JP5352638B2 - Method for producing conductive paint and method for forming conductive coating film using the conductive paint - Google Patents

Method for producing conductive paint and method for forming conductive coating film using the conductive paint Download PDF

Info

Publication number
JP5352638B2
JP5352638B2 JP2011163197A JP2011163197A JP5352638B2 JP 5352638 B2 JP5352638 B2 JP 5352638B2 JP 2011163197 A JP2011163197 A JP 2011163197A JP 2011163197 A JP2011163197 A JP 2011163197A JP 5352638 B2 JP5352638 B2 JP 5352638B2
Authority
JP
Japan
Prior art keywords
liquid
conductive
coating film
conductive paint
curable component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011163197A
Other languages
Japanese (ja)
Other versions
JP2012001723A (en
Inventor
雅則 友成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2011163197A priority Critical patent/JP5352638B2/en
Publication of JP2012001723A publication Critical patent/JP2012001723A/en
Application granted granted Critical
Publication of JP5352638B2 publication Critical patent/JP5352638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for industrially and economically advantageously forming a coating film having excellent conductivity, and to provide a conductive coating material to be used in the method. <P>SOLUTION: This conductive coating material is composed of a first liquid containing a conductive oxide but substantially not containing a curable component, and a second liquid containing a curable component, where in the first liquid, water and a non-aqueous solvent such as N-methylformamide, dimethylsulfoxide, ethylene glycol, 4-butyrolactone, acetamide and 1,3-dimethyl-2-imidazolidinone are formulated as the dispersant. After forming a layer containing the conductive oxide by applying the first liquid on a substrate, the second liquid is applied thereon and the curable component is cured to form the conductive coating film. This invention can simply impart excellent conductivity to the substrate. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、導電性塗料及びそれを用いた導電性塗膜の形成方法に関し、特に、導電性と透明性が高く、帯電防止効果を有する導電性塗膜を形成する方法に関する。   The present invention relates to a conductive paint and a method for forming a conductive coating film using the same, and more particularly to a method for forming a conductive coating film having high conductivity and transparency and having an antistatic effect.

ブラウン管、液晶ディスプレイ等の表示機器の表示面、クリーンルームの窓材、電子部品の包装材として用いられるプラスチックスやガラス、あるいはオーバーヘッドディスプレイや写真に用いられるフィルムのような各種の透明性基材は、一般的に絶縁体であり静電気を帯び易い。このため、表面に埃やゴミが付着し易く、電子機器等は誤作動を引き起こす場合もある。   Various transparent substrates such as display surfaces of display devices such as cathode ray tubes, liquid crystal displays, window materials for clean rooms, plastics and glass used as packaging materials for electronic components, or films used for overhead displays and photographs, Generally, it is an insulator and is easily charged with static electricity. For this reason, dust and dirt are likely to adhere to the surface, and electronic devices and the like may cause malfunction.

そこで、帯電防止のために、酸化スズ、酸化インジウム、酸化亜鉛等の導電性酸化物をスパッタリング等により蒸着したり、コーティング剤や塗料に配合して塗布したりすることが通常行われている。これらの導電性酸化物の中でも微粒子のもの、例えば球状粒子であれば平均粒子径が0.1μm以下のものは、可視光線を透過する性質を有しているので、前述のような透明性基材に用いるのに適している。しかし、蒸着は大掛かりな装置を要し、大量生産には不向きで、高コストの方法であり、コーティング剤や塗料を塗布する方法では、それに配合される硬化性成分が絶縁性であるため、高い導電性が得られないという問題があった。   Therefore, in order to prevent electrification, conductive oxides such as tin oxide, indium oxide, and zinc oxide are usually deposited by sputtering or applied to a coating agent or paint. Among these conductive oxides, those having fine particles, for example, spherical particles having an average particle size of 0.1 μm or less, have the property of transmitting visible light, so that the transparent group as described above is used. Suitable for use on materials. However, vapor deposition requires a large-scale apparatus, is not suitable for mass production, and is a high-cost method. In the method of applying a coating agent or paint, the curable component compounded therein is insulative, so it is high. There was a problem that conductivity could not be obtained.

本発明は以上に述べた従来技術の問題点を解決し、優れた導電性を有する塗膜を工業的、経済的有利に形成する方法並びにその方法に用いる導電性塗料を提供するものである。   The present invention solves the problems of the prior art described above, and provides a method for forming a coating film having excellent conductivity in an industrially and economically advantageous manner and a conductive paint used in the method.

本発明者は鋭意研究を重ねた結果、第一液が導電性酸化物と分散媒としての水と高比誘電率且つ高沸点の非水溶媒を含み、実質的に硬化性成分を含まず、一方、第二液に硬化性成分を含む二液性導電性塗料とし、導電性酸化物を配合した第一液を塗布した後、硬化性成分を配合した第二液を塗布して硬化させると、優れた導電性を有する塗膜が簡便に得られることを見出し、本発明を完成した。   As a result of intensive research, the inventor of the present invention contains a conductive oxide, water as a dispersion medium, a non-aqueous solvent having a high relative dielectric constant and a high boiling point, and substantially does not contain a curable component, On the other hand, when a second liquid containing a curable component is included in the second liquid, and after applying the first liquid containing the conductive oxide, the second liquid containing the curable component is applied and cured. The inventors have found that a coating film having excellent conductivity can be easily obtained and completed the present invention.

すなわち、本発明は導電性酸化物、水及び35以上の比誘電率と100℃以上の沸点とを有する非水溶媒を含む第一液、硬化性成分を含む第二液からなる導電性塗料である。また、本発明は、前記の導電性塗料の第一液を基材に塗布し導電性酸化物を含む層を形成させた後、第二液を塗布し硬化性成分を硬化させる導電性塗膜の形成方法である。更に、本発明は、前記の導電性塗料の第一液を物品の表面に塗布し導電性酸化物を含む層を形成させた後、その上に第二液を塗布し硬化性成分を硬化させる、導電性塗膜を有する物品の製造方法である。   That is, the present invention is a conductive paint comprising a conductive oxide, water, a first liquid containing a non-aqueous solvent having a relative dielectric constant of 35 or higher and a boiling point of 100 ° C. or higher, and a second liquid containing a curable component. is there. The present invention also provides a conductive coating film in which the first liquid of the conductive coating is applied to a substrate to form a layer containing a conductive oxide, and then the second liquid is applied to cure the curable component. It is the formation method. Furthermore, in the present invention, the first liquid of the conductive paint is applied to the surface of the article to form a layer containing a conductive oxide, and then the second liquid is applied thereon to cure the curable component. A method for producing an article having a conductive coating film.

本発明は、導電性酸化物、水及び35以上の比誘電率と100℃以上の沸点とを有する非水溶媒を含む第一液、硬化性成分を含む第二液からなる二液性の導電性塗料であり、導電性酸化物を配合した第一液を塗布した後、硬化性成分を配合した第二液を塗布して硬化させると、導電性酸化物と基材との接点に絶縁性の硬化性成分が介在し難くなると推測され、導電性酸化物の凝集が防止できるため、基材に優れた導電性を簡便に付与することができる。この塗布方法は、蒸着方法に比べて工業的、経済的に有利であり、また、塗膜硬度も高いため、本発明の二液性導電性塗料は種々の基材に導電性を付与することができ、導電性塗膜を有する物品を製造する工業用途のほか、一般家庭用の導電性付与剤としても用いることができる。さらに、導電性酸化物微粒子を用いると、優れた透明性と導電性とを備えた塗膜が得られるため、特に、ガラス、プラスチックス、フィルム等の透明基材の帯電防止材として有用である。   The present invention relates to a two-component conductive material comprising a conductive oxide, water, a first liquid containing a non-aqueous solvent having a relative dielectric constant of 35 or higher and a boiling point of 100 ° C. or higher, and a second liquid containing a curable component. After applying the first liquid compounded with conductive oxide and applying the second liquid compounded with a curable component, it is insulative at the contact point between the conductive oxide and the substrate. It is presumed that the curable component is difficult to intervene, and aggregation of the conductive oxide can be prevented, so that excellent conductivity can be easily imparted to the substrate. This coating method is industrially and economically advantageous compared to the vapor deposition method, and also has high coating film hardness, so that the two-component conductive paint of the present invention imparts conductivity to various substrates. It can be used as an electrical conductivity imparting agent for general households as well as industrial applications for producing articles having a conductive coating film. Furthermore, when conductive oxide fine particles are used, a coating film having excellent transparency and conductivity can be obtained, and thus it is particularly useful as an antistatic material for transparent substrates such as glass, plastics, and films. .

本発明の導電性塗料は、導電性酸化物を配合し、硬化性成分を実質的に含まない第一液と、硬化性成分を配合した第二液から構成される。第一液に配合する導電性酸化物は一般的に親水性であるため、硬化性成分を含まない第一液の組成において、分散媒として有機溶剤を用いると、導電性酸化物を分散安定化させるには、界面活性剤を配合したり、カップリング剤を処理する必要がある。しかし、界面活性剤やカップリング剤は絶縁性であるので、導電性を低下させる要因となる。一方、第一液の分散媒に水を用いると、特定のpHに調整することで分散安定化できるが、水は表面張力が大きいので、蒸発する際に導電性酸化物が凝集し易く、所望の導電性や透明性が得られない。このため、本発明では、導電性酸化物を配合する第一液の分散媒に水と、35以上の比誘電率と100℃以上の沸点とを有する非水溶媒を用いることによって、液中での導電性酸化物の分散安定化と導電性酸化物を配合した第一液を塗布した際の凝集を防止しようとするものである。このような第一液を後述の方法に従って基材に塗布し導電性酸化物を含む層を形成させた後、第二液を塗布し硬化性成分を硬化させて塗膜を形成させると、優れた導電性を有する塗膜が得られる。これは、導電性酸化物と基材との接点に絶縁性の硬化性成分が介在し難く、導電経路が形成され易いためであると推測される。   The conductive paint of the present invention is composed of a first liquid that contains a conductive oxide and substantially does not contain a curable component, and a second liquid that contains a curable component. Since the conductive oxide compounded in the first liquid is generally hydrophilic, the conductive oxide is dispersed and stabilized when an organic solvent is used as the dispersion medium in the composition of the first liquid that does not contain a curable component. In order to achieve this, it is necessary to add a surfactant or to treat a coupling agent. However, since the surfactant and the coupling agent are insulative, they cause a decrease in conductivity. On the other hand, when water is used as the dispersion medium of the first liquid, the dispersion can be stabilized by adjusting to a specific pH. However, since water has a large surface tension, the conductive oxide tends to aggregate when evaporating. Conductivity and transparency cannot be obtained. For this reason, in the present invention, by using water, a non-aqueous solvent having a relative dielectric constant of 35 or higher and a boiling point of 100 ° C. or higher as the first liquid dispersion medium containing the conductive oxide, It is intended to stabilize the dispersion of the conductive oxide and prevent aggregation when the first liquid containing the conductive oxide is applied. When such a first liquid is applied to a substrate according to the method described later to form a layer containing a conductive oxide, the second liquid is applied to cure the curable component to form a coating film. A highly conductive coating film is obtained. This is presumed to be because an insulating curable component is unlikely to intervene at the contact point between the conductive oxide and the substrate, and a conductive path is easily formed.

第一液に配合する非水溶媒としては、比誘電率は前記のように35以上であれば良いが、35〜200の範囲のものがより好ましく、沸点は100℃以上であれば良いが、100〜250℃の範囲のものがより好ましい。このような非水溶媒としては、N−メチルホルムアミド(比誘電率190、沸点197℃)、ジメチルスルホキシド(比誘電率45、沸点189℃)、エチレングリコール(比誘電率38、沸点226℃)、4−ブチロラクトン(比誘電率39、沸点204℃)、アセトアミド(比誘電率65、沸点222℃)、1,3−ジメチル−2−イミダゾリジノン(比誘電率38、沸点226℃)、ホルムアミド(比誘電率111、沸点210℃)、N−メチルアセトアミド(比誘電率175、沸点205℃)、フルフラール(比誘電率40、沸点161℃)等が挙げられ、これらの1種または2種以上を用いることができる。非水溶媒の含有量は、第一液に含まれる水1重量部に対して0.15〜20重量部の範囲が好ましく、0.15〜15重量部がより好ましい。   As the non-aqueous solvent to be blended in the first liquid, the relative dielectric constant may be 35 or more as described above, more preferably in the range of 35 to 200, and the boiling point may be 100 ° C. or more. The thing of the range of 100-250 degreeC is more preferable. As such a non-aqueous solvent, N-methylformamide (dielectric constant 190, boiling point 197 ° C.), dimethyl sulfoxide (relative dielectric constant 45, boiling point 189 ° C.), ethylene glycol (relative dielectric constant 38, boiling point 226 ° C.), 4-butyrolactone (relative permittivity 39, boiling point 204 ° C.), acetamide (relative permittivity 65, boiling point 222 ° C.), 1,3-dimethyl-2-imidazolidinone (relative permittivity 38, boiling point 226 ° C.), formamide ( Specific dielectric constant 111, boiling point 210 ° C.), N-methylacetamide (relative dielectric constant 175, boiling point 205 ° C.), furfural (relative dielectric constant 40, boiling point 161 ° C.) and the like. Can be used. The content of the non-aqueous solvent is preferably in the range of 0.15 to 20 parts by weight, more preferably 0.15 to 15 parts by weight with respect to 1 part by weight of water contained in the first liquid.

また、前記非水溶媒の表面張力が小さければ、塗膜にムラが生じ難く、シワやチヂミの少ない平滑性が優れたものとなるので好ましく、50×10−3N/m以下の表面張力を有するものが更に好ましく、10×10−3〜50×10−3N/mの範囲のものが特に好ましい。このようなものとしては、N−メチルホルムアミド(表面張力38×10−3N/m)、ジメチルスルホキシド(表面張力43×10−3N/m)、エチレングリコール(表面張力48×10−3N/m)、4−ブチロラクトン(表面張力44×10−3N/m)、アセトアミド(表面張力39×10−3N/m)、1,3−ジメチル−2−イミダゾリジノン(表面張力41×10−3N/m)等が挙げられる。 Further, if the surface tension of the non-aqueous solvent is small, unevenness in the coating film hardly occurs, and smoothness with less wrinkles and wrinkles is excellent, which is preferable, and a surface tension of 50 × 10 −3 N / m or less is preferable. more preferably those having, particularly preferably in the range of 10 × 10 -3 ~50 × 10 -3 N / m. As such, N-methylformamide (surface tension 38 × 10 −3 N / m), dimethyl sulfoxide (surface tension 43 × 10 −3 N / m), ethylene glycol (surface tension 48 × 10 −3 N) / M), 4-butyrolactone (surface tension 44 × 10 −3 N / m), acetamide (surface tension 39 × 10 −3 N / m), 1,3-dimethyl-2-imidazolidinone (surface tension 41 × 10 −3 N / m) and the like.

第一液に配合する導電性酸化物は公知のものを用いることができ、例えば酸化スズ、酸化インジウム、酸化亜鉛等が挙げられ、これらの1種または2種以上を用いることができる。導電性酸化物には導電性を更に高める目的で、Sb、F、W、Ga、Sn、In、Al等の異種の元素を、1種または2種以上をドープしても良く、中でも酸化スズとSb、FまたはW、酸化インジウムとSn、酸化亜鉛とF、Al、Ga、InまたはSbとの組み合わせが特に好ましい。更に、分散性向上等の目的で、Si、W、Zr、Al等の酸化物または水和酸化物を、導電性酸化物の表面に被覆することもできる。導電性酸化物の形状は球状、針状、樹脂状、板状等特に制限は無い。20〜150m/gの範囲、好ましくは30〜130m/gの範囲の比表面積を有する導電性酸化物は透明性が優れ、また表面エネルギーが大き過ぎず分散が比較的容易であるので、これを用いるのが好ましい。導電性酸化物の配合量は適宜設定できるが、第一液に0.5〜50重量%の範囲で含まれているのが好ましく、0.5〜20重量%がより好ましい。 As the conductive oxide to be blended in the first liquid, known ones can be used, for example, tin oxide, indium oxide, zinc oxide, etc., and one or more of these can be used. The conductive oxide may be doped with one or more different elements such as Sb, F, W, Ga, Sn, In, and Al for the purpose of further increasing the conductivity, and in particular tin oxide. And a combination of Sb, F or W, indium oxide and Sn, zinc oxide and F, Al, Ga, In or Sb is particularly preferable. Furthermore, for the purpose of improving dispersibility, the surface of the conductive oxide can be coated with an oxide such as Si, W, Zr, Al or a hydrated oxide. The shape of the conductive oxide is not particularly limited, such as a spherical shape, a needle shape, a resin shape, or a plate shape. Range 20~150m 2 / g, since preferably conductive oxide having a specific surface area in the range of 30~130m 2 / g is excellent in transparency, and the surface energy is not too dispersion is relatively easy, It is preferable to use this. Although the compounding quantity of an electroconductive oxide can be set suitably, it is preferable to contain in the range of 0.5-50 weight% in the 1st liquid, and 0.5-20 weight% is more preferable.

導電性酸化物は等電点が酸性域にあるものはアルカリ性の水に、等電点がアルカリ性域にあるものは酸性の水に分散安定化する性質を有している。従って、本発明の導電性塗料の第一液は、用いる導電性酸化物の等電点に応じて水のpHを調整し、この水に導電性酸化物を分散させるのが好ましく、導電性酸化物を分散させた液に、前記非水溶媒を添加して第一液を調製する。この第一液には、その他の添加剤、溶媒等を適宜添加しても良い。導電性酸化物の分散には、必要に応じてサンドミル、ラインミル、コロイドミル等の分散機を用いても良い。pH調整に用いる塩基性化合物としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ金属またはアルカリ土類金属の水酸化物、アンモニア等のアンモニウム化合物、アミン類等が、酸性化合物としては例えば塩酸、硫酸、硝酸等の無機酸やギ酸、酢酸、プロピオン酸等の有機酸が挙げられる。   The conductive oxide has the property of being dispersed and stabilized in alkaline water when the isoelectric point is in the acidic region, and in acidic water when the isoelectric point is in the alkaline region. Therefore, the first liquid of the conductive paint of the present invention is preferably prepared by adjusting the pH of water according to the isoelectric point of the conductive oxide used and dispersing the conductive oxide in this water. The first liquid is prepared by adding the non-aqueous solvent to the liquid in which the product is dispersed. Other additives, solvents and the like may be appropriately added to the first liquid. For dispersing the conductive oxide, a dispersing machine such as a sand mill, a line mill, or a colloid mill may be used as necessary. Examples of basic compounds used for pH adjustment include alkali metal or alkaline earth metal hydroxides such as sodium hydroxide, potassium hydroxide, and calcium hydroxide, ammonium compounds such as ammonia, and amines as acidic compounds. Examples thereof include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid and propionic acid.

第二液に配合する硬化性成分としてはアルキルシリケート、アルキルチタネート等の無機系や、アクリル、アルキド、ポリエステル、ウレタン、エポキシ等の有機系のものを用いることができ、常温硬化型、焼付硬化型、紫外線硬化型等いずれでも良い。硬化性成分の配合量は適宜設定することができる。   As the curable component to be blended with the second liquid, inorganic materials such as alkyl silicate and alkyl titanate, and organic materials such as acrylic, alkyd, polyester, urethane and epoxy can be used. Any of ultraviolet curing type and the like may be used. The compounding quantity of a sclerosing | hardenable component can be set suitably.

前記の第一液や第二液には、前記の成分以外に導電性や透明性を阻害しない範囲でコロイダルシリカ、微粒子酸化チタン等の充填剤、種々の添加剤、着色剤が含まれていても良く、またアルコール類、ケトン類、エステル類、芳香族類、脂肪族類等の溶媒が含まれていても良い。   The first liquid and the second liquid contain fillers such as colloidal silica and fine particle titanium oxide, various additives, and colorants as long as the conductivity and transparency are not impaired in addition to the above components. In addition, solvents such as alcohols, ketones, esters, aromatics, and aliphatics may be contained.

本発明の二液性導電性塗料を用いて導電性塗膜を形成するには、まず、導電性酸化物を配合した第一液を基材にスピンコート、ディップコート、バーコート、スプレーコート等の方法で塗布し、基材の表面に導電性酸化物を含む層を形成させた後、第二液を同様の方法で塗布し、加熱・乾燥するなどして硬化性成分を硬化させ導電性酸化物を固定して、基材の表面に導電性塗膜を形成する。このようにして得られた導電性塗膜は、例えば表面抵抗が1×10Ω/□以下のものである。第一液及び第二液の塗布時の膜厚には特に制限は無いが、作業性やレベリング性を考慮すると、いずれも0.01〜10μmの範囲とするのが好ましい。このような形成方法を用いて、表面に導電性塗膜を有する物品を製造することができる。物品としては種々のものを対象とすることができ、例えば、プラスチック製品、フィルム状製品、紙製品、ガラス製品、セラミック製品などであり、具体的には、ブラウン管、液晶ディスプレイ等の表示機器、クリーンルーム等の窓材、電子部品等の包装材、オーバーヘッドディスプレイや写真等に用いられるフィルムなどが挙げられる。 In order to form a conductive coating film using the two-component conductive paint of the present invention, first, spin coating, dip coating, bar coating, spray coating, etc. are applied to the base material using the first liquid containing a conductive oxide. After applying the above method to form a layer containing a conductive oxide on the surface of the base material, the second liquid is applied by the same method, and heated and dried to cure the curable component and become conductive. An oxide is fixed and a conductive coating film is formed on the surface of the substrate. The conductive coating film thus obtained has a surface resistance of, for example, 1 × 10 7 Ω / □ or less. Although there is no restriction | limiting in particular in the film thickness at the time of application | coating of a 1st liquid and a 2nd liquid, when workability | operativity and leveling property are considered, it is preferable to set it as the range of 0.01-10 micrometers in all. Using such a forming method, an article having a conductive coating film on the surface can be produced. Various articles can be targeted, for example, plastic products, film products, paper products, glass products, ceramic products, etc. Specifically, display devices such as cathode ray tubes and liquid crystal displays, clean rooms, etc. And window materials such as electronic parts, packaging materials such as electronic parts, overhead displays and films used for photographs.

以下に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例によって制限されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

実施例1アンチモンをドープした球状酸化スズ微粉末SN−100P(石原産業社製:比表面積70m/g)を、濃度が30重量%になるように水に添加し、水酸化ナトリウム水溶液でpHを8に調整した後、サンドミルにて3時間粉砕することで、SN−100Pの水分散体を得た。この水分散体を用い、以下の処方をディスパーにて混合して、第一液と第二液からなる本発明の二液性導電性塗料(試料A)を得た。尚、第一液にはSN−100Pが3重量%配合され、第一液中の水1重量部に対し、アセトアミドの配合量は0.24重量部である。 Example 1 Spherical tin oxide fine powder SN-100P doped with antimony (manufactured by Ishihara Sangyo Co., Ltd .: specific surface area 70 m 2 / g) was added to water to a concentration of 30% by weight, and the pH was adjusted with an aqueous sodium hydroxide solution. Was adjusted to 8 and then ground in a sand mill for 3 hours to obtain an SN-100P aqueous dispersion. Using this aqueous dispersion, the following formulation was mixed with a disper to obtain a two-component conductive paint of the present invention (sample A) consisting of a first liquid and a second liquid. In addition, 3 weight% of SN-100P is mix | blended with the 1st liquid, and the compounding quantity of acetamide is 0.24 weight part with respect to 1 weight part of water in a 1st liquid.

第一液
SN−100P水分散体 4.0 g
水 25.0 g
エチレングリコールモノブチルエーテル 5.0 g
アセトアミド 6.0 g
First liquid SN-100P aqueous dispersion 4.0 g
25.0 g of water
Ethylene glycol monobutyl ether 5.0 g
Acetamide 6.0 g

第二液
メチルシリケート51(コルコート社製) 4.6 g
エタノール 9.0 g
2−プロパノール 46.8 g
1−メトキシ−2−プロパノール 173.0 g
水 1.0 g
20%塩酸 0.03g
Second liquid methyl silicate 51 (manufactured by Colcoat Co.) 4.6 g
Ethanol 9.0 g
2-Propanol 46.8 g
1-methoxy-2-propanol 173.0 g
1.0 g of water
20% hydrochloric acid 0.03g

実施例2実施例1において、アセトアミドをジメチルスルホキシドに代えたこと以外は実施例1と同様にして本発明の二液性導電性塗料(試料B)を得た。   Example 2 A two-component conductive paint (sample B) of the present invention was obtained in the same manner as in Example 1 except that acetamide was replaced with dimethyl sulfoxide.

実施例3実施例1において、アセトアミドをN−メチルホルムアミドに代えたこと以外は実施例1と同様にして本発明の二液性導電性塗料(試料C)を得た。   Example 3 A two-component conductive coating material (sample C) of the present invention was obtained in the same manner as in Example 1 except that acetamide was replaced with N-methylformamide in Example 1.

実施例4実施例1において、アセトアミドをエチレングリコールに代えたこと以外は実施例1と同様にして本発明の二液性導電性塗料(試料D)を得た。   Example 4 A two-component conductive paint (sample D) of the present invention was obtained in the same manner as in Example 1 except that acetamide was replaced with ethylene glycol.

実施例5実施例1において、アセトアミドを1,3−ジメチル−2−イミダゾリジノンに代えたこと以外は実施例1と同様にして本発明の二液性導電性塗料(試料E)を得た。 Example 5 A two-component conductive paint (sample E) of the present invention was obtained in the same manner as in Example 1 except that acetamide was replaced with 1,3-dimethyl-2-imidazolidinone in Example 1. .

実施例6実施例1において、アセトアミドを4−ブチロラクトンに代えたこと以外は実施例1と同様にして本発明の二液性導電性塗料(試料F)を得た。   Example 6 A two-component conductive coating material (sample F) of the present invention was obtained in the same manner as in Example 1 except that acetamide was replaced with 4-butyrolactone.

実施例7実施例1において、第一液の処方を以下のものに代えたこと以外は実施例1と同様にして、本発明の二液性導電性塗料(試料G)を得た。尚、第一液にはSN−100Pが3重量%配合され、第一液中の水1重量部に対し、アセトアミドの配合量は11重量部である。   Example 7 A two-component conductive paint (sample G) of the present invention was obtained in the same manner as in Example 1 except that the formulation of the first solution was changed to the following in Example 1. In addition, 3 weight% of SN-100P is mix | blended with the 1st liquid, and the compounding quantity of acetamide is 11 weight part with respect to 1 weight part of water in a 1st liquid.

第一液
SN−100P水分散体 4.0 g
水 1.0 g
アセトアミド 12.0 g
N,N−ジメチルホルムアミド 12.0 g
2−プロパノール 11.0 g
First liquid SN-100P aqueous dispersion 4.0 g
1.0 g of water
Acetamide 12.0 g
N, N-dimethylformamide 12.0 g
2-Propanol 11.0 g

比較例1実施例1において、アセトアミドを1−ブタノール(比誘電率18、表面張力25×10−3N/m)に代えたこと以外は実施例1と同様にしたところ、第一液にSN−100Pの凝集物が生成し、導電性塗料は得られなかった。 Comparative Example 1 In Example 1, except that acetamide was replaced with 1-butanol (relative dielectric constant 18, surface tension 25 × 10 −3 N / m), the same procedure as in Example 1 was carried out. An aggregate of −100 P was formed, and no conductive paint was obtained.

比較例2実施例1のSN−100Pの水分散体を用い、以下の処方をディスパーにて混合して一液性導電性塗料(試料H)を得た。     Comparative Example 2 Using the SN-100P aqueous dispersion of Example 1, the following formulation was mixed with a disper to obtain a one-component conductive paint (sample H).

SN−100P水分散体 31.0 g
メチルシリケート51(コルコート社製) 4.6 g
エタノール 17.3 g
2−プロパノール 3.3 g
1−メトキシ−2−プロパノール 4.7 g
水 1.0 g
20%塩酸 0.03g
SN-100P water dispersion 31.0 g
Methyl silicate 51 (manufactured by Colcoat Co.) 4.6 g
17.3 g of ethanol
2-propanol 3.3 g
1-methoxy-2-propanol 4.7 g
1.0 g of water
20% hydrochloric acid 0.03g

比較例3アンチモンをドープした球状酸化スズ微粉末SN−100P(石原産業社製:比表面積70m/g)を、濃度が20重量%になるようにエタノールに添加し、更に分散剤としてディスパービック180(ビックケミー社製)を加えた後、サンドミルにて3時間粉砕することで、SN−100Pのエタノール分散体を得た。このエタノール分散体を用い、以下の処方をディスパーにて混合して一液性導電性塗料(試料I)を得た。尚、ディスパービック180の添加量は、SN−100P100重量部に対し8重量部である。 Comparative Example 3 Antimony-doped spherical tin oxide fine powder SN-100P (manufactured by Ishihara Sangyo Co., Ltd .: specific surface area 70 m 2 / g) was added to ethanol to a concentration of 20% by weight, and further Dispersic as a dispersant. After adding 180 (manufactured by Big Chemie), an SN-100P ethanol dispersion was obtained by grinding with a sand mill for 3 hours. Using this ethanol dispersion, the following formulation was mixed with a disper to obtain a one-component conductive paint (sample I). The added amount of Dispersic 180 is 8 parts by weight with respect to 100 parts by weight of SN-100P.

SN−100Pエタノール分散体 47.0 g
メチルシリケート51(コルコート社製) 4.6 g
エタノール 1.0 g
2−プロパノール 3.3 g
1−メトキシ−2−プロパノール 4.7 g
水 1.0 g
20%塩酸 0.03g
SN-100P ethanol dispersion 47.0 g
Methyl silicate 51 (manufactured by Colcoat Co.) 4.6 g
Ethanol 1.0 g
2-propanol 3.3 g
1-methoxy-2-propanol 4.7 g
1.0 g of water
20% hydrochloric acid 0.03g

評価1一片75mm、厚さ3mmの正方形のガラス基板を、50℃の大気中にてスピンコーターにセットし、実施例1〜7で得られた二液性導電性塗料(試料A〜G)の第一液1ミリリットルを滴下した後、120rpmで100秒間回転させることで、導電層を塗工した。その後、第二液を同じ条件でスピンコートし、オーブンで120℃、30分間で加熱して透明導電性塗膜を得た。また、比較例2、3で得られた一液性塗料(試料H、I)は、前記ガラス基板に滴下した後、二液性塗料と同様にして透明性導電性塗膜を得た。得られた塗膜の表面抵抗を表面抵抗計(ロレスタGP型、三菱化学社製)を用い、ヘーズをヘーズメーター(DH−300A型、日本電色工業製)を用いて計測した。また塗膜の鉛筆硬度を日本工業規格(JIS K5400)に準拠して測定した。   Evaluation 1 A square glass substrate having a size of 75 mm and a thickness of 3 mm was set on a spin coater in the atmosphere at 50 ° C., and the two-component conductive paints (samples A to G) obtained in Examples 1 to 7 were used. After 1 ml of the first liquid was dropped, the conductive layer was applied by rotating at 120 rpm for 100 seconds. Then, the 2nd liquid was spin-coated on the same conditions, and it heated in 120 degreeC and 30 minutes in oven, and obtained the transparent conductive coating film. The one-component paints (samples H and I) obtained in Comparative Examples 2 and 3 were dropped onto the glass substrate, and then a transparent conductive coating film was obtained in the same manner as the two-component paint. The surface resistance of the obtained coating film was measured using a surface resistance meter (Loresta GP type, manufactured by Mitsubishi Chemical Corporation), and haze was measured using a haze meter (DH-300A type, manufactured by Nippon Denshoku Industries Co., Ltd.). Further, the pencil hardness of the coating film was measured in accordance with Japanese Industrial Standard (JIS K5400).

表面抵抗、ヘーズ、鉛筆硬度の結果を表1に示す。本発明の二液性導電性塗料は、導電性酸化物と硬化性成分とを分散媒に分散させた従来の一液性塗料と比較して、導電性が非常に優れ、また、透明性にも優れた塗膜が得られることが判る。また、本発明の二液性導電性塗料を用いて形成した導電性塗膜は塗膜硬度が高く、実用に耐えられるレベルであることも判った。   Table 1 shows the results of surface resistance, haze, and pencil hardness. The two-component conductive paint of the present invention has excellent conductivity and transparency compared to a conventional one-component paint in which a conductive oxide and a curable component are dispersed in a dispersion medium. It can also be seen that an excellent coating film can be obtained. It has also been found that the conductive coating film formed using the two-component conductive paint of the present invention has a high coating film hardness and can be practically used.

Figure 0005352638
Figure 0005352638

本発明は、ガラス、プラスチックス、フィルム等の透明基材の帯電防止材として有用である。   The present invention is useful as an antistatic material for transparent substrates such as glass, plastics and films.

Claims (4)

導電性酸化スズ、水及び35以上の比誘電率と100℃以上の沸点を有する非水溶媒を含み、当該非水溶媒を水1重量部に対して0.15〜20重量部の範囲で含む第一液、硬化性成分を含む第二液からなる導電性塗料の製造方法であって、導電性酸化スズをpHが低くとも8の水に分散させた後、当該非水溶媒を前記範囲の配合量で混合して少なくとも第一液を得ることを特徴とする導電性塗料の製造方法。 Including a conductive tin oxide, water and a nonaqueous solvent having a relative dielectric constant of 35 or more and a boiling point of 100 ° C. or more, the nonaqueous solvent is contained in a range of 0.15 to 20 parts by weight with respect to 1 part by weight of water. A method for producing a conductive paint comprising a first liquid and a second liquid containing a curable component, wherein conductive tin oxide is dispersed in water having a pH of at least 8 and then the non-aqueous solvent is added within the above range. A method for producing a conductive paint, comprising mixing at a blending amount to obtain at least a first liquid. 当該非水溶媒が4−ブチロラクトン、1,3−ジメチル−2−イミダゾリジノンから選ばれた少なくとも1種である請求項1記載の導電性塗料の製造方法。 The method for producing a conductive paint according to claim 1, wherein the non-aqueous solvent is at least one selected from 4-butyrolactone and 1,3-dimethyl-2-imidazolidinone. 請求項1に記載の方法で製造した導電性塗料の第一液を基材に塗布し導電性酸化スズを含む層を形成させた後、第二液を塗布し硬化性成分を硬化させる導電性塗膜の形成方法。 The first liquid of the conductive paint produced by the method according to claim 1 is applied to a substrate to form a layer containing conductive tin oxide, and then the second liquid is applied to cure the curable component. Method for forming a coating film. 請求項1に記載の方法で製造した導電性塗料の第一液を物品の表面に塗布し導電性酸化スズを含む層を形成させた後、第二液を塗布し硬化性成分を硬化させる導電性塗膜を有する物品の製造方法。 The first liquid of the conductive paint produced by the method according to claim 1 is applied to the surface of the article to form a layer containing conductive tin oxide, and then the second liquid is applied to cure the curable component. For producing an article having an adhesive coating.
JP2011163197A 2011-07-26 2011-07-26 Method for producing conductive paint and method for forming conductive coating film using the conductive paint Expired - Fee Related JP5352638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011163197A JP5352638B2 (en) 2011-07-26 2011-07-26 Method for producing conductive paint and method for forming conductive coating film using the conductive paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011163197A JP5352638B2 (en) 2011-07-26 2011-07-26 Method for producing conductive paint and method for forming conductive coating film using the conductive paint

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001210397A Division JP2003020449A (en) 2001-07-11 2001-07-11 Electroconductive coating material and method for forming electroconductive coated film using the same

Publications (2)

Publication Number Publication Date
JP2012001723A JP2012001723A (en) 2012-01-05
JP5352638B2 true JP5352638B2 (en) 2013-11-27

Family

ID=45534056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011163197A Expired - Fee Related JP5352638B2 (en) 2011-07-26 2011-07-26 Method for producing conductive paint and method for forming conductive coating film using the conductive paint

Country Status (1)

Country Link
JP (1) JP5352638B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047306A1 (en) * 2014-09-26 2016-03-31 富士フイルム株式会社 Process for producing film of metal oxide particles and process for producing metal film

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2865474B2 (en) * 1991-07-11 1999-03-08 住友大阪セメント株式会社 Paint for forming antistatic / high refractive index film, transparent material laminate with antistatic / antireflective film, and display device
JP3120663B2 (en) * 1994-08-09 2000-12-25 三菱マテリアル株式会社 Conductive powder, method for producing the same, conductive dispersion and conductive paint
JP3906933B2 (en) * 1995-04-21 2007-04-18 触媒化成工業株式会社 Method for producing indium oxide organosol
JPH0948875A (en) * 1995-08-07 1997-02-18 Mitsubishi Materials Corp Electroconductive dispersion, its production, electroconductive coating material and electrocondctive film
JPH09263716A (en) * 1996-03-29 1997-10-07 Mitsubishi Materials Corp Overcoat composition for transparent electrically conductive film excellent in electical conductivity
JPH10310406A (en) * 1997-03-12 1998-11-24 Catalysts & Chem Ind Co Ltd Organic compound modified inorganic compound sol
JP4159652B2 (en) * 1998-04-28 2008-10-01 コニシ株式会社 Sealant composition with excellent long-term viscosity stability and workability
US6416818B1 (en) * 1998-08-17 2002-07-09 Nanophase Technologies Corporation Compositions for forming transparent conductive nanoparticle coatings and process of preparation therefor
JP2000072758A (en) * 1998-08-31 2000-03-07 Sanyo Chem Ind Ltd Polyamide compound containing heterocyclic group and its production, curing agent for epoxy resin, epoxy rein composition and its cured product
JP4098430B2 (en) * 1999-02-12 2008-06-11 日本ペイント株式会社 Non-spherical porous cross-linked resin non-aqueous dispersion, its production method and matte coating composition
AT408657B (en) * 1999-12-23 2002-02-25 Solutia Austria Gmbh AQUEOUS COATING AGENT

Also Published As

Publication number Publication date
JP2012001723A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5596609B2 (en) Metal colloid solution and paint using the same
CN115746701A (en) RTV anti-pollution flashover coating and preparation method and application thereof
JPWO2010055678A1 (en) Conductive silica sol composition and molded article using the same
KR102002325B1 (en) Conductive composition for forming ground electrodes of liquide crystal display and method for forming ground electrodes using the same
JP2003020449A (en) Electroconductive coating material and method for forming electroconductive coated film using the same
WO2014024735A1 (en) Ink composition, ink-composition production method, transparent conductive film, and transparent-conductive-film production method
JP5352638B2 (en) Method for producing conductive paint and method for forming conductive coating film using the conductive paint
JP2004182812A (en) Electrically conductive coating and method for forming electrically conductive coating film using the same
JP6690968B2 (en) Method for manufacturing transparent conductive substrate and lateral electric field type liquid crystal display panel with built-in touch panel function
TWI772599B (en) Coating composition, conductive film, and liquid crystal display panel
JP3976484B2 (en) Conductive powder organic solvent dispersion and conductive paint
TW201837121A (en) Composition
JP3606772B2 (en) Paint for forming transparent antistatic film and substrate with transparent antistatic film
JP2000191948A (en) Composition for forming film having function for improving color purity
KR20020031172A (en) Organic solvent based dispersion of conductive powder and conductive coating material
JP2006202704A (en) Conductive tin oxide powder and conductive coating using it
WO2010090119A1 (en) Conductive coating composition
JPS63193971A (en) Transparent electrically conductive film
JP2006073300A (en) Transparent conductive particulate dispersion solution and coating liquid for transparent conductive film formation
JP2017502337A (en) Conductive composition for forming back electrode of liquid crystal display device
KR100642467B1 (en) Electrically conductive paint compositions
JP2021161380A (en) Coating liquid for forming conductive film
KR100231790B1 (en) Transparent conductive coating composition and its applications
KR20140081675A (en) Production method of composition for coating-type transparent film formation
JP2010165499A (en) Conjugated polymer coated conductive particulate

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R151 Written notification of patent or utility model registration

Ref document number: 5352638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees