JP5351720B2 - Ground improvement method - Google Patents

Ground improvement method Download PDF

Info

Publication number
JP5351720B2
JP5351720B2 JP2009268256A JP2009268256A JP5351720B2 JP 5351720 B2 JP5351720 B2 JP 5351720B2 JP 2009268256 A JP2009268256 A JP 2009268256A JP 2009268256 A JP2009268256 A JP 2009268256A JP 5351720 B2 JP5351720 B2 JP 5351720B2
Authority
JP
Japan
Prior art keywords
ground
stress
improved body
soil
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009268256A
Other languages
Japanese (ja)
Other versions
JP2011111787A (en
Inventor
保彦 大河内
博史 三木
昌己 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIKI ENVIRONMENTAL GEO-TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
NOM CO., LTD.
Kato Construction Co Ltd
Original Assignee
MIKI ENVIRONMENTAL GEO-TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
NOM CO., LTD.
Kato Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIKI ENVIRONMENTAL GEO-TECHNOLOGY RESEARCH INSTITUTE CO., LTD., NOM CO., LTD., Kato Construction Co Ltd filed Critical MIKI ENVIRONMENTAL GEO-TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
Priority to JP2009268256A priority Critical patent/JP5351720B2/en
Publication of JP2011111787A publication Critical patent/JP2011111787A/en
Application granted granted Critical
Publication of JP5351720B2 publication Critical patent/JP5351720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soil improvement construction method for allowing a worker to evaluate the effect of restraining ground soil properly in advance, decide a shape and arrangement of rational improving body, and then construct the improving body with reduced cost. <P>SOLUTION: In this soil improving construction method, such improving body 1 that restrains deformation of the ground when receiving load and being deformed is arranged and constructed in the ground. If stress of the soil to be improved in a case of filling construction is increased, the effect of restraining the soil deformation being different depending on the shape and arrangement of the improving body 1 is obtained as a variation of stress of the ground soil by a finite element method in advance. In addition, a variation of strength or rigidity of the ground soil to be caused by the variation of the stress is obtained based on the variation of the stress. After the shape and the arrangement of the improving body tending to increase this variation are decided, this improving body is constructed. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は、地盤中に改良体を構築または造成する地盤改良工法に関する。   The present invention relates to a ground improvement method for constructing or creating an improved body in the ground.

地盤中に改良体を構築または造成する方法として、地盤土と固化材とを撹拌混合する方法があるが、本発明は改良体を造成する具体的方法については特に限定されない。   As a method for constructing or creating an improved body in the ground, there is a method of stirring and mixing the ground soil and the solidified material, but the present invention is not particularly limited as to a specific method for creating the improved body.

地盤中に改良体を構築または造成する従来の地盤改良工法は、その配置を決定する方法として、大別して以下のような複合地盤的方法、構造物的方法などの考え方を適用している。これらの方法は、本発明で提案する、地盤が改良体などに拘束される効果を考慮しているものではない。   The conventional ground improvement method for constructing or creating an improved body in the ground roughly applies the following methods such as the composite ground method and the structural method as methods for determining the arrangement. These methods do not consider the effect of the ground proposed in the present invention and restrained by an improved body or the like.

複合地盤的方法は、以下に示す式(1)により改良体の強度と地盤土の強度を改良率などで重みつき平均とし、地盤全体を平均した強度を有する複合地盤として取り扱う方法である。なお、式(1)を含むかかる工法は例えば非特許文献1に記載されている。   The composite ground method is a method in which the strength of the improved body and the strength of the ground soil are weighted averages based on the improvement rate or the like according to the following formula (1) and handled as a composite ground having an average strength of the entire ground. Such a construction method including the formula (1) is described in Non-Patent Document 1, for example.

Figure 0005351720
Figure 0005351720

構造物的方法は、地盤の強度はそのままとし、改良体に主な外力を分担させ、その強度には、作用する引張り力や圧縮力に応じて、構造物としての安全率(通常は3をとる)を考慮する方法である。 The structural method keeps the strength of the ground as it is and shares the main external force with the improved body. The strength depends on the tensile force and compressive force acting, and the safety factor as a structure (usually 3) This is a method that considers

深層混合処理工法マニュアル編集委員会編,「陸上工事における深層混合処理工法設計・施工マニュアル 改訂版」,財団法人土木研究センター発行,平成16年3月,P80〜83Deep Mixing Processing Method Manual Editorial Committee, “Depth Mixed Processing Method Design and Construction Manual Revised Version”, Published by Public Works Research Center, March 2004, P80-83

ところで、地盤中に改良体を造成する従来の地盤改良工法では、地盤が改良体などによって拘束されているにもかかわらず、改良体によって地盤が拘束され自由に変形できないために強度・剛性が増加したり、低下しにくくなること、すなわち本発明で提案している地盤の拘束効果を考慮していない。結果として、拘束効果を発揮させるためのより合理的な改良体の形状や配置を考慮していない。   By the way, in the conventional ground improvement method that creates an improved body in the ground, although the ground is restrained by the improved body, the ground is restrained by the improved body and cannot be freely deformed, so the strength and rigidity increase. However, the effect of restraining the ground proposed in the present invention is not taken into consideration. As a result, the shape and arrangement of a more rational improvement body for exhibiting the restraining effect are not considered.

このような、従来の改良体による地盤の拘束効果を考慮していない地盤改良工法は、以下のような問題点を有している。   Such a ground improvement method that does not consider the effect of restraining the ground by the improved body has the following problems.

例えば、強度の大きな改良体を地盤中に少数配置するのと、強度のやや低い改良体を多数配置したのを比較して、地盤全体の平均的な強度(複合地盤としての強度)が同じであれば、実際は効果に違いがあるにも関わらず、設計安全率は同じであるということになる。   For example, comparing a small number of improved bodies with high strength in the ground and a large number of slightly improved bodies with a lower strength, the average strength of the entire ground (strength as a composite ground) is the same. If so, the design safety factor is the same despite the fact that there is a difference in effect.

また、改良体によって自由な変形を拘束される地盤土は、盛土の構築などのように、基礎地盤の平均応力が増大するような場合には、改良体の反力によって、より大きな剛性と強度を発揮するが、その拘束効果を考慮せず、地盤土が自由に変形できる状態の強度変形特性を用いて設計しているため、地盤土の変形抑制や安定に対する寄与を過小評価している。   In addition, ground soil that is restrained from free deformation by the improved body has greater rigidity and strength due to the reaction force of the improved body when the average stress of the foundation ground increases, such as in the construction of embankments. However, it is underestimated for its contribution to the suppression and stability of ground soil because it is designed using strength deformation characteristics in a state where the ground soil can be freely deformed without considering its restraining effect.

その結果として、過度に安全側の設計となっている場合や、改良体の形状や配置が適切でない場合がままあり、不経済な設計・施工が行われる傾向にある。   As a result, there are cases where the design is excessively safe, or the shape and arrangement of the improved body are not appropriate, and there is a tendency for uneconomic design and construction to be performed.

一方、掘削工事などのように、基礎地盤の平均応力が減少する場合には、応力の低下に伴い強度・剛性が低下する。地盤の変形を拘束するように改良体を適切に配置すると、改良体に生じる反力により、強度・剛性の低下を少なくすることが可能になるが、拘束の効果が小さな改良体の配置の場合には、強度・剛性の低下が大きい。   On the other hand, when the average stress of the foundation ground decreases as in excavation work, the strength and rigidity decrease as the stress decreases. If the improved body is properly arranged to constrain the deformation of the ground, the reaction force generated in the improved body can reduce the decrease in strength and rigidity. In addition, the decrease in strength and rigidity is large.

従来の地盤改良の設計手法では、先にも述べたように改良体による地盤の拘束効果を考慮していないため、例えば危険側の設計となっている場合のほか、改良体の形状や配置が適切でない場合がままあり、問題が生じることが懸念される。   The conventional ground improvement design method does not consider the restraining effect of the ground due to the improved body as described above. There are concerns that it may not be appropriate and problems may arise.

この発明は、このような問題点を解決するためになされたもので、地盤土の拘束効果を適切に評価してより好適な配置のもとで改良体を構築する地盤改良工法を提供することを目的とし、また、改良体の合理的な形状と配置ならびに強度を得ることにより、より低コストで安全な地盤改良工法を提供することを目的とする。   The present invention was made to solve such problems, and provides a ground improvement method for constructing an improved body under a more suitable arrangement by appropriately evaluating the restraining effect of the ground soil. Moreover, it aims at providing a low-cost and safe ground improvement method by obtaining a rational shape, arrangement and strength of the improved body.

前記課題を解決し、かつ目的を達成するために、この記載の発明は、地盤中に改良体を構築する地盤改良工法として、改良体の構築によって得られる地盤変形の拘束効果を予め把握しておき、この地盤変形の拘束効果を考慮した改良体の形状および配置をもって当該改良体を構築することを特徴とする。   In order to solve the above-mentioned problems and achieve the object, the invention described in this document is a ground improvement method for constructing an improved body in the ground, and grasps in advance the restraining effect of ground deformation obtained by construction of the improved body. The improvement body is constructed with the shape and arrangement of the improvement body in consideration of the restraining effect of the ground deformation.

より具体的には、請求項1に記載の発明は、地盤中に改良体を構築する地盤改良工法において、盛土構築などの改良地盤の応力が増加する場合に、改良体の構築によって得られる地盤変形の拘束効果を予め把握するべく、改良体の形状および配置によって異なる地盤変形の拘束効果を有限要素法により地盤土の応力の変化として予め評価し、この応力の変化によって生じる地盤土の強度および剛性の変化のうち少なくともいずれか一方の変化が増加傾向となる改良体の形状および配置をもって当該改良体を構築することを特徴とする。
請求項2に記載の発明は、請求項1に記載の地盤改良工法を前提として、改良体の形状および配置によって異なる地盤変形の拘束効果を有限要素法により地盤土の応力の変化分として求めるとともに、この応力の変化分に基づいて、当該応力の変化によって生じる地盤土の強度および剛性の変化のうち少なくともいずれか一方の変化分を求め、この少なくともいずれか一方の変化分が増加傾向となる改良体の形状および配置をもって当該改良体を構築することを特徴とする。
請求項3に記載の発明は、請求項2に記載の地盤改良工法を前提として、前記有限要素法により求める地盤土の応力の変化分は、地盤が荷重を受けたときに改良体による拘束効果のためにその反力として生じる直応力およびせん断応力のうち少なくともいずれか一方であることを特徴とする。
More specifically, the invention described in claim 1 is a ground improvement method for constructing an improved body in the ground, and the ground obtained by construction of the improved body when stress of the improved ground such as embankment construction increases. In order to grasp the restraint effect of deformation in advance, the restraint effect of ground deformation, which differs depending on the shape and arrangement of the improved body, is evaluated in advance as a change in ground soil stress by the finite element method. The improvement body is constructed with the shape and arrangement of the improvement body in which at least one of the changes in rigidity tends to increase.
The invention described in claim 2 is based on the ground improvement method described in claim 1, and obtains the constraint effect of ground deformation that varies depending on the shape and arrangement of the improved body as a change in ground soil stress by the finite element method. Based on the change in stress, at least one of the changes in the strength and rigidity of the ground soil caused by the change in the stress is obtained, and the improvement in which at least one of the changes tends to increase The improved body is constructed with the shape and arrangement of the body.
The invention described in claim 3 is based on the ground improvement method described in claim 2, and the change in the stress of the ground soil obtained by the finite element method is the restraining effect of the improved body when the ground receives a load. Therefore, it is characterized in that it is at least one of a direct stress and a shear stress generated as a reaction force.

請求項4に記載の発明は、請求項3に記載の地盤改良工法を前提として、前記応力の変化によって生じる地盤土の強度および剛性の変化のうち少なくともいずれか一方の変化分は、盛土構築などの改良地盤の応力が増加する場合に、前記直応力およびせん断応力の総和によって生じる地盤土の強度および剛性の増加のうち少なくともいずれか一方の増加分であることを特徴とする。
これまでの請求項1〜4に記載の発明は、先にも述べたように、盛土構築などの改良地盤の応力が増加する場合を想定しているのに対して、以降の請求項5〜8では、掘削などの改良地盤の応力が減少する場合を想定している。
すなわち、請求項5に記載の発明は、地盤中に改良体を構築する地盤改良工法において、掘削などの改良地盤の応力が減少する場合に、改良体の構築によって得られる地盤変形の拘束効果を予め把握するべく、改良体の形状および配置によって異なる地盤変形の拘束効果を有限要素法により地盤土の応力の変化として予め評価し、この応力の変化によって生じる地盤土の強度および剛性の変化のうち少なくともいずれか一方の低下が抑制できる改良体の形状および配置をもって当該改良体を構築することを特徴とする。
請求項6に記載の発明は、請求項1に記載の地盤改良工法を前提として、改良体の形状および配置によって異なる地盤変形の拘束効果を有限要素法により地盤土の応力の変化分として求めるとともに、この応力の変化分に基づいて、当該応力の変化によって生じる地盤土の強度および剛性の変化のうち少なくともいずれか一方の変化分を求め、この少なくともいずれか一方の低下が抑制できる改良体の形状および配置をもって当該改良体を構築することを特徴とする。
請求項7に記載の発明は、請求項6に記載の地盤改良工法を前提として、前記有限要素法により求める地盤土の応力の変化分は、地盤が荷重を受けたときに改良体による拘束効果のためにその反力として生じる直応力およびせん断応力のうち少なくともいずれか一方であることを特徴とする。
請求項8に記載の発明は、請求項7に記載の地盤改良工法を前提として、前記応力の変化によって生じる地盤土の強度および剛性の変化のうち少なくともいずれか一方の変化分は、掘削などの改良地盤の応力が減少する場合に、前記直応力およびせん断応力の総和によって生じる地盤土の強度および剛性の低下のうち少なくともいずれか一方を補うものであることを特徴とする。
The invention according to claim 4 is based on the ground improvement construction method according to claim 3, and at least one of the changes in strength and rigidity of the ground soil caused by the change in stress is an embankment construction or the like. When the stress of the improved ground increases, it is an increase of at least one of the strength and rigidity of the ground soil caused by the sum of the direct stress and the shear stress.
As described above, the inventions described in claims 1 to 4 assume a case where the stress of the improved ground such as embankment increases, while the following claims 5 to 5 are assumed. In 8, it is assumed that the stress of the improved ground such as excavation decreases.
That is, in the ground improvement method for constructing the improved body in the ground, the invention described in claim 5 has the effect of restraining the ground deformation obtained by the construction of the improved body when the stress of the improved ground such as excavation decreases. In order to grasp in advance, the restraint effect of ground deformation that varies depending on the shape and arrangement of the improved body is evaluated in advance as a change in ground soil stress by the finite element method, and among the changes in the strength and rigidity of the ground soil caused by this stress change The improvement body is constructed with the shape and arrangement of the improvement body that can suppress at least one of the reductions.
The invention described in claim 6 is based on the ground improvement method described in claim 1, and obtains the restraining effect of ground deformation that varies depending on the shape and arrangement of the improved body as a change in ground soil stress by the finite element method. Based on the change in the stress, the shape of the improved body that can determine the change in at least one of the changes in the strength and rigidity of the ground soil caused by the change in the stress and can suppress the decrease in at least one of the changes. And the improved body is constructed with the arrangement.
The invention described in claim 7 is based on the ground improvement method described in claim 6, and the change in the stress of the ground soil determined by the finite element method is the effect of restraint by the improved body when the ground receives a load. Therefore, it is characterized in that it is at least one of a direct stress and a shear stress generated as a reaction force.
The invention described in claim 8 is based on the ground improvement method described in claim 7, and at least one of the changes in strength and rigidity of the ground soil caused by the change in stress is caused by excavation or the like. When the stress of the improved ground is reduced, it is intended to compensate for at least one of the decrease in strength and rigidity of the ground soil caused by the sum of the direct stress and shear stress.

ここに言う地盤土の強度や剛性の変化は、土を拘束する位置にある改良体によって生じる応力の総和、すなわち上記直応力およびせん断応力の総和によって生じる。この強度や剛性の変化分は以下に示す式(2)で求める(表現する)ことができる。   The changes in the strength and rigidity of the ground soil mentioned here are caused by the sum of stresses generated by the improved body in the position where the soil is constrained, that is, the sum of the direct stress and shear stress. The change in strength and rigidity can be obtained (expressed) by the following equation (2).

Figure 0005351720
Figure 0005351720

また、先に述べた強度の変化は、以下に示す式(3),(4)に基づいて求めることができる。 The intensity change described above can be obtained based on the following equations (3) and (4).

S=Rs×Si‥‥(3)
Rs=1+αΔσp+βΔτq‥‥(4)
ここに、
S:変形を拘束したことによって変化した地盤土の強度
Si:変形を拘束される前の地盤土の強度
Rs:強度の変化率
Δσ:直応力の変化
Δτ:せん断応力の変化
α,β,p,q:地盤を拘束する形状、改良体の強度で決まる係数
より簡単に求めるには、複合地盤強度の式を拡張した下記の式(7)で求めることができる。
Sc=Sp×aP+κ・rS・Ss(1−aP)‥‥(7)
ここに、
Sc:変形の拘束効果を考慮した複合地盤強度
Sp:改良体の強度
P :改良率
Ss:変形を拘束される前の地盤土の強度
κ:改良体の破壊みずみに対応する原地盤の破壊強度の低減率
S :拘束効果を考慮した係数
同様に、先に述べた剛性の変化は、以下に示す式(5),(6)に基づいて求めることができる。
S = Rs × Si (3)
Rs = 1 + αΔσ p + βΔτ q (4)
here,
S: Strength of ground soil changed by restraining deformation Si: Ground soil strength before restraining deformation Rs: Rate of change of strength Δσ: Change of direct stress Δτ: Change of shear stress α, β, p , Q: The shape that constrains the ground, and a coefficient determined by the strength of the improved body. To obtain it more simply, it can be obtained by the following formula (7), which is an extension of the composite ground strength formula.
Sc = Sp × a P + κ · r S · Ss (1−a P ) (7)
here,
Sc: Combined ground strength considering deformation restraint effect Sp: Strength of improved body a P : Improvement rate Ss: Strength of ground soil before restraint deformation κ: Fracture Strength Reduction Rate r S : Coefficient Considering Restraint Effect Similarly, the rigidity change described above can be obtained based on the following equations (5) and (6).

E=Re×Ei‥‥(5)
Re=1+γΔσr+κΔτs‥‥(6)
ここに、
E:変形を拘束したことによって変化した地盤土の剛性を表す変形係数
Ei:変形を拘束される前の地盤土の剛性を表す変形係数
Re:剛性の変化率
Δσ:直応力の変化
Δτ:せん断応力の変化
γ、κ、r、s:地盤を拘束する形状、改良体の剛性で決まる係数
より簡単に求めるには、複合地盤強度の式を拡張した下記の式(8)で求めることができる。
E = Re × Ei (5)
Re = 1 + γΔσ r + κΔτ s (6)
here,
E: Deformation coefficient representing the rigidity of the ground soil changed by restraining deformation Ei: Deformation coefficient representing the rigidity of the ground soil before restraining deformation Re: Stiffness change rate Δσ: Change in direct stress Δτ: Shear Stress change γ, κ, r, s: The shape that constrains the ground, and the coefficient determined by the rigidity of the improved body, can be obtained easily by the following equation (8) that is an extension of the compound ground strength equation: .

Ec=Ep×aP+κ・rS・Es(1−aP)‥‥(8)
ここに、
Ec:変形の拘束効果を考慮した複合地盤変形係数
Ep:改良体の変形係数
P :改良率
Es:変形を拘束される前の地盤土の変形係数
κ:改良体の破壊みずみに対応する原地盤の破壊強度の低減率
S :拘束効果を考慮した係数
請求項9に記載の発明は、請求項1〜8のいずれかに記載の地盤改良工法を前提として、前記改良体の形状を筒状のものとすることを特徴とする。
Ec = Ep × a P + κ · r S · Es (1−a P ) (8)
here,
Ec: Composite ground deformation coefficient in consideration of the restraining effect of deformation Ep: Deformation coefficient of improved body a P : Improvement rate Es: Deformation coefficient of ground soil before constraining deformation κ: Corresponds to the destruction of the improved body Reduction rate r S of the fracture strength of the original ground: a coefficient considering the restraining effect. The invention according to claim 9 is based on the ground improvement method according to any one of claims 1 to 8, and the shape of the improved body is It is characterized by being cylindrical.

請求項10に記載の発明は、請求項1〜8のいずれかに記載の地盤改良工法を前提として、前記改良体の形状を扁平な筒状のものとすることを特徴とする。
請求項11に記載の発明は、請求項1〜8のいずれかに記載の地盤改良工法を前提として、前記改良体の形状を深度方向に向かって漸次拡径している筒状のものとすることを特徴とする。
The invention described in claim 10 is characterized in that the shape of the improved body is a flat cylindrical shape on the premise of the ground improvement method according to any one of claims 1-8.
The invention described in claim 11 is based on the ground improvement method according to any one of claims 1 to 8, and the shape of the improved body is a cylindrical one that is gradually expanded in the depth direction. It is characterized by that.

請求項1,2および請求項5,6に記載の発明によれば、改良体の構築によって得られる地盤変形の拘束効果を予め把握しておいて、この地盤変形の拘束効果を考慮した改良体の形状および配置をもって当該改良体を構築するものであるため、従来困難であったところの地盤の拘束効果を考慮したより合理的な改良体の設計・施工ができ、一段と高い改良効果が得られる。   According to the invention described in claims 1, 2, and 5, 6, the improvement effect in consideration of the restraining effect of the ground deformation obtained in advance by grasping the restraining effect of the ground deformation obtained by the construction of the improvement body. Because the improved body is constructed with the shape and arrangement of the above, it is possible to design and construct a more rational improved body considering the constraining effect of the ground, which was difficult in the past, and obtain a much higher improvement effect .

すなわち、本発明で提案している新しい概念による地盤改良工法を用いることにより、従来の設計手法では平均応力が増加する場合には過大となり、平均応力が減少する場合には危険となる傾向があった地盤改良工法の設計や施工が、より合理的に実施できる。   That is, by using the ground improvement method based on the new concept proposed in the present invention, the conventional design method tends to become excessive when the average stress increases and becomes dangerous when the average stress decreases. The design and construction of the ground improvement method can be carried out more rationally.

特に拘束効果を考慮しない場合は難しかった好適な改良体の形状や配置ならびに強度が合理的に決定でき、結果として、無駄の無い改良体の形状や配置が可能となる。そのため、コスト高になりがちな軟弱地盤地域のインフラ整備をより経済的に実施することができ、建設投資の有効活用とともに、地域社会に大きな経済効果をもたらすなどの効果が得られる。   In particular, it is possible to rationally determine the shape, arrangement, and strength of a preferred improved body, which has been difficult when the restraining effect is not considered, and as a result, the shape and arrangement of the improved body can be made without waste. Therefore, infrastructure development in soft ground areas, which tend to be costly, can be implemented more economically, and there are effects such as effective use of construction investment and a great economic effect on the local community.

請求項3,7に記載の発明によれば、改良体の形状や配置あるいは強度によって異なる応力の変化に注目し、有限要素法により求める地盤土の応力の変化分を、地盤が荷重を受けたときに改良体による拘束効果のためにその反力として生じる直応力およびせん断応力のうち少なくともいずれか一方としているため、計算方法が簡便になる利点がある。   According to the third and seventh aspects of the invention, paying attention to the change in stress that varies depending on the shape, arrangement, or strength of the improved body, the ground receives the load for the change in the ground soil stress determined by the finite element method. There is an advantage that the calculation method is simple because at least one of the direct stress and the shear stress generated as a reaction force due to the restraining effect by the improved body is used.

請求項4,8に記載の発明によれば、前記応力の変化によって生じる地盤土の強度および剛性の変化のうち少なくともいずれか一方の変化分を、前記直応力およびせん断応力の総和によって生じる地盤土の強度および剛性の変化のうち少なくともいずれか一方の変化分としているため、計算方法が簡便になるとともに計算結果の信頼性が高くなる。   According to the fourth and eighth aspects of the present invention, at least one of the changes in the strength and rigidity of the ground soil caused by the change in the stress is converted into the ground soil caused by the sum of the direct stress and the shear stress. Therefore, the calculation method is simplified and the reliability of the calculation result is increased.

請求項9に記載の発明によれば、前記改良体の形状を円筒状のものとして、地盤を拘束するように配置することにより、より拘束効果の高い地盤改良工法を提供できる。   According to the ninth aspect of the present invention, a ground improvement method having a higher restraining effect can be provided by arranging the improved body in a cylindrical shape so as to restrain the ground.

請求項10に記載の発明によれば、前記改良体の形状を扁平な筒状のものとして、地盤を拘束するように配置することにより、より効率的に低コストな拘束効果の高い地盤改良工法を提供できる。   According to the invention described in claim 10, the improved body is improved in a low-cost and high-constraint effect by arranging the improved body in a flat cylindrical shape so as to restrain the ground. Can provide.

請求項11に記載の発明によれば、前記改良体の形状を深度方向に向かって漸次拡径している筒状のものとして、地盤を拘束するように配置することにより、改良体による拘束効果が一段と向上する。   According to the eleventh aspect of the present invention, the shape of the improved body is a cylindrical shape whose diameter is gradually expanded in the depth direction, and is arranged so as to restrain the ground. Will further improve.

盛土などの荷重が加えられる場合の土の強度、剛性の増加を求める説明図で、(a)は垂直断面説明図、(b)は同図(a)の平面説明図である。It is explanatory drawing which calculates | requires increase of the intensity | strength of soil and rigidity when load, such as embankment, is added, (a) is a vertical cross-sectional explanatory drawing, (b) is a plane explanatory drawing of the figure (a). 側方移動などの荷重が加えられる場合の土の強度、剛性の増加を求める説明図で、(a)は垂直断面説明図、(b)は同図(a)の平面説明図である。It is explanatory drawing which calculates | requires the increase in the intensity | strength of soil and rigidity when load, such as a side movement, is applied, (a) is a vertical cross-sectional explanatory drawing, (b) is a plane explanatory drawing of the figure (a). 土を拘束するように配置した改良体の例を示す平面説明図である。It is plane explanatory drawing which shows the example of the improved body arrange | positioned so that soil may be restrained. 土を拘束するように配置した改良体の上部に浅層混合処理層を配置する例を示す立体説明図である。It is a three-dimensional explanatory drawing which shows the example which arrange | positions a shallow mixed process layer on the upper part of the improved body arrange | positioned so that soil may be restrained. (a)〜(c)共に偏土圧が加えられる場合に土圧に抵抗する方向に改良体を並べて配置する例を示す平面説明図である。(A)-(c) is a plane explanatory view which shows the example which arrange | positions an improved body in the direction which resists earth pressure when an uneven earth pressure is applied. 下部の径をテーパ状に広げた改良体を並べて配置する例を示す図で、(a)はその立体説明図、(b)は同図(a)の断面説明図である。It is a figure which shows the example which arrange | positions the improved body which expanded the diameter of the lower part side by side, (a) is the solid explanatory drawing, (b) is sectional explanatory drawing of the figure (a). 扁平な筒状の改良体を用いた場合の改良効果の計算例を示す図で、(a)は浅層混合処理層を設けた場合の立体説明図、(b)は図5と同様の改良体単独での立体説明図、(c)は同図(a)の浅層混合処理層の上に盛土体を設けた場合の立体説明図である。It is a figure which shows the example of calculation of the improvement effect at the time of using a flat cylindrical improvement body, (a) is a three-dimensional explanatory drawing at the time of providing a shallow mixed process layer, (b) is the improvement similar to FIG. 3D is a three-dimensional explanatory view of the body alone, and FIG. 3C is a three-dimensional explanatory view when a banking body is provided on the shallow mixed treatment layer of FIG. 筒状の改良体を千鳥状に配置する例を示す平面説明図である。It is plane explanatory drawing which shows the example which arrange | positions a cylindrical improvement body in zigzag form. 筒状の改良体を格子状に配置する例を示す平面説明図である。It is plane explanatory drawing which shows the example which arrange | positions a cylindrical improvement body in a grid | lattice form. (a),(b)共に筒状の改良体を互いに接触しない配置とした例を示す平面説明図である。(A), (b) is a plane explanatory view showing the example which arranged the cylindrical improvement object so that it may not contact mutually. 地盤を拘束するように配置した改良体が平面的に見てアーチ状である例を示す説明図である。It is explanatory drawing which shows the example whose improvement body arrange | positioned so that the ground may be restrained may be arch shape seeing planarly. (a)〜(d)共に地盤を拘束するように配置した改良体が平面的に見てアーチ状である他の例を示す説明図である。(A)-(d) is explanatory drawing which shows the other example which the improvement body arrange | positioned so that the ground may be restrained may be arch shape seeing planarly. (a)〜(c)共に遠心模型試験での評価結果を示す説明図である。(A)-(c) is explanatory drawing which shows the evaluation result in a centrifugal model test. 柱状改良領域に近接して凹部を掘削する場合の例を示す図で、(a)はその立体説明図、(b)はその平面説明図である。It is a figure which shows the example in the case of excavating a recessed part adjacent to a columnar improvement area | region, (a) is the solid explanatory drawing, (b) is the plane explanatory drawing. 同じく柱状改良領域に近接して凹部を掘削する場合の例を示す図で、(a)はその立体説明図、(b)はその平面説明図である。Similarly, it is a figure which shows the example in the case of excavating a recessed part near a columnar improvement area | region, (a) is the solid explanatory drawing, (b) is the plane explanatory drawing. 複合改良体に挟まれた領域に凹部を掘削する場合の例を示す図で、(a)はその立体説明図、(b)はその平面説明図である。It is a figure which shows the example in the case of excavating a recessed part in the area | region pinched | interposed into the composite improvement body, (a) is the solid explanatory drawing, (b) is the plane explanatory drawing. 複合改良体に近接して凹部を掘削する場合の例を示す図で、(a)はその立体説明図、(b)はその平面説明図である。It is a figure which shows the example in the case of excavating a recessed part near a composite improvement body, (a) is the solid explanatory drawing, (b) is the plane explanatory drawing.

以下、この発明に係る地盤改良工法のより具体的な実施形態について説明する。ただし、この発明の実施形態は最も好ましい形態を示すものではあるが、本発明はこれに限定されない。   Hereinafter, more specific embodiments of the ground improvement method according to the present invention will be described. However, although the embodiment of the present invention shows the most preferable form, the present invention is not limited to this.

例えば、ここで述べる改良体は、地盤土とセメントもしくはセメント系等の固化材とを撹拌混合して構築する改良体のほか、地盤中に砕石や砂を押し込み、地盤土と置き換えて構築される砕石柱や砂柱も含まれる。また、改良体の構築または施工のための方法は、固化材を軟弱地盤中に吐出させて撹拌混合する機械撹拌混合方式もしくは固化材を高圧で回転噴射させる高圧噴射撹拌方式のいずれでもよく、改良体を構築または施工するための具体的な手段・方法は特定のものに限定されない。   For example, the improved body described here is constructed by mixing ground soil and cement or cement-based solidified material such as cement and mixing it, as well as pushing ground and sand into the ground and replacing it with ground soil. Includes crushed stone and sand columns. In addition, the method for construction or construction of the improved body may be either a mechanical stirring mixing method in which the solidified material is discharged into a soft ground and stirred and mixed, or a high pressure jet stirring method in which the solidified material is rotated and injected at high pressure. Specific means and methods for constructing or constructing the body are not limited to specific ones.

この発明は、地盤中に改良体を構築する地盤改良工法において、荷重の変化を受けて生じる地盤の変形を効果的に拘束するように改良体の配置や形状および強度を決定した上で施工する方法であることは先に述べたとおりである。   In the ground improvement method for constructing an improved body in the ground, the present invention is applied after determining the arrangement, shape and strength of the improved body so as to effectively restrain the deformation of the ground caused by a change in load. The method is as described above.

地盤が荷重の変化を受ける際に、変形しようとする地盤土を、改良体を配置することによりその変形を拘束する。その際に、地盤土を拘束する位置にある改良体によって生じる地盤土の応力の変化を、せん断応力の変化と直応力の変化とし、その応力の総和によって生じる地盤土の強度や剛性の変化を求め、改良体による地盤の拘束効果を地盤土の強度・変形特性として評価した上で、改良体の配置・形状および強度を決定して施工することにより、合理的な地盤改良工法とすることができる。   When the ground receives a change in load, the deformation of the ground soil to be deformed is restricted by arranging an improved body. At that time, the change of the soil soil caused by the improved body in the position to restrain the soil is regarded as the change of shear stress and the change of the direct stress, and the change of the strength and rigidity of the soil caused by the sum of the stress is changed. Obtaining and evaluating the restraint effect of the ground by the improved body as the strength and deformation characteristics of the ground soil, and determining the placement, shape and strength of the improved body and constructing it, it can be a rational ground improvement method. it can.

例えば、図1の(a),(b)に示すように、複数の円柱状の改良体1とその間の地盤である未改良部2に、盛土体3などの荷重Fが加えられる場合、現状の設計・施工法では、改良体1と未改良部2の地盤土が分担する応力の比を仮定し、沈下計算をする例がある。従来、未改良部2の強度に関しては、改良体1を造成する前の地盤土の強度のまま変化しないとしている。   For example, as shown in FIGS. 1A and 1B, when a load F such as the embankment body 3 is applied to a plurality of cylindrical improvement bodies 1 and an unimproved portion 2 that is the ground between them, In the design and construction method, there is an example in which settlement calculation is performed assuming a ratio of stresses shared by the ground soil of the improved body 1 and the unimproved portion 2. Conventionally, the strength of the unimproved portion 2 is not changed as the strength of the ground soil before the improved body 1 is created.

一方、この発明では、図1に示すように、盛土体3などの荷重Fが加えられる場合は、地盤土の変形拘束によって生じる直応力の変化をΔσで表し、前記式(3)〜(6)から地盤土の強度、剛性の変化を求める。なお、図1の(b)中のΔSは地盤土の強度変化を、ΔEは地盤土の剛性変化をそれぞれに示す。   On the other hand, in the present invention, as shown in FIG. 1, when a load F such as the embankment body 3 is applied, the change in the direct stress caused by the deformation restraint of the ground soil is represented by Δσ, and the above formulas (3) to (6) ) To determine changes in strength and rigidity of ground soil. In addition, (DELTA) S in FIG.1 (b) shows the intensity | strength change of ground soil, (DELTA) E shows the rigidity change of a ground soil, respectively.

これによって、改良体1による地盤土の拘束効果を、地盤土の強度・変形特性の変化として評価し、これを考慮して地盤改良のための改良体1の形状や配置等を決定することで、地盤土の拘束効果を適切に評価した合理的な地盤改良を行うことができる。   By this, the restraint effect of the ground soil by the improved body 1 is evaluated as a change in the strength and deformation characteristics of the ground soil, and the shape and arrangement of the improved body 1 for ground improvement are determined in consideration of this. Reasonable ground improvement can be performed by appropriately evaluating the restraining effect of the ground soil.

また、図2の(a),(b)に示すように、例えば橋台4側の盛土体3のために、偏土圧による側方移動などの荷重IFが加えられる場合は、地盤土の変形拘束によって生じるせん断応力の変化をΔτで表し、前記式(3)〜(8)から地盤土の強度、剛性の変化を求める。   In addition, as shown in FIGS. 2A and 2B, when a load IF such as lateral movement due to uneven earth pressure is applied for the embankment body 3 on the abutment 4 side, for example, deformation of the ground soil A change in shearing stress caused by restraint is expressed by Δτ, and a change in strength and rigidity of the ground soil is obtained from the above formulas (3) to (8).

このように、拘束による応力の変化を適切に評価し、これを地盤土の強度・剛性の変化に反映することにより合理的な設計・施工が可能となる。また、改良体1の配置によって異なる拘束の効果を評価しているため、より合理的な改良体1の形状や配置および強度が決定できる。   Thus, rational design and construction are possible by appropriately evaluating the change in stress due to restraint and reflecting this in the change in strength and rigidity of the ground soil. Moreover, since the effect of the restraint which changes with arrangement | positioning of the improvement body 1 is evaluated, the more rational shape, arrangement | positioning, and intensity | strength of the improvement body 1 can be determined.

さらに、例えば図3に示すように、地盤土を拘束するように配置した改良体11が扁平な中空筒状(平面形状が略偏平楕円形または偏平長円形)である場合、鉛直の荷重に対しては、筒状に配置した改良体11の地盤土の変形拘束によって生じる直応力の変化をΔσで表し、前記式(3)〜(8)から地盤土の強度、剛性の変化を求める。このように、鉛直の荷重に対しては、図3のような筒状で囲う方法が合理的であるが、改良体11で囲まれた未改良部2aが大きすぎると拘束効果は低下する。また、地盤土を拘束するように配置した改良体11が筒状であれば、真円状、楕円状、四角状、三角状など特に限定されないし、筒状の軸方向の断面積が同一でも、異なっていてもよく、以後も同様である。また、楕円状、扁平状の形状の場合には、図3のように必ずしも閉ループ状である必要はなく、長辺方向の一端若しくは両端が開放されていても、拘束効果に影響が少ないこともある。   Further, for example, as shown in FIG. 3, when the improved body 11 arranged to constrain the ground soil is a flat hollow cylindrical shape (a planar shape is substantially flat oval or flat oval), Thus, the change in the direct stress caused by the deformation restriction of the ground soil of the improved body 11 arranged in a cylindrical shape is represented by Δσ, and the change in the strength and rigidity of the ground soil is obtained from the equations (3) to (8). Thus, for a vertical load, the method of surrounding in a cylindrical shape as shown in FIG. 3 is reasonable, but if the unimproved portion 2a surrounded by the improved body 11 is too large, the restraining effect decreases. Further, if the improved body 11 arranged so as to constrain the ground soil is a cylinder, there is no particular limitation such as a perfect circle, an ellipse, a square, a triangle, etc. Even if the axial cross-sectional area of the cylinder is the same , May be different, and so on. Further, in the case of an elliptical shape or a flat shape, it is not always necessary to have a closed loop shape as shown in FIG. 3, and even if one end or both ends in the long side direction are open, there is little influence on the restraining effect. is there.

図4では、地盤土を拘束するように配置した図3と同様の偏平な中空筒状の改良体11の上部に、浅層混合処理層5を配置している。このように、筒状の改良体11に浅層混合処理盤(層)5によって蓋をするような改良形式とすると、改良体11の内部の地盤土、すなわち未改良部2aは移動する場所がなく、極めて高い拘束効果が得られ、沈下や変形が効果的に抑制される。   In FIG. 4, the shallow mixed processing layer 5 is arranged on the upper part of the flat hollow cylindrical improvement body 11 similar to that in FIG. 3 arranged so as to constrain the ground soil. As described above, when the cylindrical improved body 11 is covered with the shallow mixing processing board (layer) 5, the ground soil inside the improved body 11, that is, the unreformed part 2 a has a place to move. Therefore, an extremely high restraining effect is obtained, and settlement and deformation are effectively suppressed.

図5は、地盤土を拘束するように配置した筒状の改良体11に、偏土圧による側方移動の荷重IFが加えられる場合に、土圧に抵抗する方向に図3と同様の改良体11を並べて配置する例である。すなわち、図5の(a),(b),(c)は、偏土圧による側方移動の荷重IFが加えられる場合に、地盤土の拘束効果を増すための改良パターンの例である。(a)は隣り合う改良体11,11同士が離れていて相互に独立している独立配置タイプ、(b)は隣り合う改良体11,11同士が接触している連続配置タイプ、(c)は相互に離れて独立している改良体11,11‥を千鳥状に配置した千鳥配置タイプのものである。このような配置にすることによって、偏土圧によって変形しようとする地盤土、すなわち未改良土2,2aが拘束されると同時に、改良体11には圧縮応力が発生し、引張応力の発生を抑制できる。また、図示はしていないが、図4と同様に、浅層混合処理盤5を改良体11の上部に施すことによって、改良体11の内部の土(未改良土2a)も含めて、高い沈下抑制効果を発揮する。   FIG. 5 shows an improvement similar to that of FIG. 3 in the direction of resisting earth pressure when a load IF of lateral movement due to uneven earth pressure is applied to the cylindrical improvement body 11 arranged so as to restrain the ground soil. In this example, the bodies 11 are arranged side by side. That is, (a), (b), and (c) of FIG. 5 are examples of improved patterns for increasing the soil restraining effect when a load IF of lateral movement due to uneven earth pressure is applied. (A) is an independent arrangement type in which the adjacent improvement bodies 11, 11 are separated from each other and independent from each other, (b) is a continuous arrangement type in which the adjacent improvement bodies 11, 11 are in contact with each other, (c). Is a staggered arrangement type in which improved bodies 11, 11.. With this arrangement, the ground soil to be deformed by the uneven earth pressure, that is, the unmodified soils 2 and 2a is constrained, and at the same time, the improved body 11 generates a compressive stress and generates a tensile stress. Can be suppressed. Moreover, although not shown in figure, it is high including the soil inside the improved body 11 (unmodified soil 2a) by giving the shallow layer mixing processing board 5 to the upper part of the improved body 11 similarly to FIG. Demonstrate the settlement.

また、図6の(b)に示すように、盛土体3等の荷重Fが大きい場合は、同図の(a)に示すように、改良体21の平面形状として図3と同様の形状を前提とした上で、深度方向に向かって漸次拡径する形状とするべく、下部の径をスカート状に広げたテーパ形状(略裁頭楕円錐形状)のものとすることにより、矢印Pで示すように改良体21の内部に未改良の地盤土が押し込められ、未改良部2aの部分の拘束効果をより一層高めることができる。さらに、同図に示すように、改良体21の上部に、図4と同様に浅層混合処理層5を配置することで、改良体21,21同士の間の未改良土2が盛土荷重によりほぼ密閉状態となって未改良部2の部分の拘束効果をより一層高めることができる。なお、図6の(a)のWFは地下水の流れを示している。   Further, as shown in FIG. 6B, when the load F of the embankment body 3 or the like is large, as shown in FIG. 6A, the planar shape of the improved body 21 is the same as that of FIG. Based on the premise, the taper shape (substantially truncated elliptical cone shape) with the lower diameter expanded in a skirt shape is shown by an arrow P so that the diameter gradually increases in the depth direction. Thus, unimproved ground soil is pushed into the improved body 21, and the restraining effect of the unimproved portion 2a can be further enhanced. Furthermore, as shown in the figure, by arranging the shallow mixed treatment layer 5 in the upper part of the improved body 21 as in FIG. It becomes a substantially sealed state, and the restraining effect of the unimproved portion 2 can be further enhanced. In addition, WF of Fig.6 (a) has shown the flow of groundwater.

次に、地盤土の拘束効果の計算例を図5の(a)の実施例にて以下に示す。   Next, a calculation example of the constraint effect of the ground soil is shown below in the embodiment of FIG.

・盛土体3と改良体11の条件
盛土体3の高さ:8m
改良体11の形状:扁平な筒状
(改良体の上部に1.5mの浅層混合処理層5を配置)
この際の地盤土のせん断強度は30kN/m2、剛性を表すヤング率は1MN/m2とし、また、改良率ap=18%、改良体の強度は500kN/m2、変形係数は60MN/m2とする。
-Conditions of embankment body 3 and improved body 11 Height of embankment body 3: 8 m
Shape of improved body 11: flat cylindrical shape
(1.5m shallow mixed processing layer 5 is placed on top of the improved body)
In this case, the soil soil has a shear strength of 30 kN / m 2 , a Young's modulus representing rigidity of 1 MN / m 2 , an improvement rate ap = 18%, an improved body strength of 500 kN / m 2 , and a deformation coefficient of 60 MN / m 2 . and m 2.

従来設計法では、拘束効果による未改良部の地盤土の強度の変化は考慮せず、複合地盤の平均的な強度Sを計算し、以下のようになる。   In the conventional design method, the average strength S of the composite ground is calculated without considering the change in strength of the ground soil of the unimproved portion due to the constraint effect, and is as follows.

S=500×0.18+30×(1−0.18)
=114.6kN/m2
同様に、剛性を表す変形係数Eは以下のようになる。
S = 500 × 0.18 + 30 × (1−0.18)
= 114.6 kN / m 2
Similarly, a deformation coefficient E representing rigidity is as follows.

E=60×0.18+1×(1−0.18)
=11.62MN/m2
一方、ここでは、図7で示した三次元の有限要素法を用いて直応力σおよびせん断応力τの変化を計算した。(a)は盛土をする前の地盤の状態を、(b)は扁平な筒状の改良体11を、(c)は盛土を載荷した状況をそれぞれ示す。
E = 60 × 0.18 + 1 × (1−0.18)
= 11.62 MN / m 2
On the other hand, here, changes in the direct stress σ and the shear stress τ were calculated using the three-dimensional finite element method shown in FIG. (A) shows the state of the ground before embankment, (b) shows the flat cylindrical improvement body 11, and (c) shows the situation where the embankment is loaded.

本計算例での改良体11で拘束された内部の応力は、
・直応力の変化の平均値Δσ=11.6kN/m2
・せん断力の平均値Δτ=0.5kN/m2
となる。
The internal stress constrained by the improved body 11 in this calculation example is
・ Average value of change in direct stress Δσ = 11.6 kN / m 2
・ Average value of shear force Δτ = 0.5kN / m 2
It becomes.

ここで、α=0.04、β=0.1、p=1、q=1とすると、
Rs=1+αΔσp+βΔτq
=1+0.04×(11.6)1+0.1×(0.5)1
=1.52
となる。
Here, if α = 0.04, β = 0.1, p = 1, q = 1,
Rs = 1 + αΔσ p + βΔτ q
= 1 + 0.04 × (11.6) 1 + 0.1 × (0.5) 1
= 1.52
It becomes.

これにより、従来設計法より強度が52%増加する。したがって、改良体で拘束された軟弱層のせん断強度は30×1.52=45.6kN/m2に増加する。 This increases the strength by 52% over the conventional design method. Therefore, the shear strength of the soft layer constrained by the improved body increases to 30 × 1.52 = 45.6 kN / m 2 .

複合地盤の平均的な強度を上記せん断強度を用いて計算すると、以下のようになり、上記従来設計法の強度114.6kN/m2より約10%強度が増加する。 When the average strength of the composite ground is calculated using the shear strength, the strength is as follows. The strength is increased by about 10% from the strength of 114.6 kN / m 2 of the conventional design method.

S=500×0.18+45.6×(1−0.18)
=127.4kN/m2
同様に、剛性の変化率に関しても、γ=0.15、κ=0.05、r=0.5、s=0.5とすると、
Re=1+γΔσr+κΔτs
=1+0.15×(11.6)0.5+0.05×(0.5)0.5
=1.55
となり、剛性が55%増加する。
S = 500 × 0.18 + 45.6 × (1−0.18)
= 127.4kN / m 2
Similarly, regarding the rate of change in stiffness, if γ = 0.15, κ = 0.05, r = 0.5, s = 0.5,
Re = 1 + γΔσ r + κΔτ s
= 1 + 0.15 × (11.6) 0.5 + 0.05 × (0.5) 0.5
= 1.55
Thus, the rigidity is increased by 55%.

強度と同様の評価方法で剛性を表す変形係数を評価すると以下のようになり、上記従来設計法の変形係数11.62MN/m2より変形係数が約4%増加する。 When the deformation coefficient representing rigidity is evaluated by the same evaluation method as the strength, it becomes as follows, and the deformation coefficient increases by about 4% from the deformation coefficient of 11.62 MN / m 2 of the conventional design method.

E=60×0.18+1.55×(1−0.18)
=12.071MN/m2
以上のように、本発明の強度評価方法を未改良部の地盤土に応用すると、従来の複合地盤的設計法を用いたとしても、強度の増加により約10%、剛性の増加により約4%地盤評価が増加することとなる。これは、前述したように改良体の強度、配置量(改良率)の低減が図れることとなり、コストの削減となる。また、地盤を効率的に拘束させる改良体の形状や配置によって、前記計算例よりもより合理的な地盤改良工法の提供が可能となる。
E = 60 × 0.18 + 1.55 × (1−0.18)
= 12.071MN / m 2
As described above, when the strength evaluation method of the present invention is applied to the ground soil of an unimproved portion, even if the conventional composite ground design method is used, the strength increases by about 10%, and the rigidity increases by about 4%. The ground evaluation will increase. As described above, the strength of the improved body and the amount of arrangement (improvement rate) can be reduced, and the cost can be reduced. In addition, it is possible to provide a ground improvement method that is more rational than the above calculation example by the shape and arrangement of the improved body that efficiently restrains the ground.

図13の(a)〜(c)に示す三つのケースについて、加速度80G下で遠心模型実験を行い、改良体の配置や形状の違いによる拘束効果の違いが変形に与える影響を調べるため、その挙動を図7と同様の三次元の有限要素法により評価してみた。地盤改良の数量は全て同一である。図13の(a)は図1と同様のいわゆる柱状改良の場合であり、盛土体3の下の地盤に円柱状の多数の改良体1を配置してある。同図の(b)はいわゆる壁状改良の場合であり、盛土体3の下の地盤に直立した二枚の地中壁状の改良体101を所定距離隔てて配置してある。同図の(c)は図3と同様のいわゆる筒状改良の場合であり、図示省略した盛土体の下の地盤に偏平円筒状の改良体11を配置してある。いずれの場合にも盛土体3の高さは10mとし、各改良体1,101,11の上に1mの浅層混合処理層5を配置した上で、盛土体3を構築してある。   The three cases shown in FIGS. 13A to 13C are subjected to a centrifugal model experiment under an acceleration of 80 G, and in order to examine the influence of the difference in the restraining effect due to the arrangement and shape of the improved body on the deformation, The behavior was evaluated by the same three-dimensional finite element method as in FIG. The quantity of ground improvement is the same. FIG. 13A shows a case of so-called columnar improvement similar to FIG. 1, in which a large number of cylindrical improvement bodies 1 are arranged on the ground below the embankment body 3. (B) of the figure shows a case of so-called wall-like improvement, in which two underground wall-like improvement bodies 101 standing upright on the ground below the embankment body 3 are arranged at a predetermined distance. (C) of the same figure is the case of what is called cylindrical improvement similar to FIG. 3, and the flat cylindrical improvement body 11 is arrange | positioned in the ground under the embankment body which abbreviate | omitted illustration. In any case, the embankment body 3 is constructed after the height of the embankment body 3 is 10 m and the 1 m shallow mixed processing layer 5 is disposed on each of the improved bodies 1, 101, 11.

結果としては、図13の(a),(b)のように改良体1または101が柱状および壁状である場合には、共に拘束効果が同程度で、盛土体3の底部位置での沈下量が約80cmであった。これに対して、図13の(c)のように改良体11が偏平な筒状の場合には、盛土体3の底部位置での沈下量が約60cmに減少していることがわかった。すなわち、地盤改良の数量が同じでも、改良体の形状によってその対策効果が違うことが確認された。   As a result, when the improved body 1 or 101 has a columnar shape and a wall shape as shown in FIGS. 13A and 13B, the restraint effect is almost the same, and the settlement at the bottom position of the embankment body 3 occurs. The amount was about 80 cm. On the other hand, when the improved body 11 was flat as shown in FIG. 13C, it was found that the amount of settlement at the bottom portion of the embankment body 3 was reduced to about 60 cm. That is, even if the number of ground improvement was the same, it was confirmed that the countermeasure effect differs depending on the shape of the improved body.

この結果は、偏平な筒状の改良体に囲まれた地盤土の剛性が約50%程度増加しているものと解釈することができ、先に示した計算例を実証していることにほかならない。   This result can be interpreted as an increase of about 50% in the rigidity of the ground soil surrounded by a flat cylindrical improvement body, and in addition to demonstrating the calculation example shown above. Don't be.

図8は、地盤土を拘束するように配置した複数の中空円筒状の改良体31を、互いに接触するように千鳥状に配置した例である。地盤土を有効に拘束し、改良体31に引張応力を生じさせにくい配置であり、参考改良率は44%である。例えば、セメント系の改良体31は、圧縮と比較して引張り強度が小さいので、地盤土を拘束する効果を十分発揮させるためにも、引張り応力をできるだけ発生させない改良体31の配置が望ましい。図8の配置はこの要求に合致するものであり、それぞれの中空円筒状の改良体31の内部の未改良部31aに加えて、互いに接している改良体31,31同士の間にできる空隙部たる未改良部2にも同様の拘束力が働くため、改良体31に生じる引張り応力は非常に小さくなる。この場合において、図4と同様に浅層混合処理層5で蓋をするような構造とすると更に効果が増すのは以後も同様である。   FIG. 8 is an example in which a plurality of hollow cylindrical improvement bodies 31 arranged to constrain the ground soil are arranged in a staggered manner so as to contact each other. It is an arrangement in which the ground soil is effectively restrained and tensile stress is not easily generated in the improved body 31, and the reference improvement rate is 44%. For example, since the cement-based improved body 31 has a lower tensile strength than compression, it is desirable to arrange the improved body 31 that generates as little tensile stress as possible in order to sufficiently exert the effect of restraining the ground soil. The arrangement in FIG. 8 meets this requirement, and in addition to the unimproved portion 31a inside each hollow cylindrical improvement body 31, a gap formed between the improvement bodies 31 and 31 in contact with each other. Since the same restraining force also acts on the unimproved portion 2, the tensile stress generated in the improved body 31 becomes very small. In this case, as in the case of FIG. 4, the effect is further increased if the structure is such that the shallow mixed processing layer 5 is covered.

図9は、地盤土を拘束するように配置した複数の中空円筒状の改良体31を、矩形状または格子状に配置した例である。地盤土を有効に拘束し、改良体31に引張応力を生じさせにくい配置であり、参考改良率は38.5%である。このように、図9の配置でも図8の千鳥状に配置した場合と同様の効果がある。未改良部2の地盤土にも改良体31の内部の未改良部31aと同じような外向きの直応力Δσが生じることは図8の場合と同様である。   FIG. 9 is an example in which a plurality of hollow cylindrical improvement bodies 31 arranged to constrain the ground soil are arranged in a rectangular shape or a lattice shape. It is an arrangement in which the ground soil is effectively restrained and tensile stress is not easily generated in the improved body 31, and the reference improvement rate is 38.5%. As described above, the arrangement shown in FIG. 9 has the same effect as the arrangement shown in the zigzag form in FIG. As in the case of FIG. 8, the outward direct stress Δσ similar to the unimproved portion 31 a inside the improved body 31 is also generated in the ground soil of the unimproved portion 2.

図10の(a),(b)は、図8または図9の配置を基本とした上で中空円筒状の改良体31,31同士が互いに接触しない配置としたものである。この場合は類似の効果は発揮されるが、改良体31の円筒外部の地盤土に対する拘束の効果が小さくなるため、全体としての補強効果はやや小さくなる。この筒状の改良体31が接触しない配置では、改良体31,31同士の間の距離が2mの場合、参考改良率は23%〜27%である。   (A) and (b) of FIG. 10 are based on the arrangement of FIG. 8 or 9 and are arranged such that the hollow cylindrical improvement bodies 31 and 31 do not contact each other. In this case, a similar effect is exhibited, but since the effect of restraint on the ground soil outside the cylinder of the improved body 31 is reduced, the overall reinforcing effect is slightly reduced. In the arrangement where the cylindrical improvement body 31 does not contact, when the distance between the improvement bodies 31 and 31 is 2 m, the reference improvement rate is 23% to 27%.

図11は、側方移動などの荷重IFが偏土圧として加えられる場合に、土圧に抵抗する方向に平面視形状が略半円状またはアーチ状の改良体41を並べて配置した例である。擁壁などで偏土圧が加えられる場合は、土圧に抵抗する方向にアーチ状の改良体41を配置すると、改良体41内の引張り応力の発生が抑制される。   FIG. 11 shows an example in which improvement bodies 41 having a substantially semicircular or arched shape in plan view are arranged side by side in a direction to resist earth pressure when a load IF such as lateral movement is applied as an uneven earth pressure. . When uneven earth pressure is applied by a retaining wall or the like, if the arch-like improved body 41 is arranged in a direction that resists earth pressure, the generation of tensile stress in the improved body 41 is suppressed.

図12は、側方移動などの荷重IFが偏土圧として加えられる場合に、より一層地盤土の拘束効果を増すために、アーチ形状の改良体41の開放側を延長したり、あるいはその開放側を閉合した改良体配置とした例である。具体的には、同図(a)は独立配置のアーチ形状の改良体41の開放側をストレートな壁体6をもって延長したもの、同図(b)は連続配置のアーチ形状の改良体41のそれぞれの開放側を壁体6にて延長したものである。さらに、同図(c)は独立配置のアーチ形状の改良体41の開放側を壁体6にてそれぞれ延長した上で、その壁体6,6同士の間にも別のアーチ形状の改良体51を配置することにより閉合して改良体全体を閉ループ状のものとしたもの、同図(d)は同図(c)の独立配置に代えて連続配置としたものである。   FIG. 12 shows that when the load IF such as lateral movement is applied as an uneven earth pressure, the open side of the arch-shaped improvement body 41 is extended or released in order to further increase the restraining effect of the ground soil. It is the example made into the improvement body arrangement | positioning which closed the side. Specifically, FIG. 4A shows an independent arrangement of an arch-shaped improvement body 41 with the open side extended by a straight wall body 6, and FIG. Each open side is extended by a wall body 6. Further, FIG. 6 (c) shows that the open side of the independently arranged arch-shaped improvement body 41 is extended by the wall body 6, and another arch-shaped improvement body is also provided between the wall bodies 6 and 6. The entire improved body is closed looped by placing 51, and FIG. 6D is a continuous arrangement instead of the independent arrangement of FIG.

この図12に示した配置によれば、図11の配置と比べてより一層の地盤土の拘束効果の向上を期待できる。   According to the arrangement shown in FIG. 12, it is possible to expect further improvement in the restraining effect of the ground soil as compared with the arrangement of FIG. 11.

例えば、図14の(a),(b)に示すように、複数の円柱状の改良体1とその間の地盤である未改良部2に隣接または近接して、その近接する領域を凹部102として溝状に掘り下げるべく同図(a)に示すようなほぼ鉛直な掘削が行われる場合、凹部102において掘削部分の方向にDDなる変形が生じ、隣接する地盤の応力が低下する。これによって、未改良部2の地盤の強度・剛性が低下する。
現状の設計・施工法では、一般的に、複合地盤として、強度・剛性を評価するため、上記のような現象は想定せず、未改良部2の強度に関しては、改良体1を造成する前の地盤土の強度のまま変化しないとしている。このため、未改良部2の強度や剛性を過大評価し、いわゆる危険側の設計となっている可能性が高い。
For example, as shown in FIGS. 14 (a) and 14 (b), a plurality of cylindrical improvement bodies 1 and an unimproved portion 2 that is the ground between them are adjacent or close to each other, and the adjacent region is defined as a recess 102. When a substantially vertical excavation as shown in FIG. 5A is performed in order to dig into a groove shape, DD deformation occurs in the direction of the excavation portion in the recess 102, and the stress of the adjacent ground decreases. Thereby, the strength and rigidity of the ground of the unimproved portion 2 are lowered.
In the current design / construction method, since the strength / rigidity is generally evaluated as a composite ground, the above-mentioned phenomenon is not assumed, and the strength of the unmodified part 2 is the same as before the improvement body 1 is created. The strength of the ground soil remains unchanged. For this reason, the strength and rigidity of the unimproved portion 2 are overestimated, and it is highly possible that the design is a so-called dangerous side.

一方、この発明では、図14の(a),(b)に示すように、凹部102での掘削によってDDなる変形が生じることを想定し、地盤土の変形拘束によって生じる直応力の変化をΔσで表し、前記式(3)〜(8)から地盤土の強度および剛性の変化を求める。なお、図14の(b)中のΔSは地盤土の強度変化を、ΔEは地盤土の剛性変化をそれぞれに示す。   On the other hand, in the present invention, as shown in FIGS. 14A and 14B, assuming that DD deformation is caused by excavation in the recess 102, the change of the direct stress caused by the deformation restraint of the ground soil is expressed as Δσ. And the changes in the strength and rigidity of the ground soil are obtained from the above formulas (3) to (8). Note that ΔS in FIG. 14B indicates a change in the strength of the ground soil, and ΔE indicates a change in the stiffness of the ground soil.

これによって、改良体1による地盤土の拘束効果を、地盤土の強度・変形特性の変化として評価し、これを考慮して地盤改良のための改良体1の形状や配置等を決定することで、地盤土の拘束効果を適切に評価した合理的な地盤改良を行うことができる。
例えば、図15の(a),(b)に示すように、複数の円柱状の改良体1を含む未改良土2に隣接または近接する領域を、斜面103aを有する凹部103として溝状に掘削するいわゆる切土工事の場合も状況は同様である。
By this, the restraint effect of the ground soil by the improved body 1 is evaluated as a change in the strength and deformation characteristics of the ground soil, and the shape and arrangement of the improved body 1 for ground improvement are determined in consideration of this. Reasonable ground improvement can be performed by appropriately evaluating the restraining effect of the ground soil.
For example, as shown in FIGS. 15A and 15B, a region adjacent to or close to the unimproved soil 2 including a plurality of cylindrical improvement bodies 1 is excavated in a groove shape as a recess 103 having a slope 103a. The situation is similar for so-called cut work.

図16の(a),(b)には、図14と同様に凹部102をほぼ垂直に掘削をする場合の好適な地盤改良形態を示す。ここでは、改良体として、直立した壁体104のほか、その壁体104の背面側に不完全な筒状改良体104を突き合わせるべく複数個並設して、複合型改良体としてある。上記不完全な筒状改良体105は、図3に示した偏平な筒状の改良体11を長径方向で二分した形状のものと理解することができる。これによって、壁体104と不完全な筒状改良体105とで囲まれた部分が閉空間となって完全に拘束されている。結果として、地盤土の拘束効果を適切に評価した合理的な地盤改良を行うことができる。
この場合において、上記壁体104と不完全な筒状改良体105とで囲まれた空間の一部が開放されていていわゆる完全なる閉空間でない場合のほか、壁体104以外の不完全な筒状改良体105の部分が円筒状や四角柱状あるいは三角柱状などであっても、拘束の効果を正しく評価して、適正な設計・施工ができる。
16 (a) and 16 (b) show a preferred ground improvement form in the case of excavating the recess 102 almost vertically as in FIG. Here, as an improved body, in addition to the upright wall body 104, a plurality of in-line cylindrical improvement bodies 104 are arranged side by side on the back side of the wall body 104 to form a composite type improvement body. The incomplete cylindrical improvement body 105 can be understood as having a shape obtained by dividing the flat cylindrical improvement body 11 shown in FIG. 3 into two in the major axis direction. As a result, a portion surrounded by the wall body 104 and the incomplete cylindrical improvement body 105 becomes a closed space and is completely restrained. As a result, it is possible to perform rational ground improvement that appropriately evaluates the restraining effect of the ground soil.
In this case, in addition to the case where a part of the space surrounded by the wall body 104 and the incomplete cylindrical improvement body 105 is open and not a so-called complete closed space, an incomplete cylinder other than the wall body 104 is used. Even if the portion of the shape improvement body 105 is cylindrical, quadrangular, triangular, or the like, it is possible to correctly evaluate the effect of restraint and perform appropriate design and construction.

図17の(a),(b)には、図15と同様に、斜面103aを有する凹部103として溝状に掘削するいわゆる切土工事をする場合の好適な地盤改良形態を示す。ここでは、改良体として、斜面103aとほぼ平行となるように傾斜した斜状壁体106とほぼ鉛直な直立壁体104とを組み合わせて、双方の上端同士を突き合わせることで複合改良体としてある。同図から明らかなように、斜状壁体106と直立壁体104とで囲まれた部分が不完全な閉空間をもって拘束されている。結果として、地盤土の拘束効果を適切に評価した合理的な地盤改良を行うことができる。
この場合において、斜状壁体106と直立壁体104の上端部同士の間に空間が生じていても相応の効果が期待でることはいうまでもない。また、必要に応じ、斜状壁体106を複数枚重合配置するようにしても良い。
また、直立壁体104の背面側に、図16と同様の不完全な筒状改良体105を複数個並設すると、さらに拘束効果が高くなる。また、筒状改良体105の部分が円筒状や四角柱状あるいは三角柱状などであっても、拘束の効果を正しく評価して、適正な設計・施工ができることは図16の場合と同様である。
17 (a) and 17 (b) show a preferred ground improvement form in the case of so-called cut work for excavating into a groove shape as the concave portion 103 having the inclined surface 103a, as in FIG. Here, as an improved body, a slanted wall body 106 that is inclined so as to be substantially parallel to the inclined surface 103a and a substantially vertical upright wall body 104 are combined, and both upper ends thereof are butted together to form a composite improved body. . As is clear from the figure, the portion surrounded by the inclined wall body 106 and the upright wall body 104 is constrained with an incomplete closed space. As a result, it is possible to perform rational ground improvement that appropriately evaluates the restraining effect of the ground soil.
In this case, it goes without saying that a corresponding effect can be expected even if a space is formed between the upper ends of the slanted wall body 106 and the upright wall body 104. Further, if necessary, a plurality of slanted wall bodies 106 may be superposed.
Further, when a plurality of incomplete cylindrical improvement bodies 105 similar to those in FIG. 16 are arranged in parallel on the back side of the upright wall body 104, the restraining effect is further enhanced. Further, even if the cylindrical improvement body 105 has a cylindrical shape, a quadrangular prism shape, a triangular prism shape, or the like, the effect of restraint can be correctly evaluated and appropriate design and construction can be performed as in the case of FIG.

この発明は、地盤中に構築される改良体による地盤土の拘束効果を予め適切に評価した上で、改良体の形状や配置および強度を決定して施工する、より低コストな地盤改良工法である。   This invention is a lower-cost ground improvement method in which the restraint effect of the ground soil by the improved body constructed in the ground is appropriately evaluated in advance, and the shape, arrangement and strength of the improved body are determined and applied. is there.

1…改良体
2…未改良部(地盤土)
2a…未改良部(地盤土)
3…盛土体
5…浅層混合処理層
11…改良体
21…改良体
31…改良体
31a…未改良部
41…改良体
51…改良体
F…盛土荷重
IF…側方移動などの荷重
WF…地下水の流れ
Δσ…地盤土の変形拘束によって生じる直応力の変化
Δτ…地盤土の変形拘束によって生じるせん断応力の変化
ΔS…地盤土の強度変化
ΔE…地盤土の剛性変化
1 ... Improved body 2 ... Unmodified part (ground soil)
2a ... Unmodified part (ground soil)
DESCRIPTION OF SYMBOLS 3 ... Embankment body 5 ... Shallow mixed processing layer 11 ... Improved body 21 ... Improved body 31 ... Improved body 31a ... Unmodified part 41 ... Improved body 51 ... Improved body F ... Embankment load IF ... Load such as lateral movement WF ... Groundwater flow Δσ: Changes in direct stress caused by deformation restraint of ground soil Δτ: Changes in shear stress caused by restraint deformation of ground soil ΔS: Change in strength of ground soil ΔE: Change in stiffness of ground soil

Claims (11)

地盤中に改良体を構築する地盤改良工法において、
盛土構築などの改良地盤の応力が増加する場合に、
改良体の構築によって得られる地盤変形の拘束効果を予め把握するべく、改良体の形状および配置によって異なる地盤変形の拘束効果を有限要素法により地盤土の応力の変化として予め評価し、
この応力の変化によって生じる地盤土の強度および剛性の変化のうち少なくともいずれか一方の変化が増加傾向となる改良体の形状および配置をもって当該改良体を構築することを特徴とする地盤改良工法。
In the ground improvement method of building an improved body in the ground,
When stress of improved ground such as embankment construction increases,
In order to grasp in advance the restraint effect of ground deformation obtained by the construction of the improved body, the restraint effect of ground deformation that differs depending on the shape and arrangement of the improved body is evaluated in advance as a change in soil soil stress by the finite element method,
A ground improvement construction method characterized by constructing the improved body with the shape and arrangement of the improved body in which at least one of the changes in strength and rigidity of the ground soil caused by the change in stress tends to increase.
請求項1に記載の地盤改良工法において、
改良体の形状および配置によって異なる地盤変形の拘束効果を有限要素法により地盤土の応力の変化分として求めるとともに、
この応力の変化分に基づいて、当該応力の変化によって生じる地盤土の強度および剛性の変化のうち少なくともいずれか一方の変化分を求め、
この少なくともいずれか一方の変化分が増加傾向となる改良体の形状および配置をもって当該改良体を構築することを特徴とする地盤改良工法。
In the ground improvement construction method according to claim 1,
While obtaining the constraint effect of ground deformation that varies depending on the shape and arrangement of the improved body as a change in the stress of the ground soil by the finite element method,
Based on the change in the stress, obtain the change in at least one of the changes in the strength and rigidity of the ground soil caused by the change in the stress,
A ground improvement construction method characterized by constructing the improved body with the shape and arrangement of the improved body in which at least one of the changes tends to increase.
請求項2に記載の地盤改良工法において、
前記有限要素法により求める地盤土の応力の変化分は、地盤が荷重を受けたときに改良体による拘束効果のためにその反力として生じる直応力およびせん断応力のうち少なくともいずれか一方であることを特徴とする地盤改良工法。
In the ground improvement construction method according to claim 2,
The change in the ground soil stress obtained by the finite element method is at least one of a direct stress and a shear stress generated as a reaction force due to the restraining effect of the improved body when the ground receives a load. A ground improvement method characterized by
請求項3に記載の地盤改良工法において、
前記応力の変化によって生じる地盤土の強度および剛性の変化のうち少なくともいずれか一方の変化分は、盛土構築などの改良地盤の応力が増加する場合に、前記直応力およびせん断応力の総和によって生じる地盤土の強度および剛性の増加のうち少なくともいずれか一方の増加分であることを特徴とする地盤改良工法。
In the ground improvement construction method according to claim 3,
The change in at least one of the changes in strength and rigidity of the ground soil caused by the change in stress is the ground caused by the sum of the direct stress and shear stress when the stress in the improved ground such as embankment construction increases. A ground improvement method characterized by an increase in at least one of the increase in soil strength and rigidity.
地盤中に改良体を構築する地盤改良工法において、
掘削などの改良地盤の応力が減少する場合に、
改良体の構築によって得られる地盤変形の拘束効果を予め把握するべく、改良体の形状および配置によって異なる地盤変形の拘束効果を有限要素法により地盤土の応力の変化として予め評価し、
この応力の変化によって生じる地盤土の強度および剛性の変化のうち少なくともいずれか一方の低下が抑制できる改良体の形状および配置をもって当該改良体を構築することを特徴とする地盤改良工法。
In the ground improvement method of building an improved body in the ground,
When the stress of improved ground such as excavation decreases,
In order to grasp in advance the restraint effect of ground deformation obtained by the construction of the improved body, the restraint effect of ground deformation that differs depending on the shape and arrangement of the improved body is evaluated in advance as a change in soil soil stress by the finite element method,
A ground improvement construction method characterized by constructing the improved body with the shape and arrangement of the improved body capable of suppressing a decrease in at least one of the changes in strength and rigidity of the ground soil caused by the change in stress.
請求項1に記載の地盤改良工法において、
改良体の形状および配置によって異なる地盤変形の拘束効果を有限要素法により地盤土の応力の変化分として求めるとともに、
この応力の変化分に基づいて、当該応力の変化によって生じる地盤土の強度および剛性の変化のうち少なくともいずれか一方の変化分を求め、
この少なくともいずれか一方の低下が抑制できる改良体の形状および配置をもって当該改良体を構築することを特徴とする地盤改良工法。
In the ground improvement construction method according to claim 1,
While obtaining the constraint effect of ground deformation that varies depending on the shape and arrangement of the improved body as a change in the stress of the ground soil by the finite element method,
Based on the change in the stress, obtain the change in at least one of the changes in the strength and rigidity of the ground soil caused by the change in the stress,
The ground improvement construction method characterized by constructing the said improved body with the shape and arrangement | positioning of the improved body which can suppress the fall of this at least any one.
請求項6に記載の地盤改良工法において、
前記有限要素法により求める地盤土の応力の変化分は、地盤が荷重を受けたときに改良体による拘束効果のためにその反力として生じる直応力およびせん断応力のうち少なくともいずれか一方であることを特徴とする地盤改良工法。
In the ground improvement construction method according to claim 6,
The change in the ground soil stress obtained by the finite element method is at least one of a direct stress and a shear stress generated as a reaction force due to the restraining effect of the improved body when the ground receives a load. A ground improvement method characterized by
請求項7に記載の地盤改良工法において、
前記応力の変化によって生じる地盤土の強度および剛性の変化のうち少なくともいずれか一方の変化分は、掘削などの改良地盤の応力が減少する場合に、前記直応力およびせん断応力の総和によって生じる地盤土の強度および剛性の低下のうち少なくともいずれか一方を補うものであることを特徴とする地盤改良工法。
In the ground improvement construction method according to claim 7,
The change in at least one of the changes in strength and rigidity of the ground soil caused by the change in the stress is the ground soil generated by the sum of the direct stress and shear stress when the stress in the improved ground such as excavation decreases. A ground improvement method that compensates for at least one of the decrease in strength and rigidity of the ground.
請求項1〜8のいずれかに記載の地盤改良工法において、
前記改良体の形状を筒状のものとすることを特徴とする地盤改良工法。
In the ground improvement construction method in any one of Claims 1-8,
A ground improvement construction method characterized in that the shape of the improved body is cylindrical.
請求項1〜8のいずれかに記載の地盤改良工法において、
前記改良体の形状を偏平な筒状のものとすることを特徴とする地盤改良工法。
In the ground improvement construction method in any one of Claims 1-8,
A ground improvement method characterized in that the improved body has a flat cylindrical shape.
請求項1〜8のいずれかに記載の地盤改良工法において、
前記改良体の形状を深度方向に向かって漸次拡径している筒状のものとすることを特徴とする地盤改良工法。
In the ground improvement construction method in any one of Claims 1-8,
A ground improvement method characterized in that the shape of the improved body is a cylindrical one whose diameter is gradually expanded in the depth direction.
JP2009268256A 2009-11-26 2009-11-26 Ground improvement method Active JP5351720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009268256A JP5351720B2 (en) 2009-11-26 2009-11-26 Ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009268256A JP5351720B2 (en) 2009-11-26 2009-11-26 Ground improvement method

Publications (2)

Publication Number Publication Date
JP2011111787A JP2011111787A (en) 2011-06-09
JP5351720B2 true JP5351720B2 (en) 2013-11-27

Family

ID=44234338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009268256A Active JP5351720B2 (en) 2009-11-26 2009-11-26 Ground improvement method

Country Status (1)

Country Link
JP (1) JP5351720B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5797100B2 (en) * 2011-11-24 2015-10-21 鹿島建設株式会社 Strength estimation program, strength estimation apparatus, and strength estimation method
DE102017003251A1 (en) * 2017-04-04 2018-10-04 Joachim Weber Process for subsequent soil consolidation
CN108316346B (en) * 2018-03-07 2020-12-15 宁波工程学院 Green treatment method for abandoned underground civil air defense hole
CN113594822B (en) * 2021-07-29 2024-04-19 中达安股份有限公司 Transformer substation engineering resistor grounding construction method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5062559B2 (en) * 2007-06-20 2012-10-31 清水建設株式会社 Ground improvement method

Also Published As

Publication number Publication date
JP2011111787A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP5309295B2 (en) Structure of upper and lower boundaries of blocks in structure and structure
JP5351720B2 (en) Ground improvement method
JP2019011678A (en) Ground improvement foundation structure
JP4514835B2 (en) Ground improvement method
JP6357323B2 (en) Liquefaction countermeasure structure and its construction method
JP2009249999A (en) Construction method for suppressing deformation of filling
JP2007051486A (en) Sheet pile-combined spread foundation and its construction method
JP5296585B2 (en) Soil cement improved structure and piled raft foundation
JP2006083603A (en) Construction method of mono-pile type foundation
JP2013002077A (en) Ground improvement body, and piled raft foundation equipped therewith
JP2010138581A (en) Reinforcing structure of banking support ground
JP2006342666A (en) Method for antiseismic reinforcement of structure
JP2010209605A (en) Piled-raft foundation
CN210049263U (en) Steel shell open caisson with blade foot filled with UHPC material
JP2008150859A (en) Reinforcing structure of ground level different part
JP6436256B1 (en) Building basic structure and construction method
JP2008303580A (en) Reinforcing structure of banking support ground
KR101267095B1 (en) Construction method for block to anchor connecter rubbing paunch
JP2012017584A (en) Improvement body for suppressing deformation of earth-retaining wall, and suppression method
JP7469608B2 (en) Support structure, gravity breakwater and construction method of gravity breakwater
CN212336050U (en) Anchoring structure of deformation side slope
JP2007239202A (en) Aseismatic reinforcing structure of trough filling banking part
JP5069089B2 (en) Foundation structure using wall foundation
JP2008266935A (en) Existing foundation reinforcing structure and reinforcing method
JP6628492B2 (en) Liquefaction prevention structure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130823

R150 Certificate of patent or registration of utility model

Ref document number: 5351720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250