JP5351600B2 - Appearance inspection system and appearance inspection method - Google Patents

Appearance inspection system and appearance inspection method Download PDF

Info

Publication number
JP5351600B2
JP5351600B2 JP2009107032A JP2009107032A JP5351600B2 JP 5351600 B2 JP5351600 B2 JP 5351600B2 JP 2009107032 A JP2009107032 A JP 2009107032A JP 2009107032 A JP2009107032 A JP 2009107032A JP 5351600 B2 JP5351600 B2 JP 5351600B2
Authority
JP
Japan
Prior art keywords
image
wavelength
transmissive layer
wavelength image
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009107032A
Other languages
Japanese (ja)
Other versions
JP2010256185A (en
Inventor
肇 直原
裕彦 峠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009107032A priority Critical patent/JP5351600B2/en
Publication of JP2010256185A publication Critical patent/JP2010256185A/en
Application granted granted Critical
Publication of JP5351600B2 publication Critical patent/JP5351600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a visual inspection system and a visual inspection method capable of improving a yield by discriminating only defects on the surface of a non-light-transmission layer. <P>SOLUTION: A distance between a lens 11 and an object 100 is set so that an area close to the surface of a light transmission layer 102 is focused for a blue component having a short wavelength and an area close to the surface of a non-light-transmission layer 101 may be focused for a red component having a long wavelength by utilizing a difference in a focal distance for each wavelength for images captured by a camera. Thus, in the captured images, a contour becomes dim and an area increases in a red component for defects on the surface of the light transmission layer 102 and a contour becomes dim and an area increases in a blue component for defects on the surface of the non-light-transmission layer 101. Therefore, an image processor compares a red component and a blue component in the captured images to identify whether the images are on the non-light-transmission layer 101, and only defects on the surface of the non-light-transmission layer 101 are discriminated. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、非透過層の一表面側に光透過層が積層された複層構造の構造体を検査対象に非透過層の表面上の欠陥の有無を検査する外観検査システムおよび外観検査方法に関するものである。   The present invention relates to an appearance inspection system and an appearance inspection method for inspecting a structure having a multi-layer structure in which a light transmission layer is laminated on one surface side of a non-transmission layer for the presence of defects on the surface of the non-transmission layer. Is.

従来から、たとえばMEMS(Micro Electro Mechanical System)技術を用いた半導体製造プロセスにより作成されるセンサチップ等の構造体においては、目視での判断が難しい微細な欠陥をも検出可能な外観検査を行い、当該外観検査で良品(欠陥なし)と判断されたもののみを出荷することが一般的である。このような外観検査を行う外観検査システムとしては、対象物を撮像手段にて撮像し、得られた濃淡画像と、予め良品を撮像して得られる良品画像(マスタ画像)とを比較することで、対象物の欠陥の有無を判定するものが提案されている(たとえば特許文献1参照)。   Conventionally, in a structure such as a sensor chip created by a semiconductor manufacturing process using MEMS (Micro Electro Mechanical System) technology, for example, a visual inspection that can detect even fine defects that are difficult to judge visually is performed. It is common to ship only those that are determined to be non-defective (no defects) by the appearance inspection. As an appearance inspection system for performing such an appearance inspection, an object is imaged by an imaging unit, and the obtained gray image is compared with a good image (master image) obtained by imaging a good product in advance. A device for determining the presence or absence of defects in an object has been proposed (see, for example, Patent Document 1).

ところで、たとえばMEMS技術を用いて製造される構造体の一例として、図2に示すように、非透過層101となる半導体(たとえばシリコン)層と、光透過層102となるガラス板とを積層した複層構造のものが知られている。なお、図2の例では、半導体層におけるガラス板側の表面に凹凸が付けられており、当該凹凸によってガラス板と半導体層との間に空洞103が形成されている。   By the way, as an example of a structure manufactured using, for example, MEMS technology, a semiconductor (for example, silicon) layer to be a non-transmissive layer 101 and a glass plate to be a light transmissive layer 102 are stacked as shown in FIG. A multilayer structure is known. In the example of FIG. 2, the surface of the semiconductor layer on the glass plate side is uneven, and a cavity 103 is formed between the glass plate and the semiconductor layer by the unevenness.

このように非透過層101の一表面側に光透過層102が積層された複層構造の構造体を検査の対象物100とする場合、当該対象物100を光透過層102側から撮像することで、光透過層102の表面だけでなく、光透過層102を通して非透過層101の表面の画像を撮像することもできる。したがって、光透過層102の表面上の欠陥104(図5(a)参照)と、非透過層101の表面上(つまり、光透過層102の裏面側)の欠陥105(図5(b)参照)との両方を検出することができる。   When a structure having a multilayer structure in which the light transmission layer 102 is laminated on one surface side of the non-transmission layer 101 is used as the inspection object 100, the object 100 is imaged from the light transmission layer 102 side. Thus, not only the surface of the light transmission layer 102 but also the image of the surface of the non-transmission layer 101 can be taken through the light transmission layer 102. Therefore, the defect 104 (see FIG. 5A) on the surface of the light transmission layer 102 and the defect 105 (see FIG. 5B) on the surface of the non-transmission layer 101 (that is, the back surface side of the light transmission layer 102). ) And both can be detected.

ここで、光透過層102の表面上の欠陥(たとえば光透過層102表面に付着した埃等の異物)104は、後の工程で除去可能であり、対象物100の動作・機能上の障害となるような致命的な欠陥ではなく、このような欠陥(以下、擬似欠陥という)104があっても対象物100としては良品となる。一方、非透過層101の表面上の欠陥(たとえば光透過層102と非透過層101との間に混入した埃等の異物)105は、後の工程で除去できず、対象物100の動作・機能上の障害となる致命的な欠陥であるから、このような欠陥105があると対象物100としては不良品となる。   Here, the defects 104 on the surface of the light transmission layer 102 (for example, foreign matters such as dust attached to the surface of the light transmission layer 102) 104 can be removed in a later process, and the obstacles in the operation / function of the object 100 Even if there is such a defect (hereinafter referred to as a pseudo defect) 104, the object 100 is a non-defective product. On the other hand, defects on the surface of the non-transmissive layer 101 (for example, foreign matters such as dust mixed between the light transmissive layer 102 and the non-transmissive layer 101) 105 cannot be removed in a later process, and Since the defect 105 is a fatal defect that causes a functional failure, the object 100 becomes a defective product if such a defect 105 exists.

特開平7−153804号公報JP 7-153804 A

しかしながら、対象物100の画像と良品画像とを比較するだけの従来の外観検査方法では、光透過層102を通して非透過層101表面の画像を撮像するため、当該撮像画像から光透過層102の表面上の欠陥(擬似欠陥)か、あるいは非透過層101の表面上の欠陥かを識別することはできない。そのため、擬似欠陥があるだけの良品であっても不良品と誤って判断されてしまう無駄はねが生じ、歩留り低下につながるという問題がある。   However, in the conventional appearance inspection method that only compares the image of the object 100 and the non-defective image, an image of the surface of the non-transmissive layer 101 is captured through the light transmissive layer 102, and therefore the surface of the light transmissive layer 102 is captured from the captured image. It cannot be identified whether the defect is an upper defect (pseudo defect) or a defect on the surface of the non-transmissive layer 101. For this reason, there is a problem in that even a non-defective product that has only a pseudo defect is wastefully rejected as a defective product, leading to a decrease in yield.

本発明は上記事由に鑑みて為されたものであって、非透過層の表面上の欠陥のみを判別可能とすることで、歩留り向上につなげることができる外観検査システムおよび外観検査方法を提供することを目的とする。   The present invention has been made in view of the above reasons, and provides an appearance inspection system and an appearance inspection method capable of improving yield by making it possible to determine only defects on the surface of a non-transmissive layer. For the purpose.

請求項1の発明は、少なくとも非透過層の一表面側に光透過層が積層された積層体を対象物として、非透過層の表面上の欠陥を検査する外観検査システムであって、対象物を前記一表面側から撮像する撮像装置と、対象物を前記一表面側から照明する同軸落射照明用の照明装置と、撮像装置で撮像された非透過層の表面上の像から前記欠陥の有無を判定する画像処理装置とを備え、照明装置が、光透過層を透過する少なくとも2種類の異なる波長の照明光を対象物に照射し、撮像装置が、照明光の波長ごとの焦点距離の違いを利用し、一の波長の照明光で撮像される短波長画像と、前記一の波長よりも長波長となる他の波長の照明光で撮像される長波長画像とを比べると、短波長画像よりも長波長画像で非透過層の表面近くに焦点を合わせており、画像処理装置が、短波長画像と長波長画像とを比較した結果、短波長画像に比べて長波長画像でピントが合う部分を非透過層の表面上の像と判断する識別手段と、前記短波長画像および前記長波長画像についてそれぞれ濃淡値を所定の閾値で2値化処理を行う2値化手段とを有し、前記識別手段が、2値化処理後の短波長画像と長波長画像との差をとり、短波長画像の一部分が残れば当該一部分を前記非透過層の表面上の像と判断することを特徴とする。 The invention of claim 1 is an appearance inspection system for inspecting a defect on a surface of a non-transmissive layer by using a laminate in which a light transmissive layer is laminated on at least one surface side of the non-transmissive layer as a target. The presence of the defect from the image on the surface of the non-transmissive layer imaged by the imaging device, the imaging device that images the object from the one surface side, the illumination device for coaxial epi-illumination that illuminates the object from the one surface side The image processing device for determining the illumination, the illumination device irradiates the object with illumination light of at least two different wavelengths that pass through the light transmission layer, and the imaging device has a difference in focal length for each wavelength of the illumination light. When a short wavelength image captured with illumination light of one wavelength is compared with a long wavelength image captured with illumination light of another wavelength that is longer than the one wavelength, a short wavelength image Focus closer to the surface of the non-transparent layer in longer wavelength images Ri, the image processing apparatus, as a result of comparing the short wavelength image and long wavelength images, and identification means for determining the image on the surface of the portion where focus is non-transmissive layer in the long wavelength image than the short wavelength image, A binarizing unit that binarizes each of the short-wavelength image and the long-wavelength image with a grayscale value at a predetermined threshold, and the identifying unit includes the short-wavelength image and the long-wavelength after binarization processing. A difference from the image is taken, and if a part of the short wavelength image remains, the part is determined to be an image on the surface of the non-transmissive layer .

この構成によれば、撮像装置が照明光の波長ごとに焦点距離が異なることを利用して、識別手段により、一の波長の照明光で撮像された長波長画像と他の波長の照明光で撮像された短波長光画像とを比較して、当該比較結果から非透過層の表面上の像を判別することができる。つまり、光透過層の表面上の像については短波長画像に比べ長波長画像で輪郭がぼけて面積が大きくなり、非透過層の表面上の像については長波長画像に比べ短波長画像で輪郭がぼけて面積が大きくなるので、たとえば当該面積の比較結果からいずれの欠陥かを識別することができる。したがって、光透過層の表面上の擬似欠陥があるだけの良品が誤って不良品と判断されてしまうことを防止でき、無駄はねが大幅に低減されて歩留りの向上につながるという利点がある。また、照明光の波長ごとに焦点距離が異なることを利用しているから、光透過層の表面と非透過層の表面とのそれぞれに焦点を合わせるための機械的な可動部は必要なく、システム構成の簡略化並びに検査時間の短縮を図ることができる。   According to this configuration, by using the fact that the imaging device has a different focal length for each wavelength of illumination light, the identification unit uses a long wavelength image captured with illumination light of one wavelength and illumination light of another wavelength. The captured short wavelength light image is compared, and the image on the surface of the non-transmissive layer can be determined from the comparison result. In other words, the image on the surface of the light-transmitting layer is blurred and has a larger area in the long-wavelength image than the short-wavelength image, and the image on the surface of the non-transmissive layer is outlined in the short-wavelength image compared to the long-wavelength image. Since the area becomes larger due to blurring, for example, it is possible to identify which defect is based on the comparison result of the areas. Therefore, it is possible to prevent a non-defective product having a false defect on the surface of the light transmission layer from being erroneously determined as a defective product, and there is an advantage that waste splash is greatly reduced and yield is improved. In addition, since the use of the fact that the focal length is different for each wavelength of the illumination light, there is no need for a mechanical moving part for focusing on the surface of the light transmission layer and the surface of the non-transmission layer, and the system The configuration can be simplified and the inspection time can be shortened.

また、この構成によれば、比較的簡単な演算処理で非透過層の表面上の像を判別できるから、画像処理の高速化によって検査時間の短縮を図ることができる。 In addition, according to this configuration, since the image on the surface of the non-transmissive layer can be determined by a relatively simple arithmetic process, the inspection time can be shortened by speeding up the image processing.

請求項の発明は、少なくとも非透過層の一表面側に光透過層が積層された積層体を対象物として、非透過層の表面上の欠陥を検査する外観検査システムであって、対象物を前記一表面側から撮像する撮像装置と、対象物を前記一表面側から照明する同軸落射照明用の照明装置と、撮像装置で撮像された非透過層の表面上の像から前記欠陥の有無を判定する画像処理装置とを備え、照明装置が、光透過層を透過する少なくとも2種類の異なる波長の照明光を対象物に照射し、撮像装置が、照明光の波長ごとの焦点距離の違いを利用し、一の波長の照明光で撮像される短波長画像と、前記一の波長よりも長波長となる他の波長の照明光で撮像される長波長画像とを比べると、短波長画像よりも長波長画像で非透過層の表面近くに焦点を合わせており、画像処理装置が、短波長画像と長波長画像とを比較した結果、短波長画像に比べて長波長画像でピントが合う部分を非透過層の表面上の像と判断する識別手段と、前記短波長画像および前記長波長画像についてそれぞれ各画素の濃淡値に基づき微分画像を生成する微分手段と、各微分画像についてそれぞれ画素値を所定の閾値で2値化処理を行う2値化手段とを有し、前記識別手段が、2値化処理後の短波長画像と長波長画像との差をとり、長波長画像の一部分が残れば当該一部分を前記非透過層の表面上の像と判断することを特徴とする。 The invention according to claim 2 is an appearance inspection system for inspecting a defect on the surface of the non-transmissive layer by using a laminate in which a light transmissive layer is laminated on at least one surface side of the non-transmissive layer as a target. The presence of the defect from the image on the surface of the non-transmissive layer imaged by the imaging device, the imaging device that images the object from the one surface side, the illumination device for coaxial epi-illumination that illuminates the object from the one surface side The image processing device for determining the illumination, the illumination device irradiates the object with illumination light of at least two different wavelengths that pass through the light transmission layer, and the imaging device has a difference in focal length for each wavelength of the illumination light. When a short wavelength image captured with illumination light of one wavelength is compared with a long wavelength image captured with illumination light of another wavelength that is longer than the one wavelength, a short wavelength image Focus closer to the surface of the non-transparent layer in longer wavelength images Ri, the image processing apparatus, as a result of comparing the short wavelength image and long wavelength images, and identification means for determining the image on the surface of the portion where focus is non-transmissive layer in the long wavelength image than the short wavelength image, Differentiating means for generating a differential image based on the gray value of each pixel for each of the short wavelength image and the long wavelength image, and binarizing means for binarizing each pixel value with a predetermined threshold value for each differential image And the discriminating means takes a difference between the short wavelength image and the long wavelength image after the binarization process, and if a part of the long wavelength image remains, the part is determined to be an image on the surface of the non-transmissive layer. It is characterized by doing.

この構成によれば、撮像装置が照明光の波長ごとに焦点距離が異なることを利用して、識別手段により、一の波長の照明光で撮像された長波長画像と他の波長の照明光で撮像された短波長光画像とを比較して、当該比較結果から非透過層の表面上の像を判別することができる。つまり、光透過層の表面上の像については短波長画像に比べ長波長画像で輪郭がぼけて面積が大きくなり、非透過層の表面上の像については長波長画像に比べ短波長画像で輪郭がぼけて面積が大きくなるので、たとえば当該面積の比較結果からいずれの欠陥かを識別することができる。したがって、光透過層の表面上の擬似欠陥があるだけの良品が誤って不良品と判断されてしまうことを防止でき、無駄はねが大幅に低減されて歩留りの向上につながるという利点がある。また、照明光の波長ごとに焦点距離が異なることを利用しているから、光透過層の表面と非透過層の表面とのそれぞれに焦点を合わせるための機械的な可動部は必要なく、システム構成の簡略化並びに検査時間の短縮を図ることができる。また、この構成によれば、2値化処理の前に、各画像のうち焦点が合っていない部分を微分処理により予め除去することができるので、識別手段での判別精度が向上する。 According to this configuration, by using the fact that the imaging device has a different focal length for each wavelength of illumination light, the identification unit uses a long wavelength image captured with illumination light of one wavelength and illumination light of another wavelength. The captured short wavelength light image is compared, and the image on the surface of the non-transmissive layer can be determined from the comparison result. In other words, the image on the surface of the light-transmitting layer is blurred and has a larger area in the long-wavelength image than the short-wavelength image, and the image on the surface of the non-transmissive layer is outlined in the short-wavelength image compared to the long-wavelength image. Since the area becomes larger due to blurring, for example, it is possible to identify which defect is based on the comparison result of the areas. Therefore, it is possible to prevent a non-defective product having a false defect on the surface of the light transmission layer from being erroneously determined as a defective product, and there is an advantage that waste splash is greatly reduced and yield is improved. In addition, since the use of the fact that the focal length is different for each wavelength of the illumination light, there is no need for a mechanical moving part for focusing on the surface of the light transmission layer and the surface of the non-transmission layer, and the system The configuration can be simplified and the inspection time can be shortened. Further , according to this configuration, before the binarization process, the out-of-focus portion of each image can be removed in advance by the differentiation process, so that the discrimination accuracy in the discrimination unit is improved.

請求項の発明は、少なくとも非透過層の一表面側に光透過層が積層された積層体を対象物として、非透過層の表面上の欠陥を検査する外観検査システムであって、対象物を前記一表面側から撮像する撮像装置と、対象物を前記一表面側から照明する同軸落射照明用の照明装置と、撮像装置で撮像された非透過層の表面上の像から前記欠陥の有無を判定する画像処理装置とを備え、照明装置が、光透過層を透過する少なくとも2種類の異なる波長の照明光を対象物に照射し、撮像装置が、照明光の波長ごとの焦点距離の違いを利用し、一の波長の照明光で撮像される短波長画像と、前記一の波長よりも長波長となる他の波長の照明光で撮像される長波長画像とを比べると、短波長画像よりも長波長画像で非透過層の表面近くに焦点を合わせており、画像処理装置が、短波長画像と長波長画像とを比較した結果、短波長画像に比べて長波長画像でピントが合う部分を非透過層の表面上の像と判断する識別手段と、前記短波長画像および前記長波長画像についてそれぞれ濃淡値を所定の閾値で2値化処理を行う2値化手段と、2値化処理後の各画像について欠陥の候補となる画素群を結合してランドを形成するラベリング手段とを有し、前記識別手段が、短波長画像および長波長画像の各々に関しランドの重心位置を求め、当該重心位置が両画像間で重なる場合に、長波長画像のランドの面積と短波長画像のランドの面積とを比較し、短波長画像の方が大きければ当該ランドを前記非透過層の表面上の像と判断することを特徴とする。 The invention according to claim 3 is an appearance inspection system for inspecting a defect on the surface of the non-transmissive layer with respect to a laminate in which the light transmissive layer is laminated on at least one surface side of the non-transmissive layer. The presence of the defect from the image on the surface of the non-transmissive layer imaged by the imaging device, the imaging device that images the object from the one surface side, the illumination device for coaxial epi-illumination that illuminates the object from the one surface side The image processing device for determining the illumination, the illumination device irradiates the object with illumination light of at least two different wavelengths that pass through the light transmission layer, and the imaging device has a difference in focal length for each wavelength of the illumination light. When a short wavelength image captured with illumination light of one wavelength is compared with a long wavelength image captured with illumination light of another wavelength that is longer than the one wavelength, a short wavelength image Focus closer to the surface of the non-transparent layer in longer wavelength images Ri, the image processing apparatus, as a result of comparing the short wavelength image and long wavelength images, and identification means for determining the image on the surface of the portion where focus is non-transmissive layer in the long wavelength image than the short wavelength image, A binarization unit that performs binarization processing for each of the short-wavelength image and the long-wavelength image with a predetermined threshold value, and a pixel group that is a defect candidate for each image after binarization processing are combined. Labeling means for forming lands, and the identification means obtains the centroid position of the land for each of the short wavelength image and the long wavelength image, and when the centroid position overlaps between both images, the land of the long wavelength image And the land area of the short wavelength image are compared, and if the short wavelength image is larger, the land is determined to be an image on the surface of the non-transmissive layer.

この構成によれば、撮像装置が照明光の波長ごとに焦点距離が異なることを利用して、識別手段により、一の波長の照明光で撮像された長波長画像と他の波長の照明光で撮像された短波長光画像とを比較して、当該比較結果から非透過層の表面上の像を判別することができる。つまり、光透過層の表面上の像については短波長画像に比べ長波長画像で輪郭がぼけて面積が大きくなり、非透過層の表面上の像については長波長画像に比べ短波長画像で輪郭がぼけて面積が大きくなるので、たとえば当該面積の比較結果からいずれの欠陥かを識別することができる。したがって、光透過層の表面上の擬似欠陥があるだけの良品が誤って不良品と判断されてしまうことを防止でき、無駄はねが大幅に低減されて歩留りの向上につながるという利点がある。また、照明光の波長ごとに焦点距離が異なることを利用しているから、光透過層の表面と非透過層の表面とのそれぞれに焦点を合わせるための機械的な可動部は必要なく、システム構成の簡略化並びに検査時間の短縮を図ることができる。また、この構成によれば、ラベリング手段により欠陥の候補となる画素群を結合してなるランドを形成するので、識別手段では、欠陥の候補となるランドのみを対象として判別を行うことができ、欠陥の検査精度が向上する。 According to this configuration, by using the fact that the imaging device has a different focal length for each wavelength of illumination light, the identification unit uses a long wavelength image captured with illumination light of one wavelength and illumination light of another wavelength. The captured short wavelength light image is compared, and the image on the surface of the non-transmissive layer can be determined from the comparison result. In other words, the image on the surface of the light-transmitting layer is blurred and has a larger area in the long-wavelength image than the short-wavelength image, and the image on the surface of the non-transmissive layer is outlined in the short-wavelength image compared to the long-wavelength image. Since the area becomes larger due to blurring, for example, it is possible to identify which defect is based on the comparison result of the areas. Therefore, it is possible to prevent a non-defective product having a false defect on the surface of the light transmission layer from being erroneously determined as a defective product, and there is an advantage that waste splash is greatly reduced and yield is improved. In addition, since the use of the fact that the focal length is different for each wavelength of the illumination light, there is no need for a mechanical moving part for focusing on the surface of the light transmission layer and the surface of the non-transmission layer, and the system The configuration can be simplified and the inspection time can be shortened. Further , according to this configuration, since the land formed by combining the pixel groups that are defect candidates is formed by the labeling unit, the identification unit can perform the determination for only the land that is the defect candidate, Defect inspection accuracy is improved.

請求項の発明は、請求項1ないし請求項のいずれかの発明において、前記照明装置が、少なくとも2種類の異なる波長の光を含む白色光を出力する光源を有することを特徴とする。 According to a fourth aspect of the present invention, in any one of the first to third aspects, the lighting device includes a light source that outputs white light including light of at least two different wavelengths.

この構成によれば、複数波長の照明光を1つの光源で実現することができるため、波長ごとに個別の光源を用いる場合に比べてシステム構成が簡単になる。   According to this configuration, illumination light of a plurality of wavelengths can be realized with a single light source, so that the system configuration is simplified as compared with the case where individual light sources are used for each wavelength.

請求項の発明は、請求項1ないし請求項のいずれかの発明において、前記照明装置が、互いに異なる波長の単色光をそれぞれ出力する複数の単色光源と、各単色光源の光出力の大きさを個別に調節する調光手段とを有することを特徴とする。 According to a fifth aspect of the present invention, in any one of the first to third aspects of the present invention, the lighting device includes a plurality of single-color light sources that output single-color lights having different wavelengths, and a light output level of each single-color light source. And dimming means for individually adjusting the height.

この構成によれば、照明光の波長ごとに光出力の大きさを個別に調節できるので、対象物の構造や撮像装置の各波長別の感度に起因した短波長画像、長波長画像の濃淡値のばらつきを補正することができる。   According to this configuration, since the magnitude of the light output can be individually adjusted for each wavelength of the illumination light, the gray value of the short wavelength image and the long wavelength image resulting from the sensitivity of each wavelength of the structure of the object and the imaging device Can be corrected.

請求項の発明は、請求項1ないし請求項のいずれかの発明において、前記照明装置が、前記一の波長の照明光として紫外線を出力する紫外光源と、前記他の波長の照明光として赤外線を出力する赤外光源とを有することを特徴とする。 The invention of claim 6 is the invention according to any one of claims 1 to 3 , wherein the illumination device outputs an ultraviolet light source that outputs ultraviolet light as the illumination light of the one wavelength, and illumination light of the other wavelength. And an infrared light source that outputs infrared rays.

この構成によれば、一の波長と他の波長とで波長差が比較的大きくなるため、短波長画像と長波長画像との間の焦点位置の差を広げることができ、より明確に、非透過層の表面上の像を判別可能となる。   According to this configuration, since the wavelength difference between one wavelength and the other wavelength is relatively large, it is possible to widen the difference in focal position between the short wavelength image and the long wavelength image. An image on the surface of the transmission layer can be discriminated.

請求項の発明は、請求項1ないし請求項のいずれかの発明において、前記撮像装置がカラー画像を撮像可能であって、前記画像処理装置が、前記照明装置から前記一の波長と前記他の波長との両方の照明光が出力された状態で撮像されたカラー画像から、波長に基づいて前記短波長画像と前記長波長画像とをそれぞれ抽出する抽出手段を有することを特徴とする。 According to a seventh aspect of the present invention, in the invention according to any one of the first to sixth aspects, the imaging device is capable of capturing a color image, and the image processing device receives the one wavelength and the wavelength from the illumination device. It has an extraction means for extracting the short wavelength image and the long wavelength image based on the wavelength from the color image picked up in the state where both illumination lights of other wavelengths are output.

この構成によれば、カラー画像を撮像可能な撮像装置を用いたことにより、検査に必要な短波長画像と長波長画像との両画像を1回の撮像で得ることができるから、光透過層の表面と非透過層の表面とのそれぞれに焦点を合わせて2回に分けて撮像する場合に比べて、システム構成の簡略化並びに検査時間の短縮を図ることができる。   According to this configuration, since the image pickup apparatus capable of picking up a color image is used, both the short wavelength image and the long wavelength image necessary for the inspection can be obtained by one image pickup. The system configuration can be simplified and the inspection time can be shortened as compared with the case where imaging is performed in two steps while focusing on each of the surface and the surface of the non-transmissive layer.

請求項の発明は、少なくとも非透過層の一表面側に光透過層が積層された積層体を対象物として、対象物を前記一表面側から撮像する撮像装置と、光透過層を透過する少なくとも2種類の異なる波長の照明光を前記一表面側から対象物に照射する同軸落射照明用の照明装置と、撮像装置で撮像された非透過層の表面上の像から非透過層の表面上の欠陥の有無を判定する画像処理装置とを使用し、前記欠陥を検査する外観検査方法であって、撮像装置では、照明光の波長ごとの焦点距離の違いを利用し、一の波長の照明光で撮像される短波長画像と、前記一の波長よりも長波長となる他の波長の照明光で撮像される長波長画像とを比べると、短波長画像よりも長波長画像で非透過層の表面近くに焦点を合わせており、短波長画像と長波長画像とを比較した結果、短波長画像に比べて長波長画像でピントが合う部分を非透過層の表面上の像と判断する識別過程と、前記短波長画像および前記長波長画像についてそれぞれ濃淡値を所定の閾値で2値化する2値化処理とを有し、前記識別過程では、2値化処理後の短波長画像と長波長画像との差をとり、短波長画像の一部分が残れば当該一部分を前記非透過層の表面上の像と判断することを特徴とする。
この発明によれば、識別過程において、一の波長の照明光で撮像された長波長画像と他の波長の照明光で撮像された短波長光画像とを比較して、当該比較結果から非透過層の表面上の像を判別することができる。また、この発明によれば、比較的簡単な演算処理で非透過層の表面上の像を判別できるから、画像処理の高速化によって検査時間の短縮を図ることができる。
請求項9の発明は、少なくとも非透過層の一表面側に光透過層が積層された積層体を対象物として、対象物を前記一表面側から撮像する撮像装置と、光透過層を透過する少なくとも2種類の異なる波長の照明光を前記一表面側から対象物に照射する同軸落射照明用の照明装置と、撮像装置で撮像された非透過層の表面上の像から非透過層の表面上の欠陥の有無を判定する画像処理装置とを使用し、前記欠陥を検査する外観検査方法であって、撮像装置では、照明光の波長ごとの焦点距離の違いを利用し、一の波長の照明光で撮像される短波長画像と、前記一の波長よりも長波長となる他の波長の照明光で撮像される長波長画像とを比べると、短波長画像よりも長波長画像で非透過層の表面近くに焦点を合わせており、短波長画像と長波長画像とを比較した結果、短波長画像に比べて長波長画像でピントが合う部分を非透過層の表面上の像と判断する識別過程と、前記短波長画像および前記長波長画像についてそれぞれ各画素の濃淡値に基づき微分画像を生成する微分処理と、各微分画像についてそれぞれ画素値を所定の閾値で2値化する2値化処理とを有し、前記識別過程では、2値化処理後の短波長画像と長波長画像との差をとり、長波長画像の一部分が残れば当該一部分を前記非透過層の表面上の像と判断することを特徴とする。
この発明によれば、識別過程において、一の波長の照明光で撮像された長波長画像と他の波長の照明光で撮像された短波長光画像とを比較して、当該比較結果から非透過層の表面上の像を判別することができる。また、この発明によれば、2値化処理の前に、各画像のうち焦点が合っていない部分を微分処理により予め除去することができるので、識別過程での判別精度が向上する。
請求項10の発明は、少なくとも非透過層の一表面側に光透過層が積層された積層体を対象物として、対象物を前記一表面側から撮像する撮像装置と、光透過層を透過する少なくとも2種類の異なる波長の照明光を前記一表面側から対象物に照射する同軸落射照明用の照明装置と、撮像装置で撮像された非透過層の表面上の像から非透過層の表面上の欠陥の有無を判定する画像処理装置とを使用し、前記欠陥を検査する外観検査方法であって、撮像装置では、照明光の波長ごとの焦点距離の違いを利用し、一の波長の照明光で撮像される短波長画像と、前記一の波長よりも長波長となる他の波長の照明光で撮像される長波長画像とを比べると、短波長画像よりも長波長画像で非透過層の表面近くに焦点を合わせており、短波長画像と長波長画像とを比較した結果、短波長画像に比べて長波長画像でピントが合う部分を非透過層の表面上の像と判断する識別過程と、前記短波長画像および前記長波長画像についてそれぞれ濃淡値を所定の閾値で2値化する2値化処理と、2値化処理後の各画像について欠陥の候補となる画素群を結合してランドを形成するラベリング処理とを有し、前記識別過程では、短波長画像および長波長画像の各々に関しランドの重心位置を求め、当該重心位置が両画像間で重なる場合に、長波長画像のランドの面積と短波長画像のランドの面積とを比較し、短波長画像の方が大きければ当該ランドを前記非透過層の表面上の像と判断することを特徴とする。
According to an eighth aspect of the present invention, there is provided an imaging device that images a target object from the one surface side, and a light transmissive layer that passes through the multilayer body in which the light transmissive layer is stacked on at least one surface side of the non-transmissive layer. An illumination device for coaxial epi-illumination that irradiates an object with illumination light of at least two different wavelengths from the one surface side, and an image on the surface of the non-transmissive layer captured by the imaging device on the surface of the non-transmissive layer And an image processing apparatus for determining the presence or absence of a defect, and an inspection method for inspecting the defect, wherein the imaging apparatus uses a difference in focal length for each wavelength of illumination light to illuminate at one wavelength. When comparing a short wavelength image captured with light and a long wavelength image captured with illumination light having a wavelength longer than that of the one wavelength, the non-transparent layer has a longer wavelength image than the short wavelength image. Focused near the surface of the short wavelength image and long wavelength image Result of comparison, given the identification process, respectively the density values for the short wavelength image and the long-wavelength image to determine focus is part longer wavelength image than the short wavelength image and the image on the surface of the non-transmissive layer A binarization process that binarizes with a threshold value, and in the identification process, the difference between the short wavelength image after the binarization process and the long wavelength image is taken, and if a part of the short wavelength image remains, the part Is determined as an image on the surface of the non-transmissive layer .
According to the present invention, in the identification process, a long wavelength image captured with illumination light of one wavelength is compared with a short wavelength light image captured with illumination light of another wavelength, and non-transmission is determined from the comparison result. The image on the surface of the layer can be discriminated. Further, according to the present invention, the image on the surface of the non-transmissive layer can be discriminated by relatively simple arithmetic processing, so that the inspection time can be shortened by speeding up the image processing.
According to a ninth aspect of the present invention, there is provided an imaging device that images a target object from the one surface side, and a light transmissive layer that passes through the laminate, in which the light transmissive layer is stacked on at least one surface side of the non-transmissive layer. An illumination device for coaxial epi-illumination that irradiates an object with illumination light of at least two different wavelengths from the one surface side, and an image on the surface of the non-transmissive layer captured by the imaging device on the surface of the non-transmissive layer And an image processing apparatus for determining the presence or absence of a defect, and an inspection method for inspecting the defect, wherein the imaging apparatus uses a difference in focal length for each wavelength of illumination light to illuminate at one wavelength. When comparing a short wavelength image captured with light and a long wavelength image captured with illumination light having a wavelength longer than that of the one wavelength, the non-transparent layer has a longer wavelength image than the short wavelength image. Focused near the surface of the short wavelength image and long wavelength image As a result of the comparison, the identification process for determining the portion of the long wavelength image that is in focus as the image on the surface of the non-transmissive layer compared to the short wavelength image, and the density of each pixel for the short wavelength image and the long wavelength image, respectively A differential process for generating a differential image based on the value, and a binarization process for binarizing each pixel value with a predetermined threshold for each differential image. In the identification process, the short wavelength after the binarization process The difference between the image and the long wavelength image is taken, and if a part of the long wavelength image remains, the part is determined to be an image on the surface of the non-transmissive layer.
According to the present invention, in the identification process, a long wavelength image captured with illumination light of one wavelength is compared with a short wavelength light image captured with illumination light of another wavelength, and non-transmission is determined from the comparison result. The image on the surface of the layer can be discriminated. Further, according to the present invention, before the binarization process, the out-of-focus portion of each image can be removed in advance by the differentiation process, so that the discrimination accuracy in the discrimination process is improved.
According to a tenth aspect of the present invention, there is provided an imaging device that images a target object from the one surface side, and a light transmissive layer that passes through the laminate, in which the light transmissive layer is stacked on at least one surface side of the non-transmissive layer. An illumination device for coaxial epi-illumination that irradiates an object with illumination light of at least two different wavelengths from the one surface side, and an image on the surface of the non-transmissive layer captured by the imaging device on the surface of the non-transmissive layer And an image processing apparatus for determining the presence or absence of a defect, and an inspection method for inspecting the defect, wherein the imaging apparatus uses a difference in focal length for each wavelength of illumination light to illuminate at one wavelength. When comparing a short wavelength image captured with light and a long wavelength image captured with illumination light having a wavelength longer than that of the one wavelength, the non-transparent layer has a longer wavelength image than the short wavelength image. Focused near the surface of the short wavelength image and long wavelength image As a result of the comparison, the identification process for determining the portion of the long wavelength image that is in focus as the image on the surface of the non-transmissive layer compared to the short wavelength image, and the gray value for the short wavelength image and the long wavelength image, respectively. A binarization process that binarizes at a predetermined threshold value, and a labeling process that forms a land by combining pixel groups that are defect candidates for each image after the binarization process. For each of the short-wavelength image and the long-wavelength image, the center of gravity of the land is obtained, and when the center-of-gravity position overlaps between both images, the land area of the long-wavelength image is compared with the land area of the short-wavelength image. If the wavelength image is larger, the land is determined as an image on the surface of the non-transmissive layer.

この発明によれば、識別過程において、一の波長の照明光で撮像された長波長画像と他の波長の照明光で撮像された短波長光画像とを比較して、当該比較結果から非透過層の表面上の像を判別することができる。また、この発明によれば、ラベリング処理により欠陥の候補となる画素群を結合してなるランドを形成するので、識別過程では、欠陥の候補となるランドのみを対象として判別を行うことができ、欠陥の検査精度が向上する。 According to the present invention, in the identification process, a long wavelength image captured with illumination light of one wavelength is compared with a short wavelength light image captured with illumination light of another wavelength, and non-transmission is determined from the comparison result. The image on the surface of the layer can be discriminated. Further, according to the present invention, since a land formed by combining pixel groups that are defect candidates is formed by a labeling process, in the identification process, it is possible to determine only the land that is a defect candidate, Defect inspection accuracy is improved.

本発明は、撮像装置のレンズが照明光の波長ごとに焦点位置が異なることを利用して、識別手段により、一の波長の照明光で撮像された長波長画像と他の波長の照明光で撮像された短波長光画像とを比較して、当該比較結果から光透過層の表面上の欠陥と非透過層の表面上の欠陥とを識別する。したがって、光透過層の表面上の擬似欠陥があるだけの良品が誤って不良品と判断されてしまうことを防止でき、無駄はねが大幅に低減されて歩留りの向上につながるという利点がある。   The present invention utilizes the fact that the lens of the imaging device has a different focal position for each wavelength of illumination light, so that a long wavelength image captured with illumination light of one wavelength and an illumination light of another wavelength by the identification means. The captured short wavelength light image is compared, and the defect on the surface of the light transmission layer and the defect on the surface of the non-transmission layer are identified from the comparison result. Therefore, it is possible to prevent a non-defective product having a false defect on the surface of the light transmission layer from being erroneously determined as a defective product, and there is an advantage that waste splash is greatly reduced and yield is improved.

本発明の実施形態1の原理を説明する説明図である。It is explanatory drawing explaining the principle of Embodiment 1 of this invention. 同上の対象物を示し、(a)は概略平面図、(b)は概略断面図である。The object same as the above is shown, (a) is a schematic plan view, and (b) is a schematic cross-sectional view. 同上の概略システム構成図である。It is a schematic system block diagram same as the above. 同上の画像処理装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of an image processing apparatus same as the above. (a)は光透過層表面の欠陥を示し、(b)は非透過層表面の欠陥を示す概略断面図である。(A) shows the defect of the surface of a light transmissive layer, (b) is a schematic sectional drawing which shows the defect of the surface of a non-transmissive layer. (a)は長波長画像、(b)は中波長画像、(c)は短波長画像の一例を示す説明図である。(A) is a long wavelength image, (b) is an intermediate wavelength image, (c) is an explanatory view showing an example of a short wavelength image. 同上の差分演算後の画像を示す説明図である。It is explanatory drawing which shows the image after a difference calculation same as the above. (a)は長波長画像、(b)は中波長画像、(c)は短波長画像の一例を示す説明図である。(A) is a long wavelength image, (b) is an intermediate wavelength image, (c) is an explanatory view showing an example of a short wavelength image. 同上の差分演算後の画像を示す説明図である。It is explanatory drawing which shows the image after a difference calculation same as the above. 同上の動作を示すフローチャートである。It is a flowchart which shows operation | movement same as the above. 本発明の実施形態4の概略システム構成図である。It is a schematic system block diagram of Embodiment 4 of this invention.

(実施形態1)
本実施形態の外観検査システムは、図2に示すように、光を反射する非透過層101の一表面側に光透過性を有する光透過層102を積層した複層構造の構造体を対象物100とし、当該対象物100の外観上の異常の有無を検査するものである。ここでは一例として、MEMS技術を用いて製造されるMEMSチップを検査対象とするが、この例に限らず、上述したような複層構造を持つ種々の構造体を検査対象とすることができる。
(Embodiment 1)
As shown in FIG. 2, the appearance inspection system according to the present embodiment has a structure having a multilayer structure in which a light transmissive layer 102 having light transmittance is laminated on one surface side of a non-transmissive layer 101 that reflects light. 100, and the presence or absence of an abnormality in the appearance of the object 100 is inspected. Here, as an example, a MEMS chip manufactured using the MEMS technology is an inspection target. However, the present invention is not limited to this example, and various structures having a multilayer structure as described above can be an inspection target.

図2の例では、対象物100は、半導体材料(ここではシリコンとする)から所定の形状に形成された非透過層101の一表面側に、ガラス板からなる光透過層102が接合された構造を有している。ここに、非透過層101の前記一表面には凹凸が付けられており、当該凹凸によって非透過層101と光透過層102との間に空洞103が形成されている。   In the example of FIG. 2, the object 100 has a light transmission layer 102 made of a glass plate bonded to one surface side of a non-transmission layer 101 formed in a predetermined shape from a semiconductor material (here, silicon). It has a structure. Here, the one surface of the non-transmissive layer 101 is uneven, and a cavity 103 is formed between the non-transmissive layer 101 and the light transmissive layer 102 due to the unevenness.

本実施形態の外観検査システムは、図3に示すように、対象物100を光透過層102側から撮像するカメラ(撮像装置)10と、対象物100に対してカメラ10の光軸と同軸方向から光を照射する同軸落射照明用の照明装置20と、カメラ10で撮像された画像を画像処理する画像処理装置30とを備えている。さらに、外観検査システムは、照明装置20に電力供給する照明用電源装置21と、対象物(MEMSチップ)100を載せるステージ50と、カメラ10の視野(撮像範囲)内に検査対象が位置するようにステージ50を移動させる駆動手段51とを備えている。対象物100は、光透過層102を上方(カメラ10側)に向けた状態でステージ50上に複数個並べて配置される。なお、これら複数個のMEMSチップはウェハから形成されており、ここでは各MEMSチップをダイシングにより個片化した後で外観検査が行われるものとするが、ウェハの状態で外観検査を行うようにしてもよい。   As shown in FIG. 3, the appearance inspection system of the present embodiment includes a camera (imaging device) 10 that images the object 100 from the light transmission layer 102 side, and a direction coaxial with the optical axis of the camera 10 with respect to the object 100. Are provided with an illumination device 20 for coaxial epi-illumination that emits light from the light source and an image processing device 30 that performs image processing on an image captured by the camera 10. Furthermore, in the appearance inspection system, the illumination power supply device 21 that supplies power to the illumination device 20, the stage 50 on which the object (MEMS chip) 100 is placed, and the inspection object are positioned within the field of view (imaging range) of the camera 10. And a driving means 51 for moving the stage 50. A plurality of objects 100 are arranged side by side on the stage 50 with the light transmission layer 102 facing upward (on the camera 10 side). The plurality of MEMS chips are formed from a wafer. Here, the appearance inspection is performed after the individual MEMS chips are separated by dicing. However, the appearance inspection is performed in the state of the wafer. May be.

カメラ10は、ステージ50上面に光軸が直交するようにステージ50の直上に配置され、その視野はステージ50上の1個の対象物100に対応するように設定されている。ここでは、ステージ50を移動させることによってステージ50に対するカメラ10の相対的な位置を変化させながら、各対象物100の画像をカメラ10で個別に撮像する。カメラ10としては、少なくともR(=600nm),G(=550nm),B(=450nm)の3波長の光に対する感度を持つことでカラー画像を撮像可能なカラーカメラを使用する。   The camera 10 is disposed immediately above the stage 50 so that the optical axis is orthogonal to the upper surface of the stage 50, and its field of view is set to correspond to one object 100 on the stage 50. Here, the camera 10 individually captures images of each object 100 while changing the relative position of the camera 10 with respect to the stage 50 by moving the stage 50. As the camera 10, a color camera capable of capturing a color image by having sensitivity to light of at least three wavelengths of R (= 600 nm), G (= 550 nm), and B (= 450 nm) is used.

照明装置20は、カメラ10の光軸と直交する光軸を持つ光源22を具備し、カメラ10とステージ50との間において鏡面をカメラ10の光軸に対して45度傾けて配置されたハーフミラー23を利用して、光源22からの光が対象物(MEMSチップ)100側に反射されるように構成されている。すなわち、ハーフミラー23は、光源22からの光を対象物100に向けて反射するとともに、対象物100での反射光をカメラ10側に透過させる機能を有している。図3では、光源22から対象物100に照射する光を実線矢印で示し、対象物100での反射光を破線矢印で示す。なお、ハーフミラー23とステージ50との間には光学レンズ24が配設されている。   The illuminating device 20 includes a light source 22 having an optical axis orthogonal to the optical axis of the camera 10, and is a half disposed between the camera 10 and the stage 50 with a mirror surface inclined by 45 degrees with respect to the optical axis of the camera 10. The mirror 23 is used so that light from the light source 22 is reflected toward the object (MEMS chip) 100 side. That is, the half mirror 23 has a function of reflecting light from the light source 22 toward the object 100 and transmitting reflected light from the object 100 to the camera 10 side. In FIG. 3, light irradiated from the light source 22 to the object 100 is indicated by a solid line arrow, and reflected light from the object 100 is indicated by a broken line arrow. An optical lens 24 is disposed between the half mirror 23 and the stage 50.

照明装置20の光源22としては、光透過層102を透過し、且つ少なくともカメラ10で撮像可能な3波長(R,G,B)を含む白色光を出力する光源を使用する。具体的には、R(赤色),G(緑色),B(青色)の混色光により白色光を出力する発光ダイオード(LED)を用いるが、この例に限るものではなく、白熱電球などを用いてもよい。   As the light source 22 of the illuminating device 20, a light source that transmits white light including at least three wavelengths (R, G, B) that can pass through the light transmission layer 102 and can be imaged by the camera 10 is used. Specifically, a light emitting diode (LED) that outputs white light by mixed light of R (red), G (green), and B (blue) is used, but the present invention is not limited to this example, and an incandescent bulb or the like is used. May be.

ここにおいて、カメラ10は屈折率が光の波長ごとに異なるレンズ11(図1参照)を有している。これにより、カメラ10においては光の波長ごとに焦点距離が異なることになる。   Here, the camera 10 has a lens 11 (see FIG. 1) having a different refractive index for each wavelength of light. Thereby, in the camera 10, a focal distance changes for every wavelength of light.

すなわち、カメラ10にてレンズ11を通して撮像される画像の焦点位置は、図1に示すように光の波長ごとに異なることになる。図1では、上記3波長(R,G,B)のうち、最も波長が短い短波長成分たるB(青色)成分(図中、点線で示す)と、最も波長が長い長波長成分たるR(赤色)成分(図中、実線で表す)との結像の様子を模式的に表している。要するに、レンズ11の屈折率は波長の短い光ほど大きくなるため、B成分とR成分とでは、波長の短いB成分の方がレンズ11から焦点位置までの距離は短くなる。上記3波長(R,G,B)で比較したときには、R成分、G(緑色)成分、B成分の順に焦点位置までの距離が短くなる。   In other words, the focal position of an image captured through the lens 11 by the camera 10 differs for each wavelength of light as shown in FIG. In FIG. 1, among the three wavelengths (R, G, B), a B (blue) component (shown by a dotted line in the figure) that is the shortest wavelength component with the shortest wavelength and an R ( The state of image formation with a red component (represented by a solid line in the figure) is schematically represented. In short, since the refractive index of the lens 11 increases as the wavelength becomes shorter, the distance from the lens 11 to the focal position is shorter for the B component and the R component for the B component having the shorter wavelength. When compared with the above three wavelengths (R, G, B), the distance to the focal position becomes shorter in the order of R component, G (green) component, and B component.

そこで、本実施形態では、非透過層101の表面(光透過層102の裏面)上でG成分の焦点が合い、且つ、B成分とR成分とではB成分の方が光透過層102の表面近くで焦点が合い、R成分の方が非透過層101の表面近くで焦点が合うように、レンズ11−ステージ50間の距離を設定してある。その結果、カメラ10で撮像される画像においては、光透過層102の表面上の像に関してはB成分と比較してR成分あるいはG成分の方が輪郭はぼやけ、非透過層101の表面上の像に関してはR成分あるいはG成分と比較してB成分の方が輪郭はぼやけることとなる。   Therefore, in the present embodiment, the G component is focused on the surface of the non-transmissive layer 101 (the back surface of the light transmissive layer 102), and the B component is the surface of the light transmissive layer 102 between the B component and the R component. The distance between the lens 11 and the stage 50 is set so that the focus is close and the R component is close to the surface of the non-transmissive layer 101. As a result, in the image captured by the camera 10, the contour of the R component or the G component is blurred compared to the B component with respect to the image on the surface of the light transmission layer 102, and the image on the surface of the non-transmission layer 101. As for the image, the outline of the B component is blurred compared to the R component or the G component.

ここで、画像処理装置30は、図4に示すように、カメラ10で撮像されたカラー画像を取り込む取込手段31と、取り込んだ画像からR成分の画像(以下、長波長画像という)を抽出するRフィルタ32と、B成分の画像(以下、短波長画像という)を抽出するBフィルタ33とを備えている。さらに、画像処理装置30は、取り込んだ画像からG成分の画像(以下、中波長画像という)を抽出するGフィルタ34と、長波長画像、短波長画像、中波長画像についてそれぞれ2値化処理を行う2値化手段35,36,37とを備えている。さらにまた、この画像処理装置30は、非透過層101の表面上の像か否かを判別する識別手段38と、対象物100の良否を判定する判定手段39と、判定結果を出力する出力手段40とを備えている。   Here, as shown in FIG. 4, the image processing device 30 extracts a color image captured by the camera 10, and extracts an R component image (hereinafter referred to as a long wavelength image) from the captured image. And an R filter 32 for extracting a B component image (hereinafter referred to as a short wavelength image). Further, the image processing apparatus 30 performs binarization processing on each of the G filter 34 that extracts a G component image (hereinafter referred to as a medium wavelength image) from the captured image, and the long wavelength image, the short wavelength image, and the medium wavelength image. Binarization means 35, 36, and 37 for performing are provided. Furthermore, the image processing apparatus 30 includes an identification unit 38 that determines whether the image is on the surface of the non-transmissive layer 101, a determination unit 39 that determines whether the object 100 is good, and an output unit that outputs a determination result. 40.

2値化手段35,36,37は、長波長画像、短波長画像、中波長画像の各画像の所定領域について2値化処理を行う。これらの2値化手段35,36,37は、各画像ごとに欠陥の特徴量抽出に適した所定の閾値を使用し、濃淡値が閾値を超える画素の画素値を「1」、その他の画素の画素値を「0」とする。ここでは、全ての2値化手段35,36,37にて同一の閾値を用いるものとし、当該閾値は、たとえば長波長画像においてぼやけて映る光透過層102表面上の像であっても画素値が「1」となるように、比較的低めに設定される。なお、各画素の濃淡値は、反射光の強度が高い部位ほど高くなるものとする。   The binarization means 35, 36, and 37 perform binarization processing on a predetermined region of each of the long wavelength image, the short wavelength image, and the medium wavelength image. These binarization means 35, 36, and 37 use a predetermined threshold value suitable for defect feature extraction for each image, set the pixel value of a pixel whose gray value exceeds the threshold value to “1”, and other pixels Is set to “0”. Here, it is assumed that the same threshold value is used in all the binarizing means 35, 36, and 37, and the threshold value is a pixel value even for an image on the surface of the light transmission layer 102 that appears blurred in a long wavelength image, for example. Is set relatively low so as to be “1”. It is assumed that the gray value of each pixel increases as the reflected light intensity increases.

識別手段38は、2値化後の長波長画像と短波長画像とを比較することにより、画像中の像が非透過層101上の像か否かを識別し、非透過層101の表面上の欠陥のみを判別する。つまり、光透過層102の表面上の欠陥(擬似欠陥)については短波長画像に比べ長波長画像で輪郭がぼけて面積が大きくなり、非透過層101の表面上の欠陥については長波長画像に比べ短波長画像で輪郭がぼけて面積が大きくなるので、両画像を比較することにより擬似欠陥か欠陥かを識別することができる。   The discriminating means 38 discriminates whether or not the image in the image is an image on the non-transmissive layer 101 by comparing the binarized long wavelength image and the short wavelength image. Only the defects are determined. That is, the defect (pseudo defect) on the surface of the light transmission layer 102 has a larger outline and a larger area in the long wavelength image than the short wavelength image, and the defect on the surface of the non-transmission layer 101 becomes a long wavelength image. Compared with the short wavelength image, the outline is blurred and the area becomes large. Therefore, by comparing both images, it is possible to identify whether the defect is a pseudo defect or a defect.

具体的に説明すると、識別手段38は、2値化後の長波長画像と短波長画像との差分をとることで擬似欠陥と欠陥とを識別する。ここで、減算により負の画素値「−1」が生じた場合、当該画素の画素値は「0」とみなすものとする。   More specifically, the identification unit 38 identifies a pseudo defect and a defect by taking a difference between the binarized long wavelength image and the short wavelength image. Here, when a negative pixel value “−1” is generated by subtraction, the pixel value of the pixel is regarded as “0”.

要するに、図5(a)のような光透過層102の表面上の欠陥(擬似欠陥)104があれば、たとえば図6に示すように、長波長画像(図6(a))の欠陥部分(画素値「1」)104Rに比べて短波長画像(図6(c))の欠陥部分(画素値「1」)104Bの面積が小さくなるため、減算結果は次のようになる。つまり、長波長画像の各画素値から短波長画像の同一画素の画素値を減算すれば、図7に示すように長波長画像における欠陥部分104Rの一部が残るが、反対に、短波長画像から長波長画像を減算しても、短波長画像の欠陥部分104Bは残らない。   In short, if there is a defect (pseudo defect) 104 on the surface of the light transmission layer 102 as shown in FIG. 5 (a), for example, as shown in FIG. 6, the defect portion of the long wavelength image (FIG. 6 (a)) ( Since the area of the defective portion (pixel value “1”) 104B of the short wavelength image (FIG. 6C) is smaller than the pixel value “1”) 104R, the subtraction result is as follows. That is, if the pixel value of the same pixel of the short wavelength image is subtracted from each pixel value of the long wavelength image, a part of the defective portion 104R in the long wavelength image remains as shown in FIG. Even if the long wavelength image is subtracted from the defective portion 104B, the defect portion 104B of the short wavelength image does not remain.

一方、図5(b)のような非透過層101の表面上の欠陥105であれば、たとえば図8に示すように、長波長画像(図8(a))の欠陥部分(画素値「1」)105Rに比べて短波長画像(図8(c))の欠陥部分(画素値「1」)105Bの面積が大きくなるため、減算結果は次のようになる。つまり、長波長画像の各画素値から短波長画像の同一画素の画素値を減算しても、長波長画像の欠陥部分105Rは残らないが、反対に、短波長画像から長波長画像を減算すれば、図9のように短波長画像における欠陥部分105Bの一部が残ることとなる。   On the other hand, if the defect 105 is on the surface of the non-transmissive layer 101 as shown in FIG. 5B, for example, as shown in FIG. 8, the defect portion (pixel value “1”) of the long wavelength image (FIG. 8A) is obtained. ]) Since the area of the defective portion (pixel value “1”) 105B of the short wavelength image (FIG. 8C) is larger than that of 105R, the subtraction result is as follows. That is, even if the pixel value of the same pixel of the short wavelength image is subtracted from each pixel value of the long wavelength image, the defective portion 105R of the long wavelength image does not remain, but conversely, the long wavelength image is subtracted from the short wavelength image. In this case, a part of the defect portion 105B in the short wavelength image remains as shown in FIG.

したがって、差分演算の結果、長波長画像の欠陥部分が残った場合、当該欠陥は光透過層102の表面上の欠陥(擬似欠陥)104と判断され、短波長画像の欠陥部分が残った場合、当該欠陥は非透過層101の表面上の欠陥105と判断される。なお、差分演算の結果、欠陥部分以外の部分(たとえば、非透過層101の表面パターン)が残った場合、この部分が誤って欠陥と判断されないよう、たとえば予め良品を撮像して得られる差分画像と比較し、欠陥以外の部分は除去される。   Therefore, when a defect portion of the long wavelength image remains as a result of the difference calculation, the defect is determined as a defect (pseudo defect) 104 on the surface of the light transmission layer 102, and when a defect portion of the short wavelength image remains, The defect is determined as a defect 105 on the surface of the non-transmissive layer 101. In addition, when a part other than the defective part (for example, the surface pattern of the non-transmissive layer 101) remains as a result of the difference calculation, for example, a differential image obtained by imaging a good product in advance so that this part is not erroneously determined as a defect. Compared with, parts other than defects are removed.

このとき非透過層101の表面上の欠陥105があると判断された対象物100に関しては、判定手段39にて良否の判定が行われる。この良否の判定には、非透過層101の表面上に焦点の合う中波長画像(図8(b))が用いられ、非透過層101上の欠陥105の面積(大きさ)、幅寸法などの特徴量から、当該対象物100について良品か不良品かが判断される。   At this time, with respect to the object 100 determined to have the defect 105 on the surface of the non-transmissive layer 101, the determination unit 39 determines whether the defect is acceptable. In this quality determination, a medium wavelength image (FIG. 8B) focused on the surface of the non-transmissive layer 101 is used, and the area (size), width dimension, etc. of the defect 105 on the non-transmissive layer 101 is used. From the feature amount, it is determined whether the object 100 is a non-defective product or a defective product.

次に、本実施形態の外観検査システムを用いた外観検査方法について図10のフローチャートを参照して説明する。   Next, an appearance inspection method using the appearance inspection system of the present embodiment will be described with reference to the flowchart of FIG.

カメラ10で撮像された対象物100の画像は、取込手段31にて画像処理装置30に取り込まれる(S1)。このとき、画像処理装置30ではRフィルタ32、Bフィルタ33、Gフィルタ34からなる抽出手段にて、長波長画像(R成分)、短波長画像(B成分)、中波長画像(G成分)をそれぞれ抽出する(S2)。抽出された各画像は2値化手段35,36,37にて2値化される(S3)。   The image of the object 100 captured by the camera 10 is captured by the image processing device 30 by the capturing unit 31 (S1). At this time, in the image processing apparatus 30, a long wavelength image (R component), a short wavelength image (B component), and a medium wavelength image (G component) are extracted by an extraction unit including an R filter 32, a B filter 33, and a G filter 34. Each is extracted (S2). Each extracted image is binarized by the binarizing means 35, 36, 37 (S3).

識別手段38では、2値化後の長波長画像と短波長画像との差分をとり(S4)、短波長画像の欠陥部分が残った場合(S5:Yes)には非透過層101表面の欠陥105と判断し(S6)、それ以外は光透過層102表面の欠陥(擬似欠陥)104と判断する(S7)。つまり当該S4〜S7の処理(識別過程)にて、光透過層102の表面上の欠陥104と非透過層101の表面上の欠陥105とが識別される。   The discriminating means 38 takes the difference between the binarized long-wavelength image and the short-wavelength image (S4), and when the defective portion of the short-wavelength image remains (S5: Yes), the defect on the surface of the non-transmissive layer 101 105 (S6), otherwise, it is determined as a defect (pseudo defect) 104 on the surface of the light transmission layer 102 (S7). That is, the defect 104 on the surface of the light transmission layer 102 and the defect 105 on the surface of the non-transmission layer 101 are identified in the process (identification process) of S4 to S7.

ここで、非透過層101表面の欠陥(たとえば光透過層102と非透過層101との間に混入した埃等の異物)105は、後の工程で除去できず、対象物100の動作・機能上の障害となる致命的な欠陥であるから、このような欠陥105がある場合には、判定手段39での良否判定の対象とされる(S8)。判定手段39では、対象物100が不良品(S9)か良品(S10)かの判断がなされる。   Here, a defect 105 on the surface of the non-transmissive layer 101 (for example, foreign matter such as dust mixed between the light transmissive layer 102 and the non-transmissive layer 101) 105 cannot be removed in a later process, and the operation / function of the object 100 Since it is a fatal defect that becomes an upper obstacle, when there is such a defect 105, it is determined as a pass / fail determination target by the determination means 39 (S8). The determination means 39 determines whether the object 100 is a defective product (S9) or a non-defective product (S10).

一方、光透過層102の表面上の欠陥(たとえば光透過層102表面に付着した埃等の異物)104は、後の工程で除去可能であり、対象物100の動作・機能上の障害となるような致命的な欠陥ではないから、このような欠陥(擬似欠陥)104があっても、判定手段39での良否判定は為されずに良品と判断される(S10)。   On the other hand, a defect 104 on the surface of the light transmission layer 102 (for example, a foreign substance such as dust attached to the surface of the light transmission layer 102) 104 can be removed in a later step, which is an obstacle to the operation / function of the object 100. Since it is not such a fatal defect, even if there is such a defect (pseudo defect) 104, it is determined that the product is non-defective without being judged by the judging means 39 (S10).

以上説明した構成の外観検査システムによれば、波長ごとに焦点距離が異なることを利用して、識別手段38により、撮像画像から光透過層102の表面上の欠陥(擬似欠陥)104と非透過層101の表面上の欠陥105とを識別することができる。そのため、致命的ではない擬似欠陥があるだけの良品が不良品と誤って判断されてしまう無駄はねが大幅に低減し、歩留りの向上が期待できる。しかも、識別手段38は差分演算という簡単な処理を採用しているから、処理にかかる負荷を比較的小さく抑えることができ、検査の高速化を図ることができる。   According to the appearance inspection system having the above-described configuration, the identification unit 38 uses the fact that the focal length is different for each wavelength, and the defect (pseudo-defect) 104 on the surface of the light transmission layer 102 and non-transmission from the captured image. A defect 105 on the surface of the layer 101 can be identified. For this reason, it is possible to significantly reduce waste splashes in which a good product having a non-fatal pseudo defect is erroneously determined as a defective product, and an improvement in yield can be expected. In addition, since the identification means 38 employs a simple process called difference calculation, the load on the process can be kept relatively small, and the speed of inspection can be increased.

また、照明装置20に白色光を出力する光源22を用いているから、3波長(R,G,B)の各成分の画像を得るために波長ごとに個別の光源を用いる場合に比べて、照明装置20の構造が簡単になるという利点もある。さらに、カメラ10としても、カラー画像を撮像可能なカラーカメラを用いているから、複数の波長成分を含む画像を1回の撮像で取得することができ、各波長成分の画像を別々に撮像する場合に比べて検査時間を短縮することができる。   Moreover, since the light source 22 that outputs white light is used for the illumination device 20, in order to obtain an image of each component of three wavelengths (R, G, B), compared to the case of using an individual light source for each wavelength, There is also an advantage that the structure of the lighting device 20 is simplified. Furthermore, since the camera 10 is a color camera that can capture a color image, an image including a plurality of wavelength components can be acquired by one imaging, and each wavelength component image is captured separately. Compared to the case, the inspection time can be shortened.

ここで、単色の撮像画像の(たとえば中波長画像)のみに着目しても、光透過層102の表面上の欠陥104と非透過層101の表面上の欠陥105とで映り方に一応の差がある。ただし、単色の撮像画像のみでは、非透過層101の表面上に発生した淡色の欠陥105と、光透過層102上の濃色の欠陥104とでは濃淡値に殆ど差がなく、これらを識別することは困難である。これに対し、本実施形態では長波長画像(R成分)、短波長画像(B成分)、中波長画像(G成分)の焦点位置の違いに着目したことで、欠陥の濃淡にかかわらず、光透過層102の表面上の欠陥104と非透過層101の表面上の欠陥105とを確実に識別可能である。   Here, even if attention is paid only to a single-color captured image (for example, a medium wavelength image), the difference in appearance is slightly different between the defect 104 on the surface of the light transmission layer 102 and the defect 105 on the surface of the non-transmission layer 101. There is. However, with only a single-color captured image, there is almost no difference in gray value between the light-colored defect 105 generated on the surface of the non-transmissive layer 101 and the dark-colored defect 104 on the light-transmissive layer 102, and these are identified. It is difficult. On the other hand, in this embodiment, focusing on the difference in the focal position of the long wavelength image (R component), the short wavelength image (B component), and the medium wavelength image (G component) The defect 104 on the surface of the transmissive layer 102 and the defect 105 on the surface of the non-transmissive layer 101 can be reliably identified.

ところで、本実施形態では、R,G,Bの3波長間の焦点位置の違いを利用する例を示したが、この例に限らず、任意の互いに異なる波長間の焦点位置の違いを利用しても、同様の効果が期待できる。たとえば、照明装置20として、紫外線を出力する紫外光源および赤外線を出力する赤外光源を有するものを用い、撮像画像における紫外線成分と赤外線成分とを比較するようにしてもよい。このように波長の差を広げることにより、焦点位置の差も広がることになるため、より明確に、欠陥を識別することが可能となる。   By the way, in this embodiment, although the example using the difference in the focal position between the three wavelengths of R, G, and B has been shown, the present invention is not limited to this example, and the difference in the focal position between arbitrary different wavelengths is used. However, the same effect can be expected. For example, the illumination device 20 may have an ultraviolet light source that outputs ultraviolet light and an infrared light source that outputs infrared light, and the ultraviolet component and the infrared component in the captured image may be compared. By widening the difference in wavelength in this way, the difference in focal position is also widened, so that defects can be identified more clearly.

(実施形態2)
本実施形態の外観検査システムは、識別手段38での差分演算の前に、長波長画像(R成分)、短波長画像(B成分)、中波長画像(G成分)のそれぞれについて微分演算を行う微分手段(図示せず)を画像処理装置30に付加した点が実施形態1と相違する。
(Embodiment 2)
The appearance inspection system of the present embodiment performs a differential operation on each of the long wavelength image (R component), the short wavelength image (B component), and the medium wavelength image (G component) before the difference calculation in the identification unit 38. The difference from Embodiment 1 is that a differentiating means (not shown) is added to the image processing apparatus 30.

微分手段は、各画像について、各画素の濃淡値に基づき微分値を求め、微分画像を生成する。ここで、各画素の微分値は、隣接する画素との濃淡値の差が大きい画素ほど高くなるものとする。   The differentiating means obtains a differential value for each image based on the gray value of each pixel, and generates a differential image. Here, it is assumed that the differential value of each pixel becomes higher as the difference in gray value with the adjacent pixel is larger.

2値化手段35,36,37は、各波長の微分画像について、それぞれ微分値が所定の閾値を超える画素の画素値を「1」、その他の画素の画素値を「0」として2値画像を生成する。ここでは、全ての2値化手段35,36,37にて同一の閾値を用いるものとし、当該閾値は、たとえば長波長画像においてぼやけて映る光透過層102表面の欠陥については画素値が「0」となるように、比較的高めに設定される。これにより、2値画像では、焦点が合わずに輪郭のぼけた部分は除去されることになる。   The binarization means 35, 36, 37 are binary images in which the pixel values of the pixels whose differential values exceed a predetermined threshold are “1” and the pixel values of the other pixels are “0”. Is generated. Here, it is assumed that the same threshold value is used in all the binarization means 35, 36, and 37. For the threshold value, for example, the pixel value is “0” for a defect on the surface of the light transmission layer 102 that appears blurred in a long wavelength image. ”Is set relatively high. As a result, in the binary image, the out-of-focus portion and the blurred outline are removed.

識別手段38は、2値化後の長波長画像と短波長画像とを比較することにより、光透過層102の表面上の欠陥(擬似欠陥)か、あるいは非透過層101の表面上の欠陥かを識別する。   The identification means 38 compares the binarized long wavelength image with the short wavelength image to determine whether the defect is on the surface of the light transmission layer 102 (pseudo defect) or on the surface of the non-transmission layer 101. Identify

要するに、光透過層102の表面上の欠陥(擬似欠陥)104であれば、短波長画像から長波長画像を減算すると、短波長画像における欠陥部分の一部が残るが、反対に、長波長画像から短波長画像を減算しても、長波長画像の欠陥部分は残らない。一方、非透過層101の表面上の欠陥105があれば、短波長画像から長波長画像を減算しても、短波長画像の欠陥部分は残らないが、反対に、長波長画像から短波長画像を減算すれば、長波長画像における欠陥部分の一部が残ることとなる。   In short, if the defect (pseudo defect) 104 is on the surface of the light transmission layer 102, when the long wavelength image is subtracted from the short wavelength image, a part of the defect portion in the short wavelength image remains. Even if the short wavelength image is subtracted from the defect, the defective portion of the long wavelength image does not remain. On the other hand, if there is a defect 105 on the surface of the non-transmissive layer 101, even if the long wavelength image is subtracted from the short wavelength image, the defect portion of the short wavelength image does not remain, but conversely, from the long wavelength image to the short wavelength image. Is subtracted, a part of the defect portion in the long wavelength image remains.

したがって、差分演算の結果、短波長画像の欠陥部分が残った場合、当該欠陥は光透過層102の表面上の欠陥(擬似欠陥)104と判断され、長波長画像の欠陥部分が残った場合、当該欠陥は非透過層101の表面上の欠陥105と判断される。   Therefore, when a defect portion of the short wavelength image remains as a result of the difference calculation, the defect is determined as a defect (pseudo defect) 104 on the surface of the light transmission layer 102, and when a defect portion of the long wavelength image remains, The defect is determined as a defect 105 on the surface of the non-transmissive layer 101.

以上説明した構成では、2値化処理の前に、各画像のうち焦点が合っていない部分を微分処理により予め除去するため、焦点の合った部分が際立つこととなり、欠陥の識別精度が向上するという利点がある。   In the above-described configuration, before the binarization process, the out-of-focus portion of each image is removed in advance by differentiation, so that the in-focus portion stands out, and the defect identification accuracy is improved. There is an advantage.

その他の構成および機能は実施形態1と同様である。   Other configurations and functions are the same as those of the first embodiment.

(実施形態3)
本実施形態の外観検査システムは、2値化処理後に、長波長画像(R成分)、短波長画像(B成分)、中波長画像(G成分)のそれぞれについて欠陥の候補となる画素群を結合してランドを形成するラベリング手段(図示せず)を画像処理装置30に付加した点が実施形態1と相違する。
(Embodiment 3)
After the binarization process, the appearance inspection system of the present embodiment combines pixel groups that are candidate defects for each of the long wavelength image (R component), the short wavelength image (B component), and the medium wavelength image (G component). The difference from the first embodiment is that labeling means (not shown) for forming lands is added to the image processing apparatus 30.

ラベリング手段は、2値化後の各画像について、画素値「1」の画素同士が隣接している場合にこれらの画素を1つの塊(ランド)としてナンバリングし、各ランドに番号付けをして各々を識別可能とする。ここで、たとえば予め良品を撮像して得られる良品画像の2値画像と比較することで、欠陥の候補となるランド(以下、欠陥候補ランドという)を抽出することができる。   For each image after binarization, the labeling means numbers these pixels as one block (land) when the pixels having the pixel value “1” are adjacent to each other, and numbers each land. Each can be identified. Here, for example, by comparing with a binary image of a non-defective image obtained by imaging a non-defective product in advance, a land that becomes a defect candidate (hereinafter referred to as a defect candidate land) can be extracted.

識別手段38は、長波長画像、短波長画像、中波長画像のそれぞれに関して、ラベリング手段で抽出された欠陥候補ランドの重心位置を求め、当該重心位置がこれらの画像間で重なる場合に、当該欠陥候補ランド同士で面積を比較する。   The identification unit 38 obtains the centroid position of the defect candidate land extracted by the labeling unit with respect to each of the long wavelength image, the short wavelength image, and the medium wavelength image, and when the centroid position overlaps between these images, the defect Compare the areas of candidate lands.

要するに、光透過層102の表面上の欠陥(擬似欠陥)104であれば、欠陥候補ランドは、短波長画像に比べて長波長画像や中波長画像で輪郭がぼけて面積が大きくなる。一方、非透過層101の表面上の欠陥であれば、欠陥候補ランドは、長波長画像や中波長画像に比べて短波長画像で輪郭がぼけて面積が大きくなる。   In short, in the case of the defect (pseudo defect) 104 on the surface of the light transmission layer 102, the defect candidate land has a larger outline and a larger area in the long wavelength image and the medium wavelength image than in the short wavelength image. On the other hand, in the case of a defect on the surface of the non-transmissive layer 101, the defect candidate land has a smaller outline and a larger area in the short wavelength image than in the long wavelength image and the medium wavelength image.

したがって、欠陥候補ランドの面積を比較した結果、長波長画像や中波長画像の方が大きければ、当該欠陥は光透過層102の表面上の欠陥(擬似欠陥)104と判断され、短波長画像の方が大きければ、当該欠陥は非透過層101の表面上の欠陥105と判断される。   Therefore, as a result of comparing the areas of the defect candidate lands, if the long wavelength image or the medium wavelength image is larger, the defect is determined as a defect (pseudo defect) 104 on the surface of the light transmission layer 102, and the short wavelength image If it is larger, the defect is determined as the defect 105 on the surface of the non-transmissive layer 101.

以上説明した構成によれば、画像同士を比較するに当たり、予め各画像から欠陥の候補となる領域(欠陥候補ランド)が抽出されるので、識別手段38は、欠陥の候補となる領域のみを対象として画像同士の比較を行うことができ、欠陥の識別精度が向上するという利点がある。   According to the configuration described above, since the defect candidate areas (defect candidate lands) are extracted from each image in advance when comparing the images, the identification unit 38 targets only the defect candidate areas. As a result, the images can be compared with each other, and the defect identification accuracy is improved.

その他の構成および機能は実施形態1と同様である。   Other configurations and functions are the same as those of the first embodiment.

(実施形態4)
本実施形態の外観検査システムは、図11に示すように、R,G,Bの各波長の単色光をそれぞれ出力する複数の単色光源22R,22G,22Bを照明装置20に使用した点が実施形態1の外観検査システムと相違する。
(Embodiment 4)
As shown in FIG. 11, the appearance inspection system of the present embodiment is implemented by using a plurality of monochromatic light sources 22R, 22G, and 22B that respectively output monochromatic lights of R, G, and B wavelengths in the lighting device 20. This is different from the appearance inspection system according to the first embodiment.

各単色光源22R,22G,22Bは、それぞれ個別の照明用電源装置21R,21G,21Bに接続される。これら複数の単色光源22R,22G,22Bから出力された光は、光ファイバ25を通して導光され、互いに混色されることで白色光を実現する。ここで、各照明用電源装置21R,21G,21Bは各単色光源22R,22G,22Bからの光出力の大きさをそれぞれ調節する調光手段としての機能を有し、これにより、照明装置20からの照明光は波長(R,G,B)ごとに個別に調光制御される。   Each monochromatic light source 22R, 22G, 22B is connected to an individual illumination power supply device 21R, 21G, 21B. Lights output from the plurality of monochromatic light sources 22R, 22G, and 22B are guided through the optical fiber 25 and mixed with each other to realize white light. Here, each illumination power supply device 21R, 21G, 21B has a function as a light control means for adjusting the magnitude of the light output from each monochromatic light source 22R, 22G, 22B. Are controlled individually for each wavelength (R, G, B).

以上説明した本実施形態の構成によれば、対象物100の構造(たとえば光透過層102の材質)やカメラ10の各波長別の感度によって、撮像画像において波長ごとに濃淡値のばらつきを生じることがあっても、照明光の光出力を波長ごとに個別に調節することで前記ばらつきを補正することができる。   According to the configuration of the present embodiment described above, the grayscale value varies for each wavelength in the captured image depending on the structure of the object 100 (for example, the material of the light transmission layer 102) and the sensitivity of each wavelength of the camera 10. Even if there exists, the said dispersion | variation can be correct | amended by adjusting the light output of illumination light separately for every wavelength.

なお、ここでは複数の単色光源22R,22G,22Bは同時に点灯させるものとするが、これに限らず、各単色光源22R,22G,22Bを順次点灯させ、長波長画像(R成分)、中波長画像(G成分)、短波長画像(B成分)を個別に撮像するようにしてもよい。この場合、画像処理装置30において、Rフィルタ32、Bフィルタ33、Gフィルタ34からなる抽出手段を省略することができる。   Here, the plurality of monochromatic light sources 22R, 22G, and 22B are turned on simultaneously. However, the present invention is not limited to this, and the monochromatic light sources 22R, 22G, and 22B are sequentially turned on to generate a long wavelength image (R component) and a medium wavelength. You may make it image an image (G component) and a short wavelength image (B component) separately. In this case, in the image processing apparatus 30, the extraction unit including the R filter 32, the B filter 33, and the G filter 34 can be omitted.

その他の構成および機能は実施形態1と同様である。   Other configurations and functions are the same as those of the first embodiment.

10 カメラ(撮像装置)
11 レンズ
20 照明装置
22 光源
22R,22G,22B 単色光源
30 画像処理装置
35,36,37 2値化手段
38 識別手段
100 対象物
101 非透過層
102 光透過層
10 Camera (imaging device)
DESCRIPTION OF SYMBOLS 11 Lens 20 Illuminating device 22 Light source 22R, 22G, 22B Monochromatic light source 30 Image processing apparatus 35, 36, 37 Binarization means 38 Identification means 100 Object 101 Non-transparent layer 102 Light transmission layer

Claims (10)

少なくとも非透過層の一表面側に光透過層が積層された積層体を対象物として、非透過層の表面上の欠陥を検査する外観検査システムであって、
対象物を前記一表面側から撮像する撮像装置と、対象物を前記一表面側から照明する同軸落射照明用の照明装置と、撮像装置で撮像された非透過層の表面上の像から前記欠陥の有無を判定する画像処理装置とを備え、
照明装置は、光透過層を透過する少なくとも2種類の異なる波長の照明光を対象物に照射し、
撮像装置は、照明光の波長ごとの焦点距離の違いを利用し、一の波長の照明光で撮像される短波長画像と、前記一の波長よりも長波長となる他の波長の照明光で撮像される長波長画像とを比べると、短波長画像よりも長波長画像で非透過層の表面近くに焦点を合わせており、
画像処理装置は、短波長画像と長波長画像とを比較した結果、短波長画像に比べて長波長画像でピントが合う部分を非透過層の表面上の像と判断する識別手段と、前記短波長画像および前記長波長画像についてそれぞれ濃淡値を所定の閾値で2値化処理を行う2値化手段とを有し、
前記識別手段は、2値化処理後の短波長画像と長波長画像との差をとり、短波長画像の一部分が残れば当該一部分を前記非透過層の表面上の像と判断する
ことを特徴とする外観検査システム。
A visual inspection system for inspecting a defect on a surface of a non-transmissive layer using a laminate in which a light transmissive layer is laminated on at least one surface side of the non-transmissive layer as an object,
An imaging device that images an object from the one surface side, an illumination device for coaxial epi-illumination that illuminates the object from the one surface side, and the defect from an image on the surface of the non-transmissive layer imaged by the imaging device An image processing device for determining the presence or absence of
The illumination device irradiates an object with illumination light of at least two different wavelengths that pass through the light transmission layer,
The imaging device uses a difference in focal length for each wavelength of illumination light, and uses a short wavelength image captured with illumination light of one wavelength and illumination light of another wavelength that is longer than the one wavelength. Compared with the captured long wavelength image, the longer wavelength image is focused near the surface of the non-transmissive layer than the short wavelength image,
The image processing apparatus as a result of the comparison between the short wavelength image and long wavelength images, and identification means for determining the focus is part longer wavelength image than the short wavelength image and the image on the surface of the non-transmissive layer, the short Binarization means for performing binarization processing on a grayscale value with a predetermined threshold for each of the wavelength image and the long wavelength image;
The identification means takes a difference between the short wavelength image after binarization processing and the long wavelength image, and if a part of the short wavelength image remains, it determines that the part is an image on the surface of the non-transmissive layer. Appearance inspection system.
少なくとも非透過層の一表面側に光透過層が積層された積層体を対象物として、非透過層の表面上の欠陥を検査する外観検査システムであって、
対象物を前記一表面側から撮像する撮像装置と、対象物を前記一表面側から照明する同軸落射照明用の照明装置と、撮像装置で撮像された非透過層の表面上の像から前記欠陥の有無を判定する画像処理装置とを備え、
照明装置は、光透過層を透過する少なくとも2種類の異なる波長の照明光を対象物に照射し、撮像装置は、照明光の波長ごとの焦点距離の違いを利用し、一の波長の照明光で撮像される短波長画像と、前記一の波長よりも長波長となる他の波長の照明光で撮像される長波長画像とを比べると、短波長画像よりも長波長画像で非透過層の表面近くに焦点を合わせており、
画像処理装置は、短波長画像と長波長画像とを比較した結果、短波長画像に比べて長波長画像でピントが合う部分を非透過層の表面上の像と判断する識別手段と、前記短波長画像および前記長波長画像についてそれぞれ各画素の濃淡値に基づき微分画像を生成する微分手段と、各微分画像についてそれぞれ画素値を所定の閾値で2値化処理を行う2値化手段を有し、
前記識別手段は、2値化処理後の短波長画像と長波長画像との差をとり、長波長画像の一部分が残れば当該一部分を前記非透過層の表面上の像と判断する
ことを特徴とする外観検査システム。
A visual inspection system for inspecting a defect on a surface of a non-transmissive layer using a laminate in which a light transmissive layer is laminated on at least one surface side of the non-transmissive layer as an object,
An imaging device that images an object from the one surface side, an illumination device for coaxial epi-illumination that illuminates the object from the one surface side, and the defect from an image on the surface of the non-transmissive layer imaged by the imaging device An image processing device for determining the presence or absence of
The illumination device irradiates the object with illumination light of at least two different wavelengths that are transmitted through the light transmission layer, and the imaging device utilizes the difference in focal length for each wavelength of the illumination light to provide illumination light of one wavelength. When comparing the short-wavelength image captured with the long-wavelength image captured with the illumination light with the other wavelength that is longer than the one wavelength, the non-transparent layer is longer than the short-wavelength image. Focusing near the surface,
As a result of comparing the short-wavelength image with the long-wavelength image, the image processing apparatus determines an area on the surface of the non-transmissive layer that is in focus in the long-wavelength image compared to the short-wavelength image, Differentiating means for generating a differential image based on the gray value of each pixel for each of the wavelength image and the long wavelength image, and binarizing means for binarizing each pixel value with a predetermined threshold value for each differential image And
The identification means takes a difference between the short wavelength image and the long wavelength image after the binarization process, and if a part of the long wavelength image remains, determines the part as an image on the surface of the non-transmissive layer. appearance inspection system shall be the.
少なくとも非透過層の一表面側に光透過層が積層された積層体を対象物として、非透過層の表面上の欠陥を検査する外観検査システムであって、
対象物を前記一表面側から撮像する撮像装置と、対象物を前記一表面側から照明する同軸落射照明用の照明装置と、撮像装置で撮像された非透過層の表面上の像から前記欠陥の有無を判定する画像処理装置とを備え、
照明装置は、光透過層を透過する少なくとも2種類の異なる波長の照明光を対象物に照射し、撮像装置は、照明光の波長ごとの焦点距離の違いを利用し、一の波長の照明光で撮像される短波長画像と、前記一の波長よりも長波長となる他の波長の照明光で撮像される長波長画像とを比べると、短波長画像よりも長波長画像で非透過層の表面近くに焦点を合わせており、
画像処理装置は、短波長画像と長波長画像とを比較した結果、短波長画像に比べて長波長画像でピントが合う部分を非透過層の表面上の像と判断する識別手段と、前記短波長画像および前記長波長画像についてそれぞれ濃淡値を所定の閾値で2値化処理を行う2値化手段と、2値化処理後の各画像について欠陥の候補となる画素群を結合してランドを形成するラベリング手段とを有し、
前記識別手段は、短波長画像および長波長画像の各々に関しランドの重心位置を求め、当該重心位置が両画像間で重なる場合に、長波長画像のランドの面積と短波長画像のランドの面積とを比較し、短波長画像の方が大きければ当該ランドを前記非透過層の表面上の像と判断する
ことを特徴とする外観検査システム。
A visual inspection system for inspecting a defect on a surface of a non-transmissive layer using a laminate in which a light transmissive layer is laminated on at least one surface side of the non-transmissive layer as an object,
An imaging device that images an object from the one surface side, an illumination device for coaxial epi-illumination that illuminates the object from the one surface side, and the defect from an image on the surface of the non-transmissive layer imaged by the imaging device An image processing device for determining the presence or absence of
The illumination device irradiates the object with illumination light of at least two different wavelengths that are transmitted through the light transmission layer, and the imaging device utilizes the difference in focal length for each wavelength of the illumination light to provide illumination light of one wavelength. When comparing the short-wavelength image captured with the long-wavelength image captured with the illumination light with the other wavelength that is longer than the one wavelength, the non-transparent layer is longer than the short-wavelength image. Focusing near the surface,
As a result of comparing the short-wavelength image with the long-wavelength image, the image processing apparatus determines an area on the surface of the non-transmissive layer that is in focus in the long-wavelength image compared to the short-wavelength image, A binarizing unit that binarizes the grayscale value with a predetermined threshold value for each of the wavelength image and the long wavelength image, and a pixel group that is a defect candidate for each image after the binarization processing is combined to obtain a land. Labeling means to form,
The identification means obtains the center of gravity of the land for each of the short wavelength image and the long wavelength image, and when the center of gravity overlaps between both images, the area of the land of the long wavelength image and the area of the land of the short wavelength image comparing, appearance inspection system that is characterized in that it towards the short wavelength image is larger the land is determined that the image on the surface of the non-transmissive layer.
前記照明装置は、少なくとも2種類の異なる波長の光を含む白色光を出力する光源を有することを特徴とする請求項1ないし請求項3のいずれか1項に記載の外観検査システム。 The lighting device, the visual inspection system according to any one of claims 1 to 3, characterized in that it has a light source that outputs white light including light of at least two different wavelengths. 前記照明装置は、互いに異なる波長の単色光をそれぞれ出力する複数の単色光源と、各単色光源の光出力の大きさを個別に調節する調光手段とを有することを特徴とする請求項1ないし請求項のいずれか1項に記載の外観検査システム。 2. The lighting device according to claim 1, further comprising: a plurality of monochromatic light sources that respectively output monochromatic lights having different wavelengths; and a dimming unit that individually adjusts the magnitude of the light output of each monochromatic light source. The appearance inspection system according to claim 3 . 前記照明装置は、前記一の波長の照明光として紫外線を出力する紫外光源と、前記他の波長の照明光として赤外線を出力する赤外光源とを有することを特徴とする請求項1ないし請求項のいずれか1項に記載の外観検査システム。 The said illuminating device has an ultraviolet light source which outputs an ultraviolet-ray as said one wavelength illumination light, and an infrared light source which outputs an infrared ray as said other wavelength illumination light. 3 inspection system according to any one of. 前記撮像装置はカラー画像を撮像可能であって、前記画像処理装置は、前記照明装置から前記一の波長と前記他の波長との両方の照明光が出力された状態で撮像されたカラー画像から、波長に基づいて前記短波長画像と前記長波長画像とをそれぞれ抽出する抽出手段を有することを特徴とする請求項1ないし請求項のいずれか1項に記載の外観検査システム。 The image pickup device can pick up a color image, and the image processing device can detect a color image picked up in a state in which illumination light of both the one wavelength and the other wavelength is output from the illumination device. , visual inspection system according to any one of claims 1 to 6 characterized in that it has an extraction means for extracting each of said long wavelength image and the short wavelength image based on the wavelength. 少なくとも非透過層の一表面側に光透過層が積層された積層体を対象物として、対象物を前記一表面側から撮像する撮像装置と、光透過層を透過する少なくとも2種類の異なる波長の照明光を前記一表面側から対象物に照射する同軸落射照明用の照明装置と、撮像装置で撮像された非透過層の表面上の像から非透過層の表面上の欠陥の有無を判定する画像処理装置とを使用し、前記欠陥を検査する外観検査方法であって、
撮像装置では、照明光の波長ごとの焦点距離の違いを利用し、一の波長の照明光で撮像される短波長画像と、前記一の波長よりも長波長となる他の波長の照明光で撮像される長波長画像とを比べると、短波長画像よりも長波長画像で非透過層の表面近くに焦点を合わせており、
短波長画像と長波長画像とを比較した結果、短波長画像に比べて長波長画像でピントが合う部分を非透過層の表面上の像と判断する識別過程と、前記短波長画像および前記長波長画像についてそれぞれ濃淡値を所定の閾値で2値化する2値化処理とを有し、
前記識別過程では、2値化処理後の短波長画像と長波長画像との差をとり、短波長画像の一部分が残れば当該一部分を前記非透過層の表面上の像と判断する
ことを特徴とする外観検査方法
An imaging apparatus that images a target object from the one surface side, and a laminate having a light transmissive layer stacked on at least one surface side of the non-transmissive layer, and at least two types of different wavelengths that pass through the light transmissive layer Determine whether there is a defect on the surface of the non-transmissive layer from the illumination device for coaxial epi-illumination that irradiates the object with illumination light from the one surface side and an image on the surface of the non-transmissive layer captured by the imaging device. An appearance inspection method for inspecting the defect using an image processing apparatus,
The imaging device uses a difference in focal length for each wavelength of illumination light, and uses a short wavelength image captured with illumination light of one wavelength and illumination light of another wavelength that is longer than the one wavelength. Compared with the captured long wavelength image, the longer wavelength image is focused near the surface of the non-transmissive layer than the short wavelength image,
As a result of comparing the short-wavelength image and the long-wavelength image, an identification process for determining a portion in focus in the long-wavelength image as compared to the short-wavelength image as an image on the surface of the non-transmissive layer, the short-wavelength image and the long-wavelength image A binarization process for binarizing each grayscale value with a predetermined threshold for each wavelength image;
In the identification process, the difference between the short wavelength image and the long wavelength image after binarization is taken, and if a part of the short wavelength image remains, the part is determined as an image on the surface of the non-transmissive layer. appearance test method shall be the.
少なくとも非透過層の一表面側に光透過層が積層された積層体を対象物として、対象物を前記一表面側から撮像する撮像装置と、光透過層を透過する少なくとも2種類の異なる波長の照明光を前記一表面側から対象物に照射する同軸落射照明用の照明装置と、撮像装置で撮像された非透過層の表面上の像から非透過層の表面上の欠陥の有無を判定する画像処理装置とを使用し、前記欠陥を検査する外観検査方法であって、
撮像装置では、照明光の波長ごとの焦点距離の違いを利用し、一の波長の照明光で撮像される短波長画像と、前記一の波長よりも長波長となる他の波長の照明光で撮像される長波長画像とを比べると、短波長画像よりも長波長画像で非透過層の表面近くに焦点を合わせており、
短波長画像と長波長画像とを比較した結果、短波長画像に比べて長波長画像でピントが合う部分を非透過層の表面上の像と判断する識別過程と、前記短波長画像および前記長波長画像についてそれぞれ各画素の濃淡値に基づき微分画像を生成する微分処理と、各微分画像についてそれぞれ画素値を所定の閾値で2値化する2値化処理とを有し、
前記識別過程では、2値化処理後の短波長画像と長波長画像との差をとり、長波長画像の一部分が残れば当該一部分を前記非透過層の表面上の像と判断する
ことを特徴とする外観検査方法。
An imaging apparatus that images a target object from the one surface side, and a laminate having a light transmissive layer stacked on at least one surface side of the non-transmissive layer, and at least two types of different wavelengths that pass through the light transmissive layer Determine whether there is a defect on the surface of the non-transmissive layer from the illumination device for coaxial epi-illumination that irradiates the object with illumination light from the one surface side and an image on the surface of the non-transmissive layer captured by the imaging device. An appearance inspection method for inspecting the defect using an image processing apparatus,
The imaging device uses a difference in focal length for each wavelength of illumination light, and uses a short wavelength image captured with illumination light of one wavelength and illumination light of another wavelength that is longer than the one wavelength. Compared with the captured long wavelength image, the longer wavelength image is focused near the surface of the non-transmissive layer than the short wavelength image,
As a result of comparing the short-wavelength image and the long-wavelength image, an identification process for determining a portion in focus in the long-wavelength image as compared to the short-wavelength image as an image on the surface of the non-transmissive layer, the short-wavelength image and the long-wavelength image A differential process for generating a differential image based on the gray value of each pixel for each wavelength image, and a binarization process for binarizing the pixel value for each differential image with a predetermined threshold,
In the identification process, the difference between the short wavelength image and the long wavelength image after binarization is taken, and if a part of the long wavelength image remains, the part is determined as an image on the surface of the non-transmissive layer. Appearance inspection method.
少なくとも非透過層の一表面側に光透過層が積層された積層体を対象物として、対象物を前記一表面側から撮像する撮像装置と、光透過層を透過する少なくとも2種類の異なる波長の照明光を前記一表面側から対象物に照射する同軸落射照明用の照明装置と、撮像装置で撮像された非透過層の表面上の像から非透過層の表面上の欠陥の有無を判定する画像処理装置とを使用し、前記欠陥を検査する外観検査方法であって、An imaging apparatus that images a target object from the one surface side, and a laminate having a light transmissive layer stacked on at least one surface side of the non-transmissive layer, and at least two types of different wavelengths that pass through the light transmissive layer Determine whether there is a defect on the surface of the non-transmissive layer from the illumination device for coaxial epi-illumination that irradiates the object with illumination light from the one surface side and an image on the surface of the non-transmissive layer captured by the imaging device. An appearance inspection method for inspecting the defect using an image processing apparatus,
撮像装置では、照明光の波長ごとの焦点距離の違いを利用し、一の波長の照明光で撮像される短波長画像と、前記一の波長よりも長波長となる他の波長の照明光で撮像される長波長画像とを比べると、短波長画像よりも長波長画像で非透過層の表面近くに焦点を合わせており、The imaging device uses a difference in focal length for each wavelength of illumination light, and uses a short wavelength image captured with illumination light of one wavelength and illumination light of another wavelength that is longer than the one wavelength. Compared with the captured long wavelength image, the longer wavelength image is focused near the surface of the non-transmissive layer than the short wavelength image,
短波長画像と長波長画像とを比較した結果、短波長画像に比べて長波長画像でピントが合う部分を非透過層の表面上の像と判断する識別過程と、前記短波長画像および前記長波長画像についてそれぞれ濃淡値を所定の閾値で2値化する2値化処理と、2値化処理後の各画像について欠陥の候補となる画素群を結合してランドを形成するラベリング処理とを有し、As a result of comparing the short-wavelength image and the long-wavelength image, an identification process for determining a portion in focus in the long-wavelength image as compared to the short-wavelength image as an image on the surface of the non-transmissive layer, the short-wavelength image and the long-wavelength image Each of the wavelength images has a binarization process for binarizing the gray value with a predetermined threshold, and a labeling process for forming a land by combining defect candidate pixel groups for each image after the binarization process. And
前記識別過程では、短波長画像および長波長画像の各々に関しランドの重心位置を求め、当該重心位置が両画像間で重なる場合に、長波長画像のランドの面積と短波長画像のランドの面積とを比較し、短波長画像の方が大きければ当該ランドを前記非透過層の表面上の像と判断するIn the identification process, the center of gravity of the land is obtained for each of the short wavelength image and the long wavelength image, and when the center of gravity overlaps between both images, the land area of the long wavelength image and the land area of the short wavelength image If the short wavelength image is larger, the land is determined to be an image on the surface of the non-transmissive layer.
ことを特徴とする外観検査方法。An appearance inspection method characterized by that.
JP2009107032A 2009-04-24 2009-04-24 Appearance inspection system and appearance inspection method Active JP5351600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009107032A JP5351600B2 (en) 2009-04-24 2009-04-24 Appearance inspection system and appearance inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009107032A JP5351600B2 (en) 2009-04-24 2009-04-24 Appearance inspection system and appearance inspection method

Publications (2)

Publication Number Publication Date
JP2010256185A JP2010256185A (en) 2010-11-11
JP5351600B2 true JP5351600B2 (en) 2013-11-27

Family

ID=43317266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009107032A Active JP5351600B2 (en) 2009-04-24 2009-04-24 Appearance inspection system and appearance inspection method

Country Status (1)

Country Link
JP (1) JP5351600B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9377394B2 (en) * 2012-10-16 2016-06-28 Seagate Technology Llc Distinguishing foreign surface features from native surface features
US20180209918A1 (en) * 2015-07-14 2018-07-26 Synergx Technologies Inc. Optical inspection system for transparent material
JP2020094955A (en) * 2018-12-14 2020-06-18 セイコーエプソン株式会社 Defect detecting device, and defect detecting method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62220841A (en) * 1986-03-24 1987-09-29 Hitachi Ltd Optical inspecting instrument
JP2004138470A (en) * 2002-10-17 2004-05-13 Sony Corp Light transmissive substrate inspection device

Also Published As

Publication number Publication date
JP2010256185A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
KR101692115B1 (en) Inspection apparatus and inspection method
KR102310179B1 (en) Inspection method using color lighting
JP2010107254A (en) Device and method for inspecting led chip
KR101679205B1 (en) Device for detecting defect of device
JP6226319B2 (en) Inspection device
JP6487617B2 (en) Defect inspection method and defect inspection apparatus for microlens array
JP2009531701A (en) Sheet glass inspection
JP5225064B2 (en) Inspection device
KR20060053847A (en) Method for inspecting defects of glass plate and apparatus thereof
JP2019533163A (en) Method and apparatus for inspecting defective portion on transparent substrate
KR101203210B1 (en) Apparatus for inspecting defects
JP5351600B2 (en) Appearance inspection system and appearance inspection method
JP6409178B2 (en) Container inspection method and inspection apparatus
US20120050518A1 (en) Inspecting apparatus and inspection method
KR101844496B1 (en) Inspection of defects in a contact lens
JP2004219399A (en) Method of inspecting foreign substance, apparatus for inspecting foreign substance, and illumination apparatus for inspecting foreign substance
JP2017166903A (en) Defect inspection device and defect inspection method
JP2014009969A (en) Image processing device, image processing method, and exposure pattern inspection device
JP5868203B2 (en) Inspection device
JP2009222683A (en) Method and apparatus for surface inspection
JP2003240732A (en) Gold-plated defect-inspecting apparatus
JP5787668B2 (en) Defect detection device
KR20160084726A (en) Apparatus for inspecting defect
JP2012127924A (en) Detection device and detection method for a plurality of objects
KR102678467B1 (en) Optical inspection device and method of optical inspection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130823

R150 Certificate of patent or registration of utility model

Ref document number: 5351600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150