JP5210596B2 - Ozone generator - Google Patents

Ozone generator Download PDF

Info

Publication number
JP5210596B2
JP5210596B2 JP2007286089A JP2007286089A JP5210596B2 JP 5210596 B2 JP5210596 B2 JP 5210596B2 JP 2007286089 A JP2007286089 A JP 2007286089A JP 2007286089 A JP2007286089 A JP 2007286089A JP 5210596 B2 JP5210596 B2 JP 5210596B2
Authority
JP
Japan
Prior art keywords
electrodes
discharge
ozone generator
mpa
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007286089A
Other languages
Japanese (ja)
Other versions
JP2009114003A (en
Inventor
正樹 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2007286089A priority Critical patent/JP5210596B2/en
Publication of JP2009114003A publication Critical patent/JP2009114003A/en
Application granted granted Critical
Publication of JP5210596B2 publication Critical patent/JP5210596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水処理などに用いられるオゾンを得るオゾン発生装置に係わり、特にオゾン濃度を高めることのできるオゾン発生装置に関する。   The present invention relates to an ozone generator for obtaining ozone used for water treatment and the like, and more particularly to an ozone generator capable of increasing ozone concentration.

従来、上下水処理施設、化学工場、薬品工場、食品工場等において、オゾンが持つ殺菌、脱色、脱臭等の作用を利用した各種処理が行われており、オゾン供給源としてオゾン発生装置が設置されている。   Conventionally, various treatments using the effects of ozone such as sterilization, decolorization, and deodorization have been performed in water and sewage treatment facilities, chemical factories, pharmaceutical factories, food factories, etc., and an ozone generator is installed as an ozone supply source. ing.

図5は、放電を利用したオゾン発生装置のオゾン発生管部分の概略図であり、電極管の管軸方向に沿った断面図である。オゾン発生管20は、耐オゾン性ステンレス鋼で作られたチューブ状の高電圧電極管1が中心部に配置され、円筒状の接地電極管2が高電圧電極管1の外周を囲むように配置された二重円筒管構造をなしている。高電圧電極管1の外周表面にガラス等で構成される誘電体層3がライニングされている。高電圧電極管1(誘電体層3)と接地電極管2との間には放電空間4が形成され、該放電空間4はギャップ形成材5a,5bによって電極管の管軸方向の一端部から他端部に掛けて均一なギャップに保持されている。接地電極管2には冷却水6を流通する水路を形成する筐体8が設けられている。高電圧電極管1と接地電極管2との間に形成された放電空間4に原料ガス9を外部から供給し、両電極間に高電圧電源10で交流高電圧を印加すると放電空間4に無声放電が発生し、オゾン化ガス11が生成される。   FIG. 5 is a schematic view of an ozone generation tube portion of an ozone generator using discharge, and is a cross-sectional view along the tube axis direction of the electrode tube. The ozone generation tube 20 is arranged such that a tube-shaped high-voltage electrode tube 1 made of ozone-resistant stainless steel is disposed at the center, and a cylindrical ground electrode tube 2 surrounds the outer periphery of the high-voltage electrode tube 1. It has a double cylindrical tube structure. A dielectric layer 3 made of glass or the like is lined on the outer peripheral surface of the high-voltage electrode tube 1. A discharge space 4 is formed between the high voltage electrode tube 1 (dielectric layer 3) and the ground electrode tube 2, and the discharge space 4 is formed from one end of the electrode tube in the tube axis direction by gap forming members 5a and 5b. The other end is held in a uniform gap. The ground electrode tube 2 is provided with a housing 8 that forms a water channel through which the cooling water 6 flows. When the source gas 9 is supplied from the outside to the discharge space 4 formed between the high voltage electrode tube 1 and the ground electrode tube 2 and an AC high voltage is applied between the electrodes by the high voltage power source 10, the discharge space 4 is silent. Discharge occurs and ozonized gas 11 is generated.

ところで、以上の構成のオゾン発生装置において、オゾン濃度を高めるためには、放電空間4の高さである放電ギャップ長を短くすることが必要である。放電ギャップ長を短くすることによって、放電ギャップの電界強度が高くなり、放電空間4の電子エネルギーが高くなるので、オゾン濃度を高めることが可能となる。   By the way, in the ozone generator of the above structure, in order to raise ozone concentration, it is necessary to shorten the discharge gap length which is the height of the discharge space 4. By shortening the discharge gap length, the electric field strength of the discharge gap is increased and the electron energy of the discharge space 4 is increased, so that the ozone concentration can be increased.

また、オゾン発生装置において、放電ギャップ長を短縮化するだけでなく、放電空間のガス圧力を高圧化することによって、オゾンの高濃度化、放電電力の高密度化を図ることも提案されている(特許文献1参照)。特許文献1では、放電ギャップ長dを0.4mm〜1.0mmとし、放電空間のガス圧力pを2気圧から5気圧とした例が示されている。   In addition, in the ozone generator, it is proposed not only to shorten the discharge gap length but also to increase the concentration of ozone and the density of discharge power by increasing the gas pressure in the discharge space. (See Patent Document 1). Patent Document 1 shows an example in which the discharge gap length d is 0.4 mm to 1.0 mm, and the gas pressure p in the discharge space is 2 to 5 atmospheres.

また、電気学会放電研究会において、ガス圧力pと放電ギャップ長dの関係から最適なガス圧力が存在するとした報告がなされている(非特許文献1参照)。
特開平8−245203号公報 電気学会研究会資料放電研究会ED-03-154(2003/10/7) オゾン発生特性とpd積 沖田裕二、他3名(株式会社 東芝)
In addition, it has been reported at the Institute of Electrical Engineers of Japan that the optimum gas pressure exists from the relationship between the gas pressure p and the discharge gap length d (see Non-Patent Document 1).
JP-A-8-245203 EE-03-154 (2003/10/7) Ozone generation characteristics and pd product Yuji Okita, 3 others (Toshiba Corporation)

ところで、放電エネルギーは放電空間に流れる原料ガスに対してエネルギーを与えるため、原料ガスをオゾン化するためにはそれぞれ最適なガス圧力が存在するが、上記特許文献1及び非特許文献1では、所定の放電ギャップ長と放電エネルギーに対して最適なガス圧力を知ることはできなかった。   By the way, since discharge energy gives energy to the raw material gas flowing in the discharge space, there is an optimum gas pressure in order to ozonize the raw material gas. It was not possible to know the optimum gas pressure for the discharge gap length and discharge energy.

本発明は、かかる点に鑑みてなされたものであり、所定の放電ギャップ長と放電エネルギーに対して原料ガスをオゾン化するための最適ガス圧力を提示することができ、オゾン発生効率の向上を図ることのできるオゾン発生装置を提供することを目的とする。   The present invention has been made in view of such a point, and can provide an optimum gas pressure for ozonizing a raw material gas for a predetermined discharge gap length and discharge energy, thereby improving ozone generation efficiency. An object of the present invention is to provide an ozone generator that can be used.

本発明のオゾン発生装置は、対向する電極の少なくとも一方を絶縁体で被覆されたオゾン発生電極を少なくとも1組以上備え、酸素を含んだ原料ガスを電極間に流し、前記電極に交流高電圧を印加して電極間に放電を発生させてオゾン化ガスを生成するオゾン発生装置において、原料ガスの流れる空間の間隔となる放電ギャップ長が0.3mm、少なくとも一方の電極を冷却するために循環させる冷却水の冷却水温Twが15〜25℃、放電電力Wと放電面積Sとの比である放電電力密度W/Sが0.225W/cm以上のとき、前記電極間に流す原料ガスのガス圧力P(MPa)を、圧力範囲Pmin≦P≦Pmax
但し、Pmin=0.0015×Tw+0.1475(MPa)
Pmax=0.0015×Tw+0.1525(MPa)
で運転することを特徴とする。
The ozone generator of the present invention includes at least one ozone generating electrode in which at least one of opposing electrodes is covered with an insulator, and a source gas containing oxygen is flowed between the electrodes, and an AC high voltage is applied to the electrodes. In an ozone generator that generates an ozonized gas by applying a discharge between electrodes to generate an ozonized gas, a discharge gap length that is an interval of a space through which a source gas flows is 0.3 mm, and is circulated to cool at least one of the electrodes. When the cooling water temperature Tw of the cooling water is 15 to 25 ° C. and the discharge power density W / S, which is the ratio of the discharge power W and the discharge area S, is 0.225 W / cm 2 or more, the raw material gas flowing between the electrodes The pressure P (MPa) is changed to the pressure range Pmin ≦ P ≦ Pmax.
However, Pmin = 0.015 × Tw + 0.1475 (MPa)
Pmax = 0.015 × Tw + 0.1525 (MPa)
It is characterized by driving in.

このような構成によれば、放電電力密度W/Sが0.225W/cm以上のときは、上式で求められる圧力範囲で運転することにより、放電ギャップ長0.3mmにおける最適ガス圧力での運転を実現でき、オゾン発生効率の向上を図ることができる。 According to such a configuration, when the discharge power density W / S is 0.225 W / cm 2 or more, by operating in the pressure range obtained by the above formula, the optimum gas pressure at the discharge gap length of 0.3 mm is obtained. Thus, the ozone generation efficiency can be improved.

また本発明のオゾン発生装置は、対向する電極の少なくとも一方を絶縁体で被覆されたオゾン発生電極を少なくとも1組以上備え、酸素を含んだ原料ガスを電極間に流し、前記電極に交流高電圧を印加して電極間に放電を発生させてオゾン化ガスを生成するオゾン発生装置において、原料ガスの流れる空間の間隔となる放電ギャップ長が0.3mm、少なくとも一方の電極を冷却するために循環させる冷却水の冷却水温Twが15〜25℃、放電電力Wと放電面積Sとの比である放電電力密度W/Sが0.225W/cm未満では、前記電極間に流す原料ガスのガス圧力P(MPa)を、
P=−0.09×W/S+0.002×Tw+0.16
で運転することを特徴とする。
The ozone generator of the present invention comprises at least one ozone generating electrode in which at least one of the opposing electrodes is covered with an insulator, and a source gas containing oxygen flows between the electrodes, and an AC high voltage is applied to the electrodes. In an ozone generator that generates an ozonized gas by generating a discharge between electrodes by applying a gas, a discharge gap length that is an interval of a space through which a source gas flows is 0.3 mm, and is circulated to cool at least one of the electrodes When the cooling water temperature Tw of the cooling water to be discharged is 15 to 25 ° C. and the discharge power density W / S, which is the ratio of the discharge power W and the discharge area S, is less than 0.225 W / cm 2 , the raw material gas flowing between the electrodes Pressure P (MPa)
P = −0.09 × W / S + 0.002 × Tw + 0.16
It is characterized by driving in.

この構成により、放電電力密度W/Sが0.225W/cm未満のときは、上式で求められるガス圧力で運転することにより、放電ギャップ長0.3mmにおける最適ガス圧力での運転を実現でき、オゾン発生効率の向上を図ることができる。 With this configuration, when the discharge power density W / S is less than 0.225 W / cm 2 , operation at the optimum gas pressure with a discharge gap length of 0.3 mm is realized by operating at the gas pressure obtained by the above equation. It is possible to improve the ozone generation efficiency.

また本発明のオゾン発生装置は、対向する電極の少なくとも一方を絶縁体で被覆されたオゾン発生電極を少なくとも1組以上備え、酸素を含んだ原料ガスを電極間に流し、前記電極に交流高電圧を印加して電極間に放電を発生させてオゾン化ガスを生成するオゾン発生装置において、原料ガスの流れる空間の間隔である放電ギャップ長を0.4mm、少なくとも一方の電極を冷却するために循環させる冷却水の冷却水温Twを15〜25℃、放電電力Wと放電面積Sとの比である放電電力密度W/Sが0.225W/cm以上のとき、前記電極間に流す原料ガスのガス圧力P(MPa)を、圧力範囲Pmin≦P≦Pmax
但し、Pmin=0.001×Tw+0.140(MPa)
Pmax=0.001×Tw+0.145(MPa)
で運転することを特徴とする。
The ozone generator of the present invention comprises at least one ozone generating electrode in which at least one of the opposing electrodes is covered with an insulator, and a source gas containing oxygen flows between the electrodes, and an AC high voltage is applied to the electrodes. In an ozone generator that generates ozonized gas by generating a discharge between electrodes by applying a discharge gap length of 0.4 mm, which is an interval of a space through which a source gas flows, is circulated to cool at least one of the electrodes When the cooling water temperature Tw of the cooling water is 15 to 25 ° C. and the discharge power density W / S, which is the ratio of the discharge power W and the discharge area S, is 0.225 W / cm 2 or more, The gas pressure P (MPa) is changed to the pressure range Pmin ≦ P ≦ Pmax.
However, Pmin = 0.001 × Tw + 0.140 (MPa)
Pmax = 0.001 × Tw + 0.145 (MPa)
It is characterized by driving in.

このような構成によれば、放電電力密度W/Sが0.225W/cm以上のときは、上式で求められる圧力範囲で運転することにより、放電ギャップ長0.4mmにおける最適ガス圧力での運転を実現でき、オゾン発生効率の向上を図ることができる。 According to such a configuration, when the discharge power density W / S is 0.225 W / cm 2 or more, by operating in the pressure range obtained by the above formula, the optimum gas pressure at the discharge gap length of 0.4 mm is obtained. Thus, the ozone generation efficiency can be improved.

また本発明のオゾン発生装置は、対向する電極の少なくとも一方を絶縁体で被覆されたオゾン発生電極を少なくとも1組以上備え、酸素を含んだ原料ガスを電極間に流し、前記電極に交流高電圧を印加して電極間に放電を発生させてオゾン化ガスを生成するオゾン発生装置において、原料ガスの流れる空間の間隔である放電ギャップ長を0.4mm、少なくとも一方の電極を冷却するために循環させる冷却水の冷却水温Twを15〜25℃、放電電力Wと放電面積Sとの比である放電電力密度W/Sが0.225W/cm未満では、前記電極間に流す原料ガスのガス圧力P(MPa)を、
P=−0.15×W/S+0.002×Tw+0.16
で運転することを特徴とする。
The ozone generator of the present invention comprises at least one ozone generating electrode in which at least one of the opposing electrodes is covered with an insulator, and a source gas containing oxygen flows between the electrodes, and an AC high voltage is applied to the electrodes. In an ozone generator that generates ozonized gas by generating a discharge between electrodes by applying a discharge gap length of 0.4 mm, which is an interval of a space through which a source gas flows, is circulated to cool at least one of the electrodes When the cooling water temperature Tw of the cooling water is 15 to 25 ° C. and the discharge power density W / S, which is the ratio of the discharge power W and the discharge area S, is less than 0.225 W / cm 2 , the raw material gas flowing between the electrodes Pressure P (MPa)
P = −0.15 × W / S + 0.002 × Tw + 0.16
It is characterized by driving in.

この構成により、放電電力密度W/Sが0.225W/cm未満のときは、上式で求められるガス圧力で運転することにより、放電ギャップ長0.4mmにおける最適ガス圧力での運転を実現でき、オゾン発生効率の向上を図ることができる。 With this configuration, when the discharge power density W / S is less than 0.225 W / cm 2 , operation at the optimum gas pressure with a discharge gap length of 0.4 mm is realized by operating at the gas pressure obtained by the above equation. It is possible to improve the ozone generation efficiency.

本発明によれば、所定の放電ギャップ長と放電エネルギーに対して原料ガスをオゾン化するための最適なガス圧力条件を提示することができ、オゾン発生効率の向上を図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the optimal gas pressure conditions for ozonizing raw material gas with respect to predetermined | prescribed discharge gap length and discharge energy can be shown, and the improvement of ozone generation efficiency can be aimed at.

以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
図1は本発明の一実施の形態に係るオゾン発生装置に係るシステム構成図である。オゾン発生装置31は、対向する電極の少なくとも一方が絶縁体で被覆されたオゾン発生電極を少なくとも1組以上備え、酸素を含んだ原料ガスを電極間に流し、前記電極に交流高電圧を印加して電極間に放電を発生させてオゾン化ガスを生成する。オゾン発生装置31として、図5に示す二重円筒管構造のオゾン発生装置20と同一構成のものを用いることができるが、本発明は、二重円筒管構造をなす1組の電極を備えた構成に限定されるものでは無く、少なくとも一方を絶縁体で被覆した対向した電極構造であれば良い。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a system configuration diagram relating to an ozone generator according to an embodiment of the present invention. The ozone generator 31 includes at least one set of ozone generating electrodes in which at least one of opposing electrodes is covered with an insulator, and a source gas containing oxygen is flowed between the electrodes, and an AC high voltage is applied to the electrodes. Then, discharge is generated between the electrodes to generate ozonized gas. As the ozone generator 31, one having the same configuration as the ozone generator 20 having the double cylindrical tube structure shown in FIG. 5 can be used, but the present invention includes a pair of electrodes having a double cylindrical tube structure. The configuration is not limited, and any electrode structure may be used as long as at least one of them is covered with an insulator.

オゾン発生装置31の電極間には高電圧電源32から交流高電圧が印加され、電極間に形成された放電空間には酸素を含んだ原料ガス9が原料ガス供給装置33から供給されるように構成されている。また、オゾン発生装置31内には電極を冷却するための冷却水が循環している。オゾン発生装置31から冷却水を外部へ排出する冷却水排出口が、オゾン発生装置31に付設したチラー34に連結されている。チラー34はオゾン発生装置31から排出された冷却水を冷却してオゾン発生装置31の冷却水供給口へ戻している。   An AC high voltage is applied between the electrodes of the ozone generator 31 from a high voltage power supply 32, and the source gas 9 containing oxygen is supplied from the source gas supply device 33 to the discharge space formed between the electrodes. It is configured. Further, cooling water for cooling the electrodes is circulated in the ozone generator 31. A cooling water discharge port for discharging cooling water from the ozone generator 31 to the outside is connected to a chiller 34 attached to the ozone generator 31. The chiller 34 cools the cooling water discharged from the ozone generator 31 and returns it to the cooling water supply port of the ozone generator 31.

コントローラ35は、目標の放電電力になるように高電圧電源32の交流高電圧出力を制御すると共に、オゾン発生装置31内のガス圧力が後述する最適ガス圧力となるように制御する。オゾン発生装置31のオゾン化ガス排出口に設けたバルブ36の弁開度をコントローラ35が調整することによりオゾン発生装置31内のガス圧力を制御する。   The controller 35 controls the AC high voltage output of the high voltage power supply 32 so as to achieve the target discharge power, and controls the gas pressure in the ozone generator 31 to an optimum gas pressure described later. The controller 35 controls the gas pressure in the ozone generator 31 by adjusting the valve opening degree of the valve 36 provided at the ozonized gas discharge port of the ozone generator 31.

本実施の形態では、オゾン発生装置31に備えた温度センサにてオゾン発生装置31内の冷却水温Twを検出し、圧力センサにてオゾン発生装置31の放電空間におけるガス圧力Pを検出している。これら温度センサ及び圧力センサから出力される検出信号(Tw、P)がコントローラ35の入力信号となる。またコントローラ35は、高電圧電源32の現在の交流高電圧出力に関する信号が逐次入力される一方、オゾン発生装置31における放電空間の放電ギャップ長Lが予め入力されている。   In the present embodiment, the temperature sensor provided in the ozone generator 31 detects the cooling water temperature Tw in the ozone generator 31, and the pressure sensor detects the gas pressure P in the discharge space of the ozone generator 31. . Detection signals (Tw, P) output from these temperature sensors and pressure sensors are input signals to the controller 35. In addition, the controller 35 is sequentially input with signals regarding the current AC high voltage output of the high voltage power supply 32, while the discharge gap length L of the discharge space in the ozone generator 31 is input in advance.

ここで、最適ガス圧力の運転条件について説明する。
図2は放電ギャップ長0.3mmのときの放電電力密度W/S(W/cm2)に対するオゾン発生特性(濃度)が最大となるときのガス圧力(最適ガス圧力)を示す図であり、図3は放電ギャップ長0.4mmのときの放電電力密度W/S(W/cm2)に対するオゾン発生特性(濃度)が最大となるときのガス圧力(最適ガス圧力)を示す図である。放電電力密度W/Sは放電電力Wと放電面積Sの比である。
Here, the operating conditions of the optimum gas pressure will be described.
FIG. 2 is a diagram showing the gas pressure (optimum gas pressure) when the ozone generation characteristic (concentration) is maximum with respect to the discharge power density W / S (W / cm 2) when the discharge gap length is 0.3 mm. 3 is a diagram showing the gas pressure (optimum gas pressure) when the ozone generation characteristic (concentration) is maximum with respect to the discharge power density W / S (W / cm 2) when the discharge gap length is 0.4 mm. The discharge power density W / S is the ratio of the discharge power W to the discharge area S.

ガス圧力および放電電力密度W/Sを変化させて、オゾン濃度がピークとなるガス圧力を算出し、このガス圧力を最適ガス圧力と定義する。オゾン発生特性(濃度)が最大となるときのガス圧力は図4から求めた。図4は6つの放電電力密度W/Sについてガス圧力とオゾン濃度との関係を実験結果から求めた図である。   The gas pressure at which the ozone concentration reaches a peak is calculated by changing the gas pressure and the discharge power density W / S, and this gas pressure is defined as the optimum gas pressure. The gas pressure when the ozone generation characteristic (concentration) is maximized was obtained from FIG. FIG. 4 is a diagram in which the relationship between the gas pressure and the ozone concentration is obtained from the experimental results for six discharge power densities W / S.

図2、図3に示すように、放電ギャップ長Lが0.3mm及び0.4mmのいずれの場合も、放電電力密度W/Sが0.225W/cm未満では、ガス圧力は放電電力密度W/Sが増加することで、最適ガス圧力が低下していることがわかる。また、放電電力密度W/Sが0.225W/cm以上の場合は、最適ガス圧力はほぼ安定していることがわかる。以上の実験結果から、最適ガス圧力の運転条件を以下のように定めた。 As shown in FIG. 2 and FIG. 3, in both cases where the discharge gap length L is 0.3 mm and 0.4 mm, the gas pressure is the discharge power density when the discharge power density W / S is less than 0.225 W / cm 2. It can be seen that the optimum gas pressure is reduced as W / S increases. It can also be seen that when the discharge power density W / S is 0.225 W / cm 2 or more, the optimum gas pressure is almost stable. From the above experimental results, the optimum gas pressure operating conditions were determined as follows.

(運転条件1)
運転条件1の場合、ガス圧力P(MPa)が圧力範囲Pmin≦P≦Pmaxに収まるように制御する。
Pmin=0.0015×Tw+0.1475(MPa)
Pmax=0.0015×Tw+0.1525(MPa)
放電ギャップ長L=0.3mm
冷却水温Tw=15〜25℃
放電電力密度W/Sは0.225W/cm以上
(Operating condition 1)
In the case of operating condition 1, control is performed so that the gas pressure P (MPa) falls within the pressure range Pmin ≦ P ≦ Pmax.
Pmin = 0.015 × Tw + 0.1475 (MPa)
Pmax = 0.015 × Tw + 0.1525 (MPa)
Discharge gap length L = 0.3mm
Cooling water temperature Tw = 15-25 ° C.
Discharge power density W / S is 0.225 W / cm 2 or more

(運転条件2)
運転条件2の場合、ガス圧力P(MPa)が目標値Pになるように制御する。
=−0.09×W/S+0.002×Tw+0.16
放電ギャップ長L=0.3mm
冷却水温Tw=15〜25℃
放電電力密度W/Sは0.225W/cm未満
(Operating condition 2)
In the case of the operating condition 2, control is performed so that the gas pressure P (MPa) becomes the target value PT .
P T = −0.09 × W / S + 0.002 × Tw + 0.16
Discharge gap length L = 0.3mm
Cooling water temperature Tw = 15-25 ° C.
Discharge power density W / S is less than 0.225 W / cm 2

(運転条件3)
運転条件3の場合、ガス圧力P(MPa)が圧力範囲Pmin≦P≦Pmaxに収まるように制御する。
Pmin=0.001×Tw+0.140(MPa)
Pmax=0.001×Tw+0.145(MPa)
放電ギャップ長L=0.4mm
冷却水温Tw=15〜25℃
放電電力密度W/Sは0.225W/cm以上
(Operating condition 3)
In the case of the operating condition 3, control is performed so that the gas pressure P (MPa) falls within the pressure range Pmin ≦ P ≦ Pmax.
Pmin = 0.001 × Tw + 0.140 (MPa)
Pmax = 0.001 × Tw + 0.145 (MPa)
Discharge gap length L = 0.4mm
Cooling water temperature Tw = 15-25 ° C.
Discharge power density W / S is 0.225 W / cm 2 or more

(運転条件4)
運転条件4の場合、ガス圧力P(MPa)が目標値Pになるように制御する。
=−0.15×W/S+0.002×Tw+0.16
放電ギャップ長L=0.4mm
冷却水温Tw=15〜25℃
放電電力密度W/Sは0.225W/cm未満
(Operating condition 4)
In the case of operation condition 4, control is performed so that the gas pressure P (MPa) becomes the target value PT .
P T = −0.15 × W / S + 0.002 × Tw + 0.16
Discharge gap length L = 0.4mm
Cooling water temperature Tw = 15-25 ° C.
Discharge power density W / S is less than 0.225 W / cm 2

以上のように構成された本実施の形態では、予めコントローラ35に入力された放電ギャップ長LがL=0.3mmである場合、現在の放電電力密度W/Sが0.225W/cm以上であれば、コントローラ35は冷却水温Twに応じてバルブ36の弁開度を調整してガス圧力Pが所定の圧力範囲に収まるようにガス圧力を制御する。たとえば、冷却水温が15℃であれば、コントローラ35は運転条件1に基づいて、ガス圧力Pを
0.170MPa≦P≦0.175MPa
の圧力範囲で運転する。また、冷却水温が25℃であれば、コントローラ35は運転条件1に基づいて、ガス圧力Pを
0.185MPa≦P≦0.19MPa
の圧力範囲で運転する。
In the present embodiment configured as described above, when the discharge gap length L input to the controller 35 in advance is L = 0.3 mm, the current discharge power density W / S is 0.225 W / cm 2 or more. If so, the controller 35 controls the gas pressure so that the gas pressure P falls within a predetermined pressure range by adjusting the valve opening degree of the valve 36 in accordance with the coolant temperature Tw. For example, if the cooling water temperature is 15 ° C., the controller 35 sets the gas pressure P to 0.170 MPa ≦ P ≦ 0.175 MPa based on the operating condition 1.
Operate in the pressure range. If the cooling water temperature is 25 ° C., the controller 35 sets the gas pressure P to 0.185 MPa ≦ P ≦ 0.19 MPa based on the operating condition 1.
Operate in the pressure range.

一方、予め入力された放電ギャップ長LがL=0.4mmである場合、現在の放電電力密度W/Sが0.225W/cm以上であれば、冷却水温Twに応じてガス圧力Pが所定の圧力範囲に収まるようにガス圧力を制御する。たとえば、冷却水温が15℃であれば、コントローラ35は運転条件3に基づいて、ガス圧力Pを
0.150≦P≦0.155MPa
の圧力範囲で運転する。また、冷却水温が25℃であれば、コントローラ35は運転条件3に基づいて、ガス圧力Pを
0.165MPa≦P≦0.17MPa
の圧力範囲で運転する。
On the other hand, when the discharge gap length L inputted in advance is L = 0.4 mm, and the current discharge power density W / S is 0.225 W / cm 2 or more, the gas pressure P is set according to the cooling water temperature Tw. The gas pressure is controlled so as to be within a predetermined pressure range. For example, if the cooling water temperature is 15 ° C., the controller 35 sets the gas pressure P to 0.150 ≦ P ≦ 0.155 MPa based on the operating condition 3.
Operate in the pressure range. If the cooling water temperature is 25 ° C., the controller 35 sets the gas pressure P to 0.165 MPa ≦ P ≦ 0.17 MPa based on the operating condition 3.
Operate in the pressure range.

また、現在の放電電力密度W/Sが0.225W/cm未満の場合は、放電ギャップ長LがL=0.3mmである場合には運転条件2に基づいてガス圧力P(MPa)が目標値Pになるように運転し、放電ギャップ長LがL=0.4mmである場合には運転条件4に基づいてガス圧力P(MPa)が目標値Pになるように運転する。 Further, if the current discharge power densities W / S has less than 0.225W / cm 2, when the discharge gap length L is L = 0.3 mm on the basis of the operating condition 2 gas pressure P (MPa) is operated such that the target value P T, the discharge gap length L is in the case of L = 0.4 mm to operate so that the gas pressure P (MPa) is the target value P T based on operating conditions 4.

以上のように、本実施の形態によれば、放電電力W、ガス圧力P、冷却水温Twをセンサで連続計測し、これら3パラメータを元に上記運転条件1〜4に基づいて最適ガス圧力で運転することにより、オゾン発生特性(濃度)を向上することができ、発生するオゾン濃度を高めることができる。   As described above, according to the present embodiment, the discharge power W, the gas pressure P, and the cooling water temperature Tw are continuously measured by the sensor, and the optimum gas pressure is obtained based on the above operating conditions 1 to 4 based on these three parameters. By operating, the ozone generation characteristics (concentration) can be improved, and the generated ozone concentration can be increased.

一実施の形態に係るオゾン発生装置のシステム構成図The system block diagram of the ozone generator which concerns on one embodiment 放電ギャップ長=0.3mmのときの放電電力密度W/Sに対する最適ガス圧力を示す図The figure which shows the optimal gas pressure with respect to the discharge power density W / S when discharge gap length = 0.3mm 放電ギャップ長=0.4mmのときの放電電力密度W/Sに対する最適ガス圧力を示す図The figure which shows the optimal gas pressure with respect to the discharge power density W / S when discharge gap length = 0.4mm 幾つかの放電電力密度W/Sについてガス圧力とオゾン濃度との関係を実験結果から求めた図The figure which calculated | required the relationship between gas pressure and ozone concentration from the experimental result about several discharge power density W / S. 放電を利用したオゾン発生装置のオゾン発生管部分の概略図Schematic of the ozone generator tube part of the ozone generator using discharge

符号の説明Explanation of symbols

1…高電圧電極管、2…接地電極管、3…誘電体層、4…放電空間、5a,5b…ギャップ形成材、6…冷却水、8…筐体、9…原料ガス、10、32…高電圧電源、11…オゾン化ガス、20、31…オゾン発生装置、33…原料ガス供給装置、34…チラー、35…コントローラ
DESCRIPTION OF SYMBOLS 1 ... High voltage electrode tube, 2 ... Ground electrode tube, 3 ... Dielectric layer, 4 ... Discharge space, 5a, 5b ... Gap formation material, 6 ... Cooling water, 8 ... Housing | casing, 9 ... Raw material gas 10, 32 ... high voltage power supply, 11 ... ozonized gas, 20, 31 ... ozone generator, 33 ... raw material gas supply device, 34 ... chiller, 35 ... controller

Claims (4)

対向する電極の少なくとも一方を絶縁体で被覆されたオゾン発生電極を少なくとも1組以上備え、酸素を含んだ原料ガスを電極間に流し、前記電極に交流高電圧を印加して電極間に放電を発生させてオゾン化ガスを生成するオゾン発生装置において、
原料ガスの流れる空間の間隔となる放電ギャップ長が0.3mm、少なくとも一方の電極を冷却するために循環させる冷却水の冷却水温Twが15〜25℃、放電電力Wと放電面積Sとの比である放電電力密度W/Sが0.225W/cm以上のとき、前記電極間に流す原料ガスのガス圧力P(MPa)を、圧力範囲Pmin≦P≦Pmax
但し、Pmin=0.0015×Tw+0.1475(MPa)
Pmax=0.0015×Tw+0.1525(MPa)
で運転することを特徴とするオゾン発生装置。
At least one pair of ozone-generating electrodes covered with an insulator is provided at least one of the opposing electrodes, a source gas containing oxygen is flowed between the electrodes, and an AC high voltage is applied to the electrodes to discharge between the electrodes. In an ozone generator that generates ozonized gas by generating
The discharge gap length, which is the spacing of the space through which the source gas flows, is 0.3 mm, the cooling water temperature Tw of the cooling water circulated to cool at least one of the electrodes is 15 to 25 ° C., the ratio of the discharge power W and the discharge area S When the discharge power density W / S is 0.225 W / cm 2 or more, the gas pressure P (MPa) of the raw material gas flowing between the electrodes is set to a pressure range Pmin ≦ P ≦ Pmax.
However, Pmin = 0.015 × Tw + 0.1475 (MPa)
Pmax = 0.015 × Tw + 0.1525 (MPa)
Ozone generator characterized by operating with
対向する電極の少なくとも一方を絶縁体で被覆されたオゾン発生電極を少なくとも1組以上備え、酸素を含んだ原料ガスを電極間に流し、前記電極に交流高電圧を印加して電極間に放電を発生させてオゾン化ガスを生成するオゾン発生装置において、
原料ガスの流れる空間の間隔となる放電ギャップ長が0.3mm、少なくとも一方の電極を冷却するために循環させる冷却水の冷却水温Twが15〜25℃、放電電力Wと放電面積Sとの比である放電電力密度W/Sが0.225W/cm未満では、前記電極間に流す原料ガスのガス圧力P(MPa)を、
P=−0.09×W/S+0.002×Tw+0.16
で運転することを特徴とするオゾン発生装置。
At least one pair of ozone-generating electrodes covered with an insulator is provided at least one of the opposing electrodes, a source gas containing oxygen is flowed between the electrodes, and an AC high voltage is applied to the electrodes to discharge between the electrodes. In an ozone generator that generates ozonized gas by generating
The discharge gap length, which is the spacing of the space through which the source gas flows, is 0.3 mm, the cooling water temperature Tw of the cooling water circulated to cool at least one of the electrodes is 15 to 25 ° C., the ratio of the discharge power W and the discharge area S When the discharge power density W / S is less than 0.225 W / cm 2 , the gas pressure P (MPa) of the raw material gas flowing between the electrodes is
P = −0.09 × W / S + 0.002 × Tw + 0.16
Ozone generator characterized by operating with
対向する電極の少なくとも一方を絶縁体で被覆されたオゾン発生電極を少なくとも1組以上備え、酸素を含んだ原料ガスを電極間に流し、前記電極に交流高電圧を印加して電極間に放電を発生させてオゾン化ガスを生成するオゾン発生装置において、
原料ガスの流れる空間の間隔である放電ギャップ長を0.4mm、少なくとも一方の電極を冷却するために循環させる冷却水の冷却水温Twを15〜25℃、放電電力Wと放電面積Sとの比である放電電力密度W/Sが0.225W/cm以上のとき、前記電極間に流す原料ガスのガス圧力P(MPa)を、圧力範囲Pmin≦P≦Pmax
但し、Pmin=0.001×Tw+0.140(MPa)
Pmax=0.001×Tw+0.145(MPa)
で運転することを特徴とするオゾン発生装置。
At least one pair of ozone-generating electrodes covered with an insulator is provided at least one of the opposing electrodes, a source gas containing oxygen is flowed between the electrodes, and an AC high voltage is applied to the electrodes to discharge between the electrodes. In an ozone generator that generates ozonized gas by generating
The discharge gap length, which is the space between the flow of the source gas, is 0.4 mm, the cooling water temperature Tw that is circulated to cool at least one of the electrodes is 15 to 25 ° C., the ratio of the discharge power W and the discharge area S When the discharge power density W / S is 0.225 W / cm 2 or more, the gas pressure P (MPa) of the raw material gas flowing between the electrodes is set to a pressure range Pmin ≦ P ≦ Pmax.
However, Pmin = 0.001 × Tw + 0.140 (MPa)
Pmax = 0.001 × Tw + 0.145 (MPa)
Ozone generator characterized by operating with
対向する電極の少なくとも一方を絶縁体で被覆されたオゾン発生電極を少なくとも1組以上備え、酸素を含んだ原料ガスを電極間に流し、前記電極に交流高電圧を印加して電極間に放電を発生させてオゾン化ガスを生成するオゾン発生装置において、
原料ガスの流れる空間の間隔である放電ギャップ長を0.4mm、少なくとも一方の電極を冷却するために循環させる冷却水の冷却水温Twを15〜25℃、放電電力Wと放電面積Sとの比である放電電力密度W/Sが0.225W/cm未満では、前記電極間に流す原料ガスのガス圧力P(MPa)を、
P=−0.15×W/S+0.002×Tw+0.16
で運転することを特徴とするオゾン発生装置。
At least one pair of ozone-generating electrodes covered with an insulator is provided at least one of the opposing electrodes, a source gas containing oxygen is flowed between the electrodes, and an AC high voltage is applied to the electrodes to discharge between the electrodes. In an ozone generator that generates ozonized gas by generating
The discharge gap length, which is the space between the flow of the source gas, is 0.4 mm, the cooling water temperature Tw that is circulated to cool at least one of the electrodes is 15 to 25 ° C., the ratio of the discharge power W and the discharge area S When the discharge power density W / S is less than 0.225 W / cm 2 , the gas pressure P (MPa) of the raw material gas flowing between the electrodes is
P = −0.15 × W / S + 0.002 × Tw + 0.16
Ozone generator characterized by operating with
JP2007286089A 2007-11-02 2007-11-02 Ozone generator Active JP5210596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007286089A JP5210596B2 (en) 2007-11-02 2007-11-02 Ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007286089A JP5210596B2 (en) 2007-11-02 2007-11-02 Ozone generator

Publications (2)

Publication Number Publication Date
JP2009114003A JP2009114003A (en) 2009-05-28
JP5210596B2 true JP5210596B2 (en) 2013-06-12

Family

ID=40781576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286089A Active JP5210596B2 (en) 2007-11-02 2007-11-02 Ozone generator

Country Status (1)

Country Link
JP (1) JP5210596B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5681415B2 (en) * 2010-09-03 2015-03-11 メタウォーター株式会社 Operation method of ozone generator
JP5677344B2 (en) * 2012-03-16 2015-02-25 株式会社東芝 Ozone generator
WO2016042740A1 (en) * 2014-09-18 2016-03-24 株式会社荏原製作所 Device and method for manufacturing gas-dissolved water
JP2016064386A (en) * 2014-09-18 2016-04-28 株式会社荏原製作所 Gas dissolved water production device and method
JP6486843B2 (en) * 2016-01-20 2019-03-20 株式会社東芝 Ozone generator and power supply
JP6721364B2 (en) * 2016-03-11 2020-07-15 株式会社東芝 Ozone generator
CN106115630B (en) * 2016-08-26 2018-03-16 济南三康环保科技有限公司 Horizontl tank type ozonator cell
JP6723661B2 (en) * 2017-05-16 2020-07-15 東芝三菱電機産業システム株式会社 Ozone gas generator
EP3421417A1 (en) * 2017-06-30 2019-01-02 SUEZ Groupe Method for controlling an ozone generating machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524107Y2 (en) * 1978-04-28 1980-06-09
JP3545257B2 (en) * 1994-04-28 2004-07-21 三菱電機株式会社 Ozone generator and ozone generation method
JPH10338503A (en) * 1997-04-08 1998-12-22 Fuji Electric Co Ltd Ozonizer
JP4095758B2 (en) * 2000-06-29 2008-06-04 株式会社荏原製作所 Ozone generator
JP2003089507A (en) * 2001-09-14 2003-03-28 Toshiba Corp Apparatus for generating ozone
TW200528390A (en) * 2004-02-25 2005-09-01 Toshiba Mitsubishi Elec Inc Apparatus and method of producing ozone gas

Also Published As

Publication number Publication date
JP2009114003A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP5210596B2 (en) Ozone generator
US4877588A (en) Method and apparatus for generating ozone by corona discharge
JP2003034509A (en) Apparatus for generating ozone
US20010046459A1 (en) High efficiency ozone generator
KR100637693B1 (en) Ozone generator
KR101280445B1 (en) Underwater discharge apparatus for purifying water
KR101683052B1 (en) electrode for ozonizer using dielectric barrier discharge and ozonizer using it
JP2016534974A (en) Ozone generator
KR101016435B1 (en) ozonizer of corona discharge type
ES2741747T3 (en) Procedure for the control of an ozone generator
KR20180055816A (en) Multi-Oxygen Generator
KR101896389B1 (en) ozonier
JPH11157808A (en) Ozone generating device
RU2174095C2 (en) Apparatus for electric synthesis of ozone
JP4206048B2 (en) Ozone generator that suppresses decomposition of ozonized gas
JPH07242403A (en) Ozonizer
KR102086502B1 (en) Ozone generator driven by pulse width modulation system
JPH11209105A (en) Ozonizer
JP2641886B2 (en) Ozone generator
JPH0741303A (en) Ozone generator
RU2220093C2 (en) Method of synthesis of ozone and device for its realization
JPH10338503A (en) Ozonizer
JPH09255308A (en) Ozone generating method and ozonizer
RU2181103C2 (en) Thermoadaptive ozonizer unit
KR100441982B1 (en) Ozonizer producing High Concentration Ozone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5210596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250