクリル酸アンモニウム塩水溶液(40重量%)23gと脱イオン水8977gを混合し、攪拌しながら超音波分散を10分間施した。得られた中間体スラリーを1ミクロンフィルターでろ過をし、さらに脱イオン水を加えることにより酸化セリウム5重量%の研磨剤を得た。研磨剤のpHは8.3であった。
また、研磨剤中の粒子をレーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結果、粒子径の中央値は250nmであった。
【0038】
(絶縁膜層の研磨)
上記で作製した研磨剤を用いた以外は実施例1と同様に狭素子分離(STI)絶縁膜CMP評価用試験ウエハの研磨を行った。その結果、3分間以上研磨すると凹部の絶縁膜及び凸部のSiN膜をすべて削ってしまった。
【0039】
【発明の効果】
本発明によれば、酸化セリウム粒子の分散性が良好なCMP研磨剤、及び凹凸を有する基体を研磨してグローバルな平坦性が得られる研磨方法が得られる。さらに被研磨面の加工精度の良い半導体装置の製造方法を提供できる。
【図面の簡単な説明】
【図1】本発明の実施例における狭素子分離(STI)絶縁膜用CMP試験ウエハ評価部の概略図であり、
(a)はトレンチ形成後の平面図、
(b)は(a)のAA´面による縦断面図、
(c)は絶縁層埋め込み後の縦断面図である。
【図2】本発明の実施例における凹部絶縁膜残膜量と研磨時間の関係を示すグラフと、研磨前の各膜厚を示す図1(c)の一部拡大図である。
【図3】本発明の実施例における凸部絶縁膜残膜量と研磨時間の関係を示すグラフと、研磨前の各膜厚を示す図1(c)の一部拡大図である。
【符号の説明】
1 シリコン基板
2 窒化珪素(SiN)膜
3 トレンチ
4 絶縁膜(SiO
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an abrasive used in a technique for manufacturing a semiconductor device such as a semiconductor element, a polishing method using the same, and a method for manufacturing a semiconductor device. More specifically, the present invention relates to a CMP polishing slurry using cerium oxide and a specific dispersant, a polishing method using the polishing slurry, and a method for manufacturing a semiconductor device.
[0002]
[Prior art]
At present, ultra-large-scale integrated circuits tend to increase the packaging density, and various microfabrication techniques have been researched and developed. Already, design rules are on the order of sub-half microns. One of the technologies that have been developed to satisfy such strict requirements for miniaturization is a CMP (Chemical Mechanical Polishing) technology. This technology can completely flatten a layer to be exposed in a semiconductor device manufacturing process, reduce the burden of the exposure technology, and stabilize the yield. For example, flattening of an interlayer insulating film, shallow trench This is an essential technology for separation and the like.
[0003]
2. Description of the Related Art Conventionally, in a manufacturing process of a semiconductor device, CMP polishing for planarizing an inorganic insulating film layer such as a silicon oxide insulating film formed by a method such as plasma-CVD (Chemical Vapor Deposition, chemical vapor deposition) or low-pressure-CVD. Fumed silica-based abrasives have been generally studied as an agent. Fumed silica-based abrasives are produced by subjecting silica particles to grain growth by a method such as thermal decomposition into silica tetrachloride and adjusting the pH. However, such a polishing agent does not have a sufficient polishing rate for the inorganic insulating film, and there is a technical problem of a low polishing rate for practical use.
[0004]
On the other hand, cerium oxide abrasives have been used as glass surface abrasives for photomasks and lenses. Cerium oxide particles have a lower hardness than silica particles and alumina particles, and are therefore less likely to scratch the polished surface, and thus are useful for finish mirror polishing. In addition, there is an advantage that the polishing rate is higher than that of a silica abrasive. In recent years, CMP abrasives for semiconductors using high-purity cerium oxide abrasive grains have been used. For example, the technique is disclosed in Patent Document 1.
However, there is a problem that cerium oxide particles have a higher density than silica particles and are liable to settle. On the other hand, by using an appropriate dispersant, an abrasive having good dispersibility and excellent high-speed polishing properties is used. For example, this technique is disclosed in Patent Document 2. It is also known to control the polishing rate of a cerium oxide polishing liquid and to add an additive to improve global flatness. For example, this technique is disclosed in Patent Document 3.
[0005]
[Patent Document 1]
JP-A-10-106994 [Patent Document 2]
Japanese Patent Application Laid-Open No. 10-152677 [Patent Document 3]
JP-A-8-22970 [0006]
[Problems to be solved by the invention]
However, in such cerium oxide abrasives, particles may be re-agglomerated depending on the type and amount of the additive to be added, and the dispersibility may be impaired, such as ease of sedimentation. If the dispersibility is impaired, it will not be supplied to the polishing apparatus at a uniform concentration, and the processing accuracy of the polished surface will be reduced.
[0007]
In view of the above, the present invention provides a CMP polishing agent containing cerium oxide that improves the dispersibility of cerium oxide particles and improves global flatness, a polishing method using the same, and a method for manufacturing a semiconductor device using the same. Is the challenge.
[0008]
[Means for Solving the Problems]
In order to solve this problem, the present invention is characterized in that a cerium oxide abrasive containing polyethyleneimine as a dispersant is provided, and according to this, cerium oxide polishing with good dispersibility of cerium oxide particles is provided. Agent can be provided. Further, by using this cerium oxide abrasive, it is possible to polish a substrate having irregularities smoothly by global flattening.
That is, the present invention relates to the following (1) to (6).
(1) A CMP polishing slurry comprising water, cerium oxide particles and polyethyleneimine as a dispersant thereof.
(2) The CMP polishing slurry according to (1), wherein the median value of the cerium oxide crystallite diameter is 5 nm or more and 300 nm or less.
(3) The CMP abrasive according to the above (1) or (2), wherein the amount of the polyethyleneimine added is 0.01 to 1 part by weight based on 100 parts by weight of the cerium oxide particles.
(4) The CMP abrasive according to any one of the above (1) to (3), which has a pH value of 6 or more and 10 or less.
(5) The substrate on which the film to be polished is formed is pressed against the polishing cloth and pressurized, and the CMP abrasive according to any one of the above (1) to (4) is supplied between the film to be polished and the polishing cloth. A polishing method characterized by relatively moving the film to be polished and the polishing cloth to polish the film to be polished.
(6) A semiconductor comprising a step of polishing using the polishing agent according to any one of the above (1) to (4), or a step of polishing by the polishing method according to the above (5). Device manufacturing method.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Generally, cerium oxide is obtained by oxidizing cerium compounds of carbonate, nitrate, sulfate and oxalate. A cerium oxide abrasive used for polishing a silicon oxide film formed by a TEOS-CVD method or the like has a larger crystallite size (primary particle size) and a smaller crystal strain, that is, the higher the crystallinity, the higher the polishing speed. Although possible, polishing scratches are likely to occur.
In the present invention, the crystallite diameter of the cerium oxide particles is determined by diluting the cerium oxide slurry to an appropriate concentration as needed, drying the slurry, and then using a scanning electron microscope (for example, S-900 manufactured by Hitachi, Ltd.). The cerium oxide crystallite diameter surrounded by the grain boundaries is measured, and the median value is the median value of the volume distribution.
[0010]
Therefore, the method for producing the cerium oxide particles used in the present invention is not limited, but the median diameter of the cerium oxide crystallite diameter is preferably 5 nm or more and 300 nm or less. If it is less than 5 nm, the crystallinity is low and the polishing rate is reduced. If it exceeds 300 nm, there is a problem that the crystallinity is high and polishing scratches are introduced on the surface to be polished. More preferably, it is 70 nm to 250 nm. Further, since it is used for polishing in the manufacture of semiconductor devices, it is preferable that the content of alkali metals and halogens be suppressed to 10 ppm or less in cerium oxide particles.
[0011]
In the present invention, as a method for producing the cerium oxide powder, a firing method or an oxidation method using hydrogen peroxide or the like can be used. The firing temperature is preferably from 350 ° C. to 900 ° C.
[0012]
Since the cerium oxide particles produced by the above method are agglomerated, it is preferable to mechanically pulverize the particles. As the pulverization method, a dry pulverization method using a jet mill or the like or a wet pulverization method using a planetary bead mill or the like is preferable. The jet mill is described in, for example, Chemical Industry Transactions, Vol. 6, No. 5, (1980), pp. 527-532. In order to obtain fine particles having a crystallite size, it is preferable to use a dry cyclone classification treatment after the pulverization.
[0013]
As a method for dispersing these cerium oxide particles in water, a homogenizer, an ultrasonic disperser, a wet ball mill, or the like can be used in addition to the dispersion treatment using a normal stirrer.
[0014]
The CMP polishing slurry of the present invention is characterized by containing polyethyleneimine as a dispersant in addition to water and cerium oxide particles.
The concentration of the cerium oxide particles in the abrasive of the present invention is not limited, but is preferably in the range of 0.5% by weight or more and 20% by weight or less from the viewpoint of easy handling of the abrasive.
[0015]
The dispersant in the present invention is preferably polyethylene imine. The molecular weight (weight average molecular weight) of polyethyleneimine is preferably 10,000 or more and 300,000 or less. When the molecular weight of the dispersant is less than 10,000, the dispersant does not exhibit an effect and promotes sedimentation of cerium oxide particles, causing instability of the polishing rate. When the molecular weight of the dispersant exceeds 300,000, the dispersant molecules cause aggregation between particles, and the storage stability of the abrasive decreases.
[0016]
The amount of the dispersant is preferably 0.01 part by weight or more and 1 part by weight or less based on 100 parts by weight of the cerium oxide particles. If the amount of the dispersant is less than 0.01 parts by weight, the dispersibility is poor, and sedimentation is likely to occur. Further, it is difficult to smooth the surface of the substrate having irregularities. When the amount of the dispersant is more than 1 part by weight, the dispersant inhibits polishing.
[0017]
Further, an auxiliary agent for further improving the dispersibility can be added to the polishing agent. For example, an acrylic ester derivative can be added to the polishing agent. Among them, 2-hydroxyethyl methacrylate is preferred. The amount of the auxiliary agent is preferably 0.5 part by weight or more and 20 parts by weight or less based on 100 parts by weight of the cerium oxide particles.
[0018]
The average particle size (hereinafter, also referred to as a particle size) of the cerium oxide particles in the CMP polishing slurry thus produced, that is, a polycrystal composed of crystallites or secondary particles in which crystallites are aggregated, is 0.1. It is preferably from 01 μm to 1.0 μm. If the average particle size of the cerium oxide particles is less than 0.01 μm, the polishing rate becomes too low, and if it exceeds 1.0 μm, the film to be polished is easily damaged.
[0019]
In addition to the above-mentioned materials, the CMP abrasive of the present invention includes additives generally added to the abrasive, such as coloring agents such as dyes and pigments, pH adjusters, and solvents other than water, and the action of the abrasive. You may add in the range which does not impair an effect.
[0020]
One example of a method for evaluating the dispersibility of the abrasive is to measure the zeta potential of the abrasive particles. For the measurement, for example, Zetasizer 3000HS (trade name, manufactured by Malvern) can be used. For example, the abrasive can be centrifuged at 15000 rpm for 10 minutes, and the zeta potential of the supernatant can be measured. In order to obtain good dispersibility, the zeta potential is preferably in the range of 10 to 70 mV.
[0021]
The pH of the CMP polishing slurry of the present invention is preferably in the range of 6 or more and 10 or less, more preferably in the range of 6 to 8. If the pH is too low or too high, the storage stability of the abrasive is reduced, which is not preferable because it causes scratches. The pH can be adjusted by adding an acid component or an alkali component such as ammonia, sodium hydroxide, or tetramethylammonium hydroxide (TMAH).
The pH of the abrasive of the present invention was measured with a pH meter (for example, ModelpH81 manufactured by Yokogawa Electric Corporation). After two-point calibration using a standard buffer (phthalate pH buffer pH: 4.21 (25 ° C.), neutral phosphate pH buffer pH 6.86 (25 ° C.)), the electrode was polished with an abrasive. , And the value was measured after 2 minutes or more had passed and stabilized.
[0022]
The CMP abrasive of the present invention can be prepared as a one-part abrasive composed of, for example, cerium oxide particles, polyethyleneimine, an additive such as an acrylate derivative, and water.
Further, it can also be prepared as a two-pack type CMP polishing slurry in which a cerium oxide slurry composed of cerium oxide particles, polyethyleneimine and water and an additive liquid composed of an additive and water are separated. In any case, stable characteristics can be obtained.
When the cerium oxide slurry and the additive liquid are stored as a two-part CMP polishing agent, the flattening characteristics and polishing rate can be adjusted by arbitrarily changing the composition of these two parts. In the case of the two-part system, the additive liquid is supplied to the polishing platen separately from the cerium oxide slurry and mixed on the polishing platen, or mixed with the cerium oxide slurry immediately before polishing.
[0023]
In the polishing method of the present invention, the substrate on which the film to be polished is formed is pressed against a polishing cloth and pressurized, and the polishing agent of the present invention is supplied between the film to be polished and the polishing cloth. The film to be polished is polished by relatively moving the cloth.
A substrate in which an inorganic insulating layer is formed on a semiconductor substrate such as a substrate for manufacturing a semiconductor device, for example, a semiconductor substrate on which circuit elements and wiring patterns are formed, and a semiconductor substrate on which circuit elements are formed. And the like. The film to be polished includes the inorganic insulating layer, for example, a silicon oxide (SiO 2 ) film layer or a silicon nitride (SiN) film layer and a silicon oxide film layer.
Hereinafter, the polishing method will be described by taking, as an example, the case of a semiconductor substrate on which a silicon nitride film layer and a silicon oxide film layer are formed as a film to be polished.
[0024]
In the polishing method of the present invention, a polishing apparatus that can be used includes a holder for holding a substrate having a film to be polished, a polishing machine having a polishing cloth (pad) attached thereto and a motor or the like capable of changing the number of rotations attached. A general polishing apparatus having a disk can be used. For example, a polishing apparatus manufactured by EBARA CORPORATION: model number EPO111 can be used.
[0025]
As the polishing cloth on the polishing platen, general nonwoven fabric, foamed polyurethane, porous fluororesin, or the like can be used, and there is no particular limitation. Further, it is preferable that the polishing cloth is subjected to a groove processing for accumulating a CMP abrasive. The polishing conditions are not limited, but the rotation speed of the platen is preferably low rotation of 200 rpm or less so that the semiconductor substrate does not jump out, and the pressure applied to the semiconductor substrate is 1 kg / cm 2 (98 kPa) so that scratches do not occur after polishing. The following are preferred. In order to satisfy the uniformity of the polishing rate within the surface to be polished and the flatness of the pattern, the pressure is more preferably 5 kPa to 50 kPa.
[0026]
In order to relatively move the polishing cloth and the film to be polished while the film to be polished of the substrate is pressed against the polishing cloth, at least one of the substrate and the polishing platen may be moved. In addition to rotating the polishing platen, the holder may be rotated or rocked for polishing. Further, a polishing method in which a polishing platen is rotated in a planetary manner, a polishing method in which a belt-shaped polishing cloth is linearly moved in one direction in a longitudinal direction, and the like are exemplified. Note that the holder may be in any of a fixed state, a rotating state, and a swinging state. These polishing methods can be appropriately selected depending on the surface to be polished and the polishing apparatus as long as the polishing cloth and the film to be polished are relatively moved.
[0027]
During polishing, the slurry of the present invention is continuously supplied between the polishing cloth and the film to be polished by a pump or the like. Although the supply amount is not limited, it is preferable that the surface of the polishing pad is always covered with the polishing agent. Specifically, it is preferable to supply 0.005 to 0.40 ml per 1 cm 2 of the polishing cloth area. The supply form of the two-part abrasive may be separate or immediately before mixing as described above.
[0028]
After the polishing, the semiconductor substrate is preferably washed well in running water, and then dried using a spin drier or the like to remove water droplets attached to the semiconductor substrate.
By polishing the inorganic insulating layer, which is the film to be polished, with the above-mentioned abrasive, unevenness on the surface can be eliminated and a smooth surface can be obtained over the entire semiconductor substrate.
[0029]
Examples of a method for forming an inorganic insulating film to which the CMP polishing slurry and the polishing method of the present invention are applied include a low-pressure CVD method and a plasma CVD method.
For example, in forming a silicon oxide film by a low-pressure CVD method, monosilane: SiH 4 is used as a Si source, and oxygen: O 2 is used as an oxygen source. This is obtained by performing the SiH 4 —O 2 -based oxidation reaction at a low temperature of 400 ° C. or less. In some cases, heat treatment is performed at a temperature of 1000 ° C. or less after CVD. Phosphorus in order to surface planarization by a high temperature reflow: when doped with P, it is preferable to use a SiH 4 -O 2 -PH 3 system reaction gas.
In the formation of a silicon nitride film by a low-pressure CVD method, dichlorosilane: SiH 2 Cl 2 is used as a Si source, and ammonia: NH 3 is used as a nitrogen source. This is obtained by performing the SiH 2 Cl 2 —NH 3 -based oxidation reaction at a high temperature of 900 ° C.
[0030]
The plasma CVD method has an advantage that a chemical reaction requiring a high temperature can be performed at a low temperature under normal thermal equilibrium. There are two types of plasma generation methods, a capacitive coupling type and an inductive coupling type. As a reaction gas, a SiH 4 -N 2 O-based gas using SiH 4 as a Si source and N 2 O as an oxygen source and a TEOS-O 2 -based gas (TEOS-) using tetraethoxysilane (TEOS) as a Si source are used. Plasma CVD method). The substrate temperature is preferably from 250 ° C. to 400 ° C., and the reaction pressure is preferably from 67 to 400 Pa. Examples of the reaction gas include a SiH 4 -NH 3 -based gas using SiH 4 as a Si source and NH 3 as a nitrogen source. The substrate temperature is preferably from 300C to 400C.
[0031]
As described above, these inorganic insulating films and the like to which the polishing agent and the polishing method of the present invention are applied may be doped with an element such as phosphorus and boron.
[0032]
The CMP polishing agent and the polishing method of the present invention can be applied not only to polishing of a silicon oxide film formed on a semiconductor substrate, but also to manufacturing processes of various semiconductor devices. That is, a method for manufacturing a semiconductor device of the present invention includes a step of polishing using the polishing agent of the present invention or a step of polishing by the polishing method of the present invention. For example, a silicon oxide film formed on a wiring board having a predetermined wiring, an inorganic insulating film such as glass and silicon nitride, a film mainly containing polysilicon, Al, Cu, Ti, TiN, W, Ta, TaN, etc., a photo Optical glass such as masks, lenses, prisms, etc .; inorganic conductive films such as ITO; optical integrated circuits, optical switching elements, optical waveguides composed of glass and crystalline materials, optical fiber end faces, optical single crystals such as scintillators, solids The present invention can be applied to a process of polishing a laser single crystal, a sapphire substrate for a blue laser LED, and a semiconductor single crystal such as SiC, GaP, and GaAs. Further, the present invention can be applied to a polishing process for a glass substrate for a magnetic disk, a magnetic head, and the like.
[0033]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
(Example 1)
(Preparation of cerium oxide particles)
2 kg of cerium carbonate hydrate was placed in a platinum container and calcined at 800 ° C. for 2 hours in the air to obtain about 1 kg of a yellow-white powder. When this powder was subjected to phase identification by an X-ray diffraction method, it was confirmed that the powder was cerium oxide. The particle diameter of the calcined powder was 30 to 100 μm. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the cerium oxide crystallite diameter surrounded by the grain boundaries was measured, the median value of the volume distribution was 190 nm and the maximum value was 500 nm. 1 kg of cerium oxide powder was dry-ground using a jet mill. When the pulverized particles were observed with a scanning electron microscope, large polycrystalline particles of 1 to 3 μm and polycrystalline particles of 0.5 to 1 μm were mixed together with fine particles having the same size as the crystallite diameter.
[0034]
(Preparation of cerium oxide slurry)
1 kg of the cerium oxide particles prepared above, 1 g of polyethyleneimine (weight average molecular weight: 70000) and 8999 g of deionized water were mixed, and subjected to ultrasonic dispersion for 10 minutes with stirring to obtain an intermediate slurry. The obtained intermediate slurry was filtered with a 1-micron filter, and further deionized water was added to obtain a slurry-like abrasive of 1% by weight of cerium oxide. The abrasive pH was 7.1.
As a result of measuring the particle diameter of slurry particles in the abrasive (average particle diameter of aggregated particles of polycrystal or crystallite) with a laser diffraction particle size distribution analyzer, the average particle diameter was 242 nm. When the particles were diluted to an appropriate concentration and dried, and the surfaces of the particles were observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the cerium oxide crystallite diameter surrounded by the grain boundaries was measured, the median of the volume distribution was 109 nm.
In order to measure the zeta potential of the slurry particles, the abrasive was centrifuged at 15,000 rpm for 10 minutes, and the supernatant was measured for zeta potential using a Zetasizer 3000HS (trade name, manufactured by Malvern). As a result, the dispersibility was 45.4 mV, which was good. After 1 month, 3 months, and 6 months, after the slurry was sufficiently stirred, the particle diameter and zeta potential were measured. As a result, no remarkable difference was observed from the time of preparation.
[0035]
(Polishing of insulating film layer)
FIG. 1 shows a schematic view of an evaluation wafer used in an example of the present invention. That is, as shown in the plan view of FIG. 1A and the vertical sectional view of FIG. 1B, a 100-nm silicon nitride (SiN) film 2 is formed on a silicon (Si) substrate 1 having a diameter of 200 mm, and a trench is further formed. 3 was formed. Next, as shown in a vertical sectional view of FIG. 1C, a test wafer for narrow element isolation (STI) insulating film CMP evaluation in which the trench 3 was embedded with an insulating film 4 of silicon oxide (SiO 2 ) was produced. .
The initial thickness of the insulating film 4 was 610 nm in the convex portion and 650 nm in the concave portion. The depth of the trench 3 was 460 nm. The distance between the 100 μm square silicon nitride film portion and the adjacent portion was 59 μm.
The pattern wafer was set on a holder of a polishing apparatus to which a suction pad for attaching a substrate to be held was attached, and a polishing pad made of a porous urethane resin was attached to a polishing platen having a diameter of 600 mm. The holder was placed on the pad with the insulating film 4 side down, and the processing load was set to 300 gf / cm 2 (29.4 kPa). While the cerium oxide abrasive (solid content: 1% by weight) was dropped on the surface plate at a rate of 200 cc / min, the surface plate and the wafer were operated at 50 rpm, respectively, for 2, 3, 4, 5, and 6 minutes. Each insulating film was polished. The polished wafer was thoroughly washed with pure water and then dried. Thereafter, the remaining film thickness of the insulating film 4 in the concave portion, the remaining film thickness of the insulating film in the convex portion, or the remaining film thickness of the SiN film 2 was measured using an optical interference type film thickness apparatus. The measurement results of these residual film thicknesses according to the polishing time are shown in graphs in FIGS. Further, FIG. 1C is partially enlarged, and each film thickness before polishing is shown side by side to correspond to the graph.
[0036]
As a result, as shown in FIG. 2, no change in the remaining film thickness was observed in the concave portion after 4 minutes, and it was found that the polishing hardly progressed.
In addition, as shown in FIG. 3, the convex portions were completely removed from the insulating film in four minutes, exposing the SiN film. After 4 minutes, the remaining film thickness of the SiN film did not change and it was found that the polishing hardly proceeded. It was found that even if the excess polishing was performed for 4 minutes or more, no excessive shaving of the uneven portion was observed.
[0037]
(Comparative Example 1)
1 kg of the cerium oxide particles prepared in Example 1, 23 g of an aqueous solution of polyammonium ammonium salt (40% by weight), and 8977 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The obtained intermediate slurry was filtered through a 1-micron filter, and deionized water was further added to obtain an abrasive of 5% by weight of cerium oxide. The pH of the abrasive was 8.3.
Further, in order to measure the particles in the abrasive with a laser diffraction type particle size distribution meter, the particles were diluted to an appropriate concentration and measured. As a result, the median particle diameter was 250 nm.
[0038]
(Polishing of insulating film layer)
A test wafer for evaluating a narrow element isolation (STI) insulating film CMP was polished in the same manner as in Example 1 except that the abrasive prepared above was used. As a result, when the polishing was performed for 3 minutes or more, the insulating film in the concave portion and the SiN film in the convex portion were all removed.
[0039]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the CMP abrasive | polishing agent with favorable dispersibility of a cerium oxide particle and the grinding | polishing method which grind | polishes the base | substrate which has unevenness and can obtain global flatness are obtained. Further, it is possible to provide a method for manufacturing a semiconductor device with high processing accuracy of a surface to be polished.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a CMP test wafer evaluation unit for a narrow element isolation (STI) insulating film in an embodiment of the present invention;
(A) is a plan view after forming a trench,
(B) is a longitudinal sectional view of the AA ′ plane of (a),
(C) is a longitudinal sectional view after embedding the insulating layer.
FIG. 2 is a graph showing the relationship between the remaining amount of the concave insulating film and the polishing time according to the embodiment of the present invention, and a partially enlarged view of FIG. 1C showing each film thickness before polishing.
FIG. 3 is a graph showing the relationship between the remaining amount of the protrusion insulating film and the polishing time in the example of the present invention, and a partially enlarged view of FIG. 1C showing each film thickness before polishing.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 silicon substrate 2 silicon nitride (SiN) film 3 trench 4 insulating film (SiO 2 )

Claims (6)

水、酸化セリウム粒子およびその分散剤としてポリエチレンイミンを含むことを特徴とするCMP研磨剤。A CMP polishing agent comprising water, cerium oxide particles and polyethyleneimine as a dispersant thereof. 前記酸化セリウム結晶子径の中央値が5nm以上300nm以下である請求項1記載のCMP研磨剤。The CMP polishing slurry according to claim 1, wherein a median value of the cerium oxide crystallite diameter is 5 nm or more and 300 nm or less. 前記ポリエチレンイミンの添加量が前記酸化セリウム粒子100重量部に対して0.01重量部以上1重量部以下である請求項1又は2記載のCMP研磨剤。3. The CMP polishing slurry according to claim 1, wherein an addition amount of the polyethyleneimine is 0.01 to 1 part by weight based on 100 parts by weight of the cerium oxide particles. 4. pH値が6以上10以下である請求項1〜3のいずれか一項記載のCMP研磨剤。The CMP abrasive according to any one of claims 1 to 3, having a pH value of 6 or more and 10 or less. 被研磨膜を形成した基体を研磨布に押しあて加圧し、請求項1〜4のいずれか一項記載のCMP研磨剤を被研磨膜と研磨布との間に供給しながら、被研磨膜と研磨布とを相対的に動かして被研磨膜を研磨することを特徴とする研磨方法。The substrate on which the film to be polished is formed is pressed against a polishing cloth and pressurized. A polishing method characterized in that a film to be polished is polished by relatively moving a polishing cloth. 請求項1〜4のいずれか一項記載の研磨剤を使用して研磨する工程、または請求項5記載の研磨方法で研磨する工程を含むことを特徴とする半導体装置の製造方法。A method for manufacturing a semiconductor device, comprising: polishing using the polishing agent according to claim 1, or polishing using the polishing method according to claim 5.
JP2003067692A 2003-03-13 2003-03-13 Cmp abrasive, polishing method, and production method for semiconductor device Pending JP2004277474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003067692A JP2004277474A (en) 2003-03-13 2003-03-13 Cmp abrasive, polishing method, and production method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003067692A JP2004277474A (en) 2003-03-13 2003-03-13 Cmp abrasive, polishing method, and production method for semiconductor device

Publications (1)

Publication Number Publication Date
JP2004277474A true JP2004277474A (en) 2004-10-07

Family

ID=33285230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003067692A Pending JP2004277474A (en) 2003-03-13 2003-03-13 Cmp abrasive, polishing method, and production method for semiconductor device

Country Status (1)

Country Link
JP (1) JP2004277474A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196671A (en) * 2005-01-13 2006-07-27 Nitta Haas Inc Composition for polishing semiconductor and polishing method of semiconductor
WO2006103858A1 (en) * 2005-03-28 2006-10-05 Asahi Glass Company, Limited Abrasive for semiconductor integrated circuit device, method of polishing therewith and process for producing semiconductor integrated circuit device
JP2008543577A (en) * 2005-06-13 2008-12-04 バスフ エスイー Slurry composition for polishing color filters

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196671A (en) * 2005-01-13 2006-07-27 Nitta Haas Inc Composition for polishing semiconductor and polishing method of semiconductor
WO2006103858A1 (en) * 2005-03-28 2006-10-05 Asahi Glass Company, Limited Abrasive for semiconductor integrated circuit device, method of polishing therewith and process for producing semiconductor integrated circuit device
US7695345B2 (en) 2005-03-28 2010-04-13 Asahi Glass Company, Limited Polishing compound for semiconductor integrated circuit device, polishing method and method for producing semiconductor integrated circuit device
JP2008543577A (en) * 2005-06-13 2008-12-04 バスフ エスイー Slurry composition for polishing color filters

Similar Documents

Publication Publication Date Title
JP4729834B2 (en) CMP abrasive, substrate polishing method and semiconductor device manufacturing method using the same, and additive for CMP abrasive
KR101277029B1 (en) Cmp polishing liquid, method for polishing substrate, and electronic component
JPH11181403A (en) Cerium oxide abrasive and grinding of substrate
KR20010108048A (en) CMP Abrasive, Liquid Additive for CMP Abrasive and Method for Polishing Substrate
KR20120102792A (en) Polishing liquid for cmp and polishing method using the same
JPH10154672A (en) Cerium oxide abrasive material and polishing method of substrate
JP5516594B2 (en) CMP polishing liquid, and polishing method and semiconductor substrate manufacturing method using the same
JP2005048125A (en) Cmp abrasive, polishing method, and production method for semiconductor device
JP2003347248A (en) Cmp polishing agent for semiconductor insulating film and method of polishing substrate
JPH10154673A (en) Cerium oxide abrasive material and substrate polishing method
JPH10106988A (en) Cerium oxide abrasive agent and polishing method of substrate
JP2003007660A (en) Cmp abrasive and sustrate-polishing method
JPH10106990A (en) Cerium oxide abrasive material and polishing method of substrate
JPH10106987A (en) Cerium oxide abrasive agent and polishing method of substrate
JP2004200268A (en) Cmp polishing agent and polishing method of substrate
JP2004277474A (en) Cmp abrasive, polishing method, and production method for semiconductor device
JP2009266882A (en) Abrasive powder, polishing method of base using same, and manufacturing method of electronic component
JP4123730B2 (en) Cerium oxide abrasive and substrate polishing method using the same
JP4776387B2 (en) Cerium oxide abrasive and substrate polishing method
JP2005048122A (en) Cmp abrasive, polishing method, and production method for semiconductor device
JP2000160137A (en) Polishing agent and polishing process using the same
JP2000188270A (en) Cerium oxide abrasive and method of grinding substrate
JPH10106991A (en) Cerium oxide abrasive powder, and polishing method of substrate
JP2003209076A (en) Cmp abrasive and abrading method for substrate
JP4830194B2 (en) CMP polishing agent and substrate polishing method