JP5122501B2 - Hydraulic composition - Google Patents

Hydraulic composition Download PDF

Info

Publication number
JP5122501B2
JP5122501B2 JP2009019534A JP2009019534A JP5122501B2 JP 5122501 B2 JP5122501 B2 JP 5122501B2 JP 2009019534 A JP2009019534 A JP 2009019534A JP 2009019534 A JP2009019534 A JP 2009019534A JP 5122501 B2 JP5122501 B2 JP 5122501B2
Authority
JP
Japan
Prior art keywords
component
hydraulic composition
weight
acid
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009019534A
Other languages
Japanese (ja)
Other versions
JP2010173907A (en
Inventor
良仁 名嘉
高雄 谷口
利正 濱井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2009019534A priority Critical patent/JP5122501B2/en
Publication of JP2010173907A publication Critical patent/JP2010173907A/en
Application granted granted Critical
Publication of JP5122501B2 publication Critical patent/JP5122501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/06Acrylates

Description

本発明は水硬性組成物に関する。   The present invention relates to a hydraulic composition.

コンクリートの細骨材として、山砂、陸砂、川砂及び砕砂が用いられるが、山砂、陸砂、川砂は天然の砂であり、自然環境維持の点から天然の砂は採取の制限等により、今後コンクリートの材料として枯渇が懸念される。一方、砕砂は、砂岩の岩石を砕いて製造されるもので、今後使用比率が多くなると推定される。   Mountain sand, land sand, river sand and crushed sand are used as concrete fine aggregate. Mountain sand, land sand and river sand are natural sand. In the future, there is concern about depletion as a concrete material. On the other hand, crushed sand is produced by crushing sandstone rocks, and it is estimated that the usage rate will increase in the future.

特許文献1には、ペースト量の少ないコンクリートに関して、同じスランプ値でもスランプフローが大きくなり混練時の作業性に優れるコンクリート混和剤として、特定の重量平均分子量を有するメタクリル酸とアルコキシポリアルキレングリコールモノメタクリル酸エステルの共重合体が開示されている。そして、砕砂を含有する骨材に対して作業性向上効果を顕著に発揮できることが開示されている。   Patent Document 1 discloses methacrylic acid having a specific weight average molecular weight and an alkoxy polyalkylene glycol monomethacrylate as concrete admixture which has a large slump flow even at the same slump value and is excellent in workability at the time of kneading with respect to concrete having a small amount of paste. Acid ester copolymers are disclosed. And it is disclosed that workability improvement effect can be exhibited remarkably with respect to the aggregate containing crushed sand.

特許文献2には、流動性と充填性の良いフローリングコンクリートを得ることを目的として、ポリカルボン酸系高分子化合物、香族アミノスルホン酸系高分子化合物, メラミンスルホン酸塩のホルマリン縮合物系化合物の群から選ばれるセメント分散剤と、アクリル酸系化合物とアクリルアミド系化合物とを共重合させた水溶性共重合体とをコンクリート添加する製造方法が開示されている。そして、実施例では川砂の一部を砕砂に置き換えても良好な流動性と充填性が得られたことが開示されている。   Patent Document 2 discloses a formalin condensate compound of polycarboxylic acid polymer compound, aromatic aminosulfonic acid polymer compound, and melamine sulfonate for the purpose of obtaining flooring concrete having good fluidity and filling property. A manufacturing method is disclosed in which a cement dispersant selected from the group of the above and a water-soluble copolymer obtained by copolymerizing an acrylic acid compound and an acrylamide compound are added to concrete. In the examples, it is disclosed that good fluidity and filling property can be obtained even if part of river sand is replaced with crushed sand.

また、特許文献3には、セメント配合物のスランプロス防止という課題に対して、アクリル酸エステルの重合物とナフタレンスルホン酸のホルマリン縮合物又はその塩を併用するセメント分散剤として、アクリル酸エステルの重合物と、ナフタレンスルホン酸のホルマリン縮合物、リグニンスルホン酸塩、メラミンスルホン酸のホルマリン縮合物、ポリカルボン酸及びそれらの塩から選ばれるセメント分散剤を必須成分とするセメント分散剤が開示されている。   In addition, Patent Document 3 discloses that for a problem of preventing slump loss of a cement blend, as a cement dispersant that uses a polymer of an acrylate ester and a formalin condensate of naphthalene sulfonic acid or a salt thereof, Disclosed is a cement dispersant comprising a polymer and a cement dispersant selected from a formalin condensate of naphthalene sulfonic acid, a lignin sulfonate, a formalin condensate of melamine sulfonic acid, a polycarboxylic acid and a salt thereof as essential components. Yes.

特開2008−127221号公報JP 2008-127221 A 特開平6−206748号公報JP-A-6-206748 特開昭60−161365号公報JP-A-60-161365

砕砂は天然の砂と比べて角が多い形状をしており、水硬性組成物を調整する際に、天然の砂の代わりに砕砂を使用すると水硬性組成物の流動性と充填性が天然の砂と異なる場合がある。   Crushed sand has a shape with more corners than natural sand, and when preparing a hydraulic composition, if crushed sand is used instead of natural sand, the fluidity and fillability of the hydraulic composition is natural. May differ from sand.

本発明は、砕砂を含む骨材を用いても、天然の砂を用いる場合と同様の流動性と充填性が得られる水硬性組成物の提供を目的とする。   An object of the present invention is to provide a hydraulic composition that can obtain fluidity and filling properties similar to those when natural sand is used even when aggregates containing crushed sand are used.

本発明は、下記式(1)で表される単量体由来の構成単位を70重量%以上含む構成単位からなる重合体(A)〔以下、(A)成分という〕、ナフタレンスルホン酸ホルマリン縮合物(B)〔以下、(B)成分という〕、水硬性粉体(C)〔以下、(C)成分という〕、砕砂(D)〔以下、(D)成分という〕を含む細骨材、粗骨材、及び水を含有する水硬性組成物に関する。
2C=CHCOOCH2CH2OH (1)
The present invention relates to a polymer (A) comprising a structural unit containing 70% by weight or more of a structural unit derived from a monomer represented by the following formula (1) [hereinafter referred to as component (A)], naphthalenesulfonic acid formalin condensation Fine aggregate containing a product (B) [hereinafter referred to as component (B)], hydraulic powder (C) [hereinafter referred to as component (C)], crushed sand (D) [hereinafter referred to as component (D)], The present invention relates to a coarse aggregate and a hydraulic composition containing water.
H 2 C═CHCOOCH 2 CH 2 OH (1)

本発明によれば、砕砂を含む骨材を用いても、天然の砂を用いる場合と同様の流動性と充填性が得られる水硬性組成物が提供される。   According to the present invention, there is provided a hydraulic composition capable of obtaining the same fluidity and filling property as when natural sand is used even when an aggregate containing crushed sand is used.

本発明は、(A)成分と、(B)成分と、(C)成分と、(D)成分を含む細骨材と、粗骨材と、水とを含有する水硬性組成物である。以下、かかる水硬性組成物に用いられる成分等について説明する。   The present invention is a hydraulic composition containing a component (A), a component (B), a component (C), a fine aggregate containing the component (D), a coarse aggregate, and water. Hereinafter, components and the like used in the hydraulic composition will be described.

<(A)成分>
(A)成分は、構成単位の70重量%以上が上記式(1)で表される単量体〔以下、単量体(1)という〕由来の構成単位である重合体である。(A)成分は水硬性組成物の流動性の観点から構成単位の75重量%以上、更に85重量%以上、より更に90重量%以上が単量体(1)由来の構成単位であることが好ましい。構成単位中の単量体(1)由来の構成単位の割合がこの範囲にある(A)成分を(B)成分と併用することで、水硬性組成物に砕砂を用いても流動性と充填性の変動を抑制することができる。なお、(A)成分の構成単位中に中和された酸又は塩基の塩がある場合は、その構成単位は、中和前の酸型又は塩基型の重量で換算して、式(1)で表される単量体由来の構成単位の重量%を単量体の仕込み組成から計算する。
<(A) component>
Component (A) is a polymer in which 70% by weight or more of the structural unit is a structural unit derived from the monomer represented by the above formula (1) [hereinafter referred to as monomer (1)]. From the viewpoint of fluidity of the hydraulic composition, the component (A) is 75% by weight or more of the structural unit, more preferably 85% by weight or more, and still more 90% by weight or more is the structural unit derived from the monomer (1). preferable. By using the component (A) in which the proportion of the structural unit derived from the monomer (1) in the structural unit is within this range in combination with the component (B), fluidity and filling can be achieved even if crushed sand is used for the hydraulic composition. The fluctuation of sex can be suppressed. In addition, when there exists the salt of the acid or base neutralized in the structural unit of (A) component, the structural unit is converted with the weight of the acid type or base type before neutralization, Formula (1) The weight percent of the structural unit derived from the monomer represented by is calculated from the charged composition of the monomer.

コンクリート等の硬化体の表面の黒ずみを抑制する観点から、(A)成分の重量平均分子量は1000〜100000が好ましく、より好ましくは3000〜80000であり、さらに好ましくは5000〜60000である。(A)成分の重量平均分子量は、サイズ排除クロマトグラフィー(GPC)を使用し、RI検出器並びに検量物質としてポリスチレンを使用することにより測定されたものである。測定条件は後述の製造例1の通りである。   From the viewpoint of suppressing darkening of the surface of a cured body such as concrete, the weight average molecular weight of the component (A) is preferably 1000 to 100,000, more preferably 3000 to 80000, and further preferably 5000 to 60000. The weight average molecular weight of the component (A) is measured by using size exclusion chromatography (GPC) and using polystyrene as a RI detector and a calibration substance. The measurement conditions are as described in Production Example 1 described later.

(A)成分は公知の重合方法で得ることができ、工業的な観点から重合濃度10重量%以上であることが好ましい。重合方法は、ラジカル重合、リビングラジカル重合、イオン重合等の方法で行うことが可能であり、好ましくはラジカル重合である。重合溶媒としては、モノマーが可溶であれば限定されないが、水、メチルアルコール、エチルアルコール、イソプロピルアルコール、ベンゼン、トルエン、キシレン、シクロヘキサン、n−ヘキサン、酢酸エチル、アセトン、メチルエチルケトン等が挙げられ、水、メチルアルコール、エチルアルコール、イソプロピルアルコールが好ましい。   The component (A) can be obtained by a known polymerization method, and the polymerization concentration is preferably 10% by weight or more from an industrial viewpoint. The polymerization method can be performed by a method such as radical polymerization, living radical polymerization, or ionic polymerization, and is preferably radical polymerization. The polymerization solvent is not limited as long as the monomer is soluble, but includes water, methyl alcohol, ethyl alcohol, isopropyl alcohol, benzene, toluene, xylene, cyclohexane, n-hexane, ethyl acetate, acetone, methyl ethyl ketone, and the like. Water, methyl alcohol, ethyl alcohol and isopropyl alcohol are preferred.

重合開始剤としてはアゾ系開始剤、パーオキシド系開始剤、マクロ開始剤、レドックス系開始剤等の公知の開始剤を使用してよい。水を含む重合溶媒の場合、重合開始剤としては、過硫酸のアンモニウム塩又はアルカリ金属塩あるいは過酸化水素、2、2’−アゾビス(2−アミジノプロパン)ジヒドロクロライド、2、2’−アゾビス(2−メチルプロピオンアミド)ジハイドレート等の水溶性アゾ化合物が挙げられる。水を含まない重合溶媒の場合、重合開始剤としては、ベンゾイルパーオキシド、ラウロイルパーオキシド等のパーオキシド、アゾビスイソブチロニトリル等の脂肪族アゾ化合物等が挙げられる。   As the polymerization initiator, known initiators such as an azo initiator, a peroxide initiator, a macro initiator, and a redox initiator may be used. In the case of a polymerization solvent containing water, as a polymerization initiator, an ammonium salt or alkali metal salt of persulfuric acid, hydrogen peroxide, 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis ( Water-soluble azo compounds such as 2-methylpropionamido) dihydrate. In the case of a polymerization solvent not containing water, examples of the polymerization initiator include peroxides such as benzoyl peroxide and lauroyl peroxide, and aliphatic azo compounds such as azobisisobutyronitrile.

さらに必要に応じて分子量調整剤等の目的で連鎖移動剤を使用してもよい。連鎖移動剤としては、チオール系連鎖移動剤、ハロゲン化炭化水素系連鎖移動剤等が挙げられ、チオール系連鎖移動剤が好ましい。   Furthermore, you may use a chain transfer agent for the purpose of a molecular weight modifier etc. as needed. Examples of chain transfer agents include thiol chain transfer agents and halogenated hydrocarbon chain transfer agents, and thiol chain transfer agents are preferred.

チオール系連鎖移動剤としては、−SH基を有するものが好ましく、更に、一般式HS−R−Eg(ただし、式中Rは炭素原子数1〜4の炭化水素由来の基を表し、Eは−OH、−COOM、−COOR’または−SO3M基を表し、Mは水素原子、一価金属、二価金属、アンモニウム基または有機アミン基を表し、R’は炭素原子数1〜10のアルキル基を表わし、gは1〜2の整数を表す。)で表されるものが好ましく、例えば、メルカプトエタノール、チオグリセロール、チオグリコール酸、2−メルカプトプロピオン酸、3−メルカプトプロピオン酸、チオリンゴ酸、チオグリコール酸オクチル、3−メルカプトプロピオン酸オクチル等が挙げられ、単量体1〜3を含む共重合反応での連鎖移動効果の観点から、メルカプトプロピオン酸、メルカプトエタノールが好ましく、メルカプトプロピオン酸が更に好ましい。これらの1種または2種以上を用いることができる。 As the thiol-based chain transfer agent, those having a -SH group are preferable, and further, a general formula HS-R-Eg (wherein R represents a hydrocarbon-derived group having 1 to 4 carbon atoms, E is —OH, —COOM, —COOR ′ or —SO 3 M group, M represents a hydrogen atom, monovalent metal, divalent metal, ammonium group or organic amine group, and R ′ has 1 to 10 carbon atoms. Represents an alkyl group, and g represents an integer of 1 to 2). For example, mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thiomalic acid , Octyl thioglycolate, octyl 3-mercaptopropionate, etc., from the viewpoint of the chain transfer effect in the copolymerization reaction containing monomers 1 to 3, mercaptopropion , Mercaptoethanol are preferable, more preferably mercaptopropionic acid. These 1 type (s) or 2 or more types can be used.

ハロゲン化炭化水素系連鎖移動剤としては、四塩化炭素、四臭化炭素などが挙げられる。   Examples of the halogenated hydrocarbon chain transfer agent include carbon tetrachloride and carbon tetrabromide.

その他の連鎖移動剤としては、α−メチルスチレンダイマー、ターピノーレン、α−テルピネン、γ−テルピネン、ジペンテン、2−アミノプロパン−1−オールなどを挙げることができる。連鎖移動剤は、1種又は2種以上を用いることができる。   Examples of other chain transfer agents include α-methylstyrene dimer, terpinolene, α-terpinene, γ-terpinene, dipentene, 2-aminopropan-1-ol and the like. A chain transfer agent can use 1 type (s) or 2 or more types.

重合温度については限定されないが、好ましくは重合溶媒の沸点未満の領域で制御すればよい。   Although it does not limit about superposition | polymerization temperature, Preferably what is necessary is just to control in the area | region below the boiling point of a superposition | polymerization solvent.

(A)成分は、単量体(1)以外の単量体を構成単量体とすることができる。例えば、(i)(メタ)アクリル酸、クロトン酸等のモノカルボン酸又はそれらの塩(例えばアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、水酸基が置換されていてもよいモノ、ジ、トリアルキル(炭素数2〜8)アンモニウム塩)もしくはそれらのエステル(例えば単量体(1)以外のアクリル酸エステル、あるいはメタクリル酸エステル)が挙げられる。さらに、例えば、(ii)マレイン酸、イタコン酸、フマル酸等のジカルボン酸系単量体、又はその酸無水物もしくは塩(例えばアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、水酸基が置換されていてもよいモノ、ジ、トリアルキル(炭素数2〜8)アンモニウム塩)もしくはエステルが挙げられる。これらの中でも好ましくは(メタ)アクリル酸、マレイン酸、無水マレイン酸、又はこれらのアルカリ金属塩、更に好ましくは(メタ)アクリル酸又はこれらのアルカリ金属塩である。なお、(メタ)アクリル酸は、アクリル酸及び/又はメタクリル酸の意味である(以下同様)。   As the component (A), a monomer other than the monomer (1) can be used as a constituent monomer. For example, (i) monocarboxylic acids such as (meth) acrylic acid and crotonic acid or salts thereof (for example, alkali metal salts, alkaline earth metal salts, ammonium salts, mono-, di-, tri-alkyls in which hydroxyl groups may be substituted) Alkyl (C2-C8) ammonium salt) or esters thereof (for example, acrylic acid esters or methacrylic acid esters other than the monomer (1)). Furthermore, for example, (ii) dicarboxylic acid monomers such as maleic acid, itaconic acid, fumaric acid, or acid anhydrides or salts thereof (for example, alkali metal salts, alkaline earth metal salts, ammonium salts, hydroxyl groups are substituted) Mono, di, trialkyl (carbon number 2 to 8) ammonium salt) or ester which may be included. Among these, (meth) acrylic acid, maleic acid, maleic anhydride, or alkali metal salts thereof are preferable, and (meth) acrylic acid or alkali metal salts thereof are more preferable. In addition, (meth) acrylic acid means acrylic acid and / or methacrylic acid (hereinafter the same).

<(B)成分>
(B)成分は、ナフタレンスルホン酸ホルムアルデヒド縮合物であり、コンクリートの流動性の観点から、重量平均分子量は200000以下が好ましく、100000以下がより好ましく、80000以下が更に好ましく、50000以下がより好ましい。また、重量平均分子量は1000以上が好ましく、3000以上がより好ましく、4000以上がさらに好ましく、5000以上がより好ましい。したがって、1000〜200000が好ましく、3000〜100000がより好ましく、4000〜80000が更に好ましく、5000〜50000がより更に好ましい。(B)成分のナフタレンスルホン酸ホルムアルデヒド縮合物は酸の状態あるいは中和物であってもよい。
<(B) component>
Component (B) is a naphthalenesulfonic acid formaldehyde condensate, and from the viewpoint of the fluidity of concrete, the weight average molecular weight is preferably 200000 or less, more preferably 100000 or less, still more preferably 80000 or less, and even more preferably 50000 or less. Further, the weight average molecular weight is preferably 1000 or more, more preferably 3000 or more, further preferably 4000 or more, and more preferably 5000 or more. Therefore, 1000-200000 are preferable, 3000-100000 are more preferable, 4000-80000 are still more preferable, 5000-50000 are still more preferable. The (B) component naphthalenesulfonic acid formaldehyde condensate may be in an acid state or a neutralized product.

ナフタレンスルホン酸ホルムアルデヒド縮合物の製造方法は、例えば、ナフタレンスルホン酸とホルムアルデヒドとを縮合反応により縮合物を得る方法が挙げられる。前記縮合物の中和を行っても良い。また、中和で副生する水不溶解物を除去しても良い。具体的には、ナフタレンスルホン酸を得るために、ナフタレン1モルに対して、硫酸1.2〜1.4モルを用い、150〜165℃で2〜5時間反応させてスルホン化物を得る。次いで、該スルホン化物1モルに対して、ホルムアルデヒドとして0.95〜0.99モルとなるようにホルマリンを85〜95℃で、3〜6時間かけて滴下し、滴下後95〜105℃で縮合反応を行う。要すれば縮合物に、水と中和剤を加え、80〜95℃で中和工程を行う。中和剤は、ナフタレンスルホン酸と未反応硫酸に対してそれぞれ1.0〜1.1モル倍添加することが好ましい。また中和による生じる水不溶解物を除去、好ましくは濾過により分離しても良い。これらの工程によって、ナフタレンスルホン酸ホルムアルデヒド縮合物水溶性塩の水溶液が得られる。この水溶液はそのまま或いは他の成分を適宜添加して(B)成分して使用することができる。該水溶液の固形分濃度は用途にもよるが、(B)成分としては、30〜45重量%が好ましい。更に必要に応じて該水溶液を乾燥、粉末化して粉末状のナフタレンスルホン酸ホルムアルデヒド縮合物水溶性塩を得ることができ、これを粉末状の(B)成分として用いてもよい。乾燥、粉末化は、噴霧乾燥、ドラム乾燥、凍結乾燥等により行うことができる。   Examples of the method for producing a naphthalenesulfonic acid formaldehyde condensate include a method of obtaining a condensate by a condensation reaction of naphthalenesulfonic acid and formaldehyde. You may neutralize the said condensate. Moreover, you may remove the water insoluble matter byproduced by neutralization. Specifically, in order to obtain naphthalenesulfonic acid, 1.2 to 1.4 mol of sulfuric acid is used with respect to 1 mol of naphthalene and reacted at 150 to 165 ° C. for 2 to 5 hours to obtain a sulfonated product. Next, formalin is added dropwise at 85 to 95 ° C. over 3 to 6 hours to form 0.95 to 0.99 mol as formaldehyde with respect to 1 mol of the sulfonated product, and condensed at 95 to 105 ° C. after the addition. Perform the reaction. If necessary, water and a neutralizing agent are added to the condensate, and a neutralization step is performed at 80 to 95 ° C. The neutralizing agent is preferably added in an amount of 1.0 to 1.1 moles per each of naphthalenesulfonic acid and unreacted sulfuric acid. Further, water-insoluble matter generated by neutralization may be removed, preferably separated by filtration. By these steps, an aqueous solution of a naphthalenesulfonic acid formaldehyde condensate water-soluble salt is obtained. This aqueous solution can be used as it is or as a component (B) by appropriately adding other components. Although the solid content concentration of the aqueous solution depends on the application, the component (B) is preferably 30 to 45% by weight. Further, if necessary, the aqueous solution can be dried and powdered to obtain a powdery naphthalenesulfonic acid formaldehyde condensate water-soluble salt, which may be used as the powdery component (B). Drying and powdering can be performed by spray drying, drum drying, freeze drying, or the like.

<(C)成分>
水硬性粉体とは、水と反応して硬化する性質をもつ粉体及び単一物質では硬化性を有しないが、2種以上を組み合わせると水を介して相互作用により水和物を形成し硬化する粉体をいう。水硬性粉体(C)としては、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、混合セメント、エコセメント(例えばJIS R5214等)等のセメントが挙げられる。セメント以外の水硬性粉体として、石膏、高炉スラグ、フライアッシュ及びシリカヒューム等が含まれてよい。
<(C) component>
A hydraulic powder is a powder that has a property of reacting with water and hardened, and a single substance does not have curability, but when two or more kinds are combined, a hydrate is formed by interaction through water. A powder that hardens. Examples of the hydraulic powder (C) include ordinary Portland cement, early-strength Portland cement, super-early-strength Portland cement, mixed cement, and eco-cement (for example, JIS R5214). As hydraulic powder other than cement, gypsum, blast furnace slag, fly ash, silica fume, and the like may be included.

<(D)成分及び骨材>
本発明の水硬性組成物は、(D)成分〔砕砂〕を含む細骨材を含有する。砕砂とは岩石を粉砕し人工的に造った砂である。砕砂は、JISA 5005で規定されるものである。また、骨材として、こうした特定の細骨材とともに粗骨材を含有する。細骨材及び粗骨材等の骨材の用語の意味は、「コンクリート総覧」(1998年6月10日、技術書院発行)による。細骨材としては、山砂、陸砂、川砂、砕砂が挙げられる。(D)成分の含有量は、水硬性組成物の流動性と充填性の効果発現の観点から、細骨材中、70重量%以上が好ましく、90重量%以上がより好ましく、実質100重量%が更に好ましい。また、粗骨材としては、山砂利、陸砂利、川砂利、砕石が好ましい。用途によっては、軽量骨材を使用してもよい。本発明の水硬性組成物は、骨材中、中でも細骨材と粗骨材の合計中、(D)成分の含有量は27〜60体積%、更に30〜50体積%が好ましい。
<(D) component and aggregate>
The hydraulic composition of this invention contains the fine aggregate containing (D) component [crushed sand]. Crushed sand is artificially made sand by crushing rocks. The crushed sand is specified by JISA 5005. Further, as the aggregate, coarse aggregate is contained together with such specific fine aggregate. The meaning of the terminology of aggregates such as fine aggregate and coarse aggregate is based on “Concrete Overview” (issued on June 10, 1998, Technical Institute). Fine aggregates include mountain sand, land sand, river sand, and crushed sand. The content of the component (D) is preferably 70% by weight or more, more preferably 90% by weight or more, and substantially 100% by weight in the fine aggregate from the viewpoint of expression of fluidity and filling effect of the hydraulic composition. Is more preferable. Moreover, as the coarse aggregate, mountain gravel, land gravel, river gravel, and crushed stone are preferable. Depending on the application, lightweight aggregates may be used. In the hydraulic composition of the present invention, the content of the component (D) is preferably 27 to 60% by volume, more preferably 30 to 50% by volume, in the aggregate, especially in the total of fine aggregate and coarse aggregate.

<その他の成分>
また、本発明の水硬性組成物は、材料分離の防止、又は環境面からリサイクルの目的で、水硬性粉体以外の粉体を含有することができる。水硬性粉体以外の粉体としては、炭カル、石粉、ゴミ焼却灰等が挙げられる。
<Other ingredients>
Moreover, the hydraulic composition of the present invention can contain a powder other than the hydraulic powder for the purpose of preventing material separation or recycling from the environmental aspect. Examples of the powder other than the hydraulic powder include charcoal cal, stone powder, and garbage incineration ash.

また、その他に、本発明に用いられる水硬性組成物は、AE剤、流動化剤、遅延剤、早強剤、促進剤、起泡剤、増粘剤、防水剤、消泡剤、収縮低減剤、膨張剤、水溶性高分子、界面活性剤等を含有することができる。   In addition, the hydraulic composition used in the present invention includes an AE agent, a fluidizing agent, a retarder, an early strengthening agent, an accelerator, a foaming agent, a thickening agent, a waterproofing agent, an antifoaming agent, and shrinkage reduction. An agent, a swelling agent, a water-soluble polymer, a surfactant and the like can be contained.

<水硬性組成物の組成等> <Composition of hydraulic composition>

また、本発明の水硬性組成物は、(C)成分100重量部に対する(A)成分の含有量が0.02〜0.3重量部であることが好ましく、より好ましくは0.03〜0.25重量部、更に好ましくは0.03〜0.2重量部である。(A)成分の含有量がこの範囲にあることで、優れた水硬性組成物の流動性と充填性が得られる。   In the hydraulic composition of the present invention, the content of the component (A) with respect to 100 parts by weight of the component (C) is preferably 0.02 to 0.3 parts by weight, more preferably 0.03 to 0. .25 parts by weight, more preferably 0.03 to 0.2 parts by weight. When the content of the component (A) is in this range, excellent fluidity and fillability of the hydraulic composition can be obtained.

また、本発明の水硬性組成物は、初期流動性を任意に調整する観点から、(C)成分100重量部に対する(B)成分の含有量が0.2〜1.5重量部であることが好ましく、より好ましくは0.25〜1.0重量部、更に好ましくは0.3〜0.75重量部である。   In addition, the hydraulic composition of the present invention has a content of the component (B) of 0.2 to 1.5 parts by weight with respect to 100 parts by weight of the component (C) from the viewpoint of arbitrarily adjusting the initial fluidity. Is more preferable, 0.25 to 1.0 part by weight, still more preferably 0.3 to 0.75 part by weight.

また、本発明の水硬性組成物においては、(A)成分と(B)成分の重量比率は、(A)/(B)=3/97〜45/55、更に5/95〜40/60、より更に10/90〜40/60であることが、水硬性組成物の流動性と充填性の観点から好ましい。水は未硬化の水硬性組成物(フレッシュ状態の水硬性組成物)1m3に対して、110〜190kgであることが好ましい。 Moreover, in the hydraulic composition of this invention, the weight ratio of (A) component and (B) component is (A) / (B) = 3 / 97-45 / 55, Furthermore, 5 / 95-40 / 60. Further, 10/90 to 40/60 is preferable from the viewpoints of fluidity and fillability of the hydraulic composition. It is preferable that the water is 110 to 190 kg with respect to 1 m 3 of the uncured hydraulic composition (fresh hydraulic composition).

本発明に用いられる水硬性組成物の水/水硬性粉体比〔スラリー中の水と水硬性粉体の重量百分率(重量%)、通常W/Pと略記されるが、水硬性粉体がセメントの場合、W/Cと略記されることがある。〕は、10〜60重量%、更に10〜50重量%、更に10〜40重量%、より更に10〜35重量%であってもよい。W/Pの値が小さいほど、水硬性組成物が有する低い粘性特性が顕著になるため、締め固め性の効果も顕著となる。   Water / hydraulic powder ratio of the hydraulic composition used in the present invention [weight percentage (% by weight) of water and hydraulic powder in slurry, usually abbreviated as W / P, In the case of cement, it may be abbreviated as W / C. ] May be 10 to 60% by weight, further 10 to 50% by weight, further 10 to 40% by weight, and further 10 to 35% by weight. As the W / P value is smaller, the low viscosity characteristic of the hydraulic composition becomes more prominent, and the compaction effect becomes more prominent.

本発明の水硬性組成物は、細骨材及び粗骨材を含有するが、(D)成分を含む細骨材の含有量は、未硬化の水硬性組成物(フレッシュ状態の水硬性組成物)1m3に対して、500〜1100kgが好ましく、600〜1100kgより好ましく、650〜850kgであることが更に好ましい。また、粗骨材の含有量は、未硬化の水硬性組成物(フレッシュ状態の水硬性組成物)1m3に対して、600〜1200kgが好ましく、800〜1200kgより好ましく、900〜1100kgであることが更に好ましい。 The hydraulic composition of the present invention contains fine aggregate and coarse aggregate, but the content of the fine aggregate containing the component (D) is an uncured hydraulic composition (fresh hydraulic composition). ) 500 to 1100 kg is preferable with respect to 1 m 3 , 600 to 1100 kg is more preferable, and 650 to 850 kg is more preferable. The content of coarse aggregate is preferably 600 to 1200 kg, more preferably 800 to 1200 kg, and 900 to 1100 kg with respect to 1 m 3 of the uncured hydraulic composition (fresh hydraulic composition). Is more preferable.

また、本発明の水硬性組成物では、細骨材率(s/a)が38〜60体積%であることが好ましく、38〜55体積%がより好ましく、40〜50体積%が更に好ましい。s/aは、細骨材(S)と粗骨材(G)の体積に基づき、s/a=〔S/(S+G)〕×100(体積%)で算出されるものである。   Moreover, in the hydraulic composition of this invention, it is preferable that a fine aggregate rate (s / a) is 38-60 volume%, 38-55 volume% is more preferable, 40-50 volume% is still more preferable. s / a is calculated by s / a = [S / (S + G)] × 100 (volume%) based on the volume of the fine aggregate (S) and the coarse aggregate (G).

本発明の水硬性組成物は、(C)成分を含む粉体、骨材〔(D)成分を含む細骨材と粗骨材とを少なくとも含む骨材〕、並びに(A)成分と(B)成分を含む水溶液を配合する方法により調製することができる。配合する際はこれらを同時に混合してもよく、又は予め前記粉体だけを混合してから前記骨材を混合し更に前記水溶液を混合してもよく等、種々の配合方法を行うことができる。また、(A)成分及び(B)成分を含有する水硬性組成物用分散剤と、(C)成分と、(D)成分を含む骨材と、水とを混練することで調製することができる。、   The hydraulic composition of the present invention comprises a powder containing the component (C), an aggregate (an aggregate containing at least a fine aggregate containing the component (D) and a coarse aggregate), and the component (A) and (B ) It can prepare by the method of mix | blending aqueous solution containing a component. When blending, these may be mixed at the same time, or various blending methods may be performed, such as mixing only the powder in advance and then mixing the aggregate and further mixing the aqueous solution. . Moreover, it can prepare by knead | mixing the dispersing agent for hydraulic compositions containing (A) component and (B) component, (C) component, the aggregate containing (D) component, and water. it can. ,

本発明の水硬性組成物は、コンクリートとして使用でき、生コンクリート、コンクリート振動製品分野の外、セルフレベリング用、耐火物用、プラスター用、石膏スラリー用、軽量又は重量コンクリート用、AE用、補修用、プレパックド用、トレーミー用、グラウト用、地盤改良用、寒中用等の種々のコンクリートの何れの分野においても有用である。   The hydraulic composition of the present invention can be used as concrete, outside the field of ready-mixed concrete and concrete vibration products, for self-leveling, for refractories, for plaster, for gypsum slurry, for lightweight or heavy concrete, for AE, for repair It is useful in any field of various concrete such as prepacked, trayy, grout, ground improvement, and cold.

〔(A)成分〕
(A)成分として以下の合成例の重合体を、また、比較の重合体として以下の比較合成例の重合体を用いた。
[Component (A)]
The polymer of the following synthesis example was used as the component (A), and the polymer of the following comparative synthesis example was used as a comparative polymer.

<合成原料>
・ヒドロキシエチルアクリレート(以下、HEAと表記する):Aldrich(有効分96%)〔単量体(1)〕
・メタクリル酸エチル(以下、EMAと表記する):和光純薬工業(株)製(有効分97%)
・アクリル酸(以下、AAと表記する):Aldrich社製(有効分99%)
・メタクリル酸(以下、MAと表記する):Aldrich社製
・メトキシポリオキシエチレンメタクリレート(平均付加モル数9)〔以下、ME−PEG(9)と表記する〕:NKエステルM90G、新中村化学社製
・メトキシポリオキシエチレンメタクリレート(平均付加モル数23)〔以下、ME−PEG(23)と表記する〕:NKエステルM230G、新中村化学社製
・メルカプトプロピオン酸:Aldrich社製
・ペルオキソ二硫酸アンモニウム:和光純薬工業(株)製
<Synthetic raw material>
Hydroxyethyl acrylate (hereinafter referred to as HEA): Aldrich (effective content 96%) [monomer (1)]
-Ethyl methacrylate (hereinafter referred to as EMA): Wako Pure Chemical Industries, Ltd. (effective portion 97%)
Acrylic acid (hereinafter referred to as AA): Aldrich (effective amount 99%)
・ Methacrylic acid (hereinafter referred to as MA): manufactured by Aldrich ・ Methoxypolyoxyethylene methacrylate (average number of added moles: 9) [hereinafter referred to as ME-PEG (9)]: NK ester M90G, Shin-Nakamura Chemical Co., Ltd. -Methoxypolyoxyethylene methacrylate (average number of added moles: 23) [hereinafter referred to as ME-PEG (23)]: NK ester M230G, manufactured by Shin-Nakamura Chemical Co., Ltd., mercaptopropionic acid: manufactured by Aldrich, ammonium peroxodisulfate: Wako Pure Chemical Industries, Ltd.

<製造例>
製造例1
反応容器である4つ口フラスコにイオン交換水84.2gを仕込み、反応容器内を脱気後窒素雰囲気下にした。AA20.2gとHEA83.5gを混合し、単量体液を調製した。ペルオキソ二硫酸アンモニウム1.3gをイオン交換水26.4gに溶解し開始剤水溶液(1)を調製した。3−メルカプトプロピオン酸2.6gをイオン交換水25gに溶解し連鎖移動剤水溶液を調製した。反応容器を80℃にして前記単量体液、開始剤水溶液(1)及び前記連鎖移動剤水溶液を4つ口フラスコの別の口から滴下ロートで同時に90分かけて滴下した。その後、ペルオキソ二硫酸アンモニウム0.3gをイオン交換水6.6gに溶解した開始剤水溶液(2)を30分掛けて滴下し、更に80℃で60分間反応させた。反応終了後に常温に戻して、48%水酸化ナトリウム水溶液で中和し、pH5の重合体A−1の水溶液を得た。
仕込み組成比:
AA/HEA=19.5/80.5(重量比)(HEA80.5重量%)
AA/HEA=28.0/72.0(モル比)
重量平均分子量:34500
AA:反応率97%(HPLC)
HEA:反応率98%(HPLC)
<Production example>
Production Example 1
Into a four-necked flask serving as a reaction vessel, 84.2 g of ion-exchanged water was charged, and the inside of the reaction vessel was deaerated and then placed in a nitrogen atmosphere. A monomer solution was prepared by mixing 20.2 g of AA and 83.5 g of HEA. An initiator aqueous solution (1) was prepared by dissolving 1.3 g of ammonium peroxodisulfate in 26.4 g of ion-exchanged water. 2.6 g of 3-mercaptopropionic acid was dissolved in 25 g of ion-exchanged water to prepare an aqueous chain transfer agent solution. The monomer vessel, the initiator aqueous solution (1), and the chain transfer agent aqueous solution were added dropwise from another mouth of the four-necked flask simultaneously with a dropping funnel over 90 minutes at 80 ° C. Thereafter, an aqueous initiator solution (2) obtained by dissolving 0.3 g of ammonium peroxodisulfate in 6.6 g of ion-exchanged water was added dropwise over 30 minutes, and further reacted at 80 ° C. for 60 minutes. After completion of the reaction, the temperature was returned to room temperature and neutralized with a 48% aqueous sodium hydroxide solution to obtain an aqueous solution of polymer A-1 having a pH of 5.
Preparation composition ratio:
AA / HEA = 19.5 / 80.5 (weight ratio) (HEA 80.5 wt%)
AA / HEA = 28.0 / 72.0 (molar ratio)
Weight average molecular weight: 34500
AA: 97% reaction rate (HPLC)
HEA: 98% reaction rate (HPLC)

分子量の測定は以下のサイズ排除クロマトグラフィー(GPC)条件で行った(他の製造例も同様)。
[GPC条件]
標準物質:ポリスチレン換算
カラム:G4000PWXL+G2500PWXL(東ソー)
溶離液:0.2Mリン酸緩衝液/アセトニトリル=9/1
流量:1.0mL/min
カラム温度:40℃
検出器:RI
The molecular weight was measured under the following size exclusion chromatography (GPC) conditions (the same applies to other production examples).
[GPC conditions]
Standard material: Polystyrene conversion column: G4000PWXL + G2500PWXL (Tosoh)
Eluent: 0.2M phosphate buffer / acetonitrile = 9/1
Flow rate: 1.0mL / min
Column temperature: 40 ° C
Detector: RI

反応率は、以下の高速液体クロマトグラフィー(HPLC)条件で測定を行い、未反応の単量体のピーク面積から計算した(他の製造例も同様)。
[HPLC条件]
装置:LC-2000Plus series (日本分光)
カラム::TSK-GEL ODSA-80TS
溶離液:0.2Mリン酸緩衝液/アセトニトリル=9/1
検出器:UV (205nm)
流量:1.0ml/min
サンプル量:20μl
The reaction rate was measured under the following high performance liquid chromatography (HPLC) conditions and calculated from the peak area of the unreacted monomer (the same applies to other production examples).
[HPLC conditions]
Equipment: LC-2000Plus series (JASCO)
Column :: TSK-GEL ODSA-80TS
Eluent: 0.2M phosphate buffer / acetonitrile = 9/1
Detector: UV (205nm)
Flow rate: 1.0ml / min
Sample volume: 20μl

製造例2
反応容器である4つ口フラスコにイオン交換水85.6gを仕込み、反応容器内を脱気後窒素雰囲気下にした。AA11.7gとHEA92.1gを混合し、単量体液を調製した。ペルオキソ二硫酸アンモニウム1.3gをイオン交換水25.2gに溶解し開始剤水溶液(1)を調製した。3−メルカプトプロピオン酸2.5gをイオン交換水25gに溶解し連鎖移動剤水溶液を調製した。反応容器を80℃にし、前記単量体液、開始剤水溶液(1)及び前記連鎖移動剤水溶液を4つ口フラスコの別の口から滴下ロートで同時に90分かけて滴下した。その後、ペルオキソ二硫酸アンモニウム0.3gをイオン交換水6.3gに溶解した開始剤水溶液(2)を30分掛けて滴下し、更に80℃で60分間反応させた。反応終了後に常温に戻して、48%水酸化ナトリウム水溶液で中和し、pH5の重合体A−2の水溶液を得た。
仕込み組成比:
AA/HEA=11.3/88.7(重量比)(HEA88.7重量%)
AA/HEA=17.0/83.0(モル比)
重量平均分子量:30600
AA:反応率97%(HPLC)
HEA:反応率98%(HPLC)
Production Example 2
Into a four-necked flask as a reaction vessel, 85.6 g of ion-exchanged water was charged, and the inside of the reaction vessel was deaerated and then placed in a nitrogen atmosphere. A monomer solution was prepared by mixing 11.7 g of AA and 92.1 g of HEA. An initiator aqueous solution (1) was prepared by dissolving 1.3 g of ammonium peroxodisulfate in 25.2 g of ion-exchanged water. An aqueous chain transfer agent solution was prepared by dissolving 2.5 g of 3-mercaptopropionic acid in 25 g of ion-exchanged water. The reaction vessel was brought to 80 ° C., and the monomer solution, the aqueous initiator solution (1), and the aqueous chain transfer agent solution were simultaneously added dropwise from another port of the four-necked flask through a dropping funnel over 90 minutes. Thereafter, an aqueous initiator solution (2) obtained by dissolving 0.3 g of ammonium peroxodisulfate in 6.3 g of ion-exchanged water was added dropwise over 30 minutes, and further reacted at 80 ° C. for 60 minutes. After completion of the reaction, the temperature was returned to room temperature and neutralized with a 48% aqueous sodium hydroxide solution to obtain an aqueous solution of polymer A-2 having a pH of 5.
Preparation composition ratio:
AA / HEA = 11.3 / 88.7 (weight ratio) (HEA 88.7% by weight)
AA / HEA = 17.0 / 83.0 (molar ratio)
Weight average molecular weight: 30600
AA: 97% reaction rate (HPLC)
HEA: 98% reaction rate (HPLC)

製造例3
反応容器である4つ口フラスコにイオン交換水224.5gを仕込み、反応容器内を脱気後窒素雰囲気下にした。ペルオキソ二硫酸アンモニウム4.4gをイオン交換水90gに溶解し開始剤水溶液(1)を調製した。3−メルカプトプロピオン酸10.2gをイオン交換水80gに溶解した連鎖移動剤水溶液を調製した。反応容器を80℃にし、HEA280gの単量体液、開始剤水溶液(1)及び前記連鎖移動剤水溶液を4つ口フラスコの別の口から滴下ロートで同時に90分かけて滴下した。その後、ペルオキソ二硫酸アンモニウム0.6gをイオン交換水10gに溶解した開始剤水溶液(2)を30分掛けて滴下し、更に80℃で60分間反応させた。反応終了後に常温に戻して、48%水酸化ナトリウム水溶液で攪拌しながら中和した。pH5の重合体A−3の水溶液を得た。
仕込み組成比:HEA100モル%(100重量%)
重量平均分子量:14200
HEA:反応率96%(HPLC)
Production Example 3
A four-necked flask serving as a reaction vessel was charged with 224.5 g of ion-exchanged water, and the inside of the reaction vessel was deaerated and then placed in a nitrogen atmosphere. An initiator aqueous solution (1) was prepared by dissolving 4.4 g of ammonium peroxodisulfate in 90 g of ion-exchanged water. A chain transfer agent aqueous solution in which 10.2 g of 3-mercaptopropionic acid was dissolved in 80 g of ion-exchanged water was prepared. The reaction vessel was brought to 80 ° C., and a monomer solution of HEA 280 g, an aqueous initiator solution (1) and the aqueous chain transfer agent solution were dropped simultaneously from another port of the four-necked flask through a dropping funnel over 90 minutes. Thereafter, an initiator aqueous solution (2) obtained by dissolving 0.6 g of ammonium peroxodisulfate in 10 g of ion-exchanged water was dropped over 30 minutes, and further reacted at 80 ° C. for 60 minutes. After completion of the reaction, the temperature was returned to room temperature and neutralized while stirring with a 48% aqueous sodium hydroxide solution. An aqueous solution of polymer A-3 having a pH of 5 was obtained.
Charge composition ratio: HEA 100 mol% (100 wt%)
Weight average molecular weight: 14200
HEA: 96% reaction rate (HPLC)

比較製造例1
反応容器である4つ口フラスコにイオン交換水50.7gを仕込み、反応容器内を脱気後窒素雰囲気下にした。ME−PEG(9)11.7g、MA3.0g、EMA1.3g、4,4’−ジヒドロキシジフェニルスルホンのジアリル置換体0.4g及び水6.9gを混合し、単量体液を調製した。過硫酸アンモニウム0.35gをイオン交換水6.0gに溶解し開始剤水溶液(1)を調製した。反応容器を100℃にし、前記単量体液、開始剤水溶液(1)及び前記連鎖移動剤水溶液を4つ口フラスコの別の口から滴下ロートで同時に120分かけて滴下した。更に100℃で60分間反応させた。反応終了後に常温に戻して、48%水酸化ナトリウム水溶液で中和し、pH7の重合体a−1の水溶液を得た。
重量平均分子量:21000
Comparative production example 1
Ion-exchanged water (50.7 g) was charged into a four-necked flask serving as a reaction vessel, and the inside of the reaction vessel was deaerated and then placed in a nitrogen atmosphere. 11.7 g of ME-PEG (9), 3.0 g of MA, 1.3 g of EMA, 0.4 g of diallyl substituted product of 4,4′-dihydroxydiphenylsulfone and 6.9 g of water were mixed to prepare a monomer solution. An aqueous initiator solution (1) was prepared by dissolving 0.35 g of ammonium persulfate in 6.0 g of ion-exchanged water. The reaction vessel was brought to 100 ° C., and the monomer solution, the aqueous initiator solution (1) and the aqueous chain transfer agent solution were added dropwise from another mouth of the four-necked flask simultaneously through a dropping funnel over 120 minutes. The reaction was further carried out at 100 ° C. for 60 minutes. After completion of the reaction, the temperature was returned to room temperature and neutralized with a 48% aqueous sodium hydroxide solution to obtain an aqueous solution of polymer a-1 having a pH of 7.
Weight average molecular weight: 21000

比較製造例2
反応容器である4つ口フラスコにイオン交換水79.2gを入れ、反応容器内を脱気後窒素雰囲気下にした。AA53.2gとHEA49.3gを混合し、単量体液を調製した。ペルオキソ二硫酸アンモニウム1.56gをイオン交換水31.2gに溶解した開始剤水溶液(1)を調製した。3−メルカプトプロピオン酸2.42gをイオン交換水25gに溶解した連鎖移動剤水溶液を調製した。反応容器を80℃にし、前記単量体液、開始剤水溶液(1)及び前記連鎖移動剤水溶液を4つ口フラスコの別の口から滴下ロートで同時に90分かけて滴下した。その後、ペルオキソ二硫酸アンモニウム0.4gをイオン交換水7.8gに溶解した開始剤水溶液を30分掛けて滴下し、更に80℃で60分間反応させた。反応終了後に常温に戻して、48%水酸化ナトリウム水溶液で中和し、pH5の重合体a−2の水溶液を得た。
仕込み組成比:
AA/HEA=52.7/47.3(重量比)(HEA67.6重量%)
AA/HEA=64.2/35.8(モル比)
重量平均分子量:45000
AA:反応率97%(HPLC)
HEA:反応率98%(HPLC)
Comparative production example 2
79.2 g of ion-exchanged water was placed in a four-necked flask serving as a reaction vessel, and the inside of the reaction vessel was deaerated and then placed in a nitrogen atmosphere. A monomer solution was prepared by mixing 53.2 g of AA and 49.3 g of HEA. An aqueous initiator solution (1) in which 1.56 g of ammonium peroxodisulfate was dissolved in 31.2 g of ion-exchanged water was prepared. A chain transfer agent aqueous solution in which 2.42 g of 3-mercaptopropionic acid was dissolved in 25 g of ion-exchanged water was prepared. The reaction vessel was brought to 80 ° C., and the monomer solution, the aqueous initiator solution (1), and the aqueous chain transfer agent solution were simultaneously added dropwise from another port of the four-necked flask through a dropping funnel over 90 minutes. Thereafter, an initiator aqueous solution in which 0.4 g of ammonium peroxodisulfate was dissolved in 7.8 g of ion-exchanged water was added dropwise over 30 minutes, and further reacted at 80 ° C. for 60 minutes. After completion of the reaction, the temperature was returned to room temperature and neutralized with a 48% aqueous sodium hydroxide solution to obtain an aqueous solution of polymer a-2 having a pH of 5.
Preparation composition ratio:
AA / HEA = 52.7 / 47.3 (weight ratio) (HEA 67.6% by weight)
AA / HEA = 64.2 / 35.8 (molar ratio)
Weight average molecular weight: 45000
AA: 97% reaction rate (HPLC)
HEA: 98% reaction rate (HPLC)

表1に、重合体A−1〜A−3及び重合体a−1〜a−2のモノマー比、重量平均分子量を示す。   Table 1 shows the monomer ratios and weight average molecular weights of the polymers A-1 to A-3 and the polymers a-1 to a-2.

Figure 0005122501
Figure 0005122501

〔(B)成分〕
(B)成分として、マイテイ150〔ナフタレンスルホン酸ホルムアルデヒド縮合物系混和剤、花王(株)製〕を用いた。これをB−1とした。また、比較の重合体として以下の比較合成例の重合体を用いた。
[(B) component]
As component (B), Mighty 150 [Naphthalenesulfonic acid formaldehyde condensate admixture, manufactured by Kao Corporation] was used. This was designated as B-1. Moreover, the polymer of the following comparative synthesis examples was used as a comparative polymer.

比較製造例3
反応容器である4つ口フラスコにイオン交換水561gを仕込み、反応容器内を脱気後窒素雰囲気下にした。ME−PEG(23)75g、MA25gと水300gを混合し、単量体液を調製した。5%過硫酸アンモニウム水溶液34.5gからなる開始剤水溶液(1)を調製した。反応容器を95℃にし、前記単量体液及び開始剤水溶液(1)を4つ口フラスコの別の口から滴下ロートで同時に120分かけて滴下した。その後、5%過硫酸アンモニウム水溶液6.8gからなる開始剤水溶液(2)を20分掛けて滴下し、更に95℃で120分間反応させた。反応終了後に常温に戻して、48%水酸化ナトリウム水溶液で中和し、pH5の重合体b−1の水溶液を得た。
重量平均分子量:24000
Comparative production example 3
561 g of ion-exchanged water was charged into a four-necked flask serving as a reaction vessel, and the inside of the reaction vessel was deaerated and then placed in a nitrogen atmosphere. A monomer solution was prepared by mixing 75 g of ME-PEG (23), 25 g of MA and 300 g of water. An initiator aqueous solution (1) consisting of 34.5 g of 5% ammonium persulfate aqueous solution was prepared. The reaction vessel was brought to 95 ° C., and the monomer solution and the aqueous initiator solution (1) were added dropwise from another mouth of the four-necked flask simultaneously with a dropping funnel over 120 minutes. Thereafter, an initiator aqueous solution (2) consisting of 6.8 g of 5% ammonium persulfate aqueous solution was dropped over 20 minutes, and further reacted at 95 ° C. for 120 minutes. After completion of the reaction, the temperature was returned to room temperature and neutralized with a 48% aqueous sodium hydroxide solution to obtain an aqueous solution of polymer b-1 having a pH of 5.
Weight average molecular weight: 24000

〔水硬性組成物の調製及び評価〕
上記(A)成分、(B)成分を、表2〜3の配合の成分に対して、表4〜5の添加量で用いて、下記に示す方法で水硬性組成物(コンクリート)を調製し、以下の評価を行った。結果を表4〜5に示す。
(Preparation and evaluation of hydraulic composition)
A hydraulic composition (concrete) is prepared by the method shown below using the components (A) and (B) with the addition amounts shown in Tables 4 to 5 with respect to the components shown in Tables 2-3. The following evaluation was performed. The results are shown in Tables 4-5.

Figure 0005122501
Figure 0005122501

Figure 0005122501
Figure 0005122501

表2〜3中の使用材料は以下のものである。なお、密度は嵩密度である。
W(水):水道水
C(セメント):普通ポルトランドセメント〔太平洋セメント(株)製普通ポルトランドセメント/住友大阪セメント製普通ポルトランドセメント=1/1(重量比)の混合セメント〕、密度3.16(g/cm3
S1:細骨材、兵庫県西島産砕砂、密度2.55(g/cm3
S2:細骨材、城陽産山砂、密度2.55(g/cm3
G:粗骨材、鳥形山産石灰砕石、密度2.72(g/cm3
W/C=〔W/C〕×100(重量%)
The materials used in Tables 2 to 3 are as follows. The density is a bulk density.
W (water): tap water C (cement): ordinary Portland cement (ordinary Portland cement manufactured by Taiheiyo Cement Co., Ltd./ordinary Portland cement manufactured by Sumitomo Osaka Cement = 1/1 (weight ratio)), density 3.16 (G / cm 3 )
S1: Fine aggregate, crushed sand from Nishijima, Hyogo, density 2.55 (g / cm 3 )
S2: Fine aggregate, Joyosan sand, density 2.55 (g / cm 3 )
G: Coarse aggregate, limestone from Torigatayama, density 2.72 (g / cm 3 )
W / C = [W / C] × 100 (% by weight)

<コンクリート試験>
(A)成分と(B)成分は、これらを含有する分散剤水溶液として用いた。表2のコンクリート配合1に対する試験結果を表4に示す。なお、参考のため、細骨材として山砂を用いた表3のコンクリート配合2に対する試験結果を表5に示す。
<Concrete test>
The component (A) and the component (B) were used as a dispersant aqueous solution containing them. Table 4 shows the test results for the concrete composition 1 in Table 2. In addition, the test result with respect to the concrete mixing | blending 2 of Table 3 which uses pile sand as a fine aggregate is shown in Table 5 for reference.

(1)コンクリートフロー
60L練り二軸ミキサーに表2又は3のコンクリート配合の30L分、全材料と、分散剤水溶液とを投入して30℃で90秒間混練りし、コンクリートを得た。調製直後のコンクリートについてスランプフロー(表中、コンクリートフローと表記する)を測定した。このスランプフロー値は、スランプフロー値の最大値と、該最大値を与える線分の1/2の長さで直交する方向で測定したスランプフロー値との平均値である。スランプフロー値は流動性の指標であるが、同等のスランプフロー値の場合に下記ボックス試験による間隙通過性が大きいほうが水硬性組成物として有利であることを示す。
(1) Concrete flow 30L of the concrete composition shown in Table 2 or 3 was added to a 60L kneaded biaxial mixer, and all materials and an aqueous dispersant solution were added and kneaded at 30 ° C for 90 seconds to obtain concrete. The slump flow (denoted as concrete flow in the table) of the concrete immediately after preparation was measured. This slump flow value is an average value of the maximum value of the slump flow value and the slump flow value measured in the direction perpendicular to the length of ½ of the line segment that gives the maximum value. The slump flow value is an indicator of fluidity, but when the slump flow value is the same, it indicates that the larger the gap passage property by the box test below, the more advantageous as the hydraulic composition.

(2)ボックス試験
コンクリートフローの評価で調製したコンクリートを、U型容器のU字部分の片方に全容量まで充填後、仕切り板下方のゲートを取り去り、コンクリートを他方のU字部分に流通させて、自然に流通が終了した時点のコンクリートのU字の底からの高さにより、間隙通過性を評価した。この値の大きいほうが間隙通過性が良好であり、水硬性組成物の流動性が優れることを示す。なお、ここで、用いたU型容器は、三洋試験機工業(株)製LC−605C〔内寸280mm×200mm×680mm、底部R=140mm、仕切り板下方に流動障害(200mmの幅に長さ220mm、太さ15mm3本の障害、幅の両端には障害なし)を1つ具備するもの〕である。
(2) Box test After filling the concrete prepared in the concrete flow evaluation to one side of the U-shaped part of the U-shaped container to the full capacity, remove the gate below the partition plate and distribute the concrete to the other U-shaped part. The gap-passing ability was evaluated based on the height from the bottom of the U shape of the concrete at the time when the flow ended naturally. The larger this value, the better the gap passing property, and the better the fluidity of the hydraulic composition. The U-shaped container used here was LC-605C manufactured by Sanyo Tester Industries Co., Ltd. [inner dimensions 280 mm × 200 mm × 680 mm, bottom R = 140 mm, flow obstruction below the partition plate (length of 200 mm in length) It has one obstacle of 220 mm and a thickness of 15 mm and no obstacles at both ends of the width.

Figure 0005122501
Figure 0005122501

表4中、実施例1−1〜1−6と比較例1−1との結果から、本発明の(A)成分を(B)成分と組み合わせて添加することで、コンクリートフローを維持した上で、より優れた間隙通過性(コンクリート高さ)が得られることがわかる。また、比較例1−2のように、単量体の種類が同じでも本発明の(A)成分に該当しない重合体を用いた場合は、該重合体の添加量を多くしても間隙通過性は向上しない。また、(B)成分単独で間隙通過性を向上させようとすると、比較例1−3、1−4のように、コンクリートフローも大きくなってしまい、コンクリート設計に影響を及ぼす。   In Table 4, from the results of Examples 1-1 to 1-6 and Comparative Example 1-1, the concrete flow was maintained by adding the component (A) of the present invention in combination with the component (B). Thus, it can be seen that more excellent gap passage property (concrete height) can be obtained. Further, as in Comparative Example 1-2, when a polymer that is the same type of monomer but does not fall under the component (A) of the present invention is used, even if the amount of the polymer added is increased, the polymer passes through the gap. Sex does not improve. Moreover, when it is going to improve gap permeability by component (B) alone, a concrete flow will also become large like comparative example 1-3, 1-4, and will affect concrete design.

一方、ポリカルボン酸系重合体b−1を(B)成分の代わりに用いた比較例1−5では、同等のコンクリートフローでは間隙通過性は低くなる。これに、種類の異なるポリカルボン酸系重合体を併用しても、比較例1−6、1−7のように、間隙通過性は向上しない。また、重合体b−1単独で間隙通過性を向上させようとすると、比較例1−8のように、コンクリートフローが大きくなりコンクリート設計への影響が懸念される。なお、比較例1−9のように、本発明の(A)成分を単独で用いた場合は、コンクリートフローが低く、(A)成分は分散剤としての性能を示さないことがわかる。更に、ポリカルボン酸系重合体b−1に本発明の(A)成分を組み合わせても、間隙通過性は向上しないことがわかる(比較例1−10)。   On the other hand, in Comparative Example 1-5 in which the polycarboxylic acid polymer b-1 is used in place of the component (B), the gap permeability is low in the equivalent concrete flow. Even if different types of polycarboxylic acid-based polymers are used in combination, the gap-passability is not improved as in Comparative Examples 1-6 and 1-7. Further, if the polymer b-1 alone is intended to improve the gap passing property, the concrete flow becomes large as in Comparative Example 1-8, and there is a concern about the influence on the concrete design. In addition, when the (A) component of this invention is used independently like Comparative Example 1-9, it turns out that a concrete flow is low and (A) component does not show the performance as a dispersing agent. Further, it can be seen that even when the component (A) of the present invention is combined with the polycarboxylic acid polymer b-1, the gap permeability is not improved (Comparative Example 1-10).

Figure 0005122501
Figure 0005122501

表5では、コンクリートフローの値を表4の実施例と同等にしている。表5の結果から、細骨材として山砂を用いた配合でも、本発明の(A)成分を(B)成分と併用することにより、間隙通過性の向上は認められる傾向にあるが、(A)成分の添加量を増やしていった場合の間隙通過性の向上幅は、細骨材として砕砂を用いる本発明の水硬性組成物においてより大きくなる(例えば、表4の実施例1−3と1−4)。   In Table 5, the value of the concrete flow is made equivalent to the example of Table 4. From the results of Table 5, even when blended with mountain sand as a fine aggregate, by using the component (A) of the present invention in combination with the component (B), an improvement in gap permeability tends to be recognized, A) When the amount of the component added is increased, the width of improvement in gap permeability is larger in the hydraulic composition of the present invention using crushed sand as a fine aggregate (for example, Example 1-3 in Table 4). And 1-4).

〔モルタル試験〕
参考のため、粗骨材を含有しない水硬性組成物(モルタル)についても、上記(A)成分、(B)成分を、表6の配合の成分に対して、表7の添加量で用いて、下記に示す方法で調製し、以下の評価を行った。
[Mortar test]
For reference, for the hydraulic composition (mortar) not containing coarse aggregate, the above components (A) and (B) are used in the addition amount shown in Table 7 with respect to the components shown in Table 6. The following method was used for the preparation.

Figure 0005122501
Figure 0005122501

表6中の使用材料は以下のものである。なお、密度は嵩密度である。
W(水):水道水
C(セメント):普通ポルトランドセメント〔太平洋セメント(株)製普通ポルトランドセメント/住友大阪セメント製普通ポルトランドセメント=1/1(重量比)の混合セメント〕、密度3.16(g/cm3
S1:細骨材、兵庫県西島産砕砂、密度2.55(g/cm3
W/C=〔W/C〕×100(重量%)
The materials used in Table 6 are as follows. The density is a bulk density.
W (water): tap water C (cement): ordinary Portland cement (ordinary Portland cement manufactured by Taiheiyo Cement Co., Ltd./ordinary Portland cement manufactured by Sumitomo Osaka Cement = 1/1 (weight ratio)), density 3.16 (G / cm 3 )
S1: Fine aggregate, crushed sand from Nishijima, Hyogo, density 2.55 (g / cm 3 )
W / C = [W / C] × 100 (% by weight)

(性能評価)
(A)成分と(B)成分は、これらを含有する分散剤水溶液として用いた。表6の配合に基づき、セメントと砂を万能混合攪拌機(型番:5DM−03−r、ダルトン社製)に入れ、低速に設定し10秒間攪拌を行った。その後、予め調製した分散剤水溶液160gを添加し(接水開始)、低速で90秒間攪拌を行った。分散剤水溶液中の(A)成分と(B)成分の濃度は、それぞれの添加量が表7の通りとなるように調整した。攪拌後にモルタルをコーン(下部径100mm、上部径70mm、高さ60mm)に充填し、モルタルフローを測定した。フロー値が大きいほうがモルタルの流動性が優れることを示す。また、混練直後のモルタルをJロート(上部径70mm、下部径15mm、高さ390mm)に充填して流下時間を計測した。流下時間が小さいほうがモルタルの型枠への充填性が優れることを示す。
(Performance evaluation)
The component (A) and the component (B) were used as a dispersant aqueous solution containing them. Based on the formulation shown in Table 6, cement and sand were put into a universal mixing stirrer (model number: 5DM-03-r, manufactured by Dalton), set at low speed and stirred for 10 seconds. Thereafter, 160 g of a previously prepared aqueous dispersant solution was added (starting water contact), and stirring was performed for 90 seconds at a low speed. The concentrations of the component (A) and the component (B) in the dispersant aqueous solution were adjusted so that the respective addition amounts were as shown in Table 7. After stirring, the mortar was filled into a cone (lower diameter 100 mm, upper diameter 70 mm, height 60 mm), and mortar flow was measured. A larger flow value indicates better mortar fluidity. The mortar immediately after kneading was filled in a J funnel (upper diameter 70 mm, lower diameter 15 mm, height 390 mm), and the flow-down time was measured. The smaller the flow-down time, the better the filling property of the mortar into the mold.

Figure 0005122501
Figure 0005122501

表7の結果から、粗骨材を含有しないモルタルでは、本発明の(A)成分を(B)成分と組み合わせてもモルタルフローや流下時間の顕著な向上は認められない。つまり、砕砂を含む細骨材、及び粗骨材を含有するコンクリート等の水硬性組成物において、本発明の(A)成分及び(B)成分を併用したことによる効果がより顕著に発現することがわかる。   From the result of Table 7, in the mortar which does not contain a coarse aggregate, even if the component (A) of the present invention is combined with the component (B), the mortar flow and the flow time are not significantly improved. In other words, in the hydraulic composition such as the fine aggregate containing crushed sand and the concrete containing the coarse aggregate, the effect of combining the component (A) and the component (B) of the present invention is more remarkably exhibited. I understand.

Claims (4)

下記式(1)で表される単量体由来の構成単位を70重量%以上含む構成単位からなる重合体(A)〔以下、(A)成分という〕、ナフタレンスルホン酸ホルマリン縮合物(B)〔以下、(B)成分という〕、水硬性粉体(C)〔以下、(C)成分という〕、砕砂(D)〔以下、(D)成分という〕を含む細骨材、粗骨材、及び水を含有する水硬性組成物。
2C=CHCOOCH2CH2OH (1)
Polymer (A) [hereinafter referred to as component (A)] comprising a structural unit containing 70% by weight or more of a structural unit derived from a monomer represented by the following formula (1), naphthalenesulfonic acid formalin condensate (B) [Hereinafter referred to as component (B)], hydraulic powder (C) [hereinafter referred to as component (C)], crushed sand (D) [hereinafter referred to as component (D)], fine aggregate, coarse aggregate, And a hydraulic composition containing water.
H 2 C═CHCOOCH 2 CH 2 OH (1)
細骨材率〔細骨材体積/(細骨材体積+粗骨材体積)×100〕が38〜60体積%である請求項1記載の水硬性組成物。   The hydraulic composition according to claim 1, wherein the fine aggregate ratio [fine aggregate volume / (fine aggregate volume + coarse aggregate volume) × 100] is 38 to 60% by volume. 細骨材中、(D)成分が70重量%以上である請求項1又は2記載の水硬性組成物。   The hydraulic composition according to claim 1 or 2, wherein the component (D) is 70% by weight or more in the fine aggregate. (A)成分と(B)成分の重量比率が、(A)/(B)=3/97〜45/55である請求項1〜3いずれか記載の水硬性組成物。   The hydraulic composition according to any one of claims 1 to 3, wherein a weight ratio of the component (A) to the component (B) is (A) / (B) = 3/97 to 45/55.
JP2009019534A 2009-01-30 2009-01-30 Hydraulic composition Active JP5122501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009019534A JP5122501B2 (en) 2009-01-30 2009-01-30 Hydraulic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019534A JP5122501B2 (en) 2009-01-30 2009-01-30 Hydraulic composition

Publications (2)

Publication Number Publication Date
JP2010173907A JP2010173907A (en) 2010-08-12
JP5122501B2 true JP5122501B2 (en) 2013-01-16

Family

ID=42705235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019534A Active JP5122501B2 (en) 2009-01-30 2009-01-30 Hydraulic composition

Country Status (1)

Country Link
JP (1) JP5122501B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748054B (en) * 2011-08-10 2017-03-29 Sika技术股份公司 It is dried the method for concrete dispersant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183157A (en) * 1985-02-08 1986-08-15 花王株式会社 Cement additive
CA1325311C (en) * 1986-07-01 1993-12-14 W.R. Grace & Co.-Conn. Cement admixture
JPH01308854A (en) * 1988-06-07 1989-12-13 Dainippon Ink & Chem Inc Cement dispersant
JP5249138B2 (en) * 2008-06-17 2013-07-31 花王株式会社 Dispersant for hydraulic composition

Also Published As

Publication number Publication date
JP2010173907A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
ES2813874T3 (en) Additive for rheological improvement of inorganic binders
KR101507263B1 (en) Copolymers with gem-bisphosphonate groups
JP5656863B2 (en) Copolymer containing acid building blocks and various polyether building blocks
JP5848633B2 (en) Dispersant for hydraulic composition
JP5453321B2 (en) Copolymers having polyether side chains and hydroxyalkyl and acid structural units
US10501371B2 (en) Copolymer as a water-reducing agent in a hydraulic composition and use of copolymers for improving the early mechanical strength of a hydraulic composition
JP5345700B2 (en) Dispersant containing copolymer mixture
JP5249138B2 (en) Dispersant for hydraulic composition
WO2016158921A1 (en) Dispersant composition for hydraulic composition
JP5122501B2 (en) Hydraulic composition
KR101604960B1 (en) Copolymers with gem acetophosphonate groups
JP5342187B2 (en) Admixture for concrete
US20190330108A9 (en) Rheology modifier for inorganic suspensions
JP5536387B2 (en) Method for producing centrifugally formed concrete products
JP6415960B2 (en) Dispersant for hydraulic composition
JP5155766B2 (en) Hydraulic composition
JP6837824B2 (en) Hydraulic composition
JP2011116587A (en) Early strengthening agent for hydraulic composition
JP5311910B2 (en) Manufacturing method of concrete products
JP4717713B2 (en) Dispersant for hydraulic composition
JPH09194244A (en) Cement admixture
JP5350135B2 (en) Dispersant for hydraulic composition
JP5311891B2 (en) Additive composition for hydraulic composition
US20220371957A1 (en) Copolymer and hydraulic binder composition
JP2022018729A (en) Dispersant for hydraulic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5122501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250