JP5346170B2 - Ozone generator and electrode unit setting method - Google Patents

Ozone generator and electrode unit setting method Download PDF

Info

Publication number
JP5346170B2
JP5346170B2 JP2008039845A JP2008039845A JP5346170B2 JP 5346170 B2 JP5346170 B2 JP 5346170B2 JP 2008039845 A JP2008039845 A JP 2008039845A JP 2008039845 A JP2008039845 A JP 2008039845A JP 5346170 B2 JP5346170 B2 JP 5346170B2
Authority
JP
Japan
Prior art keywords
cylindrical metal
discharge gap
electrode
coaxial cylindrical
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008039845A
Other languages
Japanese (ja)
Other versions
JP2009196848A (en
Inventor
正樹 田口
中原  浩介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2008039845A priority Critical patent/JP5346170B2/en
Publication of JP2009196848A publication Critical patent/JP2009196848A/en
Application granted granted Critical
Publication of JP5346170B2 publication Critical patent/JP5346170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ozone generating device and a method for setting an electrode unit of the device for accurately determining the conditions to obtain the most uniform discharge gap in a discharge space in combination of cylindrical electrodes to be used and for obtaining a means of further efficiently generating an ozonated gas. <P>SOLUTION: The ozone generating device 100 has an electrode unit including coaxial cylindrical metal electrodes 1, 2 disposed opposing to each other, with the surface of at least one electrode 1 being covered with a dielectric layer 3, in which a discharge gap 12 is formed between the electrodes 1, 2 and silent discharge is generated by applying an alternating high voltage while supplying a source material gas 8 containing oxygen to the discharge gap 12. The method for setting the electrode unit comprises measuring a compounded electrostatic capacitance formed by the dielectric layer 3 and the discharge gap 12 between the coaxial cylindrical metal electrodes 1, 2 and employing positions and a combination of the electrodes giving the maximum compounded electrostatic capacitance so as to minimize the variance of the discharge gap 12. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、放電ギャップによる無声放電より酸素または酸素を含む気体からオゾンを発生するオゾン発生装置に係り、上下水処理、パルプ漂白処理、殺菌処理などに用いられるオゾン発生装置およびその電極ユニットの設定方法に関する。   The present invention relates to an ozone generator that generates ozone from oxygen or oxygen-containing gas by silent discharge through a discharge gap, and relates to an ozone generator used for water and sewage treatment, pulp bleaching treatment, sterilization treatment, and the like, and setting of an electrode unit thereof Regarding the method.

オゾンは、それが持つ殺菌・脱色・脱臭力を利用して、水処理施設などの広い分野で使用されている。従来用いられているオゾン発生装置の一例として、同軸円筒管型オゾン発生管が知られており、その模式図を図3に示している。
図3は、対向する2つの円筒型金属高電圧電極1と円筒型金属接地電極2と、その片方に誘電体3を配置した構成となっている。
図3において、内側に位置する円筒型金属高電圧電極1の表面に誘電体3が配置され、円筒型金属接地電極2が円筒型金属高電圧電極1の外側に配置されている。円筒型金属高電圧電極1と円筒型金属接地電極2との間には、放電ギャップ12を持つ放電空間4を形成した電極ユニットとなっている。
Ozone is used in a wide range of fields such as water treatment facilities by utilizing its sterilizing, decolorizing and deodorizing power. As an example of a conventionally used ozone generator, a coaxial cylindrical tube type ozone generator tube is known, and a schematic diagram thereof is shown in FIG.
FIG. 3 shows a configuration in which two cylindrical metal high-voltage electrodes 1 and a cylindrical metal ground electrode 2 facing each other and a dielectric 3 are arranged on one of them.
In FIG. 3, the dielectric 3 is disposed on the surface of the cylindrical metal high-voltage electrode 1 located inside, and the cylindrical metal ground electrode 2 is disposed outside the cylindrical metal high-voltage electrode 1. Between the cylindrical metal high voltage electrode 1 and the cylindrical metal ground electrode 2, an electrode unit is formed in which a discharge space 4 having a discharge gap 12 is formed.

前記円筒型金属高電圧電極1と円筒型金属接地電極2は、交流高電圧電源7により交流高電圧が印加され、放電空間4に無声放電が発生し、電極間には図4の放電柱10が現れることになる。
また、放電空間4には、酸素を含む原料ガス8が流入し、放電空間4で原料ガス中の酸素が下記反応でオゾンとなり、オゾン化ガス9として生成されることになる。
O2 + e → O + O + e ・・・(1)
O2 + O + M → O3 + M (M:第三体) ・・・(2)
The cylindrical metal high-voltage electrode 1 and the cylindrical metal ground electrode 2 are applied with an AC high voltage by an AC high-voltage power source 7 to generate a silent discharge in the discharge space 4, and the discharge column 10 shown in FIG. Will appear.
In addition, a raw material gas 8 containing oxygen flows into the discharge space 4, and oxygen in the raw material gas becomes ozone by the following reaction in the discharge space 4 and is generated as an ozonized gas 9.
O2 + e → O + O + e (1)
O2 + O + M → O3 + M (M: third body) (2)

図4は平面電極型オゾン発生装置の一例である。この場合、電極構造は基本的に図3の円筒型金属高電圧電極1および円筒型金属接地電極2を金属平板電極11に置き換えた形式となっている。
図4では、前記したように、平面電極11に置き換えた構成となっており、基本的に同等である。図中には明記されていないが、図3および図4のオゾン発生装置には、電極を冷却する装置を電極の片面、あるいは両面に付加して電極を冷却している。
FIG. 4 is an example of a planar electrode type ozone generator. In this case, the electrode structure basically has a form in which the cylindrical metal high-voltage electrode 1 and the cylindrical metal ground electrode 2 in FIG.
In FIG. 4, as described above, the structure is replaced with the planar electrode 11 and is basically the same. Although not clearly shown in the figures, the ozone generators shown in FIGS. 3 and 4 are cooled by adding an electrode cooling device to one or both sides of the electrode.

放電を効率よく発生するためには、同軸円筒電極間に形成される放電ギャップ12のジオメトリ、特に同心性が重要となってくる。放電ギャップ12の保持には、一般的にステンレス製の薄板等を溶接や差し込み、あるいはワイヤ等の設置により構成されている
また、特許文献1(特開平4−214003号公報)では、同軸円筒電極の同心性を高める手段として、円筒型金属高電圧電極1と円筒型金属接地電極2との間に、金属製のばね部材(スペーサ)を支持体として利用することで、一定の放電ギャップ12を長期間保持することを提案している。
In order to generate the discharge efficiently, the geometry of the discharge gap 12 formed between the coaxial cylindrical electrodes, particularly concentricity, is important. The holding of the discharge gap 12 is generally configured by welding or inserting a thin plate made of stainless steel or installing a wire or the like. In Patent Document 1 (Japanese Patent Laid-Open No. 4-214003), a coaxial cylindrical electrode is used. As a means for improving the concentricity of the metal, a constant discharge gap 12 is formed by using a metal spring member (spacer) as a support between the cylindrical metal high-voltage electrode 1 and the cylindrical metal ground electrode 2. It is proposed to hold for a long time.

特開平4−214003号公報JP-A-4-214003

しかしながら、上記特許文献1においては、スペーサ(金属製のばね部材)を使用して同心性を確保する以外に、電極が有する曲がりが放電ギャップ12の均一性に影響を与えることも大きい。
これは円筒型電極を製作する過程で、熱による加工等で円筒電極は、軸方向に対して曲がりが生じる。特に軸方向に長さの大きい電極を製作する場合では、その曲がりが大きくなるために同軸円筒管内に形成する放電空間4の放電ギャップ12は、不均一となる。
However, in the above-mentioned Patent Document 1, besides using a spacer (metal spring member) to ensure concentricity, the bending of the electrode also greatly affects the uniformity of the discharge gap 12.
This is a process of manufacturing a cylindrical electrode, and the cylindrical electrode is bent with respect to the axial direction due to heat processing or the like. In particular, when an electrode having a large length in the axial direction is manufactured, the bending becomes large, and therefore the discharge gap 12 of the discharge space 4 formed in the coaxial cylindrical tube is not uniform.

したがって、放電ギャップ12を均一にするためのスペーサを設けても、円筒電極の曲がりによって前記空間内において放電が起こる条件に適当でない領域が形成され、その領域については放電しにくくなり、オゾン化ガス9の生成効率が低下することが懸念される。
また、この場合、ガスの流れ方向である管長手方向に対し、スペーサとして使用しているばね部材の断面積が大きくなり、ガスの流れを阻害することにより圧力損失となり、オゾン発生効率が低下するおそれがある。
Therefore, even if a spacer for making the discharge gap 12 uniform is provided, a region that is not suitable for the conditions in which discharge occurs in the space due to the bending of the cylindrical electrode is formed, and it becomes difficult for the region to be discharged. There is a concern that the generation efficiency of 9 is reduced.
In this case, the cross-sectional area of the spring member used as the spacer is larger than the longitudinal direction of the pipe, which is the gas flow direction, and pressure loss occurs due to the inhibition of the gas flow, resulting in a decrease in ozone generation efficiency. There is a fear.

本発明はこのような実状に鑑みてなされたものであって、その目的は、使用する円筒電極の組合せの中で、最も放電空間の放電ギャップが均一になる条件を精度良く決定し、より効率的にオゾン化ガスを生成するための手段を得るためのオゾン発生装置およびその電極ユニットの設定方法を提供することにある。   The present invention has been made in view of such a situation, and its purpose is to accurately determine the conditions under which the discharge gap in the discharge space is most uniform among the combinations of cylindrical electrodes to be used, and to improve efficiency. Another object of the present invention is to provide an ozone generator for obtaining means for generating ozonized gas and a method for setting an electrode unit thereof.

上記従来技術の有する課題を解決するために、本発明は、対向して配置された同軸円筒金属電極のうち少なくとも1つの電極が誘電体により表面を覆われたもので構成され、前記電極間に放電ギャップを形成し、この放電ギャップに酸素を含む原料ガスを供給しながら、交流高電圧を印加することにより無声放電を発生させる電極ユニットを有するオゾン発生装置の電極ユニットの設定方法であって、前記同軸円筒金属電極管で、前記誘電体と前記放電ギャップで形成される合成静電容量を測定し、該合成静電容量が最大値となる位置および対向して配置された前記同軸円筒金属電極の組み合わせを採用することにより前記放電ギャップのバラツキを最小に設定している。 In order to solve the above-described problems of the prior art, the present invention is configured such that at least one electrode of coaxial cylindrical metal electrodes arranged to face each other is covered with a dielectric, and the gap is between the electrodes. A method for setting an electrode unit of an ozone generator having an electrode unit that generates a silent gap by applying an alternating high voltage while forming a discharge gap and supplying a source gas containing oxygen to the discharge gap, In the coaxial cylindrical metal electrode tube, a synthetic capacitance formed by the dielectric and the discharge gap is measured, and the coaxial cylindrical metal electrode disposed so as to face the position where the synthetic capacitance is maximum. It is set to minimize the variation of the discharge gap by employing the combination of.

また、本発明において、前記放電ギャップ空間における曲がりの許容範囲を予め設定し、該許容範囲にある円筒金属高電圧電極および円筒金属接地電極の組み合わせを選別して、採用することが好ましい。   In the present invention, it is preferable that an allowable range of bending in the discharge gap space is set in advance, and a combination of the cylindrical metal high voltage electrode and the cylindrical metal ground electrode within the allowable range is selected and adopted.

また、本発明は、対向して配置された同軸円筒金属電極のうち少なくとも1つの電極が誘電体により表面を覆われたもので構成され、前記電極間に放電ギャップを形成し、この放電ギャップに酸素を含む原料ガスを供給しながら、交流高電圧を印加することにより無声放電を発生させる電極ユニットを有するオゾン発生装置において、対向して配置された前記同軸円筒金属電極の間に、前記誘電体と前記放電ギャップで形成される合成静電容量を測定する測定手段を接続し、前記同軸円筒金属電極を繋いだ状態で前記同軸円筒金属電極のいずれかを回転させることにより前記合成静電容量を前記測定手段にて測定し、前記同軸円筒金属電極管で、前記合成静電容量が最大値となる位置および対向して配置された前記同軸円筒金属電極の組み合わせを採用することにより前記放電ギャップのバラツキを最小にすべく設定された前記同軸円筒金属電極管を用いて、オゾン化ガスを生成するように構成している。 Further, the present invention is configured such that at least one of the coaxial cylindrical metal electrodes arranged to face each other is covered with a dielectric, and a discharge gap is formed between the electrodes. In an ozone generator having an electrode unit that generates a silent discharge by applying an alternating high voltage while supplying a source gas containing oxygen, between the coaxial cylindrical metal electrodes arranged opposite to each other, the dielectric And measuring means for measuring the synthetic capacitance formed by the discharge gap, and rotating the coaxial cylindrical metal electrode in a state where the coaxial cylindrical metal electrode is connected, the synthetic capacitance is obtained. measured by the measuring means, in the coaxial cylindrical metal electrode tube, combination of the combined capacitance becomes the maximum value position and oppositely disposed said coaxial cylindrical metal electrodes The ozonized gas is generated by using the coaxial cylindrical metal electrode tube set to minimize the variation in the discharge gap.

上述の如く、本発明に係るオゾン発生装置の電極ユニットの設定方法においては、同軸円筒金属電極管で、誘電体と放電ギャップで形成される合成静電容量を測定し、該合成静電容量が最大値となる位置および対向して配置された前記同軸円筒金属電極の組み合わせを採用することにより前記放電ギャップのバラツキを最小に設定している。静電容量は電極間の距離に反比例し、誘電体が形成する層の厚さは変化しないため、放電ギャップの平均距離のバラツキが最小になる条件において合成静電容量は最大となる。
したがって、前記合成静電容量が最大値となる位置および対向して配置された前記同軸円筒金属電極の組み合わせを採用することにより、前記放電ギャップの平均距離のバラツキを最小に設定することができる。
As described above, in the method of setting the electrode unit of the ozone generator according to the present invention, the combined capacitance formed by the dielectric and the discharge gap is measured with a coaxial cylindrical metal electrode tube, and the combined capacitance is measured. The variation of the discharge gap is set to the minimum by adopting a combination of the coaxial cylindrical metal electrodes disposed opposite to the position where the maximum value is obtained. The capacitance is inversely proportional to the distance between the electrodes, and the thickness of the layer formed by the dielectric does not change. Therefore, the combined capacitance is maximized under the condition that the variation in the average distance of the discharge gap is minimized.
Therefore, the variation in the average distance of the discharge gap can be set to the minimum by adopting the combination of the coaxial cylindrical metal electrodes disposed opposite to the position where the combined capacitance becomes the maximum value.

よって、このような曲がりを持つ電極を使用する場合において、放電ギャップのバラツキを最小値に形成することが可能となるので、同軸円筒電極表面の広い領域で放電が発生し、原料ガスをより効率的にオゾン化ガスに変換できる。   Therefore, when using an electrode having such a bend, it is possible to form a variation in the discharge gap to a minimum value, so that a discharge occurs in a wide area on the surface of the coaxial cylindrical electrode, and the source gas is more efficiently used. Can be converted into ozonized gas.

また、本発明において、前記放電ギャップ空間における曲がりの許容範囲を予め設定し、該許容範囲にある円筒金属高電圧電極および円筒金属接地電極の組み合わせを選別して、採用するので、電極曲がりの許容範囲内にある円筒金属高電圧電極および円筒金属接地電極の組み合わせを容易に選別することができる。   Further, in the present invention, an allowable range of bending in the discharge gap space is set in advance, and a combination of the cylindrical metal high voltage electrode and the cylindrical metal ground electrode within the allowable range is selected and adopted. A combination of the cylindrical metal high-voltage electrode and the cylindrical metal ground electrode within the range can be easily selected.

さらに、本発明に係るオゾン発生装置においては、対向して配置された同軸円筒金属電極の間に、誘電体と放電ギャップで形成される合成静電容量を測定する測定手段を接続し、前記同軸円筒金属電極を繋いだ状態で前記同軸円筒金属電極のいずれかを回転させることにより前記合成静電容量を前記測定手段にて測定し、前記同軸円筒金属電極管で、前記合成静電容量が最大値となる位置および対向して配置された前記同軸円筒金属電極の組み合わせを採用することにより前記放電ギャップのバラツキを最小にすべく設定された前記同軸円筒金属電極管を用いて、オゾン化ガスを生成するように構成しているので、上記発明と同様の効果を得ることができる。 Furthermore, in the ozone generator according to the present invention, a measuring means for measuring a synthetic capacitance formed by a dielectric and a discharge gap is connected between coaxial cylindrical metal electrodes arranged opposite to each other, and the coaxial wherein said combined capacitance measured by said measuring means by rotating one of the coaxial cylinder metal electrodes, in said coaxial cylindrical metal electrode tube, the combined capacitance is maximum in a state that connects the cylindrical metal electrodes By using the coaxial cylindrical metal electrode tube set to minimize the variation in the discharge gap by adopting a combination of the coaxial cylindrical metal electrodes arranged at opposite positions and facing each other, ozonized gas is produced. Since it is configured to generate, the same effect as the above invention can be obtained.

以下、本発明に係るオゾン発生装置およびその電極ユニットの設定方法について、図面を参照しながら、その実施形態に基づき詳細に説明する。
図1は本発明の実施の形態を示す円筒金属高電圧電極の曲がりの影響を最小化させるための調整時の電極ユニット模式図、図2は上記円筒金属高電圧電極の曲がりの影響を最小化したときの同軸円筒管型オゾン発生装置の電極ユニット模式図である。
DESCRIPTION OF EMBODIMENTS Hereinafter, an ozone generator according to the present invention and a method for setting an electrode unit thereof will be described in detail based on the embodiments with reference to the drawings.
FIG. 1 is a schematic diagram of an electrode unit at the time of adjustment for minimizing the influence of bending of a cylindrical metal high-voltage electrode according to an embodiment of the present invention, and FIG. 2 minimizes the influence of bending of the cylindrical metal high-voltage electrode. It is the electrode unit schematic diagram of a coaxial cylindrical tube type ozone generator when it did.

本発明の実施の形態に係るオゾン発生装置100は、図1および図2に示すように、対向して配置され、同軸円筒状に構成された2つの電極のうち、外側の電極を金属からなる円筒型金属接地電極2とし、内側の電極を金属からなる円筒型金属高電圧電極1としており、円筒型金属高電圧電極1の外周表面には、誘電体を施すことにより誘電体層3が形成さている。このため、円筒型金属高電圧電極1の外周表面は、誘電体層3により覆われている。また、円筒型金属高電圧電極1と円筒型金属接地電極2との間には、放電空間4が形成されている。
そして、同軸になっている円筒型金属高電圧電極1と円筒型金属接地電極2との間には、LCRメーター(測定手段)5が接続されており、該LCRメーター5によって、誘電体層3と放電空間4の合成静電容量を測定するように構成されている。
As shown in FIGS. 1 and 2, an ozone generator 100 according to an embodiment of the present invention is configured so that an outer electrode is made of metal among two electrodes that are arranged to face each other and are configured in a coaxial cylindrical shape. A cylindrical metal ground electrode 2 is used, and an inner electrode is a cylindrical metal high voltage electrode 1 made of metal. A dielectric layer 3 is formed on the outer peripheral surface of the cylindrical metal high voltage electrode 1 by applying a dielectric. It is. For this reason, the outer peripheral surface of the cylindrical metal high-voltage electrode 1 is covered with the dielectric layer 3. A discharge space 4 is formed between the cylindrical metal high-voltage electrode 1 and the cylindrical metal ground electrode 2.
An LCR meter (measuring means) 5 is connected between the coaxial cylindrical metal high-voltage electrode 1 and the cylindrical metal ground electrode 2, and the dielectric layer 3 is connected to the LCR meter 5. And the combined capacitance of the discharge space 4 is measured.

上記合成静電容量の測定は、図1に示すように、2つの電極1,2を繋いだ状態で円筒型金属高電圧電極1もしくは円筒型接地電極2のいずれかを回転させることにより行われている。
図1の場合は、円筒型金属高電圧電極1を回転方向6に動かして、LRCメーター5にて測定すると、放電ギャップ12が変化するために合成静電容量も随時変化することになる。
The synthetic capacitance is measured by rotating either the cylindrical metal high-voltage electrode 1 or the cylindrical ground electrode 2 with the two electrodes 1 and 2 connected as shown in FIG. ing.
In the case of FIG. 1, when the cylindrical metal high-voltage electrode 1 is moved in the rotation direction 6 and measured by the LRC meter 5, the synthetic capacitance also changes as needed because the discharge gap 12 changes.

そして、図2に示すように、円筒型金属高電圧電極1と円筒型金属接地電極2の曲がりの向きが同じになったときに、放電空間4内での放電ギャップ12のバラツキが最大となり、合成静電容量が最小となる。
静電容量は電極1,2間の距離に反比例するので、この場合は誘電体が形成する誘電体層3の厚さは変化しないことから、放電ギャップ12の平均距離のバラツキが最小になる条件において合成静電容量は最大となる。
したがって、上記合成静電容量が最大値となる位置および組み合わせを採用することにより、放電ギャップ12の平均距離のバラツキを最小に設定できる。
つまり、本発明の実施形態の方法を用いることで、非常に狭い放電ギャップ12のバラツキを最小値に設定することができる。
As shown in FIG. 2, when the bending directions of the cylindrical metal high-voltage electrode 1 and the cylindrical metal ground electrode 2 are the same, the variation of the discharge gap 12 in the discharge space 4 is maximized, The combined capacitance is minimized.
Since the capacitance is inversely proportional to the distance between the electrodes 1 and 2, the thickness of the dielectric layer 3 formed by the dielectric does not change in this case, so that the variation in the average distance of the discharge gap 12 is minimized. In this case, the combined capacitance becomes the maximum.
Therefore, the variation in the average distance of the discharge gap 12 can be set to the minimum by adopting the position and combination where the combined capacitance becomes the maximum value.
That is, by using the method of the embodiment of the present invention, the variation of the very narrow discharge gap 12 can be set to the minimum value.

また、図に明示しないが、図1のような曲がり以外を持つ電極の一例として、電極が軸方向に波打つような状態においても、本発明の実施形態の方法により放電ギャップ12のバラツキを最小値に調整できる。このような曲がりを持つ電極1,2を使用する場合において、放電ギャップ12のバラツキを最小値に形成することが可能となるので、同軸円筒電極表面の広い領域で放電が発生し、原料ガス8をより効率的にオゾン化ガス9(図3参照)に変換できる。   Although not clearly shown in the drawing, as an example of an electrode having a bend other than that shown in FIG. 1, even when the electrode is wavy in the axial direction, the variation of the discharge gap 12 is minimized by the method of the embodiment of the present invention. Can be adjusted. When the electrodes 1 and 2 having such a bend are used, it is possible to form the variation in the discharge gap 12 to the minimum value, so that a discharge occurs in a wide area on the surface of the coaxial cylindrical electrode, and the source gas 8 Can be more efficiently converted into the ozonized gas 9 (see FIG. 3).

また、電極1,2の曲がりについては、形成する放電ギャップ12の空間により、曲がりの許容範囲を予め設定し、その許容範囲内にある電極1,2を採用することとする。
例えば、電極1,2の組合せの選定方法としては、電極曲がりの許容範囲内にある円筒金属高電圧電極1および円筒金属接地電極2を選別する。
そして、上記円筒金属接地電極2を固定し、その内側に円筒金属高電圧電極1を挿入して円筒金属高電圧電極1の所定位置において、回転方向6にて円筒金属高電圧電極1を回転させたときに、途中で回転が止まることなく1回転できることとすれば、ギャップスペーサ以外で両電極1,2同士が接触することがなく、配置することが可能となる。
In addition, regarding the bending of the electrodes 1 and 2, an allowable bending range is set in advance according to the space of the discharge gap 12 to be formed, and the electrodes 1 and 2 within the allowable range are employed.
For example, as a method for selecting a combination of the electrodes 1 and 2, the cylindrical metal high-voltage electrode 1 and the cylindrical metal ground electrode 2 that are within the allowable range of electrode bending are selected.
Then, the cylindrical metal ground electrode 2 is fixed, the cylindrical metal high voltage electrode 1 is inserted inside, and the cylindrical metal high voltage electrode 1 is rotated in the rotation direction 6 at a predetermined position of the cylindrical metal high voltage electrode 1. If it is possible to make one rotation without stopping in the middle, the electrodes 1 and 2 can be arranged without contacting each other except for the gap spacer.

以上、本発明の実施の形態について述べたが、本発明は既述の実施の形態に限定されるものでなく、本発明の技術的思想に基づいて各種の変更および変形が可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various changes and modifications can be made based on the technical idea of the present invention.

本発明の実施形態に係る円筒金属高電圧電極の曲がりの影響を最小化させるための調整時の電極ユニットを示す模式図である。It is a schematic diagram which shows the electrode unit at the time of adjustment for minimizing the influence of the bending of the cylindrical metal high voltage electrode which concerns on embodiment of this invention. 前記実施形態に係る円筒金属高電圧電極の曲がりの影響を最小化したときの同軸円筒管型オゾン発生装置の電極ユニットを示す模式図である。It is a schematic diagram which shows the electrode unit of a coaxial cylindrical tube type | mold ozone generator when the influence of the bending of the cylindrical metal high voltage electrode which concerns on the said embodiment is minimized. 従来の同軸円筒管型オゾン発生装置の一例を示す図1に対応する模式図である。It is a schematic diagram corresponding to FIG. 1 which shows an example of the conventional coaxial cylindrical tube type | mold ozone generator. 従来の平板型オゾン発生装置の一例を示す図1に対応する模式図である。It is a schematic diagram corresponding to FIG. 1 which shows an example of the conventional flat type ozone generator.

符号の説明Explanation of symbols

1 円筒型金属高電圧電極
2 円筒型金属接地電極
3 誘電体層
4 放電空間
5 LCRメーター
12 放電ギャップ
100 オゾン発生装置
DESCRIPTION OF SYMBOLS 1 Cylindrical metal high voltage electrode 2 Cylindrical metal ground electrode 3 Dielectric layer 4 Discharge space 5 LCR meter 12 Discharge gap
100 Ozone generator

Claims (3)

対向して配置された同軸円筒金属電極のうち少なくとも1つの電極が誘電体により表面を覆われたもので構成され、前記電極間に放電ギャップを形成し、この放電ギャップに酸素を含む原料ガスを供給しながら、交流高電圧を印加することにより無声放電を発生させる電極ユニットを有するオゾン発生装置の電極ユニットの設定方法であって、
前記同軸円筒金属電極管で、前記誘電体と前記放電ギャップで形成される合成静電容量を測定し、該合成静電容量が最大値となる位置および対向して配置された前記同軸円筒金属電極の組み合わせを採用することにより前記放電ギャップのバラツキを最小に設定することを特徴とするオゾン発生装置の電極ユニットの設定方法。
At least one of the coaxial cylindrical metal electrodes arranged opposite to each other is composed of a surface covered with a dielectric, a discharge gap is formed between the electrodes, and a source gas containing oxygen is formed in the discharge gap. A method for setting an electrode unit of an ozone generator having an electrode unit that generates silent discharge by applying an alternating high voltage while supplying,
In the coaxial cylindrical metal electrode tube, a synthetic capacitance formed by the dielectric and the discharge gap is measured, and the coaxial cylindrical metal electrode disposed so as to face the position where the synthetic capacitance is maximum. A method for setting an electrode unit of an ozone generator, wherein the variation in the discharge gap is set to a minimum by employing a combination of the above.
前記放電ギャップ空間における曲がりの許容範囲を予め設定し、該許容範囲にある円筒金属高電圧電極および円筒金属接地電極の組み合わせを選別して、採用することを特徴とする請求項1に記載のオゾン発生装置の電極ユニットの設定方法。   The ozone according to claim 1, wherein an allowable range of bending in the discharge gap space is set in advance, and a combination of a cylindrical metal high-voltage electrode and a cylindrical metal ground electrode within the allowable range is selected and adopted. A method for setting the electrode unit of the generator. 対向して配置された同軸円筒金属電極のうち少なくとも1つの電極が誘電体により表面を覆われたもので構成され、前記電極間に放電ギャップを形成し、この放電ギャップに酸素を含む原料ガスを供給しながら、交流高電圧を印加することにより無声放電を発生させる電極ユニットを有するオゾン発生装置において、
対向して配置された前記同軸円筒金属電極の間に、前記誘電体と前記放電ギャップで形成される合成静電容量を測定する測定手段を接続し、前記同軸円筒金属電極を繋いだ状態で前記同軸円筒金属電極のいずれかを回転させることにより前記合成静電容量を前記測定手段にて測定し、前記同軸円筒金属電極管で、前記合成静電容量が最大値となる位置および対向して配置された前記同軸円筒金属電極の組み合わせを採用することにより前記放電ギャップのバラツキを最小にすべく設定された前記同軸円筒金属電極管を用いて、オゾン化ガスを生成するように構成したことを特徴とするオゾン発生装置。
At least one of the coaxial cylindrical metal electrodes arranged opposite to each other is composed of a surface covered with a dielectric, a discharge gap is formed between the electrodes, and a source gas containing oxygen is formed in the discharge gap. In an ozone generator having an electrode unit that generates silent discharge by applying an alternating high voltage while supplying,
Between the coaxial cylindrical metal electrodes arranged facing each other, a measuring means for measuring a synthetic capacitance formed by the dielectric and the discharge gap is connected, and the coaxial cylindrical metal electrodes are connected in a state of being connected. the combined capacitance measured by said measuring means by rotating one of the coaxial cylinder metal electrodes, in said coaxial cylindrical metal electrode tube, arranged said combined capacitance is positioned and faces a maximum value By adopting the combination of the coaxial cylindrical metal electrodes formed, the coaxial cylindrical metal electrode tube set to minimize the variation in the discharge gap is used to generate ozonized gas. Ozone generator.
JP2008039845A 2008-02-21 2008-02-21 Ozone generator and electrode unit setting method Active JP5346170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008039845A JP5346170B2 (en) 2008-02-21 2008-02-21 Ozone generator and electrode unit setting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008039845A JP5346170B2 (en) 2008-02-21 2008-02-21 Ozone generator and electrode unit setting method

Publications (2)

Publication Number Publication Date
JP2009196848A JP2009196848A (en) 2009-09-03
JP5346170B2 true JP5346170B2 (en) 2013-11-20

Family

ID=41140795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008039845A Active JP5346170B2 (en) 2008-02-21 2008-02-21 Ozone generator and electrode unit setting method

Country Status (1)

Country Link
JP (1) JP5346170B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124404A (en) * 1985-11-25 1987-06-05 Power Reactor & Nuclear Fuel Dev Corp Gap measuring method for double tube
JP2655886B2 (en) * 1988-08-23 1997-09-24 ジャパン・イー・エム株式会社 Laser processing machine nozzle distance detection device
JPH05155606A (en) * 1991-12-04 1993-06-22 Yamanashi Hightech Kk Ozonizer
JPH07242403A (en) * 1994-03-04 1995-09-19 Meidensha Corp Ozonizer
JP4260335B2 (en) * 2000-04-10 2009-04-30 三菱電機株式会社 Ozone generator and manufacturing method thereof
JP4206047B2 (en) * 2004-03-04 2009-01-07 メタウォーター株式会社 Ozone generator tube and ozone generator equipped with the same

Also Published As

Publication number Publication date
JP2009196848A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JPS6358765B2 (en)
US4960569A (en) Corona discharge ozonator with cooled flow path
JP5210596B2 (en) Ozone generator
US20120156106A1 (en) Ozone generating apparatus
JP4705891B2 (en) Atmospheric pressure plasma generator with electrode structure to prevent useless discharge
JP5346170B2 (en) Ozone generator and electrode unit setting method
JP2012206898A (en) Ozone generator
KR101687679B1 (en) A discharge tube for the ozone generator comprised of a pair of cap
JP4947302B2 (en) Discharge device and discharge method
JP2009096693A (en) Ozone generating device
JP2008308372A (en) Ozone generating device
JP4206047B2 (en) Ozone generator tube and ozone generator equipped with the same
CN107428530B (en) Ozone generator with position dependent discharge distribution
JPH07242403A (en) Ozonizer
ES2741747T3 (en) Procedure for the control of an ozone generator
JP3804229B2 (en) Ozonizer
RU2174095C2 (en) Apparatus for electric synthesis of ozone
JP5836808B2 (en) Ozone generator
KR20000067547A (en) A discharge-electrode of an ozonizer system
JP4895472B2 (en) Gap spacer, ozone generating tube having the gap spacer disposed therein, and ozone generating apparatus including the ozone generating tube
JP2005247647A (en) Ozone generating apparatus suppressing decomposition of ozonized gas
RU2046753C1 (en) Ozone generator
JPH10338503A (en) Ozonizer
JP3837931B2 (en) Ozonizer
JP2005089248A (en) Ozonizer,and ozonized gas production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130816

R150 Certificate of patent or registration of utility model

Ref document number: 5346170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250