JP5350135B2 - Dispersant for hydraulic composition - Google Patents

Dispersant for hydraulic composition Download PDF

Info

Publication number
JP5350135B2
JP5350135B2 JP2009191543A JP2009191543A JP5350135B2 JP 5350135 B2 JP5350135 B2 JP 5350135B2 JP 2009191543 A JP2009191543 A JP 2009191543A JP 2009191543 A JP2009191543 A JP 2009191543A JP 5350135 B2 JP5350135 B2 JP 5350135B2
Authority
JP
Japan
Prior art keywords
component
weight
hydraulic composition
hydraulic
structural unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009191543A
Other languages
Japanese (ja)
Other versions
JP2011042526A5 (en
JP2011042526A (en
Inventor
良仁 名嘉
利正 濱井
大輔 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2009191543A priority Critical patent/JP5350135B2/en
Publication of JP2011042526A publication Critical patent/JP2011042526A/en
Publication of JP2011042526A5 publication Critical patent/JP2011042526A5/ja
Application granted granted Critical
Publication of JP5350135B2 publication Critical patent/JP5350135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、水硬性組成物用分散剤、及び水硬性組成物に関する。   The present invention relates to a dispersant for a hydraulic composition and a hydraulic composition.

水硬性組成物には従来、種々の混和剤が添加されており、例えば、水硬性組成物の流動性を向上させる目的で、ナフタレンスルホン酸ホルムアルデヒド縮合物、メラミンスルホン酸ホルムアルデヒド縮合物、ポリカルボン酸塩等の高分子化合物が使用されている。これらの高分子化合物は、それぞれ特有の性質を持ち、水硬性組成物の用途などを考慮して適宜使い分けられているが、これら高分子化合物を複数組み合わせて使用することも知られている。   Various admixtures are conventionally added to the hydraulic composition. For example, for the purpose of improving the fluidity of the hydraulic composition, naphthalene sulfonic acid formaldehyde condensate, melamine sulfonic acid formaldehyde condensate, polycarboxylic acid High molecular compounds such as salts are used. Each of these polymer compounds has unique properties and is properly used in consideration of the application of the hydraulic composition, etc., but it is also known to use a combination of these polymer compounds.

例えば、特許文献1には、アクリル酸エステル又はメタクリル酸エステルの重合物とセメント分散剤(ナフタレンスルホン酸ホルムアルデヒド縮合物等)とを併用したスランプロス防止型セメント分散剤が記載されている。また、特許文献2には、ヒドロキシアルキル(メタ)アクリレートを用いたポリマーを含有する良好なワーカビリティを有するセメント組成物が記載されており、更にポリスチレンスルホン酸系の減水剤を使用できることが記載されている。   For example, Patent Document 1 describes a slump loss prevention type cement dispersant in which an acrylic ester or methacrylic ester polymer and a cement dispersant (such as a naphthalenesulfonic acid formaldehyde condensate) are used in combination. Patent Document 2 describes a cement composition having good workability containing a polymer using hydroxyalkyl (meth) acrylate, and further describes that a polystyrenesulfonic acid-based water reducing agent can be used. ing.

また、特許文献3には、高流動性と材料の分離抵抗性を向上することを課題として、重量平均分子量が6000〜50000のポリエチレングリコールとナフタレンスルホン酸ホルムアルデヒド縮合物からなるコンクリート混和剤が記載されている。   Patent Document 3 describes a concrete admixture composed of polyethylene glycol having a weight average molecular weight of 6000 to 50000 and a naphthalenesulfonic acid formaldehyde condensate for the purpose of improving high fluidity and material separation resistance. ing.

特開昭60−161365公報JP-A-60-161365 米国特許第4792360号明細書U.S. Pat. No. 4,792,360 特開平5−246744公報JP-A-5-246744

水硬性組成物に用いられる分散剤には、経時的な水硬性組成物の分散性の低下や粘性の増加を適度に抑えて作業性を良好に維持できることが要求される。特許文献1、2は流動性等の作業性の向上に効果があるとされているが、コンクリートの高強度化に伴って水セメント比(W/C)が50以下のコンクリートが多く用いられるようになってきており、分散性低下の抑制と作業性において更なる改善が望まれる。   The dispersant used in the hydraulic composition is required to maintain good workability by appropriately suppressing a decrease in the dispersibility of the hydraulic composition over time and an increase in viscosity. Although Patent Documents 1 and 2 are said to be effective in improving workability such as fluidity, concrete having a water-cement ratio (W / C) of 50 or less is often used with increasing strength of concrete. Therefore, further improvement in suppression of dispersibility and workability is desired.

本発明の課題は、経時的な水硬性組成物の分散性の低下と粘性の増加を抑制して作業性を改善できる水硬性組成物用分散剤を提供することにある。   The subject of this invention is providing the dispersing agent for hydraulic compositions which can improve the workability | operativity by suppressing the fall of the dispersibility of a hydraulic composition and a viscosity increase with time.

本発明は、下記式(1)で表される単量体由来の構成単位を70重量%以上含む構成単位からなる重合体(A)と、ナフタレンスルホン酸ホルムアルデヒド縮合物(B)と、ポリアルキレングリコール(C)とを含有する水硬性組成物用分散剤に関する。
2C=CHCOOCH2CH2OH (1)
The present invention relates to a polymer (A) comprising a structural unit containing 70% by weight or more of a structural unit derived from a monomer represented by the following formula (1), a naphthalenesulfonic acid formaldehyde condensate (B), a polyalkylene The present invention relates to a dispersant for a hydraulic composition containing glycol (C).
H 2 C═CHCOOCH 2 CH 2 OH (1)

また、本発明は、上記本発明の水硬性組成物用分散剤と、水硬性粉体と、水とを含有する水硬性組成物に関する。   Moreover, this invention relates to the hydraulic composition containing the dispersing agent for hydraulic compositions of the said invention, hydraulic powder, and water.

本発明によれば、経時的な水硬性組成物の分散性の低下と粘性の増加を抑制して作業性を改善できる水硬性組成物用分散剤が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the dispersing agent for hydraulic compositions which can suppress the fall of the dispersibility of a hydraulic composition and a viscosity increase with time, and can improve workability | operativity is provided.

本発明の水硬性組成物用分散剤は、上記式(1)で表される単量体由来の構成単位を70重量%以上含む構成単位からなる重合体(A)〔以下、(A)成分という〕と、ナフタレンスルホン酸ホルムアルデヒド縮合物(B)〔以下、(B)成分という〕と、ポリアルキレングリコール(C)〔以下、(C)成分という〕とを含有する。   The dispersant for a hydraulic composition of the present invention is a polymer (A) [hereinafter referred to as component (A) comprising a structural unit containing 70% by weight or more of a structural unit derived from the monomer represented by the above formula (1). Naphthalenesulfonic acid formaldehyde condensate (B) [hereinafter referred to as component (B)] and polyalkylene glycol (C) [hereinafter referred to as component (C)].

<(A)成分>
(A)成分は、構成単位の70重量%以上が上記式(1)で表される単量体〔以下、単量体(1)という〕由来の構成単位である重合体である。この構成単位とは以下の構造のものをいう。
<(A) component>
Component (A) is a polymer in which 70% by weight or more of the structural unit is a structural unit derived from the monomer represented by the above formula (1) [hereinafter referred to as monomer (1)]. This structural unit means the following structure.

Figure 0005350135
Figure 0005350135

(A)成分は構成単位の75重量%以上、更に80重量%以上、更に85重量%以上、より更に90重量%以上が単量体(1)由来の構成単位であることが好ましい。構成単位中の単量体(1)由来の構成単位の割合がこの範囲にある(A)成分を(B)成分と併用することで、分散性の経時的な低下を効果的に抑制することができる。なお、(A)成分の構成単位中に中和された酸又は塩基の塩がある場合は、その構成単位は、中和前の酸型又は塩基型の重量で換算して、式(1)で表される単量体由来の構成単位の重量%を計算する。   Component (A) is preferably 75% by weight or more, more preferably 80% by weight or more, more preferably 85% by weight or more, and still more preferably 90% by weight or more of the structural unit derived from monomer (1). By using together the component (A) in which the proportion of the structural unit derived from the monomer (1) in the structural unit is in this range together with the component (B), it is possible to effectively suppress a decrease in dispersibility over time. Can do. In addition, when there exists the salt of the acid or base neutralized in the structural unit of (A) component, the structural unit is converted with the weight of the acid type or base type before neutralization, Formula (1) The weight% of the structural unit derived from the monomer represented by is calculated.

(A)成分の重量平均分子量は1000〜100000が好ましく、より好ましくは3000〜80000であり、さらに好ましくは5000〜60000である。この範囲の重量平均分子量を有する(A)成分は、水溶液の粘度が小さく、有効成分の濃度が高くかつ取り扱いやすい一液型の水硬性組成物分散剤を製造するのに好適である。(A)成分の重量平均分子量は、サイズ排除クロマトグラフィー(GPC)を使用し、RI検出器並びに検量物質としてポリスチレンを使用することにより測定されたものである。測定条件は後述の比較合成例1の通りである。   (A) As for the weight average molecular weight of a component, 1000-100,000 are preferable, More preferably, it is 3000-80000, More preferably, it is 5000-60000. The component (A) having a weight average molecular weight within this range is suitable for producing a one-component hydraulic composition dispersant in which the viscosity of the aqueous solution is small, the concentration of the active ingredient is high, and it is easy to handle. The weight average molecular weight of the component (A) is measured by using size exclusion chromatography (GPC) and using polystyrene as a RI detector and a calibration substance. The measurement conditions are as described in Comparative Synthesis Example 1 described later.

(A)成分は公知の重合方法で得ることができ、工業的な観点から重合濃度10重量%以上であることが好ましい。重合方法は、ラジカル重合、リビングラジカル重合、イオン重合等の方法で行うことが可能であり、好ましくはラジカル重合する方法である。重合溶媒としては、モノマーが可溶であれば限定されないが、水、メチルアルコール、エチルアルコール、イソプロピルアルコール、ベンゼン、トルエン、キシレン、シクロヘキサン、n−ヘキサン、酢酸エチル、アセトン、メチルエチルケトン等が挙げられ、水、メチルアルコール、エチルアルコール、イソプロピルアルコールが好ましい。   The component (A) can be obtained by a known polymerization method, and the polymerization concentration is preferably 10% by weight or more from an industrial viewpoint. The polymerization method can be performed by a method such as radical polymerization, living radical polymerization, or ionic polymerization, and is preferably a radical polymerization method. The polymerization solvent is not limited as long as the monomer is soluble, but includes water, methyl alcohol, ethyl alcohol, isopropyl alcohol, benzene, toluene, xylene, cyclohexane, n-hexane, ethyl acetate, acetone, methyl ethyl ketone, and the like. Water, methyl alcohol, ethyl alcohol and isopropyl alcohol are preferred.

重合開始剤としてはアゾ系開始剤、パーオキシド系開始剤、マクロ開始剤、レドックス系開始剤等の公知の開始剤を使用してよい。水を含む重合溶媒の場合、重合開始剤としては、過硫酸のアンモニウム塩又はアルカリ金属塩あるいは過酸化水素、2、2’−アゾビス(2−アミジノプロパン)ジヒドロクロライド、2、2’−アゾビス(2−メチルプロピオンアミド)ジハイドレート等の水溶性アゾ化合物が挙げられる。水を含まない重合溶媒の場合、重合開始剤としては、ベンゾイルパーオキシド、ラウロイルパーオキシド等のパーオキシド、アゾビスイソブチロニトリル等の脂肪族アゾ化合物等が挙げられる。   As the polymerization initiator, known initiators such as an azo initiator, a peroxide initiator, a macro initiator, and a redox initiator may be used. In the case of a polymerization solvent containing water, as a polymerization initiator, an ammonium salt or alkali metal salt of persulfuric acid, hydrogen peroxide, 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis ( Water-soluble azo compounds such as 2-methylpropionamido) dihydrate. In the case of a polymerization solvent not containing water, examples of the polymerization initiator include peroxides such as benzoyl peroxide and lauroyl peroxide, and aliphatic azo compounds such as azobisisobutyronitrile.

さらに必用に応じて分子量調整の目的で連鎖移動剤を使用してもよい。連鎖移動剤としては、チオール系連鎖移動剤、ハロゲン化炭化水素系連鎖移動剤等が挙げられ、チオール系連鎖移動剤が好ましい。   Furthermore, you may use a chain transfer agent for the purpose of molecular weight adjustment as needed. Examples of chain transfer agents include thiol chain transfer agents and halogenated hydrocarbon chain transfer agents, and thiol chain transfer agents are preferred.

チオール系連鎖移動剤としては、−SH基を有するものが好ましく、特に一般式HS−R−Eg(ただし、式中Rは炭素原子数1〜4の炭化水素由来の基を表し、Eは−OH、−COOM、−COOR’または−SO3M基を表し、Mは水素原子、一価金属、二価金属、アンモニウム基または有機アミン基を表し、R’は炭素原子数1〜10のアルキル基を表わし、gは1〜2の整数を表す。)で表されるものが好ましく、例えば、メルカプトエタノール、チオグリセロール、チオグリコール酸、2−メルカプトプロピオン酸、3−メルカプトプロピオン酸、チオリンゴ酸、チオグリコール酸オクチル、3−メルカプトプロピオン酸オクチル等が挙げられ、単量体1〜3を含む共重合反応での連鎖移動効果の観点から、メルカプトプロピオン酸、メルカプトエタノールが好ましく、メルカプトプロピオン酸が更に好ましい。これらの1種または2種以上を用いることができる。 As the thiol chain transfer agent, those having a —SH group are preferable, and in particular, the general formula HS—R—Eg (wherein R represents a hydrocarbon-derived group having 1 to 4 carbon atoms, and E is − OH, —COOM, —COOR ′ or —SO 3 M group, M represents a hydrogen atom, monovalent metal, divalent metal, ammonium group or organic amine group, and R ′ represents an alkyl having 1 to 10 carbon atoms. In which g represents an integer of 1 to 2, for example, mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thiomalic acid, Examples include octyl thioglycolate, octyl 3-mercaptopropionate, and the like from the viewpoint of chain transfer effect in a copolymerization reaction including monomers 1 to 3. Mercaptoethanol are preferable, more preferably mercaptopropionic acid. These 1 type (s) or 2 or more types can be used.

ハロゲン化炭化水素系連鎖移動剤としては、四塩化炭素、四臭化炭素などが挙げられる。   Examples of the halogenated hydrocarbon chain transfer agent include carbon tetrachloride and carbon tetrabromide.

その他の連鎖移動剤としては、α−メチルスチレンダイマー、ターピノーレン、α−テルピネン、γ−テルピネン、ジペンテン、2−アミノプロパン−1−オールなどを挙げることができる。連鎖移動剤は、1種又は2種以上を用いることができる。   Examples of other chain transfer agents include α-methylstyrene dimer, terpinolene, α-terpinene, γ-terpinene, dipentene, 2-aminopropan-1-ol and the like. A chain transfer agent can use 1 type (s) or 2 or more types.

重合温度については、特に限定されないが、好ましくは重合溶媒の沸点までの領域で制御すればよい。   The polymerization temperature is not particularly limited but is preferably controlled in a region up to the boiling point of the polymerization solvent.

(A)成分は、単量体(1)以外の単量体を構成単量体とすることができる。例えば、(i)(メタ)アクリル酸、クロトン酸等のモノカルボン酸又はそれらの塩(例えばアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、水酸基が置換されていてもよいモノ、ジ、トリアルキル(炭素数2〜8)アンモニウム塩)もしくはそれらのエステル(例えば単量体(1)以外のアクリル酸エステル、あるいはメタクリル酸エステル)が挙げられる。さらに、例えば、(ii)マレイン酸、イタコン酸、フマル酸等のジカルボン酸系単量体、又はその無水物もしくは塩(例えばアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、水酸基が置換されていてもよいモノ、ジ、トリアルキル(炭素数2〜8)アンモニウム塩)もしくはエステルが挙げられる。これらの中でも好ましくは(メタ)アクリル酸、マレイン酸、無水マレイン酸、更に好ましくは(メタ)アクリル酸又はこれらのアルカリ金属塩である。なお、(メタ)アクリル酸は、アクリル酸及び/又はメタクリル酸の意味である(以下同様)。   As the component (A), a monomer other than the monomer (1) can be used as a constituent monomer. For example, (i) monocarboxylic acids such as (meth) acrylic acid and crotonic acid or salts thereof (for example, alkali metal salts, alkaline earth metal salts, ammonium salts, mono-, di-, tri-alkyls in which hydroxyl groups may be substituted) Alkyl (C2-C8) ammonium salt) or esters thereof (for example, acrylic acid esters or methacrylic acid esters other than the monomer (1)). Further, for example, (ii) a dicarboxylic acid monomer such as maleic acid, itaconic acid, fumaric acid or the like, or an anhydride or salt thereof (for example, alkali metal salt, alkaline earth metal salt, ammonium salt, hydroxyl group is substituted) Mono, di, trialkyl (carbon number 2 to 8) ammonium salt) or ester may be mentioned. Among these, (meth) acrylic acid, maleic acid, and maleic anhydride are preferable, and (meth) acrylic acid or alkali metal salts thereof are more preferable. In addition, (meth) acrylic acid means acrylic acid and / or methacrylic acid (hereinafter the same).

(A)成分は、水溶液や固体粉末として用いることができる。固形分濃度は、1〜100重量%で選択して用いることができるが、(A)成分は、(B)成分と混合して本発明の分散剤を調製する観点から、固形分濃度は20〜100重量%が好ましく、30〜100重量%が好ましい。また、(A)成分を合成して水溶液として得る観点から、10〜70重量%が好ましく、15〜60重量%がより好ましく、20〜50重量%がより好ましい。   The component (A) can be used as an aqueous solution or a solid powder. The solid content concentration can be selected and used at 1 to 100% by weight. However, from the viewpoint of preparing the dispersant of the present invention by mixing the component (A) with the component (B), the solid content concentration is 20%. -100 wt% is preferable, and 30-100 wt% is preferable. Moreover, from a viewpoint which synthesize | combines (A) component and obtains as aqueous solution, 10 to 70 weight% is preferable, 15 to 60 weight% is more preferable, and 20 to 50 weight% is more preferable.

<(B)成分>
(B)成分は、ナフタレンスルホン酸ホルムアルデヒド縮合物であり、重量平均分子量は200000以下が好ましく、100000以下がより好ましく、80000以下が更に好ましく、50000以下がより好ましい。また、重量平均分子量は1000以上が好ましく、3000以上がより好ましく、4000以上がさらに好ましく、5000以上がより好ましい。したがって、1000〜200000が好ましく、3000〜100000がより好ましく、4000〜80000が更に好ましく、5000〜50000がより更に好ましい。(B)成分のナフタレンスルホン酸ホルムアルデヒド縮合物は酸の状態あるいは中和物であってもよい。
<(B) component>
The component (B) is a naphthalenesulfonic acid formaldehyde condensate, and the weight average molecular weight is preferably 200000 or less, more preferably 100000 or less, further preferably 80000 or less, and more preferably 50000 or less. Further, the weight average molecular weight is preferably 1000 or more, more preferably 3000 or more, further preferably 4000 or more, and more preferably 5000 or more. Therefore, 1000-200000 are preferable, 3000-100000 are more preferable, 4000-80000 are still more preferable, 5000-50000 are still more preferable. The (B) component naphthalenesulfonic acid formaldehyde condensate may be in an acid state or a neutralized product.

ナフタレンスルホン酸ホルムアルデヒド縮合物の製造方法は、例えば、ナフタレンスルホン酸とホルムアルデヒドとを縮合反応により縮合物を得る方法が挙げられる。前記縮合物の中和を行っても良い。また、中和で副生する水不溶解物を除去しても良い。具体的には、ナフタレンスルホン酸を得るために、ナフタレン1モルに対して、硫酸1.2〜1.4モルを用い、150〜165℃で2〜5時間反応させてスルホン化物を得る。次いで、該スルホン化物1モルに対して、ホルムアルデヒドとして0.95〜0.99モルとなるようにホルマリンを85〜95℃で、3〜6時間かけて滴下し、滴下後95〜105℃で縮合反応を行う。要すれば縮合物に、水と中和剤を加え、80〜95℃で中和工程を行う。中和剤は、ナフタレンスルホン酸と未反応硫酸に対してそれぞれ1.0〜1.1モル倍添加することが好ましい。また中和による生じる水不溶解物を除去、好ましくは濾過により分離しても良い。これらの工程によって、ナフタレンスルホン酸ホルムアルデヒド縮合物水溶性塩の水溶液が得られる。この水溶液はそのまま或いは他の成分を適宜添加して(B)成分して使用することができる。該水溶液の固形分濃度は用途にもよるが、(B)成分としては、水硬性粉体の分散性能と適度な水溶液の粘度による取り扱い性の観点から、0.3〜50重量%が好ましく、5〜45重量%がより好ましく、30〜45重量%が更に好ましい。更に必要に応じて該水溶液を乾燥、粉末化して粉末状のナフタレンスルホン酸ホルムアルデヒド縮合物水溶性塩を得ることができ、これを粉末状の(B)成分として用いてもよい。乾燥、粉末化は、噴霧乾燥、ドラム乾燥、凍結乾燥等により行うことができる。   Examples of the method for producing a naphthalenesulfonic acid formaldehyde condensate include a method of obtaining a condensate by a condensation reaction of naphthalenesulfonic acid and formaldehyde. You may neutralize the said condensate. Moreover, you may remove the water insoluble matter byproduced by neutralization. Specifically, in order to obtain naphthalenesulfonic acid, 1.2 to 1.4 mol of sulfuric acid is used with respect to 1 mol of naphthalene and reacted at 150 to 165 ° C. for 2 to 5 hours to obtain a sulfonated product. Next, formalin is added dropwise at 85 to 95 ° C. over 3 to 6 hours to form 0.95 to 0.99 mol as formaldehyde with respect to 1 mol of the sulfonated product, and condensed at 95 to 105 ° C. after the addition. Perform the reaction. If necessary, water and a neutralizing agent are added to the condensate, and a neutralization step is performed at 80 to 95 ° C. The neutralizing agent is preferably added in an amount of 1.0 to 1.1 moles per each of naphthalenesulfonic acid and unreacted sulfuric acid. Further, water-insoluble matter generated by neutralization may be removed, preferably separated by filtration. By these steps, an aqueous solution of a naphthalenesulfonic acid formaldehyde condensate water-soluble salt is obtained. This aqueous solution can be used as it is or as a component (B) by appropriately adding other components. Although the solid content concentration of the aqueous solution depends on the use, the component (B) is preferably 0.3 to 50% by weight from the viewpoint of the dispersion performance of the hydraulic powder and the handleability due to the viscosity of an appropriate aqueous solution, 5 to 45% by weight is more preferable, and 30 to 45% by weight is still more preferable. Further, if necessary, the aqueous solution can be dried and powdered to obtain a powdery naphthalenesulfonic acid formaldehyde condensate water-soluble salt, which may be used as the powdery component (B). Drying and powdering can be performed by spray drying, drum drying, freeze drying, or the like.

<(C)成分>
(C)成分は、ポリアルキレングリコールであり、ポリエチレングリコール及びポリプロピレングリコール等が挙げられ、水硬性粉体及び水との混合性の観点からポリエチレングリコールが好ましい。(C)成分の数平均分子量は、水硬性組成物の分散性の低下の抑制と水硬性組成物の粘性増加の抑制の観点から、5000〜50000が好ましく、10000〜40000がより好ましく、15000〜40000が更に好ましい。数平均分子量が5000以上で分散性低下の抑制に優れる傾向がある。数平均分子量が50000以下で水硬性組成物の粘性が低く作業性に優れる傾向がある。アルキレングリコールとしては、炭素数2〜6のアルキレングリコールが挙げられ、エチレングリコール及びプロピレングリコールが好ましく、エチレングリコールがより好ましい。また、(C)成分は、複数のアルキレングリコールの共重合体や、末端が変性されたアルキレングリコールであってもよいが、末端の変性は無い方が好ましい。例えば、複数のアルキレングリコールの共重合体としてエチレングリコールとプロピレングリコールからなる重合体、エチレングリコールとプロピレングリコールとブチレングリコールからなる重合体等が挙げられる。末端が変性されたアルキレングリコールとして、アルコキシポリエチレンレングリコール等の炭素数が1〜8の直鎖又は分岐鎖のアルコキシポリアルキレングリコールが挙げられる。
<(C) component>
Component (C) is polyalkylene glycol, and examples thereof include polyethylene glycol and polypropylene glycol, and polyethylene glycol is preferable from the viewpoint of mixing with hydraulic powder and water. The number average molecular weight of the component (C) is preferably 5000 to 50000, more preferably 10000 to 40000, more preferably 15000, from the viewpoint of suppressing the decrease in dispersibility of the hydraulic composition and suppressing the increase in viscosity of the hydraulic composition. 40,000 is more preferable. The number average molecular weight is 5000 or more and tends to be excellent in suppressing the decrease in dispersibility. The number average molecular weight is 50000 or less, and the hydraulic composition tends to have low viscosity and excellent workability. As alkylene glycol, C2-C6 alkylene glycol is mentioned, Ethylene glycol and propylene glycol are preferable and ethylene glycol is more preferable. Further, the component (C) may be a copolymer of a plurality of alkylene glycols or an alkylene glycol having a terminal modified, but it is preferable that the terminal is not modified. Examples of the copolymer of a plurality of alkylene glycols include a polymer composed of ethylene glycol and propylene glycol, and a polymer composed of ethylene glycol, propylene glycol and butylene glycol. Examples of the alkylene glycol having a terminal modified include linear or branched alkoxy polyalkylene glycols having 1 to 8 carbon atoms such as alkoxy polyethylene glycol.

<水硬性組成物用分散剤>
本発明の水硬性組成物用分散剤は、(A)成分と(B)成分の重量比(A)/(B)が1/99〜75/25であることが好ましい。(A)成分と(B)成分の混合性と水硬性組成物の分散性の観点から、1/99〜50/50であることがより好ましく、1/99〜45/55であることが更に好ましく、1/99〜30/70であることが更により好ましい。更に水硬性組成物の経時的な分散性低下の抑制、即ち保持性の観点から、更により好ましくは5/95〜40/60、更により好ましくは5/95〜30/70である。この範囲の重量比は、分散性と分散保持の観点、更には水溶液として均一で粘度が抑制された取り扱い性の良い一液型の製剤が得られる観点から好ましい。分散性と保持性が優れる理由として(B)成分が初期の分散性に寄与し、その後(A)成分が(A)成分単独では効果の低い量であっても(B)成分との相乗効果により分散性を発現し保持性に優れるものと推定される。
<Dispersant for hydraulic composition>
In the dispersant for a hydraulic composition of the present invention, the weight ratio (A) / (B) of the component (A) to the component (B) is preferably 1/99 to 75/25. From the viewpoint of the mixing property of the component (A) and the component (B) and the dispersibility of the hydraulic composition, it is more preferably 1/99 to 50/50, and further preferably 1/99 to 45/55. Preferably, it is still more preferable that it is 1 / 99-30 / 70. Further, from the viewpoint of suppressing the decrease in dispersibility over time of the hydraulic composition, that is, from the viewpoint of retention, it is more preferably 5/95 to 40/60, and even more preferably 5/95 to 30/70. The weight ratio in this range is preferable from the viewpoints of dispersibility and dispersion retention, and from the viewpoint of obtaining a one-part preparation having a uniform and stable handling property as an aqueous solution. (B) component contributes to the initial dispersibility as a reason for excellent dispersibility and retention, and then (A) component has a synergistic effect with component (B) even if component (A) is an amount that is less effective with component (A) alone Therefore, it is presumed that it exhibits dispersibility and is excellent in retention.

(A)/(B)重量比は、(A)成分中の式(1)で表される単量体由来の構成単位が80重量%以上の場合は好ましくは1/99〜45/55であり、85重量%以上の場合は好ましくは1/99〜50/50、90重量%以上の場合は好ましくは1/99〜75/25である。   The (A) / (B) weight ratio is preferably 1/99 to 45/55 when the structural unit derived from the monomer represented by the formula (1) in the component (A) is 80% by weight or more. In the case of 85% by weight or more, preferably 1/99 to 50/50, and in the case of 90% by weight or more, preferably 1/99 to 75/25.

本発明の水硬性組成物用分散剤は、水硬性組成物の分散性の低下の抑制の観点から、(A)成分と(C)成分の重量比が、(A)/(C)で60/40〜98/2であることが好ましく、70/30〜95/5であることがより好ましい。また、(B)成分と(C)成分の重量比が、(B)/(C)で99/1〜70/30あることが好ましく、99/1〜80/20であることがより好ましい。(A)成分と(B)成分と(C)成分は、分散性の低下の抑制の観点から、これらの合計100重量部に対して、(A)成分が2〜50重量部、(B)成分が40〜97.8重量部、(C)成分が0.2〜15重量部が好ましく、(A)成分が4.5〜25重量部、(B)成分が70〜95重量部、(C)成分が0.5〜5重量部がより好ましい。   In the dispersant for hydraulic composition of the present invention, the weight ratio of the component (A) to the component (C) is 60 in terms of (A) / (C) from the viewpoint of suppressing the decrease in dispersibility of the hydraulic composition. / 40 to 98/2 is preferable, and 70/30 to 95/5 is more preferable. Moreover, it is preferable that the weight ratio of (B) component and (C) component is 99 / 1-70 / 30 by (B) / (C), and it is more preferable that it is 99 / 1-80 / 20. (A) component, (B) component, and (C) component are 2-50 weight part of (A) component with respect to 100 weight part of these total from a viewpoint of suppression of a dispersible fall, (B) The component is preferably 40 to 97.8 parts by weight, the component (C) is preferably 0.2 to 15 parts by weight, the component (A) is 4.5 to 25 parts by weight, the component (B) is 70 to 95 parts by weight, The component (C) is more preferably 0.5 to 5 parts by weight.

本発明の水硬性組成物用分散剤は、粉体、粒状等の固体状、また、溶媒に溶解又は分散させ、液体状、ペースト状等で用いることができる。なかでも、均一溶液である液体状が好ましい。前記液体状の場合は、(A)成分と(B)成分と(C)成分とを含有する溶液、更に水溶液が好ましい。水溶液として用いる場合、当該水溶液中の(A)成分の含有量は好ましくは0.1〜50重量%、より好ましくは3〜20重量%、(B)成分の含有量は好ましくは0.3〜50重量%、より好ましくは5〜45重量%、(C)成分の含有量は好ましくは0.02〜15重量%、より好ましくは1〜5重量%とすることができる。前記水溶液の場合、水の含有量は30〜80重量%が好ましく、40〜70重量%がより好ましい。また、(A)成分と(B)成分と(C)成分の合計量は、20〜70重量%が好ましく、30〜60重量%がより好ましい。液体状で用いる場合、溶媒として、水以外に有機溶剤を用いることができる。   The dispersant for a hydraulic composition of the present invention can be used in the form of a solid such as powder or granules, or in the form of a liquid or paste by dissolving or dispersing in a solvent. Especially, the liquid form which is a uniform solution is preferable. In the case of the liquid form, a solution containing the component (A), the component (B) and the component (C), and further an aqueous solution are preferable. When used as an aqueous solution, the content of the component (A) in the aqueous solution is preferably 0.1 to 50% by weight, more preferably 3 to 20% by weight, and the content of the component (B) is preferably 0.3 to 50% by weight, more preferably 5 to 45% by weight, and the content of component (C) can be preferably 0.02 to 15% by weight, more preferably 1 to 5% by weight. In the case of the aqueous solution, the water content is preferably 30 to 80% by weight, more preferably 40 to 70% by weight. Moreover, 20-70 weight% is preferable and, as for the total amount of (A) component, (B) component, and (C) component, 30-60 weight% is more preferable. When used in a liquid state, an organic solvent other than water can be used as the solvent.

本発明の水硬性組成物用分散剤は、必用に応じて(A)成分と(B)成分と(C)成分以外の分散剤、空気連行剤(AE剤)、消泡剤、流動化剤、増粘剤、早強剤、遅延剤等の薬剤を併用することも可能である。   The dispersant for a hydraulic composition of the present invention includes a dispersant other than the component (A), the component (B), and the component (C), an air entraining agent (AE agent), an antifoaming agent, and a fluidizing agent. It is also possible to use drugs such as thickeners, early strengthening agents, and retarding agents in combination.

<水硬性組成物>
本発明の水硬性組成物は、本発明の水硬性組成物用分散剤と、水硬性粉体と、水とを含有する。
<Hydraulic composition>
The hydraulic composition of the present invention contains the dispersant for a hydraulic composition of the present invention, a hydraulic powder, and water.

本発明の水硬性組成物に使用される水硬性粉体とは、水和反応により硬化する物性を有する粉体のことであり、セメント、石膏等が挙げられる。好ましくは普通ポルトランドセメント、ビーライトセメント、中庸熱セメント、早強セメント、超早強セメント、耐硫酸セメント等のセメントであり、またこれらに高炉スラグ、フライアッシュ、シリカフューム、石粉(炭酸カルシウム粉末)等が添加されたものでもよい。本発明の水硬性組成物には、骨材等を含有することもできる。なお、これらの粉体に骨材として、砂、砂及び砂利が添加されて最終的に得られる水硬性組成物が、一般にそれぞれモルタル、コンクリートなどと呼ばれている。本発明の水硬性組成物は、生コンクリート、コンクリート振動製品分野の外、セルフレベリング用、耐火物用、プラスター用、石膏スラリー用、軽量又は重量コンクリート用、AE用、補修用、プレパックド用、トレーミー用、グラウト用、地盤改良用、寒中用等の種々のコンクリートの何れの分野においても有用である。   The hydraulic powder used in the hydraulic composition of the present invention is a powder having physical properties that are cured by a hydration reaction, and examples thereof include cement and gypsum. Preferred are ordinary Portland cement, Belite cement, moderate heat cement, early strong cement, super early strong cement, sulfuric acid resistant cement, etc., and blast furnace slag, fly ash, silica fume, stone powder (calcium carbonate powder), etc. May be added. The hydraulic composition of the present invention can also contain aggregates and the like. In addition, the hydraulic composition finally obtained by adding sand, sand and gravel as aggregates to these powders is generally called mortar, concrete, etc., respectively. The hydraulic composition of the present invention is used in the field of ready-mixed concrete, concrete vibration products, self-leveling, refractory, plaster, gypsum slurry, lightweight or heavy concrete, AE, repair, pre-packed, tray It is useful in any field of various concrete such as for grouting, for ground improvement, for cold weather.

本発明の水硬性組成物は、水/水硬性粉体比〔スラリー中の水と水硬性粉体の重量百分率(重量%)、通常W/Pと略記されるが、粉体がセメントの場合、W/Cと略記されることがある。〕は、5〜500重量%、更に10〜200重量%、更に10〜100重量%とすることができる。   The hydraulic composition of the present invention has a water / hydraulic powder ratio [weight percentage (% by weight) of water and hydraulic powder in the slurry, usually abbreviated as W / P. , W / C may be abbreviated. ] Can be 5 to 500% by weight, further 10 to 200% by weight, and further 10 to 100% by weight.

水硬性組成物において、本発明の水硬性組成物用分散剤は、水硬性粉体100重量部に対して(A)成分と(B)成分と(C)成分の合計で0.001〜10重量部、更に0.01〜5重量部、更に0.05〜1重量部の比率(固形分換算)で添加されることが好ましい。また、(A)成分は、水硬性粉体100重量部に対して0.0005〜4.5重量部、更に0.005〜2.25重量部の比率(固形分換算)で添加されることが好ましい。また、(B)成分は、水硬性粉体100重量部に対して0.0055〜9.5重量部、更に0.0055〜4.75重量部の比率(固形分換算)で添加されることが好ましい。(C)成分は、水硬性粉体100重量部に対して0.0001〜1.2重量部、更に0.0001〜0.55重量部の比率(固形分換算)で添加されることが好ましい。   In the hydraulic composition, the dispersant for the hydraulic composition of the present invention is 0.001 to 10 in total of the component (A), the component (B), and the component (C) with respect to 100 parts by weight of the hydraulic powder. It is preferably added in a ratio (in terms of solid content) of parts by weight, further 0.01 to 5 parts by weight, and further 0.05 to 1 part by weight. Further, the component (A) is added in a ratio (in terms of solid content) of 0.0005 to 4.5 parts by weight and further 0.005 to 2.25 parts by weight with respect to 100 parts by weight of the hydraulic powder. Is preferred. In addition, the component (B) is added in a ratio (in terms of solid content) of 0.0055 to 9.5 parts by weight and further 0.0055 to 4.75 parts by weight with respect to 100 parts by weight of the hydraulic powder. Is preferred. The component (C) is preferably added at a ratio (in terms of solid content) of 0.0001 to 1.2 parts by weight, and further 0.0001 to 0.55 parts by weight with respect to 100 parts by weight of the hydraulic powder. .

本発明に係る(A)成分と(B)成分と(C)成分とを、水硬性粉体と水とを含有する組成物に添加することで、当該組成物中での水硬性粉体の分散性を向上し、分散性の低下と粘性の増加を抑制することができる。そのため、経時的な分散性の低下の少ない作業性に優れた水硬性組成物を得ることができる。(A)成分と(B)成分と(C)成分の添加は、3者を予め混合した後、水硬性粉体と水とを含有する組成物に添加しても良いし、(A)成分と(B)成分の混合物を調製し、(C)成分と共に水硬性粉体と水とを含有する組成物に添加しても良いし、(A)成分と(B)成分と(C)成分のそれぞれを水硬性粉体と水とを含有する組成物に別々に添加しても良い。また、各成分の混合性の観点から(A)成分と(C)成分の混合物を調整し、(B)成分と共に水硬性粉体と水とを含有する組成物に添加することも好ましい。添加の容易性の観点から、(A)成分と(B)成分と(C)成分の含有する混合物を水硬性粉体と水とを含有する組成物に添加することが好ましい。(A)成分と(B)成分と(C)成分を別々に添加する場合も、水硬性組成物の分散性と経時的な分散性低下の抑制の観点から、前記の(A)成分と(B)成分と(C)成分の重量比を満たすことが好ましい。   By adding the component (A), the component (B), and the component (C) according to the present invention to a composition containing a hydraulic powder and water, the hydraulic powder in the composition Dispersibility can be improved, and a decrease in dispersibility and an increase in viscosity can be suppressed. Therefore, it is possible to obtain a hydraulic composition excellent in workability with little deterioration in dispersibility over time. Component (A), component (B) and component (C) may be added to a composition containing hydraulic powder and water after mixing the three components in advance, and component (A) And (B) component may be prepared and added to a composition containing hydraulic powder and water together with (C) component, or (A) component, (B) component and (C) component Each of these may be added separately to a composition containing hydraulic powder and water. Moreover, it is also preferable to adjust the mixture of (A) component and (C) component from a viewpoint of the mixing property of each component, and to add to the composition containing hydraulic powder and water with (B) component. From the viewpoint of ease of addition, it is preferable to add the mixture containing the component (A), the component (B), and the component (C) to the composition containing hydraulic powder and water. In the case where the component (A), the component (B), and the component (C) are added separately, from the viewpoint of suppressing dispersibility of the hydraulic composition and deterioration of dispersibility over time, the component (A) and ( It is preferable to satisfy the weight ratio of the component B) and the component (C).

〔(A)成分〕
(A)成分及び比較の重合体として以下の比較合成例及び合成例の重合体を用いた。
[Component (A)]
As the component (A) and the comparative polymer, the following comparative synthetic examples and synthetic polymers were used.

<合成原料>
・ヒドロキシエチルアクリレート:Aldrich(有効分96%)〔単量体(1)〕
・アクリル酸:Aldrich(有効分99%)
・アクリル酸メチル:和光純薬工業(株)(有効分98%)
・アクリル酸エチル:和光純薬工業(株)(有効分97%)
・メタリルスルホン酸ナトリウム:和光純薬工業(株)(有効分98%)
・メルカプトプロピオン酸:Aldrich
・ペルオキソ二硫酸アンモニウム:和光純薬工業(株)
・V−65:2,2’−アゾビス(2,4−ジメチルバレロニトリル)、和光純薬工業(株)
<Synthetic raw material>
Hydroxyethyl acrylate: Aldrich (96% effective content) [monomer (1)]
Acrylic acid: Aldrich (99% effective)
-Methyl acrylate: Wako Pure Chemical Industries, Ltd. (effective portion 98%)
-Ethyl acrylate: Wako Pure Chemical Industries, Ltd. (97% effective)
・ Sodium methallylsulfonate: Wako Pure Chemical Industries, Ltd. (effective portion 98%)
・ Mercaptopropionic acid: Aldrich
・ Ammonium peroxodisulfate: Wako Pure Chemical Industries, Ltd.
V-65: 2,2′-azobis (2,4-dimethylvaleronitrile), Wako Pure Chemical Industries, Ltd.

<合成例>
比較合成例1
反応容器の4つ口フラスコにイオン交換水82.5gを入れ脱気後窒素雰囲気下にした。アクリル酸(以下、AAと表記する)33.4gとヒドロキシエチルアクリレート(以下、HEAと表記する)69.7gを混合し、単量体液を調製した。ペルオキソ二硫酸アンモニウム1.42gをイオン交換水28.3gに溶解し開始剤水溶液(1)を調製した。3−メルカプトプロピオン酸2.2gをイオン交換水25gに溶解し連鎖移動剤水溶液を調製した。反応容器を80℃にして単量体液、開始剤水溶液(1)及び連鎖移動剤水溶液を同時に90分かけて滴下した。その後、ペルオキソ二硫酸アンモニウム0.4gをイオン交換水7.1gに溶解し開始剤水溶液(2)を調製し、30分掛けて滴下し、更に80℃で60分間反応させた。反応終了後に常温にして、48%水酸化ナトリウム水溶液で中和し、固形分濃度41重量%のpH5の重合体a−1の水溶液を得た。
仕込み組成比:
AA/HEA=32.4/67.6(重量比)(HEA67.6重量%)
AA/HEA=43.6/56.4(モル比)
重量平均分子量:45300
AA:反応率98%(HPLC)
HEA:反応率99%(HPLC)
分子量の測定は以下のGPC条件で行った。
[GPC条件]
標準物質:ポリスチレン換算
カラム:G4000PWXL+G2500PWXL(東ソー)
溶離液:0.2Mリン酸バッファー/アセトニトリル=9/1
流量:1.0mL/分
カラム温度:40℃
検出器:RI
<Synthesis example>
Comparative Synthesis Example 1
82.5 g of ion exchange water was put into a four-necked flask of the reaction vessel, and after deaeration, the atmosphere was changed to nitrogen. Acrylic acid (hereinafter referred to as AA) 33.4 g and hydroxyethyl acrylate (hereinafter referred to as HEA) 69.7 g were mixed to prepare a monomer solution. An aqueous initiator solution (1) was prepared by dissolving 1.42 g of ammonium peroxodisulfate in 28.3 g of ion-exchanged water. An aqueous chain transfer agent solution was prepared by dissolving 2.2 g of 3-mercaptopropionic acid in 25 g of ion-exchanged water. The reaction vessel was brought to 80 ° C., and the monomer solution, the initiator aqueous solution (1) and the chain transfer agent aqueous solution were simultaneously added dropwise over 90 minutes. Thereafter, 0.4 g of ammonium peroxodisulfate was dissolved in 7.1 g of ion-exchanged water to prepare an initiator aqueous solution (2), which was added dropwise over 30 minutes, and further reacted at 80 ° C. for 60 minutes. After completion of the reaction, the reaction solution was brought to room temperature and neutralized with a 48% aqueous sodium hydroxide solution to obtain an aqueous solution of polymer a-1 having a solid content of 41% by weight and a pH of 5.
Preparation composition ratio:
AA / HEA = 32.4 / 67.6 (weight ratio) (HEA 67.6% by weight)
AA / HEA = 43.6 / 56.4 (molar ratio)
Weight average molecular weight: 45300
AA: reaction rate 98% (HPLC)
HEA: 99% reaction rate (HPLC)
The molecular weight was measured under the following GPC conditions.
[GPC conditions]
Standard material: Polystyrene conversion column: G4000PWXL + G2500PWXL (Tosoh)
Eluent: 0.2M phosphate buffer / acetonitrile = 9/1
Flow rate: 1.0 mL / min Column temperature: 40 ° C
Detector: RI

比較合成例2
反応容器の4つ口フラスコにイソプロピルアルコール(以下、IPAと表記する)158.5gを入れた。アクリル酸メチル66.7gからなる単量体液を準備した。V−65 1.2gとIPA38.1gとを混合した開始剤溶液(1)を調製した。3−メルカプトプロピオン酸0.8gをIPA25gと混合した連鎖移動剤溶液を調製した。反応容器を70℃にして単量体液、開始剤溶液(1)及び連鎖移動剤溶液を同時に60分かけて滴下した。その後、V−65 0.3gをIPA15gと混合し開始剤溶液(2)を調製し、30分掛けて滴下し、更に70℃で30分間反応させた。反応終了後、常温においてポリマーが析出して白濁したが、アセトンを加えて均一にし、溶媒を除去し、重合体a−2を得た。
仕込み組成比:アクリル酸メチル100モル%
重量平均分子量:4100
アクリル酸メチル:反応率94%(H−NMR)
分子量の測定は以下のGPC条件で行った。
[GPC条件]
標準物質:ポリスチレン換算
カラム: K804L+K804L
溶離液:1mmol/LファーミンDM20(花王(株):ジメチルラウリルアミン)/塩化メチル
流量:1.0ml/分
カラム温度:40℃
検出器:RI
Comparative Synthesis Example 2
158.5 g of isopropyl alcohol (hereinafter referred to as IPA) was placed in a four-necked flask of the reaction vessel. A monomer liquid consisting of 66.7 g of methyl acrylate was prepared. An initiator solution (1) in which 1.2 g of V-65 and 38.1 g of IPA were mixed was prepared. A chain transfer agent solution in which 0.8 g of 3-mercaptopropionic acid was mixed with 25 g of IPA was prepared. The reaction vessel was brought to 70 ° C., and the monomer solution, initiator solution (1) and chain transfer agent solution were simultaneously added dropwise over 60 minutes. Thereafter, 0.3 g of V-65 was mixed with 15 g of IPA to prepare an initiator solution (2), which was added dropwise over 30 minutes, and further reacted at 70 ° C. for 30 minutes. After completion of the reaction, the polymer was precipitated and became cloudy at room temperature, but acetone was added to make it uniform, and the solvent was removed to obtain a polymer a-2.
Charge composition ratio: methyl acrylate 100 mol%
Weight average molecular weight: 4100
Methyl acrylate: 94% reaction rate (H-NMR)
The molecular weight was measured under the following GPC conditions.
[GPC conditions]
Standard material: Polystyrene conversion column: K804L + K804L
Eluent: 1 mmol / L Farmin DM20 (Kao Corporation: Dimethyllaurylamine) / Methyl chloride flow rate: 1.0 ml / min Column temperature: 40 ° C
Detector: RI

合成例1
反応容器の4つ口フラスコにイオン交換水84.2gを仕込み、脱気後窒素雰囲気下にした。AA20.2gとHEA83.5gを混合し、単量体液を調製した。ペルオキソ二硫酸アンモニウム1.3gをイオン交換水26.4gに溶解し開始剤水溶液(1)を調製した。3−メルカプトプロピオン酸2.6gをイオン交換水25gに溶解し連鎖移動剤水溶液を調製した。反応容器を80℃にして単量体液、開始剤水溶液(1)及び連鎖移動剤水溶液を同時に90分かけて滴下した。その後、ペルオキソ二硫酸アンモニウム0.3gをイオン交換水6.6gに溶解した開始剤水溶液(2)を30分掛けて滴下し、更に80℃で60分間反応させた。反応終了後に常温にして、48%水酸化ナトリウム水溶液で中和し、固形分濃度43重量%のpH5の重合体A−1の水溶液を得た。
仕込み組成比:
AA/HEA=19.5/80.5(重量比)(HEA80.5重量%)
AA/HEA=28.0/72.0(モル比)
重量平均分子量:34500
AA:反応率97%(HPLC)
HEA:反応率98%(HPLC)
GPCの測定条件は比較合成例1と同様である。
Synthesis example 1
Into a four-necked flask of the reaction vessel, 84.2 g of ion-exchanged water was charged, and after deaeration, a nitrogen atmosphere was established. A monomer solution was prepared by mixing 20.2 g of AA and 83.5 g of HEA. An initiator aqueous solution (1) was prepared by dissolving 1.3 g of ammonium peroxodisulfate in 26.4 g of ion-exchanged water. 2.6 g of 3-mercaptopropionic acid was dissolved in 25 g of ion-exchanged water to prepare an aqueous chain transfer agent solution. The reaction vessel was brought to 80 ° C., and the monomer solution, the initiator aqueous solution (1) and the chain transfer agent aqueous solution were simultaneously added dropwise over 90 minutes. Thereafter, an aqueous initiator solution (2) obtained by dissolving 0.3 g of ammonium peroxodisulfate in 6.6 g of ion-exchanged water was added dropwise over 30 minutes, and further reacted at 80 ° C. for 60 minutes. After completion of the reaction, the reaction solution was brought to room temperature and neutralized with a 48% aqueous sodium hydroxide solution to obtain an aqueous solution of polymer A-1 having a solid content of 43% by weight and a pH of 5.
Preparation composition ratio:
AA / HEA = 19.5 / 80.5 (weight ratio) (HEA 80.5 wt%)
AA / HEA = 28.0 / 72.0 (molar ratio)
Weight average molecular weight: 34500
AA: 97% reaction rate (HPLC)
HEA: 98% reaction rate (HPLC)
The measurement conditions for GPC are the same as in Comparative Synthesis Example 1.

合成例2
反応容器の4つ口フラスコにイオン交換水224.5gを仕込み、脱気後窒素雰囲気下にした。ペルオキソ二硫酸アンモニウム4.4gをイオン交換水90gに溶解し開始剤水溶液(1)を調製した。3−メルカプトプロピオン酸10.2gをイオン交換水80gに溶解した連鎖移動剤水溶液を調製した。反応容器を80℃にしてHEA280gの単量体液、開始剤水溶液(1)及び連鎖移動剤水溶液を同時に90分かけて滴下した。その後、ペルオキソ二硫酸アンモニウム0.6gをイオン交換水10gに溶解した開始剤水溶液(2)を30分掛けて滴下し、更に80℃で60分間反応させた。反応終了後に常温にして、48%水酸化ナトリウム水溶液で攪拌しながら中和した。固形分濃度41重量%のpH5の重合体A−2の水溶液を得た。
仕込み組成比:HEA100モル%(100重量%)
重量平均分子量:14200
HEA:反応率96%(HPLC)
GPCの測定条件は比較合成例1と同様である。
Synthesis example 2
The reaction vessel was charged with 224.5 g of ion-exchanged water in a four-necked flask, and after deaeration, the atmosphere was set to nitrogen. An initiator aqueous solution (1) was prepared by dissolving 4.4 g of ammonium peroxodisulfate in 90 g of ion-exchanged water. A chain transfer agent aqueous solution in which 10.2 g of 3-mercaptopropionic acid was dissolved in 80 g of ion-exchanged water was prepared. The monomer vessel of HEA 280 g, the initiator aqueous solution (1) and the chain transfer agent aqueous solution were dropped simultaneously over 90 minutes at 80 ° C. Thereafter, an initiator aqueous solution (2) obtained by dissolving 0.6 g of ammonium peroxodisulfate in 10 g of ion-exchanged water was dropped over 30 minutes, and further reacted at 80 ° C. for 60 minutes. After completion of the reaction, the mixture was brought to room temperature and neutralized while stirring with a 48% aqueous sodium hydroxide solution. An aqueous solution of polymer A-2 having a solid content concentration of 41% by weight and a pH of 5 was obtained.
Charge composition ratio: HEA 100 mol% (100 wt%)
Weight average molecular weight: 14200
HEA: 96% reaction rate (HPLC)
The measurement conditions for GPC are the same as in Comparative Synthesis Example 1.

〔(B)成分〕
(B)成分として、下記合成例B−1により得られたナフタレンスルホン酸ホルムアルデヒド縮合物(B−1)を用いた。
<合成例B−1>
ナフタレン1モル(128.2g)と硫酸1.28モル(125.5g)を150℃〜160℃で3時間反応させて得られた生成物(スルホン化物)に水44gを添加し、さらにホルマリン(ホルムアルデヒドの37%水溶液)をホルムアルデヒドとして0.98モルとなる量で、90℃で3時間かけて滴下した。滴下後100±2℃で10時間縮合反応を行った。反応終了後に常温にして、pH5まで水酸化カルシウムで中和し、生じた沈殿物(石膏)を濾過により除去し、ナフタレンスルホン酸ホルムアルデヒド縮合物(B−1)の水溶液を得た。尚、重合物は105℃で24時間掛けて乾燥し、必要に応じて水溶液濃度を調整して使用した。
重量平均分子量:13000
分子量の測定は以下のGPC条件で行った。
[GPC測定条件]
カラム:G4000SWXL +G2000SWXL
溶離液:30mM 酢酸ナトリウム/アセトニトリル=6/4vol%
流量:0.7ml/分
検出器:UV 280nm
カラム温度:25℃
<カラム前処理>
コーティング液:ナフタレンスルホン酸系分散剤(花王(株)製、マイテイ100)を0.5%含む30mM 酢酸ナトリウム/アセトニトリル=6/4 vol%
流速:0.2ml/分
時間:72時間
[(B) component]
As the component (B), naphthalenesulfonic acid formaldehyde condensate (B-1) obtained in Synthesis Example B-1 below was used.
<Synthesis Example B-1>
44 g of water was added to a product (sulfonated product) obtained by reacting 1 mol (128.2 g) of naphthalene and 1.28 mol (125.5 g) of sulfuric acid at 150 ° C. to 160 ° C. for 3 hours. 37% aqueous solution of formaldehyde) was added dropwise at 90 ° C. over 3 hours in an amount of 0.98 mol as formaldehyde. After dropping, a condensation reaction was performed at 100 ± 2 ° C. for 10 hours. After completion of the reaction, the mixture was brought to room temperature, neutralized with calcium hydroxide to pH 5, and the resulting precipitate (gypsum) was removed by filtration to obtain an aqueous solution of naphthalenesulfonic acid formaldehyde condensate (B-1). The polymer was dried at 105 ° C. for 24 hours, and the aqueous solution concentration was adjusted as necessary.
Weight average molecular weight: 13000
The molecular weight was measured under the following GPC conditions.
[GPC measurement conditions]
Column: G4000SW XL + G2000SW XL
Eluent: 30 mM sodium acetate / acetonitrile = 6/4 vol%
Flow rate: 0.7ml / min Detector: UV 280nm
Column temperature: 25 ° C
<Column pretreatment>
Coating solution: 30 mM sodium acetate / acetonitrile = 6/4 vol% containing 0.5% naphthalenesulfonic acid dispersant (Mao 100, manufactured by Kao Corporation)
Flow rate: 0.2 ml / min Time: 72 hours

〔(C)成分〕
・C−1:ポリエチレングリコール(数平均分子量35000)
[Component (C)]
C-1: Polyethylene glycol (number average molecular weight 35000)

<実施例1>〔モルタルフロー〕
セメント(太平洋セメント製/住友大阪セメント製=1:1(重量比);密度=3.16g/cm3)400gと山砂(城陽産、密度=2.55g/cm3)700gを万能混合攪拌機(型番:5DM-03-r、ダルトン社製)に入れ、低速に設定し10秒間攪拌を行った。その後、予め調製した分散剤水溶液160gを添加し(接水開始)、低速で90秒間攪拌を行った。攪拌後にモルタルをコーン(下部径100mm、上部径70mm、高さ60mm)に充填し、JIS R 5201に基づき、モルタルフローを測定した(直後)。なお、JIS R 5201記載の落下運動は行っていない。フロー値は、最大と認める方向の長さとこれに直角な方向の長さの平均値である。また、接水開始から30分後、60分後のモルタルフローも同様に測定した。本例は、経時的な分散性の評価を行ったものである。なお、160gの分散剤水溶液は、セメント100重量部に対する固形分添加量が表1に示す重量部となる量で各成分を用いた分散剤と、消泡剤0.05gと、残部の水とからなるものである。結果を表1に示す。また、本発明品1−1及び1−2のモルタルの粘性は、比較品1−3及び1−4と大差なく、同等の作業性を有していた。なお、表1の比較例1−5及び1−6では、(A)成分に該当しない成分を、便宜的に(A)成分の欄に記載した。
<Example 1> [Mortar flow]
Cement (Pacific Ocean Cement / Sumitomo Osaka Cement manufactured = 1: 1 (by weight); density = 3.16 g / cm 3) 400 g and mountain sand (Joyo production, density = 2.55 g / cm 3) 700 g of the universal mixing stirrer (Model number: 5DM-03-r, manufactured by Dalton Co.), set to low speed and stirred for 10 seconds. Thereafter, 160 g of a previously prepared aqueous dispersant solution was added (starting water contact), and stirring was performed for 90 seconds at a low speed. After stirring, the mortar was filled into a cone (lower diameter 100 mm, upper diameter 70 mm, height 60 mm), and the mortar flow was measured based on JIS R 5201 (immediately after). In addition, the drop motion described in JIS R 5201 is not performed. The flow value is an average value of the length in the direction recognized as the maximum and the length in the direction perpendicular thereto. Moreover, the mortar flow after 30 minutes and 60 minutes after the start of water contact was also measured. In this example, evaluation of dispersibility over time was performed. In addition, 160 g of the dispersing agent aqueous solution includes a dispersing agent using each component in an amount such that the solid content added to 100 parts by weight of cement is parts by weight shown in Table 1, 0.05 g of an antifoaming agent, and the remaining water. It consists of The results are shown in Table 1. Further, the mortar viscosity of the products 1-1 and 1-2 of the present invention was not much different from the comparative products 1-3 and 1-4, and had the same workability. In Comparative Examples 1-5 and 1-6 in Table 1, components not corresponding to the component (A) are described in the column of the component (A) for convenience.

固形分は、アルミニウム箔製のカップに試料溶液約3gを入れ、重量を測定し、105℃で2時間乾燥させ後、再度重量を測定し、その重量変化から、溶液中の固形分濃度を計算した。モルタルフローは、30分後、好ましくは60分後まで直後の値からの低下が少ないことが好ましい。   For solids, put about 3g of sample solution into an aluminum foil cup, measure the weight, dry at 105 ° C for 2 hours, measure the weight again, and calculate the solids concentration in the solution from the change in weight. did. It is preferable that the mortar flow has little decrease from the value immediately after 30 minutes, preferably until 60 minutes.

Figure 0005350135
Figure 0005350135

Claims (4)

下記式(1)で表される単量体由来の構成単位を70重量%以上含む構成単位からなる重合体であって、下記式(1)で表される単量体由来の構成単位以外の構成単位を含む場合は、該構成単位はアクリル酸又はそのアルカリ金属塩に由来する構成単位である重合体(A)と、ナフタレンスルホン酸ホルムアルデヒド縮合物(B)と、ポリアルキレングリコール(C)とを含有し、
重合体(A)とナフタレンスルホン酸ホルムアルデヒド縮合物(B)の重量比が、(A)/(B)で、1/99〜45/55であり、
重合体(A)とポリアルキレングリコール(C)の重量比が、(A)/(C)で60/40〜95/5である、
水硬性組成物用分散剤。
2C=CHCOOCH2CH2OH (1)
A polymer composed of a structural unit containing 70% by weight or more of a structural unit derived from a monomer represented by the following formula (1), which is other than the structural unit derived from a monomer represented by the following formula (1) When the structural unit is included, the structural unit is a polymer (A) that is a structural unit derived from acrylic acid or an alkali metal salt thereof , naphthalenesulfonic acid formaldehyde condensate (B), and polyalkylene glycol (C). contain,
The weight ratio of the polymer (A) and the naphthalenesulfonic acid formaldehyde condensate (B) is (A) / (B), and is 1/99 to 45/55,
The weight ratio of the polymer (A) to the polyalkylene glycol (C) is 60/40 to 95/5 in (A) / (C).
Dispersant for hydraulic composition.
H 2 C═CHCOOCH 2 CH 2 OH (1)
ポリアルキレングリコール(C)の数平均分子量が5000〜50000である請求項記載の水硬性組成物用分散剤。 Hydraulic composition dispersant according to claim 1 having a number average molecular weight of 5,000 to 50,000 of the polyalkylene glycol (C). 重合体(A)の重量平均分子量が1000〜100000である請求項1又は2記載の水硬性組成物用分散剤。 The dispersant for a hydraulic composition according to claim 1 or 2 , wherein the polymer (A) has a weight average molecular weight of 1,000 to 100,000. 請求項1〜の何れか1項記載の水硬性組成物用分散剤と、水硬性粉体と、水とを含有する水硬性組成物。 The hydraulic composition containing the dispersing agent for hydraulic compositions in any one of Claims 1-3 , hydraulic powder, and water.
JP2009191543A 2009-08-21 2009-08-21 Dispersant for hydraulic composition Active JP5350135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009191543A JP5350135B2 (en) 2009-08-21 2009-08-21 Dispersant for hydraulic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009191543A JP5350135B2 (en) 2009-08-21 2009-08-21 Dispersant for hydraulic composition

Publications (3)

Publication Number Publication Date
JP2011042526A JP2011042526A (en) 2011-03-03
JP2011042526A5 JP2011042526A5 (en) 2012-07-26
JP5350135B2 true JP5350135B2 (en) 2013-11-27

Family

ID=43830253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009191543A Active JP5350135B2 (en) 2009-08-21 2009-08-21 Dispersant for hydraulic composition

Country Status (1)

Country Link
JP (1) JP5350135B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162160A (en) * 1983-03-01 1984-09-13 三洋化成工業株式会社 Cement dispersant composition
JPS60161365A (en) * 1984-01-26 1985-08-23 花王株式会社 Cement dispersant
CA1325311C (en) * 1986-07-01 1993-12-14 W.R. Grace & Co.-Conn. Cement admixture
JPH05246744A (en) * 1992-03-03 1993-09-24 Kao Corp Admixture for concrete and concrete composition using the same
JP3203270B2 (en) * 1992-09-08 2001-08-27 花王株式会社 Admixture for concrete
JP5249138B2 (en) * 2008-06-17 2013-07-31 花王株式会社 Dispersant for hydraulic composition
JP5342187B2 (en) * 2008-08-04 2013-11-13 花王株式会社 Admixture for concrete

Also Published As

Publication number Publication date
JP2011042526A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
JP5130205B2 (en) Polyether-containing copolymer
US20110136944A1 (en) Copolymers based on unsaturated mono- or dicarboxylic acid derivatives and oxyalkyleneglycol-alkenyl ethers, processes for the production and use thereof
JP5715260B2 (en) Polycarboxylic acid polymer for hydraulic material additive
EP2699527A1 (en) Accelerator composition
JP2015526376A (en) Curing accelerator composition
US9758608B2 (en) Plasticizer having cationic side chains without polyether side chains
JP5249138B2 (en) Dispersant for hydraulic composition
JP2008542159A (en) Powdered cement dispersant
JP2015516480A (en) Concrete admixture
MX2011001889A (en) Water-reduced hydraulically constricting compositions with temporally extended flow capability.
JP2012511094A (en) Copolymer containing acid building blocks and various polyether building blocks
JP2009023901A (en) Cement admixture and cement composition
JP5101982B2 (en) Dispersant for hydraulic composition
JP5027063B2 (en) Dispersion retention agent for hydraulic composition
JP5350135B2 (en) Dispersant for hydraulic composition
JP5342187B2 (en) Admixture for concrete
JP4425775B2 (en) Hydraulic powder dispersion copolymer
JP4650972B2 (en) Method for adjusting the fluidity of concrete
JP5536387B2 (en) Method for producing centrifugally formed concrete products
JP6415960B2 (en) Dispersant for hydraulic composition
JP5122501B2 (en) Hydraulic composition
JP4562964B2 (en) Cement dispersant
JP5155766B2 (en) Hydraulic composition
JP5311910B2 (en) Manufacturing method of concrete products
JP2009120452A (en) Dispersant for hydraulic composition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130821

R151 Written notification of patent or utility model registration

Ref document number: 5350135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250