JP5345198B2 - Engine air supply device with EGR device and engine equipped with the same - Google Patents

Engine air supply device with EGR device and engine equipped with the same Download PDF

Info

Publication number
JP5345198B2
JP5345198B2 JP2011271585A JP2011271585A JP5345198B2 JP 5345198 B2 JP5345198 B2 JP 5345198B2 JP 2011271585 A JP2011271585 A JP 2011271585A JP 2011271585 A JP2011271585 A JP 2011271585A JP 5345198 B2 JP5345198 B2 JP 5345198B2
Authority
JP
Japan
Prior art keywords
egr
engine
cylinder
exhaust
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011271585A
Other languages
Japanese (ja)
Other versions
JP2012052554A (en
Inventor
和郎 堀田
健吾 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011271585A priority Critical patent/JP5345198B2/en
Publication of JP2012052554A publication Critical patent/JP2012052554A/en
Application granted granted Critical
Publication of JP5345198B2 publication Critical patent/JP5345198B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は、主としてEGR(排気再循環)装置付きディーゼルエンジンに適用され、エンジンの排気ガスの一部を、各シリンダのそれぞれに給気を送給する給気ポート内に還流するEGR通路を備え、該EGR通路は1つのシリンダのEGR取出し部から取出したEGRガスを、他のシリンダのEGR導入部に供給するように構成されたEGR装置付きエンジンの給気装置、およびそれを備えたエンジンに関する。   The present invention is mainly applied to a diesel engine with an EGR (exhaust gas recirculation) device, and includes an EGR passage that recirculates a part of the exhaust gas of the engine into an air supply port that supplies air to each cylinder. The EGR passage relates to an air supply device for an engine with an EGR device configured to supply EGR gas extracted from an EGR extraction portion of one cylinder to an EGR introduction portion of another cylinder, and an engine including the same .

図7は、特許文献1(特開2005−299615号公報)等に用いられているEGR(排気再循環)装置付きディーゼルエンジンの全体構成を示す構成図である。
図7において、符号100で示されるディーゼルエンジン(以下エンジンという)で燃焼された排気ガスは、各シリンダの排気弁(図示省略)、排気ポート109、および排気通路199を通ってから、排気ターボ過給機122の排気タービン120に送りこまれて該排気タービン120を駆動する。
FIG. 7 is a configuration diagram showing an overall configuration of a diesel engine with an EGR (exhaust gas recirculation) device used in Patent Document 1 (Japanese Patent Laid-Open No. 2005-299615) and the like.
In FIG. 7, exhaust gas combusted by a diesel engine (hereinafter referred to as an engine) denoted by reference numeral 100 passes through an exhaust valve (not shown) of each cylinder, an exhaust port 109, and an exhaust passage 199, and then an exhaust turbocharger. The exhaust turbine 120 is fed into the exhaust turbine 120 of the feeder 122 to drive the exhaust turbine 120.

一方、排気タービン120に同軸駆動されるコンプレッサ121によって圧縮された空気は、給気管125を通り、空気冷却器134で冷却されて、スロットル弁123を経て給気通路200を通って各シリンダの給気ポート108に入り、該給気ポート108を通して給気弁(図示省略)に入る。
また、排気通路199の分岐点110aから、エンジンの排気ガスの一部を抜き出してEGR通路110及びEGRクーラ124を通して、前記スロットル弁123下流側の給気通路200の合流点110bに還流する。該EGR通路110の通路面積はEGR弁112によって調整される。
On the other hand, the air compressed by the compressor 121 driven coaxially by the exhaust turbine 120 passes through the air supply pipe 125, is cooled by the air cooler 134, passes through the throttle valve 123, passes through the air supply passage 200, and is supplied to each cylinder. Enters the air port 108 and enters the air supply valve (not shown) through the air supply port 108.
Further, a part of the engine exhaust gas is extracted from the branch point 110a of the exhaust passage 199 and is returned to the junction point 110b of the supply passage 200 on the downstream side of the throttle valve 123 through the EGR passage 110 and the EGR cooler 124. The passage area of the EGR passage 110 is adjusted by an EGR valve 112.

前記特許文献1(特開2005−299615号公報)等に示されるようなEGR装置付きディーゼルエンジンにおいては、たとえば同公報の図5に示すように、エンジンの給気圧力は、排気ターボ過給機122付きエンジンの場合、エンジンの排気圧力よりも高いときが多いので、スロットル弁123の開度を絞って給気圧力を下げ、EGRガスが給気通路200に流入し易いように調整している。
また、特許文献2(特開2005−273558号公報)には、給気通路の中間部に流量調整用の突起を設けて、該突起の絞り効果により、給気ポート出口側の混合、攪拌を制御している。
In a diesel engine with an EGR device as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2005-299615) and the like, for example, as shown in FIG. In the case of the engine with 122, since it is often higher than the exhaust pressure of the engine, the opening of the throttle valve 123 is throttled to lower the supply air pressure so that EGR gas can easily flow into the supply passage 200. .
Further, in Patent Document 2 (Japanese Patent Laid-Open No. 2005-273558), a protrusion for adjusting the flow rate is provided in the middle portion of the air supply passage, and mixing and stirring on the air supply port outlet side are performed by the throttling effect of the protrusion. I have control.

特開2005−299615号公報JP 2005-299615 A 特開2005−273558号公報JP 2005-273558 A

EGR装置付きディーゼルエンジンでは、低酸素濃度のEGRガスを給気側に混入させ、シリンダ内で低酸素濃度燃焼を行わせるようになっているが、排気ターボ過給ディーゼルエンジンでは、前記のように、エンジンの排気圧力がエンジンの給気圧力とほぼ同一であるため、エンジンの排気圧力>エンジンの給気圧力とはならず、したがってエンジンの排気側のEGRガスがエンジンの給気通路側に還流し難い。   In a diesel engine with an EGR device, low-oxygen concentration EGR gas is mixed into the supply side and low-oxygen concentration combustion is performed in the cylinder. In an exhaust turbocharged diesel engine, as described above, Since the exhaust pressure of the engine is almost the same as the supply air pressure of the engine, the exhaust pressure of the engine does not satisfy the supply pressure of the engine, and therefore the EGR gas on the exhaust side of the engine returns to the supply passage side of the engine. It is hard to do.

このため、前記特許文献1(特開2005−299615号公報)においては、たとえばその公報第9ページの図5に示すように、スロットル弁123の開度を絞って給気圧を下げ、合流点110bにおける、エンジンの排気圧力>エンジンの給気圧力の関係にして、EGRガスが給気通路200に流入し易いように調整している。
従って、かかる従来技術においては、エンジンの給気圧力を低下させるために、スロットル弁123の開度を絞っているが、給気圧低下のための損失が大きく、EGRガスの流入を促進するために、エンジン性能の低下の犠牲を伴うこととなり、また排気圧力を低下させる場合はポンピングロスが大きくなる。
For this reason, in Patent Document 1 (Japanese Patent Laid-Open No. 2005-299615), for example, as shown in FIG. 5 on page 9 of the publication, the opening of the throttle valve 123 is reduced to lower the supply air pressure and the confluence 110b. The EGR gas is adjusted so as to easily flow into the supply air passage 200 in the relationship of engine exhaust pressure> engine supply pressure.
Therefore, in such a prior art, the opening degree of the throttle valve 123 is reduced in order to reduce the supply pressure of the engine. However, the loss due to the decrease in the supply pressure is large, and the inflow of EGR gas is promoted. In addition, the engine performance is sacrificed, and the pumping loss increases when the exhaust pressure is reduced.

本発明はかかる従来技術の課題に鑑み、EGR装置付きディーゼルエンジンにおいて、スロットル弁の開度調整等のエンジン性能を低下させる手段を用いることなく、各シリンダのEGR取出し部および各EGR導入部に接続する共通のEGR分配室を設けることにより、EGRガスを給気ポートに常時スムーズに流入可能としたEGR装置付きエンジンの給気装置を提供することを目的とする。   In view of the problems of the prior art, the present invention is connected to an EGR take-out portion and an EGR introduction portion of each cylinder without using a means for reducing engine performance such as throttle valve opening adjustment in a diesel engine with an EGR device. An object of the present invention is to provide an air supply device for an engine with an EGR device that allows EGR gas to flow smoothly into the air supply port at all times by providing a common EGR distribution chamber.

本発明はかかる課題を解決するもので、エンジンの排気ガスの一部を、各シリンダのそれぞれに給気を送給する給気ポート内に還流するEGR通路を備え、前記EGR通路は1つのシリンダのEGR取出し部から取出したEGRガスを、他のシリンダのEGR導入部に供給するように構成されたEGR装置付きエンジンの給気装置において、前記各シリンダの排気ポートに前記EGR取出し部を設け、前記各シリンダの給気ポートに前記EGR導入部を設けるとともに、前記各EGR取出し部および各EGR導入部に接続する共通のEGR分配室を設け、各EGR取出通路および各EGR導入通路に電磁弁を設け、各シリンダの排気タイミングと給気タイミングに沿って前記電磁弁を開閉制御する電磁弁制御装置を備えたことを特徴とする(請求項1)。   The present invention solves such a problem, and includes an EGR passage that recirculates a part of the exhaust gas of an engine into an air supply port that supplies air to each of the cylinders, and the EGR passage includes one cylinder. In the air supply device for an engine with an EGR device configured to supply the EGR gas extracted from the EGR extraction portion to the EGR introduction portion of another cylinder, the EGR extraction portion is provided in the exhaust port of each cylinder, In addition to providing the EGR introduction portion in the air supply port of each cylinder, a common EGR distribution chamber connected to each EGR take-out portion and each EGR introduction portion is provided, and an electromagnetic valve is provided in each EGR take-out passage and each EGR introduction passage. And a solenoid valve control device that controls opening and closing of the solenoid valve in accordance with the exhaust timing and the supply timing of each cylinder. Motomeko 1).

尚、前記発明において、好ましくは、前記エンジンのエンジン負荷及びエンジン回転数のいずれかまたは双方を検出するエンジン運転条件検出手段を設け、前記EGR分配装置を前記エンジン運転条件検出手段からのエンジン負荷及びエンジン回転数のいずれかまたは双方の検出信号に基づき前記各電磁弁の開閉時期及び開閉期間を制御する(請求項2)。   In the present invention, preferably, an engine operating condition detecting means for detecting either or both of the engine load and the engine speed of the engine is provided, and the EGR distributor is connected to the engine load and the engine operating condition detecting means. The opening / closing timing and the opening / closing period of each electromagnetic valve are controlled based on the detection signal of either or both of the engine speeds (Claim 2).

また、本発明にかかるエンジンは、前記請求項1又は2に記載のEGR装置付きエンジンの給気装置を備えたことを特徴とする。   An engine according to the present invention includes the air supply device for an engine with an EGR device according to claim 1 or 2.

本発明によれば、各シリンダの排気ポートに前記EGR取出し部を設け、前記各シリンダの給気ポートに前記EGR導入部を設けるとともに、前記各EGR取出し部および各EGR導入部に接続する共通のEGR分配室を設け、各EGR取出通路および各EGR導入通路に電磁弁を設け、各シリンダの排気タイミングと給気タイミングに沿って前記電磁弁を開閉制御する電磁弁制御装置を備えたので、EGR分配室には、各シリンダの排気ポートから排気タイミングでEGRを導くことができ、EGR分配室には常時安定した圧力のEGRが貯留され、そこから各シリンダの給気ポートに対して給気タイミングで供給するようにできるため、シリンダ間におけるEGR供給量のバラツキがなく安定した供給が可能になる。   According to the present invention, the EGR extraction portion is provided in the exhaust port of each cylinder, the EGR introduction portion is provided in the air supply port of each cylinder, and the EGR extraction portion and the EGR introduction portion are connected in common. Since an EGR distribution chamber is provided, an electromagnetic valve is provided in each EGR extraction passage and each EGR introduction passage, and an electromagnetic valve control device that controls opening and closing of the electromagnetic valve in accordance with the exhaust timing and the supply timing of each cylinder is provided. EGR can be guided to the distribution chamber from the exhaust port of each cylinder at the exhaust timing, and EGR with constant pressure is always stored in the EGR distribution chamber, and from there, the supply timing to the supply port of each cylinder Therefore, there is no variation in the EGR supply amount between the cylinders, and stable supply is possible.

前記発明において、前記エンジンのエンジン負荷及びエンジン回転数のいずれかまたは双方を検出するエンジン運転条件検出手段を設け、前記エンジン運転条件検出手段からのエンジン負荷及びエンジン回転数のいずれかまたは双方の検出信号に基づき前記各電磁弁の開閉時期及び開閉期間を制御するように構成することによって、エンジン運転条件検出手段からのエンジン負荷及びエンジン回転数のいずれかまたは双方の検出信号により電磁弁の開閉時期および開度が制御されるので、排気ポートからEGR分配室へのEGRガス導入量の制御、および該EGR分配室から各シリンダへのEGRガス量をエンジン負荷及びエンジン回転数の検出信号に適合して正確に制御できるため、各条件で適量のEGRを供給でき、性能向上が得られる。   In the present invention, an engine operating condition detecting means for detecting either or both of the engine load and the engine speed of the engine is provided, and either or both of the engine load and the engine speed from the engine operating condition detecting means are detected. By controlling the opening / closing timing and the opening / closing period of each solenoid valve based on the signal, the opening / closing timing of the solenoid valve is detected by the detection signal of either or both of the engine load and the engine speed from the engine operating condition detecting means. Since the opening and the opening are controlled, the amount of EGR gas introduced from the exhaust port to the EGR distribution chamber and the amount of EGR gas from the EGR distribution chamber to each cylinder are adapted to the detection signal of the engine load and the engine speed. And can be controlled accurately, so that an appropriate amount of EGR can be supplied under each condition, resulting in improved performance.

また、本発明によれば、前記したEGR装置付きエンジンの給気装置を備えてエンジンを構成することで、エンジン性能を低下させずに、EGRガスを吸気ポートに常時スムーズに流入可能としたエンジを提供できる。   In addition, according to the present invention, an engine that includes the above-described air supply device for an engine with an EGR device is configured so that EGR gas can flow into the intake port smoothly and smoothly without degrading engine performance. Can provide.

本発明の実施形態にかかるEGR(排気再循環)装置付きディーゼルエンジンのシリンダ周りの給、排気構成を示す断面図である。It is sectional drawing which shows the supply and exhaust structure around the cylinder of the diesel engine with an EGR (exhaust gas recirculation) apparatus concerning embodiment of this invention. 本発明のEGR装置の基本構成を示す各シリンダの平面配置を示す概略図である。It is the schematic which shows the planar arrangement | positioning of each cylinder which shows the basic composition of the EGR apparatus of this invention. (A)は#1〜#6シリンダの着火順序を示す表、(B)は各シリンダの排気ポート109と給気ポート108との着火順序に沿う関係配置表である。(A) is a table | surface which shows the ignition order of # 1-# 6 cylinder, (B) is a relationship arrangement | positioning table | surface along the ignition order of the exhaust port 109 and the air supply port 108 of each cylinder. 本発明のEGR装置の基本構成における各シリンダの筒内圧力のクランク角による変化線図である。It is a change line chart by the crank angle of the cylinder pressure of each cylinder in the basic composition of the EGR device of the present invention. 本発明の参考例を示す各シリンダの平面配置を示す図2対応図である。FIG. 3 is a view corresponding to FIG. 2 showing a planar arrangement of each cylinder showing a reference example of the present invention. 本発明の第1実施形態を示す各シリンダの平面配置を示す図2対応図である。FIG. 3 is a view corresponding to FIG. 2 showing a planar arrangement of each cylinder showing the first embodiment of the present invention. 従来のEGR(排気再循環)装置付きディーゼルエンジンの全体構成を示す構成図である。It is a block diagram which shows the whole structure of the conventional diesel engine with an EGR (exhaust gas recirculation) apparatus.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to specific examples unless otherwise specifically described. Only.

図1はEGR(排気再循環)装置付きディーゼルエンジンのシリンダ周りの給、排気構成を示す断面図である。
図1および従来技術を示す図7において、符号100で示されるディーゼルエンジン(以下エンジンという)においては、シリンダヘッド111に装着された燃料噴射弁107からの燃料噴射により燃焼された後の排気ガスは、各シリンダの排気弁105及び排気ポート109を通ってから、排気通路199を通って排気ターボ過給機122(図7参照)の排気タービン120に送りこまれて該排気タービン120を駆動する。
FIG. 1 is a cross-sectional view showing a supply and exhaust configuration around a cylinder of a diesel engine with an EGR (exhaust gas recirculation) device.
In FIG. 1 and FIG. 7 showing the prior art, in a diesel engine denoted by reference numeral 100 (hereinafter referred to as an engine), exhaust gas after being burned by fuel injection from a fuel injection valve 107 mounted on a cylinder head 111 is Then, after passing through the exhaust valve 105 and the exhaust port 109 of each cylinder, the exhaust turbine is sent to the exhaust turbine 120 of the exhaust turbocharger 122 (see FIG. 7) through the exhaust passage 199 to drive the exhaust turbine 120.

一方、排気タービン120(図7参照)に同軸駆動されるコンプレッサ121によって圧縮された空気は、給気管125を通り、空気冷却器134で冷却されて、スロットル弁123を経て、給気通路200を通って給気ポート108に入り、該給気ポート108及び給気弁104を通って燃焼室103に入り、燃焼を行いピストンリング106が嵌挿されたピストン101を、シリンダライナ102の内面に沿って押し下げる。   On the other hand, the air compressed by the compressor 121 coaxially driven by the exhaust turbine 120 (see FIG. 7) passes through the air supply pipe 125, is cooled by the air cooler 134, passes through the throttle valve 123, and passes through the air supply passage 200. Through the air supply port 108 and the air supply valve 104 and into the combustion chamber 103, and the piston 101 into which the piston ring 106 is inserted after being combusted is disposed along the inner surface of the cylinder liner 102. Press down.

図7の従来技術においては、排気通路199の分岐点110aからEGRガスを分岐していたが、本実施形態においては、図1のように排気ポート109の分岐点110a'において分岐するようになっている。
また、前記排気ポート109の分岐点110a'から、エンジンの排気ガスの一部を抜き出してEGRガスとして排出する。該EGRガスはEGR取出し部110cから取出される。
給気ポート108には前記EGR取出し部110cで取り出されたEGRガスが導入されるEGR導入部110dが設けられ、該EGRガスは合流点110b'で給気に合流される。
前記EGR取出し部110cとEGR導入部110dとは、EGR通路110で連結されている。
該EGRガスはEGR通路110及びEGRクーラ124を通して、前記スロットル弁123(図7参照)の下流側の給気ポート108の合流点110bに還流する。該EGR通路110の通路面積はEGR弁112によって調整される。
In the prior art of FIG. 7, the EGR gas is branched from the branch point 110a of the exhaust passage 199. However, in this embodiment, the branch is made at the branch point 110a ′ of the exhaust port 109 as shown in FIG. ing.
Further, a part of the engine exhaust gas is extracted from the branch point 110a ′ of the exhaust port 109 and discharged as EGR gas. The EGR gas is extracted from the EGR extraction unit 110c.
The air supply port 108 is provided with an EGR introduction part 110d into which the EGR gas taken out by the EGR extraction part 110c is introduced, and the EGR gas is joined to the supply air at a junction point 110b ′.
The EGR take-out part 110c and the EGR introduction part 110d are connected by an EGR passage 110.
The EGR gas returns to the junction 110b of the supply port 108 on the downstream side of the throttle valve 123 (see FIG. 7) through the EGR passage 110 and the EGR cooler 124. The passage area of the EGR passage 110 is adjusted by an EGR valve 112.

本発明は、前記EGR通路110は、1つのシリンダのEGR取出し部110cから取出したEGRガスを、EGR通路110を経て、他のシリンダのEGR導入部110dに供給するようにしたもので、EGRガスを、1つのシリンダのEGR取出し部110c〜EGR通路110〜他のシリンダのEGR導入部110dに接続される、ように構成されたEGR装置付きエンジンの給気装置に関するものである。   In the present invention, the EGR passage 110 supplies the EGR gas taken out from the EGR take-out portion 110c of one cylinder to the EGR introduction portion 110d of another cylinder through the EGR passage 110. Are connected to the EGR extraction part 110c of one cylinder to the EGR passage 110 to the EGR introduction part 110d of another cylinder.

(基本構成)
図2は本発明のEGR装置の基本構成を示す。図3(A)は#1〜#6シリンダの着火順序を示す表、(B)は各シリンダの排気ポート109と給気ポート108との着火順序に沿う関係配置図である。図4は前記各シリンダの筒内圧力のクランク角による変化線図である(#3、#5、#6シリンダについては省略して示す)。
(Basic configuration)
FIG. 2 shows a basic configuration of the EGR apparatus of the present invention. FIG. 3A is a table showing the firing order of the # 1 to # 6 cylinders, and FIG. 3B is a relational arrangement diagram along the firing order of the exhaust port 109 and the air supply port 108 of each cylinder. FIG. 4 is a graph showing the change in cylinder pressure of each cylinder according to the crank angle (the cylinders # 3, # 5, and # 6 are omitted).

図2において、本発明は、1つのシリンダのEGR取出し部110c〜EGR通路110〜他のシリンダのEGR導入部110dの接続を、次のように設定する。
尚、図2において1、2、3、4、5、6はそれぞれ#1シリンダ、#2シリンダ、#3シリンダ、#4シリンダ、#5シリンダ、#6シリンダを示す。
In FIG. 2, the present invention sets the connection of the EGR extraction part 110 c to EGR passage 110 of one cylinder to the EGR introduction part 110 d of another cylinder as follows.
In FIG. 2, 1, 2, 3, 4, 5, and 6 indicate # 1, cylinder # 2, cylinder # 3, cylinder # 4, cylinder # 5, and cylinder # 6, respectively.

即ち、#1シリンダと#4シリンダとの連結を例に取って説明すると、
前記各シリンダの着火タイミング(図3(B))に沿って、あるシリンダたとえば#1シリンダのEGRガスの供給時における排気圧力(図4のPz1)と、前記着火タイミングの順序に沿う#4シリンダの給気圧力(図4のPz2)との圧力差(Pz1−Pz2)が大きくなる2つのシリンダ(#1シリンダの排気弁開の排気行程域Z1と、#4シリンダの給気弁開の給気行程域Z2)を選出し、図1及び図2に示すように、この#1シリンダの排気ポート109側に前記EGR取出し部110cを設け、他方の#4シリンダの給気ポート108側に前記EGR導入部110dを設け、このEGR取出し部110cとEGR導入部110dを、EGRクーラ124及びEGR弁112を備えたEGR通路110で連結している。
In other words, taking the connection between the # 1 cylinder and the # 4 cylinder as an example,
Along with the ignition timing (FIG. 3B) of each cylinder, the exhaust pressure (Pz1 in FIG. 4) when supplying EGR gas from a certain cylinder, for example, the # 1 cylinder, and the # 4 cylinder according to the order of the ignition timing Two cylinders (exhaust stroke zone Z1 for opening the exhaust valve of the # 1 cylinder and supply of the opening of the intake valve for the # 4 cylinder) in which the pressure difference (Pz1-Pz2) from the supply pressure (Pz2 in FIG. 4) increases. As shown in FIGS. 1 and 2, the EGR extraction portion 110c is provided on the exhaust port 109 side of the # 1 cylinder, and the air supply port 108 side of the other # 4 cylinder is used. An EGR introduction part 110d is provided, and the EGR extraction part 110c and the EGR introduction part 110d are connected by an EGR passage 110 provided with an EGR cooler 124 and an EGR valve 112.

前記の他のシリンダについても、図3(B)に示すような連結方法で、#2シリンダは#6シリンダに、#3リンダは#5シリンダに、#4シリンダは#2シリンダに、#5シリンダは#1シリンダに、#6シリンダは#3シリンダに、それぞれEGR通路110で連結している。
尚、図2において、給気マニホールド114からの給気が各シリンダの給気ポート108に分流され、各シリンダの排気ポート109からの排気が排気マニホールド113で合流するようになっている。
For the other cylinders, as shown in FIG. 3B, the # 2 cylinder is the # 6 cylinder, the # 3 cylinder is the # 5 cylinder, the # 4 cylinder is the # 2 cylinder, # 5 The cylinder is connected to the # 1 cylinder and the # 6 cylinder is connected to the # 3 cylinder through the EGR passage 110, respectively.
In FIG. 2, the supply air from the supply manifold 114 is diverted to the supply port 108 of each cylinder, and the exhaust from the exhaust port 109 of each cylinder is merged by the exhaust manifold 113.

かかる基本構成によれば、あるシリンダ(たとえば#1シリンダ)のEGRガスの供給時における排気圧力Pz1と、前記着火タイミングの順序に沿う他のシリンダ(たとえば#4シリンダ)の給気圧力Pz2との圧力差(Pz1−Pz2)が大きくなる2つのシリンダ(#1シリンダと#4シリンダ)を選出し、すなわち、着火順序から給気行程にあるシリンダと排気行程にあるシリンダを選出し、一方の#1シリンダの排気ポート109側にEGR取出し部110cを設け、他方の#4シリンダの給気ポート108側にEGR導入部110dを設け、EGR通路110にて前記2つのシリンダのEGR取出し部110cとEGR導入部110dとを連結する。   According to such a basic configuration, the exhaust pressure Pz1 at the time of supply of EGR gas in a certain cylinder (for example, # 1 cylinder) and the supply pressure Pz2 of another cylinder (for example, # 4 cylinder) in accordance with the order of the ignition timing Select two cylinders (# 1 cylinder and # 4 cylinder) that increase the pressure difference (Pz1-Pz2), that is, select the cylinder in the supply stroke and the cylinder in the exhaust stroke from the ignition sequence, An EGR extraction part 110c is provided on the exhaust port 109 side of one cylinder, an EGR introduction part 110d is provided on the air supply port 108 side of the other # 4 cylinder, and the EGR extraction part 110c and EGR of the two cylinders are provided in the EGR passage 110. The introduction part 110d is connected.

以上の連結により、各シリンダの排気ポート109側と給気ポート108側を、常に排気と給気との圧力差(Pz1−Pz2)が大きい組み合わせを選定することができ、これにより多量のEGRガスを常時スムーズに給気ポート108側のシリンダに供給できる。   With the above connection, it is possible to select a combination that always has a large pressure difference (Pz1-Pz2) between the exhaust and the supply for the exhaust port 109 side and the supply port 108 side of each cylinder. Can be supplied to the cylinder on the air supply port 108 side smoothly at all times.

従って、かかる基本構成によれば、EGRガス供給時には、常に排気と給気との圧力差(Pz1−Pz2)、つまりエンジンの排気圧力>エンジンの給気圧力の関係を保持でき、従来のもののようにエンジンの給気圧力を低下させるために、スロットル弁123の開度を絞る等のエンジン性能を低下させる手段を用いることがないので、給気圧力低下による損失がなく、EGRガスの流入を促進するためのエンジン性能の低下の犠牲を伴うことなく、エンジンの排気圧力>エンジンの給気圧力の関係を常時成立させて、EGRガスを給気ポートに常時スムーズに流入可能とすることができる。   Therefore, according to this basic configuration, when supplying EGR gas, the relationship between the pressure difference between the exhaust gas and the supply air (Pz1-Pz2), that is, the relationship between the engine exhaust pressure> the engine supply pressure can be maintained. In order to reduce the supply air pressure of the engine, no means for reducing the engine performance, such as reducing the opening of the throttle valve 123, is used, so there is no loss due to a reduction in the supply air pressure and the inflow of EGR gas is promoted. Therefore, the relationship of engine exhaust pressure> engine supply air pressure can always be established without sacrificing a decrease in engine performance, so that EGR gas can flow into the supply port smoothly and constantly.

加えて、この基本構成においては、前記のように、排気圧力Pz1の高いシリンダと給気圧力Pz2が低くなるシリンダを選出してEGR通路110で連結するという低コストの手段で以って、エンジン性能を低下せずに、EGRガスを給気ポート108に常時スムーズに流入可能としたEGR装置付きエンジンの給気装置を得ることができる。
また、排気タービンの絞りを大きくして排気圧力Pz1を高める場合には、前記圧力差(Pz1−Pz2)だけPz1を低下させて、Pz1=Pz2程度とすることができるため、排気系のポンピングロスを低減できる。
In addition, in this basic configuration, as described above, the engine is selected by a low-cost means in which a cylinder having a high exhaust pressure Pz1 and a cylinder having a low supply pressure Pz2 are selected and connected through the EGR passage 110. An air supply device for an engine with an EGR device that can smoothly flow EGR gas into the air supply port 108 at all times without reducing the performance can be obtained.
Further, when the exhaust turbine PZ1 is increased by enlarging the throttle of the exhaust turbine, Pz1 can be reduced by the pressure difference (Pz1-Pz2) so that Pz1 = Pz2, so that the pumping loss of the exhaust system Can be reduced.

(参考例)
図5は本発明の参考例を示す各シリンダの平面配置を示す図2対応図である。
この参考例においては、前記基本構成と同一の結合に加えて、次のように構成している。
即ち、かかる参考例においては、前記2つのシリンダ(たとえば#1シリンダと#4シリンダ)を接続する各EGR通路110に、該EGR通路110を開閉するとともに該EGR通路110の開度を調整する電磁弁4a,4b,4c,4d,4e,4fを、前記2つのシリンダ(たとえば#1シリンダと#4シリンダ)毎に1個ずつ設けるように構成している。
(Reference example)
FIG. 5 is a diagram corresponding to FIG. 2 showing a planar arrangement of each cylinder showing a reference example of the present invention.
In this reference example, in addition to the same coupling as the basic configuration, the configuration is as follows.
That is, in such a reference example, an electromagnetic wave that opens and closes the EGR passage 110 and adjusts the opening degree of the EGR passage 110 in each EGR passage 110 connecting the two cylinders (for example, # 1 cylinder and # 4 cylinder). One valve 4a, 4b, 4c, 4d, 4e, 4f is provided for each of the two cylinders (for example, # 1 cylinder and # 4 cylinder).

そして、かかる参考例においては、エンジンのエンジン負荷を検出する負荷検出器2及びエンジン回転数を検出する回転数検出器3を設け、かかるエンジン負荷の検出値及びエンジン回転数の検出値を、前記各電磁弁4a,4b,4c,4d,4e,4fの開閉時期及び開閉期間を制御する電磁弁制御装置5に入力している。   In the reference example, the load detector 2 for detecting the engine load of the engine and the rotation speed detector 3 for detecting the engine speed are provided, and the detected value of the engine load and the detected value of the engine speed are set as Each electromagnetic valve 4a, 4b, 4c, 4d, 4e, 4f is input to an electromagnetic valve control device 5 that controls the opening / closing timing and the opening / closing period.

前記電磁弁制御装置5により、前記各電磁弁4a,4b,4c,4d,4e,4の開閉時期及び開閉期間を、負荷検出器2及び回転数検出器3からのエンジン負荷の検出値及びエンジン回転数検出値の検出信号により補正している。
これにより、各シリンダの排気側と給気側を、排気と給気との圧力差(P1−P2)が大きくなるタイミングで開くことができ、常に連通状態にある場合に比べて給気の排気系への逆流や、運転状態によって不要な時期のEGR供給を停止する等が可能になり、幅広い条件で低排ガス化と低燃費化が可能である。
The electromagnetic valve control device 5 determines the opening / closing timing and the opening / closing period of each of the electromagnetic valves 4a, 4b, 4c, 4d, 4e, 4 from the load detector 2 and the engine speed detection value of the engine speed detector 3 and the engine. Correction is made by the detection signal of the rotation speed detection value.
As a result, the exhaust side and the supply side of each cylinder can be opened at the timing when the pressure difference (P1-P2) between the exhaust and the supply becomes large, and the exhaust of the supply air is always compared to the case where the cylinders are always in communication. It is possible to stop the EGR supply at an unnecessary time depending on the backflow to the system or the operating state, and it is possible to reduce exhaust gas and fuel consumption under a wide range of conditions.

尚、前記負荷検出器2及び回転数検出器3は、いずれか一つでも良い。
その他の構成は、前記基本構成(図2)と同様であり、これと同一の部材は同一の符号で示す。
The load detector 2 and the rotation speed detector 3 may be any one.
Other configurations are the same as the basic configuration (FIG. 2), and the same members are denoted by the same reference numerals.

(第1実施形態)
図6は本発明の第1実施形態を示す各シリンダの平面配置を示す図2対応図である。
この第1実施形態においては、次のように構成している。
即ち、この第1実施形態においては、前記各シリンダの排気ポート109側にそれぞれ前記EGR取出し部110cを設け、前記各シリンダの給気ポート108側にはそれぞれ前記EGR導入部110dを設けている。
そして、EGR分配室1を設けて、該EGR分配室1に、各シリンダの排気ポート109の前記EGR取出し部110cが接続し、さらに、前記各シリンダの給気ポート108の前記EGR導入部110dが接続している。
各シリンダのEGR取出し部110cとEGR分配室1の接続部分にはそれぞれ電磁弁6a,6b,6c,6d,6e,6fが設けられ、EGR導入部110dとEGR分配室1の接続部分にはそれぞれ電磁弁8a,8b,8c,8d,8e,8fが設けられている。そして、各電磁弁6a〜6f、8a〜8fは、開閉時期及び開閉期間を制御する電磁弁制御装置5に入力している。
(First embodiment)
FIG. 6 is a view corresponding to FIG. 2 showing a planar arrangement of each cylinder showing the first embodiment of the present invention.
The first embodiment is configured as follows.
That is, in the first embodiment, the EGR extraction part 110c is provided on the exhaust port 109 side of each cylinder, and the EGR introduction part 110d is provided on the supply port 108 side of each cylinder.
Then, an EGR distribution chamber 1 is provided, and the EGR take-out portion 110c of the exhaust port 109 of each cylinder is connected to the EGR distribution chamber 1, and further, the EGR introduction portion 110d of the air supply port 108 of each cylinder is connected to the EGR distribution chamber 1. Connected.
Solenoid valves 6a, 6b, 6c, 6d, 6e, and 6f are respectively provided at the connection portions between the EGR take-out portion 110c and the EGR distribution chamber 1 of each cylinder, and the connection portions between the EGR introduction portion 110d and the EGR distribution chamber 1 are respectively provided. Solenoid valves 8a, 8b, 8c, 8d, 8e, and 8f are provided. And each solenoid valve 6a-6f, 8a-8f is input into the solenoid valve control apparatus 5 which controls opening and closing timing and opening and closing period.

各シリンダのEGR取出し部110cとEGR分配室1の接続部に設置された電磁弁6a,6b,6c,6d,6e,6fは、各シリンダの排気タイミングと同期して開弁するように制御され、各シリンダのEGR導入部110dとEGR分配室1の接続部分に設置された電磁弁8a,8b,8c,8d,8e,8fは、各シリンダの給気タイミングと同期して開弁されるようになっている。   The solenoid valves 6a, 6b, 6c, 6d, 6e, and 6f installed at the connection part between the EGR extraction part 110c and the EGR distribution chamber 1 of each cylinder are controlled so as to open in synchronization with the exhaust timing of each cylinder. The solenoid valves 8a, 8b, 8c, 8d, 8e, and 8f installed at the connection portion between the EGR introduction portion 110d of each cylinder and the EGR distribution chamber 1 are opened in synchronization with the supply timing of each cylinder. It has become.

このように、EGR分配室1には、各シリンダの排気ポート内の圧力最も高い排気タイミング時に開弁してEGRガスを導くので、EGR分配室には常時安定した圧力のEGRが貯留され、そこから各シリンダの給気ポートに対して給気タイミングで供給するようにできるため、シリンダ間におけるEGR供給量のバラツキがなく安定したEGRガスの供給が可能になる。   In this way, the EGR distribution chamber 1 opens and guides EGR gas at the exhaust timing of the highest pressure in the exhaust port of each cylinder, so that EGR with constant pressure is always stored in the EGR distribution chamber. Therefore, the supply port of each cylinder can be supplied at the supply timing, so that the supply of EGR gas can be stably performed without variation in the amount of EGR supply between the cylinders.

また、かかる第1実施形態においては、エンジンのエンジン負荷を検出する負荷検出器2及びエンジン回転数を検出する回転数検出器3を設け、かかるエンジン負荷の検出値及びエンジン回転数の検出値を、前記電磁弁制御装置5に入力している。   In the first embodiment, the load detector 2 for detecting the engine load of the engine and the rotation speed detector 3 for detecting the engine speed are provided, and the detected value of the engine load and the detected value of the engine speed are obtained. , Input to the solenoid valve control device 5.

従って、かかる第1実施形態によれば、前記負荷検出器2及び回転数検出器3からのエンジン負荷及びエンジン回転数の検出信号に基づきEGR分配室1へのEGR取出し部110cからの取り入れと、EGR分配室1からEGR導入部110dへの供給とを調整することができる。
すなわち、該EGR分配室1にて、エンジン負荷及びエンジン回転数の検出信号に応じて貯留し、さらにエンジン負荷及びエンジン回転数の検出信号に応じて給気ポート108に供給できるようになるため、EGRガスの供給量を正確かつ自在に制御できるようになる。
Therefore, according to the first embodiment, based on the detection signal of the engine load and the engine speed from the load detector 2 and the rotation speed detector 3, the intake from the EGR take-out portion 110c to the EGR distribution chamber 1; The supply from the EGR distribution chamber 1 to the EGR introduction part 110d can be adjusted.
That is, in the EGR distribution chamber 1, it can be stored according to the detection signal of the engine load and the engine speed, and further supplied to the air supply port 108 according to the detection signal of the engine load and the engine speed. The supply amount of EGR gas can be controlled accurately and freely.

例えば、エンジン高負荷高回転時にはEGRの供給は行わないが、排気圧力は上昇するためそのときの排気ガスを電磁弁6a,6b,6c,6d,6e,6fの開弁時期および開度を制御してEGR分配室1に貯留し、エンジンが低負荷低回転時のEGRか必要な運転状態になった時には、前記EGR分配室1に貯留された高圧の排気ガスを、電磁弁8a,8b,8c,8d,8e,8fの開弁時期および開度を制御して給気ポート108に供給することで、高圧の排気ガスをEGRガスとして供給でき効率よいEGRガスの制御が可能になる。
尚、前記負荷検出器2及び回転数検出器3は、いずれか一つでも良い。
その他の構成は、前記基本構成(図2)と同様であり、これと同一の部材は同一の符号で示す。
For example, EGR is not supplied at high engine speed and high rotation, but the exhaust pressure rises, so the exhaust gas at that time controls the valve opening timing and opening of the solenoid valves 6a, 6b, 6c, 6d, 6e, 6f. The EGR distribution chamber 1 stores the high-pressure exhaust gas stored in the EGR distribution chamber 1 when the engine is in the required operating state or EGR at low load and low rotation. By controlling the valve opening timing and opening degree of 8c, 8d, 8e, and 8f and supplying them to the supply port 108, high-pressure exhaust gas can be supplied as EGR gas, and efficient control of EGR gas becomes possible.
The load detector 2 and the rotation speed detector 3 may be any one.
Other configurations are the same as the basic configuration (FIG. 2), and the same members are denoted by the same reference numerals.

本発明によれば、EGR装置付きディーゼルエンジンにおいて、スロットル弁の開度調整等のエンジン性能を低下させる手段を用いることなく、各シリンダのEGR取出し部および各EGR導入部に接続する共通のEGR分配室を設けることにより、EGRガスを給気ポートに常時スムーズに流入可能としたEGR装置付きエンジンの給気装置を提供できる。   According to the present invention, in a diesel engine with an EGR device, a common EGR distribution connected to an EGR take-out portion and each EGR introduction portion of each cylinder without using a means for reducing engine performance such as adjustment of the opening degree of a throttle valve. By providing the chamber, it is possible to provide an air supply device for an engine with an EGR device that can smoothly flow EGR gas into the air supply port at all times.

1 EGR分配室
2 負荷検出器
3 回転数検出器
4a〜4f 電磁弁
6a〜6f 電磁弁
8a〜8f 電磁弁
5 電磁弁制御装置
100 エンジン(4サイクルディーゼルエンジン)
101 ピストン
102 シリンダライナ
103 燃焼室
104 給気弁
105 排気弁
107 燃料噴射弁
108 給気ポート
109 排気ポート
110 EGR通路
110c EGR取出し部
110d EGR導入部
110a、110a' 分岐点
110b、110b' 合流点
112 EGR弁
122 排気ターボ過給機
123 スロットル弁
199 排気通路
200 給気通路
DESCRIPTION OF SYMBOLS 1 EGR distribution chamber 2 Load detector 3 Revolution detector 4a-4f Solenoid valve 6a-6f Solenoid valve 8a-8f Solenoid valve 5 Solenoid valve control device 100 Engine (4-cycle diesel engine)
DESCRIPTION OF SYMBOLS 101 Piston 102 Cylinder liner 103 Combustion chamber 104 Supply valve 105 Exhaust valve 107 Fuel injection valve 108 Supply port 109 Exhaust port 110 EGR passage 110c EGR extraction part 110d EGR introduction part 110a, 110a 'Branch point 110b, 110b' Confluence 112 EGR valve 122 Exhaust turbocharger 123 Throttle valve 199 Exhaust passage 200 Air supply passage

Claims (3)

エンジンの排気ガスの一部を、各シリンダのそれぞれに給気を送給する給気ポート内に還流するEGR通路を備え、前記EGR通路は1つのシリンダのEGR取出し部から取出したEGRガスを、他のシリンダのEGR導入部に供給するように構成されたEGR装置付きエンジンの給気装置において、
前記各シリンダの排気ポートに前記EGR取出し部を設け、前記各シリンダの給気ポートに前記EGR導入部を設けるとともに、前記各EGR取出し部および各EGR導入部がそれぞれ接続する共通のEGR分配室を設け、該EGR分配室と前記各EGR取出し部および前記各EGR導入部との接続部にそれぞれ電磁弁を設け、各シリンダの排気タイミングと給気タイミングに沿って前記電磁弁を開閉制御する電磁弁制御手段を備えるとともに、
前記電磁弁制御手段は、前記EGR分配室と前記各EGR取出し部との接続部にそれぞれ設けられる前記各電磁弁を、少なくとも各シリンダの圧力が最も高い排気タイミング時に開弁するようにした制御手段であることを特徴とするEGR装置付きエンジンの給気装置。
An EGR passage that recirculates a part of the exhaust gas of the engine into an air supply port that supplies air to each of the cylinders. The EGR passage takes EGR gas taken out from an EGR take-out portion of one cylinder, In an air supply device for an engine with an EGR device configured to be supplied to an EGR introduction portion of another cylinder,
The EGR extraction part is provided in the exhaust port of each cylinder, the EGR introduction part is provided in the air supply port of each cylinder, and a common EGR distribution chamber to which each of the EGR extraction part and each EGR introduction part is connected is provided. provided, each of the with the EGR distribution chamber to the connecting portion between the EGR extraction City section and the respective EGR introduction part provided an electromagnetic valve, which controls the opening and closing of the electromagnetic valve along the exhaust timing and supply timing of each cylinder electromagnetic Rutotomoni a valve control unit,
The solenoid valve control means is a control means for opening each solenoid valve provided at a connection portion between the EGR distribution chamber and each EGR take-out portion at least at an exhaust timing when the pressure of each cylinder is the highest. air supply device of an EGR system with an engine, characterized in that it.
前記エンジンのエンジン負荷及びエンジン回転数のいずれかまたは双方を検出するエンジン運転条件検出手段を設け、前記エンジン運転条件検出手段からのエンジン負荷及びエンジン回転数のいずれかまたは双方の検出信号に基づき前記各電磁弁の開閉時期及び開閉期間を制御することを特徴とする請求項1に記載のEGR装置付きエンジンの給気装置。   Engine operating condition detection means for detecting either or both of the engine load and the engine speed of the engine is provided, and based on the detection signal of either or both of the engine load and engine speed from the engine operating condition detection means The air supply device for an engine with an EGR device according to claim 1, wherein the opening / closing timing and the opening / closing period of each electromagnetic valve are controlled. 前記請求項1又は2項記載のEGR装置付きエンジンの給気装置を備えたことを特徴とするエンジン。

An engine comprising the air supply device for an engine with an EGR device according to claim 1 or 2.

JP2011271585A 2011-12-12 2011-12-12 Engine air supply device with EGR device and engine equipped with the same Expired - Fee Related JP5345198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011271585A JP5345198B2 (en) 2011-12-12 2011-12-12 Engine air supply device with EGR device and engine equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011271585A JP5345198B2 (en) 2011-12-12 2011-12-12 Engine air supply device with EGR device and engine equipped with the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008232739A Division JP2010065610A (en) 2008-09-10 2008-09-10 Air supply device of engine with egr device and engine having the same

Publications (2)

Publication Number Publication Date
JP2012052554A JP2012052554A (en) 2012-03-15
JP5345198B2 true JP5345198B2 (en) 2013-11-20

Family

ID=45906115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011271585A Expired - Fee Related JP5345198B2 (en) 2011-12-12 2011-12-12 Engine air supply device with EGR device and engine equipped with the same

Country Status (1)

Country Link
JP (1) JP5345198B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244155A (en) * 1988-03-24 1989-09-28 Mazda Motor Corp Exhaust gas reflux device for engine
JP3491791B2 (en) * 1996-03-29 2004-01-26 日産ディーゼル工業株式会社 Engine exhaust recirculation control device
JPH10252486A (en) * 1997-03-07 1998-09-22 Toyota Motor Corp Intake/exhaust device for internal combustion engine
JP2005090239A (en) * 2003-09-12 2005-04-07 Toyota Industries Corp Egr device of internal combustion engine

Also Published As

Publication number Publication date
JP2012052554A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
US6138650A (en) Method of controlling fuel injectors for improved exhaust gas recirculation
US9080506B2 (en) Methods and systems for boost control
US10995705B2 (en) Modular exhaust gas recirculation system
JP2007315230A (en) Apparatus for recirculating exhaust gas of internal combustion engine
CN102200050A (en) System for inducting air into engine
JP5288046B2 (en) Control device for internal combustion engine
US10344688B2 (en) Apparatus and method for engine control
JP2008169712A (en) Engine with egr system
US11293382B2 (en) Passive pumping for recirculating exhaust gas
JP2007077900A (en) Two-stage supercharging system
JP2006307677A (en) Cylinder cutoff operation device and cylinder cutoff method for engine with supercharger
JP2007071179A (en) Two stage supercharging system
JP5345198B2 (en) Engine air supply device with EGR device and engine equipped with the same
US6526752B2 (en) Passive engine exhaust flow restriction arrangement
JP2007077899A (en) Two-stage supercharging system
JP2010065610A (en) Air supply device of engine with egr device and engine having the same
JP2012052450A (en) Exhaust gas recirculation device
JP2012107594A (en) Exhaust gas recirculation control method of internal combustion engine
GB2471840A (en) Supplying pressurised EGR in an i.c. engine
JP2008157157A (en) Multi-cylinder four-cycle engine with internal egr system
JP2010031687A (en) Spark ignition internal combustion engine
JP2013044266A (en) Internal combustion engine
JP2004278339A (en) High compression ratio engine
JP2007285163A (en) Exhaust gas re-circulating device in internal combustion engine
JP4288213B2 (en) Engine with EGR system with multiple turbochargers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130813

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees