JP2008157157A - Multi-cylinder four-cycle engine with internal egr system - Google Patents

Multi-cylinder four-cycle engine with internal egr system Download PDF

Info

Publication number
JP2008157157A
JP2008157157A JP2006348688A JP2006348688A JP2008157157A JP 2008157157 A JP2008157157 A JP 2008157157A JP 2006348688 A JP2006348688 A JP 2006348688A JP 2006348688 A JP2006348688 A JP 2006348688A JP 2008157157 A JP2008157157 A JP 2008157157A
Authority
JP
Japan
Prior art keywords
intake
exhaust
internal egr
cylinder
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006348688A
Other languages
Japanese (ja)
Other versions
JP4719142B2 (en
Inventor
Hiroyuki Endo
浩之 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006348688A priority Critical patent/JP4719142B2/en
Publication of JP2008157157A publication Critical patent/JP2008157157A/en
Application granted granted Critical
Publication of JP4719142B2 publication Critical patent/JP4719142B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-cylinder four-cycle engine with an internal EGR system capable of avoiding a loss of the strength of an engine and the deterioration of the durability of the engine while exhibiting an NOx reducing effect by preventing an excessive intake air temperature rise and an excessive exhaust gas temperature rise during internal EGR which are caused by the generation of high and low intake air temperatures by a cylinder. <P>SOLUTION: A multi-cylinder four-cycle engine with an intercooler is configured to perform internal EGR for an intake valve that performs the minimum sub-lifting of the intake valve during an exhaust stroke and internal EGR for an exhaust valve that performs the minimum sub-lifting of the exhaust valve during an intake stroke. The cam profile of an exhaust cam of a first cylinder group among multiple cylinders is set to an EGR cam profile of the exhaust valve that performs internal EGR for the exhaust valve, and the cam profile of the intake cam of a second cylinder group except for the first cylinder group is set to an EGR cam profile of the intake valve that performs internal EGR for the intake valve. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主として多シリンダ4サイクルディーゼルエンジン及び多シリンダ4サイクルガスエンジンに適用され、排気行程時に吸気弁を微小量サブリフトさせて燃焼ガスの一部を吸気通路に送り込んで吸気に混入させて吸気弁の主リフト開弁時に燃焼室に還流する吸気弁内部EGRと、吸気行程時に排気弁を微小量サブリフトさせて排気ガスの一部を燃焼室内に送り込んで吸気に混入させる排気弁内部EGRとを行うように構成された内部EGRシステム付き多シリンダ4サイクルエンジンに関する。   The present invention is mainly applied to a multi-cylinder four-cycle diesel engine and a multi-cylinder four-cycle gas engine. During the exhaust stroke, the intake valve is sub-lifted by a small amount, and a part of the combustion gas is fed into the intake passage to be mixed with the intake air. An intake valve internal EGR that recirculates to the combustion chamber when the valve main valve is opened, and an exhaust valve internal EGR that causes the exhaust valve to sub-lift a small amount during the intake stroke to feed a part of the exhaust gas into the combustion chamber and mix it with the intake air. The present invention relates to a multi-cylinder four-cycle engine with an internal EGR system configured to perform.

4サイクルディーゼルエンジン、4サイクルガスエンジン等においては、排気行程時に吸気弁を吸気行程時の主リフトとは離れて微小量サブリフトさせ、燃焼室内の燃焼ガスの一部を吸気通路に送り込み吸気に混入させ、該燃焼ガスを吸気弁の主リフトによる開弁時に燃焼室に還流する吸気弁サブリフト方式(吸気弁内部EGR)、あるいは吸気行程時に排気弁を排気行程時の主リフトとは離れて微小量サブリフトさせて、排気通路内の排気ガスの一部を燃焼室内に還流して吸気に混入させる排気弁サブリフト方式(排気弁内部EGR)からなる内部EGRシステムを備えたエンジンが提供されている。   In a 4-cycle diesel engine, 4-cycle gas engine, etc., during the exhaust stroke, the intake valve is separated from the main lift during the intake stroke by a small amount, and a part of the combustion gas in the combustion chamber is sent to the intake passage and mixed into the intake air Intake valve sublift system (intake valve internal EGR) that returns the combustion gas to the combustion chamber when the intake valve is opened by the main lift of the intake valve, or the exhaust valve is separated from the main lift during the exhaust stroke during the intake stroke. There is provided an engine having an internal EGR system of an exhaust valve sublift system (exhaust valve internal EGR) in which a part of exhaust gas in an exhaust passage is recirculated into a combustion chamber and mixed with intake air by sublifting.

かかる内部EGRシステムを備えた多シリンダ4サイクルエンジンに関する技術の1つに、特許文献1(特開平7−133726号公報)にて提供された技術がある。
前記特許文献1の技術においては、吸気通路に該吸気通路を開閉して吸気通路面積を変化せしめる吸気制御弁を設置し、排気行程の終了直前に吸気制御弁よりも先に吸気弁を開き、負圧となっている吸気通路内にピストンの上昇によって燃焼ガス(EGRガス)を押し込み、吸気行程時にEGRガス混入の吸気を燃焼室内に還流し、前記吸気制御弁を吸気弁の開閉時期と関連させるとともにエンジン負荷、エンジン回転数等のエンジン運転条件によって開閉制御して、吸気制御弁と吸気弁との間の圧力(負圧)を制御して内部EGR量を所望の値に制御している。
また、かかる技術においては、吸気弁のサブリフト量あるいはサブリフト期間あるいはサブリフトの主リフトとの位相(主リフトからの進角量)、並びに、各シリンダ毎の排気弁のサブリフト量あるいはサブリフト期間は、エンジン出力、エンジン回転数等のエンジン性能から一義的に設定されている。
One technique related to a multi-cylinder four-cycle engine equipped with such an internal EGR system is a technique provided in Patent Document 1 (Japanese Patent Laid-Open No. 7-133726).
In the technique of Patent Document 1, an intake control valve that opens and closes the intake passage to change the intake passage area is installed in the intake passage, and the intake valve is opened before the intake control valve immediately before the end of the exhaust stroke. The combustion gas (EGR gas) is pushed into the intake passage, which is under negative pressure, as the piston rises, and the intake air mixed with EGR gas is recirculated into the combustion chamber during the intake stroke, and the intake control valve is related to the opening / closing timing of the intake valve. In addition, the internal EGR amount is controlled to a desired value by controlling the pressure (negative pressure) between the intake control valve and the intake valve by controlling the opening and closing according to the engine operating conditions such as the engine load and the engine speed. .
Further, in this technology, the sub-lift amount or sub-lift period of the intake valve or the phase of the sub-lift with the main lift (advance amount from the main lift) and the sub-lift amount or sub-lift period of the exhaust valve for each cylinder are It is uniquely set from engine performance such as output and engine speed.

また、特許文献2(特開平10−252512号公報)にて提供された技術においては、エンジン負荷が小さくなるほど吸気弁と排気弁との開弁重合期間を大きくして、内部EGRガス量を増加することにより吸気加熱効果を向上し、軽負荷時における自着火性を向上し安定燃焼域を拡大している。   Further, in the technique provided in Patent Document 2 (Japanese Patent Laid-Open No. 10-252512), the valve opening polymerization period of the intake valve and the exhaust valve is increased and the internal EGR gas amount is increased as the engine load is reduced. This improves the intake air heating effect, improves self-ignitability at light loads, and expands the stable combustion area.

さらに、特許文献3(特開2000−204984号公報)にて提供された技術においては、バルブタイミング可変機構、排気絞り弁等を設け、要求内部EGRガス量が大きい場合には、吸気弁の開弁時期を進角させるとともに排気弁の閉弁時期を進角させ、排気絞り弁の開度を小さくして、大量のEGRガスを吸気ポート内に送り込むように構成している。   Further, in the technique provided in Patent Document 3 (Japanese Patent Laid-Open No. 2000-204984), a variable valve timing mechanism, an exhaust throttle valve, and the like are provided, and when the required internal EGR gas amount is large, the intake valve is opened. The valve timing is advanced, the exhaust valve closing timing is advanced, the opening of the exhaust throttle valve is reduced, and a large amount of EGR gas is sent into the intake port.

特開平7−133726号公報JP-A-7-133726 特開平10−252512号公報JP-A-10-252512 特開2000−204984号公報JP 2000-204984 A

内部EGRシステムを備えた多シリンダ4サイクルエンジンには、前記のように、吸気弁内部EGR方式(吸気弁サブリフト方式)と排気弁内部EGR方式(排気弁サブリフト方式)との2つの内部EGRシステムが用いられている。
前記吸気弁内部EGR方式では吸気弁を1サイクルにつき主リフトとサブリフトの2回、排気弁内部EGR方式では排気弁を1サイクルにつき主リフトとサブリフトの2回、それぞれ開弁するため、次のような解決すべき課題を抱えている。
As described above, a multi-cylinder four-cycle engine equipped with an internal EGR system has two internal EGR systems of an intake valve internal EGR system (intake valve sublift system) and an exhaust valve internal EGR system (exhaust valve sublift system). It is used.
In the intake valve internal EGR method, the intake valve is opened twice for the main lift and the sub lift per cycle, and in the exhaust valve internal EGR method, the exhaust valve is opened twice for the main lift and the sub lift per cycle. Have problems to be solved.

排気行程時に吸気弁を吸気行程時の主リフトとは離れて微小量サブリフトさせ、燃焼室内の燃焼ガスの一部を吸気通路に送り込み吸気に混入させ、該燃焼ガスを吸気弁の主リフトによる開弁時に燃焼室に還流する吸気弁内部EGR方式の多シリンダ4サイクルエンジンは、排気行程時のピストン上昇中で筒内圧力が増加して、筒内圧力と吸気ポート内圧力との間に圧力差が生じているときに吸気弁をサブリフトさせるため、排気ポート内圧力と筒内圧力との圧力差が小さい排気弁内部EGR方式よりもEGR量を多くできて、EGRによるNOx低減効果も排気弁内部EGR方式よりも大きくなる。   During the exhaust stroke, the intake valve is separated from the main lift during the intake stroke by a small amount, and a part of the combustion gas in the combustion chamber is sent to the intake passage to be mixed into the intake air, and the combustion gas is opened by the main lift of the intake valve. In an intake valve internal EGR type multi-cylinder four-cycle engine that recirculates to the combustion chamber at the time of valve operation, the in-cylinder pressure increases as the piston rises during the exhaust stroke, and the pressure difference between the in-cylinder pressure and the intake port internal pressure Since the intake valve is sub-lifted when there is a problem, the EGR amount can be increased compared to the exhaust valve internal EGR system in which the pressure difference between the exhaust port internal pressure and the cylinder internal pressure is small. It becomes larger than the EGR method.

しかしながら、吸気弁内部EGR方式の場合は、排気行程時に吸気弁をサブリフトさせて、燃焼室内の燃焼ガスの一部を吸気通路に送り込み吸気に混入させるため、燃焼ガスの混入によって吸気温度が上昇し、吸気温度の上昇に従い燃焼温度及び排気温度が上昇して、エンジンの熱負荷の増大や、燃焼温度の上昇分がNOx発生を助長してEGRによるNOx低減効果が低下するという問題点をかかえている。   However, in the case of the intake valve internal EGR system, the intake valve is sub-lifted during the exhaust stroke, and a part of the combustion gas in the combustion chamber is sent to the intake passage to be mixed into the intake air. As the intake air temperature rises, the combustion temperature and the exhaust gas temperature rise, increasing the engine heat load, and the increase in the combustion temperature promotes the generation of NOx, which reduces the NOx reduction effect by EGR. Yes.

そして、かかる吸気弁内部EGR方式の場合、前記のように内部EGRによる吸気温度の上昇及びこれに伴う排気温度の上昇が問題となるが、吸気マニホールド内において給気冷却器に遠い側のシリンダ入口の吸気温度状態が給気冷却器に近い側の温度状態よりも高くなる傾向にあることや、吸気マニホールド内における吸気の流量分布の不均一によって吸気マニホールドの長手方向に吸気温度のばらつきが発生し易いこと等のために、シリンダによって入口吸気温度に高低が生ずることが多い。
このため、吸気温度の高いシリンダで、内部EGRによる吸気温度及び排気温度上昇度が大きい吸気弁内部EGRを行った場合には、エンジンの高負荷、高回転等の高出力レベルで排気温度が許容排気温度を超えてエンジン強度及び耐久性の低下を招くという問題が発生する。
In the case of such an intake valve internal EGR system, as described above, an increase in the intake air temperature due to the internal EGR and an increase in the exhaust gas temperature associated therewith become a problem, but the cylinder inlet on the side farther from the supply air cooler in the intake manifold. The intake air temperature condition tends to be higher than the temperature condition closer to the intake air cooler, and the intake air flow distribution varies in the longitudinal direction of the intake manifold due to the uneven distribution of intake air flow in the intake manifold. Due to the ease, etc., the intake air temperature is often raised or lowered by the cylinder.
For this reason, when the intake valve internal EGR with a large intake air temperature and exhaust gas temperature increase due to the internal EGR is performed in a cylinder having a high intake air temperature, the exhaust temperature is allowed at a high output level such as high engine load and high rotation. There is a problem that the exhaust temperature is exceeded and the engine strength and durability are lowered.

尚、前記特許文献1(特開平7−133726号公報)においては、排気行程時に、吸気弁を吸気行程時の主リフトとは離れて微小量サブリフトさせ、燃焼室内の燃焼ガスの一部を吸気通路に送り込み吸気に混入させ、該燃焼ガスを吸気弁の主リフトによる開弁時に燃焼室に還流するようにした内部EGRシステムをそなえた4サイクルエンジンが開示されているにとどまり、
また、特許文献2(特開平10−252512号公報)においては、エンジン負荷が小さくなるほど吸気弁と排気弁との開弁重合期間を大きくして内部EGRガス量を増加することにより吸気加熱効果を向上した4サイクルエンジンが開示されているにとどまり、
さらに、特許文献3(特開2000−204984号公報)においては、吸気弁内部EGR方式において、吸気弁の開弁時期を進角させるとともに排気弁の閉弁時期を進角させ、排気絞り弁の開度を小さくして、大量のEGRガスを吸気ポート内に送り込むように構成しているにとどまり、
前記のような吸気温度の高いシリンダで吸気弁内部EGRを行った場合におけるエンジンの高出力レベルでの排気温度の過昇及びこれに伴うエンジン強度及び耐久性の低下を招くという問題点を解決する手段は、前記特許文献1,2,3には示されていない。
In Patent Document 1 (Japanese Patent Application Laid-Open No. 7-133726), during the exhaust stroke, the intake valve is separated from the main lift during the intake stroke by a small amount, and a part of the combustion gas in the combustion chamber is sucked. Only a four-cycle engine is disclosed that has an internal EGR system that is fed into the passage and mixed into the intake air so that the combustion gas is recirculated to the combustion chamber when the intake valve is opened by the main lift.
Further, in Patent Document 2 (Japanese Patent Laid-Open No. 10-252512), the intake heating effect is increased by increasing the internal EGR gas amount by increasing the valve opening polymerization period of the intake valve and the exhaust valve as the engine load decreases. Only an improved four-cycle engine is disclosed,
Further, in Patent Document 3 (Japanese Patent Laid-Open No. 2000-204984), in the intake valve internal EGR system, the opening timing of the intake valve is advanced and the closing timing of the exhaust valve is advanced, so that the exhaust throttle valve It is configured to reduce the opening and to send a large amount of EGR gas into the intake port,
To solve the problem that the exhaust valve internal EGR is performed with a cylinder having a high intake temperature as described above, the exhaust temperature is excessively increased at a high output level of the engine, and the engine strength and durability are lowered accordingly. The means is not shown in Patent Documents 1, 2, and 3.

本発明はかかる従来技術の課題に鑑み、シリンダによる吸気温度の高低の発生による内部EGR時の吸気温度及び排気温度の過昇を防止して、NOx低減効果を発揮しつつエンジン強度及び耐久性の低下を回避可能な内部EGRシステム付き多シリンダ4サイクルエンジンを提供することを目的とする。   In view of the problems of the prior art, the present invention prevents the intake air temperature and the exhaust gas temperature from excessively increasing during internal EGR due to the occurrence of high and low intake air temperatures by the cylinder, and exhibits the NOx reduction effect while maintaining the engine strength and durability. An object of the present invention is to provide a multi-cylinder four-cycle engine with an internal EGR system capable of avoiding a decrease.

本発明はかかる課題を解決するもので、給気冷却器をそなえた多シリンダの4サイクルエンジンであって、排気行程時に吸気行程時の吸気弁の主リフトとは離れて該吸気弁を微小量サブリフトさせて、燃焼室内の燃焼ガスの一部を吸気通路に送り込んで吸気に混入させ、該燃焼ガスを前記吸気弁の主リフトによる開弁時に燃焼室に還流する吸気弁内部EGRと、吸気行程時に排気行程時の排気弁の主リフトとは離れて該排気弁を微小量サブリフトさせて、排気通路内の排気ガスの一部を燃焼室内に送り込んで吸気に混入させる排気弁内部EGRとを行うように構成された内部EGRシステム付き多シリンダ4サイクルエンジンにおいて、前記多シリンダのうち第1のシリンダ群の排気カムのカムプロフィルを前記排気弁内部EGRを行う排気弁EGRカムプロフィルに設定し、前記第1のシリンダ群以外の第2のシリンダ群の吸気カムのカムプロフィルを前記吸気弁内部EGRを行う吸気弁EGRカムプロフィルに設定したことを特徴とする。   The present invention solves such a problem, and is a multi-cylinder four-cycle engine equipped with a charge air cooler, and is separated from the main lift of the intake valve during the intake stroke during the exhaust stroke, and the intake valve is set to a minute amount. An intake valve internal EGR that sub-lifts, sends a part of the combustion gas in the combustion chamber to the intake passage and mixes in the intake air, and returns the combustion gas to the combustion chamber when the intake valve is opened by the main lift, and an intake stroke Sometimes, the exhaust valve is separated from the main lift of the exhaust valve during the exhaust stroke, and the exhaust valve is sub-lifted by a small amount, and the exhaust valve internal EGR that sends a part of the exhaust gas in the exhaust passage into the combustion chamber and mixes with the intake air is performed. In the multi-cylinder four-cycle engine with an internal EGR system configured as described above, an exhaust cam that performs the exhaust valve internal EGR is used as the cam profile of the exhaust cam of the first cylinder group among the multiple cylinders. Set EGR cam profile, characterized by a cam profile of the first intake cam of the second cylinder group other than cylinder group is set to the intake valve EGR cam profile for performing internal EGR said intake valve.

かかる発明において、具体的には次のように構成するのが好ましい。
(1)前記給気冷却器1台からの吸気を前記排気弁内部EGRを行う前記第1のシリンダ群及び前記吸気弁内部EGRを行う前記第2のシリンダ群に供給するように構成し、前記給気冷却器に近い側のシリンダを吸気弁内部EGRを行う前記第2のシリンダ群とし、該第2のシリンダ群よりも前記給気冷却器に遠い側のシリンダを排気弁内部EGRを行う前記第1のシリンダ群とする。
In this invention, specifically, the following configuration is preferable.
(1) It is configured to supply intake air from the one air supply cooler to the first cylinder group that performs the exhaust valve internal EGR and the second cylinder group that performs the intake valve internal EGR, The cylinder closer to the intake air cooler is the second cylinder group that performs the EGR inside the intake valve, and the cylinder farther from the intake air cooler than the second cylinder group performs the EGR inside the exhaust valve. The first cylinder group is assumed.

(2)前記給気冷却器を、低温冷却水で吸気を冷却する低温側給気冷却器と、該低温冷却水よりも高温の高温冷却水で吸気を冷却する高温側給気冷却器とにより構成するとともに、前記低温側給気冷却器に前記吸気弁内部EGRを行う第2のシリンダ群を接続し、前記高温側給気冷却器に前記排気弁内部EGRを行う第1のシリンダ群を接続する。
この場合、好ましくは、前記第2のシリンダ群を前記第1のシリンダ群よりも前記低温側給気冷却器あるいは前記高温側給気冷却器に近い側に配置する。
(2) The supply air cooler includes a low temperature side supply air cooler that cools the intake air with low temperature cooling water, and a high temperature side air supply cooler that cools the intake air with high temperature cooling water higher than the low temperature cooling water. And a second cylinder group that performs the intake valve internal EGR is connected to the low temperature side air supply cooler, and a first cylinder group that performs the exhaust valve internal EGR is connected to the high temperature side air supply cooler. To do.
In this case, preferably, the second cylinder group is disposed closer to the low temperature side air supply cooler or the high temperature side air supply cooler than the first cylinder group.

前述のように、吸気弁内部EGR方式では、筒内圧力と吸気ポート内圧力との間に圧力差が生じているときに吸気弁をサブリフトさせるため、排気ポート内圧力と筒内圧力との圧力差が小さい排気弁内部EGR方式よりもEGR量を多くできて、EGRによるNOx低減効果が排気弁内部EGR方式よりも大きい反面、吸気弁内部EGR方式では燃焼室内の燃焼ガスの一部を吸気通路に送り込み吸気に混入させることから、燃焼ガスの混入によって吸気温度及び排気温度が上昇するという課題がある。   As described above, in the intake valve internal EGR method, the intake valve is sub-lifted when a pressure difference is generated between the in-cylinder pressure and the intake port internal pressure, and therefore the pressure between the exhaust port internal pressure and the in-cylinder pressure. The EGR amount can be increased more than the exhaust valve internal EGR method with a small difference, and the NOx reduction effect by EGR is larger than that of the exhaust valve internal EGR method, but in the intake valve internal EGR method, part of the combustion gas in the combustion chamber is taken into the intake passage Therefore, there is a problem that the intake air temperature and the exhaust gas temperature rise due to the mixing of the combustion gas.

然るに本発明によれば、多シリンダの4サイクルエンジンにおいて、多シリンダのシリンダを2つの群に分け、第1のシリンダ群の排気カムのカムプロフィルを吸気行程時に排気弁を微小量サブリフトさせ排気通路内の排気ガスの一部を燃焼室内に還流して吸気に混入させる排気弁内部EGRを行う排気弁EGRカムプロフィルに設定し、残りの第2のシリンダ群の吸気カムのカムプロフィルを排気行程時に吸気弁を微小量サブリフトさせ燃焼室内の燃焼ガスの一部を吸気通路に送り込み吸気に混入させて吸気弁の主リフトによる開弁時に吸気混入燃焼ガスを燃焼室に還流する吸気弁内部EGRを行う吸気弁EGRカムプロフィルに設定するので、エンジンの製作段階で、シリンダの配置や吸気マニホールド内における吸気の流量分布等によって各シリンダの吸気温度及び排気温度の温度状態を把握しておき、吸気温度及び排気温度が高い傾向にあると把握された前記第1のシリンダ群の排気カムのカムプロフィルを、吸気弁内部EGR方式よりも吸気温度及び排気温度の上昇度の小さい排気弁内部EGR方式で行うように排気弁EGRカムプロフィルに設定して内部EGRによる吸気温度及び排気温度の上昇を抑える一方、吸気温度及び排気温度が第1のシリンダ群よりも低い傾向にあって吸気温度及び排気温度の許容最高値に対して余裕があると把握された前記第2のシリンダ群の吸気カムのカムプロフィルを、前記のように排気弁内部EGR方式よりも吸気温度及び排気温度の上昇度が大きい吸気弁内部EGR方式で行うようなカムプロフィルに設定することが可能となる。   However, according to the present invention, in a multi-cylinder four-cycle engine, the multi-cylinder cylinders are divided into two groups, and the cam profile of the exhaust cam of the first cylinder group is sub-lifted by a minute amount during the intake stroke so that the exhaust passage The exhaust valve EGR cam profile that performs EGR inside the exhaust valve that recirculates a part of the exhaust gas in the combustion chamber and mixes it with the intake air is set, and the cam profile of the intake cam of the remaining second cylinder group is set during the exhaust stroke. An intake valve internal EGR is performed in which the intake valve is sub-lifted, a part of the combustion gas in the combustion chamber is fed into the intake passage and mixed with intake air, and the intake mixed combustion gas is returned to the combustion chamber when the intake valve is opened by the main lift. Since it is set to the intake valve EGR cam profile, it depends on the cylinder arrangement and the intake air flow distribution in the intake manifold, etc. Ascertain the temperature states of the intake and exhaust temperatures of each cylinder, and determine the cam profile of the exhaust cam of the first cylinder group, which has been determined that the intake and exhaust temperatures tend to be high. The exhaust valve EGR cam profile is set to suppress the rise of the intake air temperature and the exhaust gas temperature due to the internal EGR as in the exhaust valve internal EGR method, which is smaller in the intake air temperature and the exhaust gas temperature than the method. The cam profile of the intake cam of the second cylinder group, which has been found to be lower than the first cylinder group and has a margin for the maximum allowable intake temperature and exhaust temperature, as described above, It is possible to set the cam profile as in the intake valve internal EGR method in which the intake air temperature and the exhaust gas temperature increase are larger than in the exhaust valve internal EGR method.

従って本発明によれば、エンジンの製作段階で、シリンダの吸気温度及び排気温度の温度状態を予め把握しておき、前記温度状態の高い第1のシリンダ群について排気弁内部EGR方式のカムプロフィルを適用し、前記温度状態の低い第2のシリンダ群について吸気弁内部EGR方式のカムプロフィルを適用することにより、エンジンの運転中に調整を行うことなく、排気弁内部EGR方式に設定された第1のシリンダ群においては特にエンジンの耐久性の保持が要求される高出力レベルの運転時に排気温度を常時許容排気温度以下に保持して所要のNOx低減効果を発揮しつつ排気温度の上昇に伴うエンジン強度及び耐久性の低下を防止することができ、吸気弁内部EGR方式に設定された第2のシリンダ群においては特にEGRによるNOx低減効果が多く要求される低出力レベルの運転時に吸気温度及び排気温度を許容温度以下に抑えつつ大きなNOx低減効果を得ることができる。   Therefore, according to the present invention, the temperature states of the cylinder intake air temperature and the exhaust gas temperature are grasped in advance at the engine manufacturing stage, and the cam profile of the exhaust valve internal EGR system is set for the first cylinder group having a high temperature state. By applying the cam profile of the intake valve internal EGR method to the second cylinder group having a low temperature state, the first set to the exhaust valve internal EGR method without adjustment during engine operation. Especially in the cylinder group of the above, the engine accompanying the rise in the exhaust temperature while maintaining the exhaust temperature below the allowable exhaust temperature and exhibiting the required NOx reduction effect at the time of the operation of the high output level that particularly requires the durability of the engine. In the second cylinder group that is set to the intake valve internal EGR system, it is possible to prevent the strength and durability from being lowered. The intake air temperature and exhaust temperature at the time of low power level operation x reduction effect is often required it is possible to obtain a large NOx reducing effect while kept below the allowable temperature.

また、給気冷却器に近い側のシリンダを吸気弁内部EGRを行う第2のシリンダ群とし、該第2のシリンダ群よりも給気冷却器に遠い側のシリンダを排気弁内部EGRを行う前記第1のシリンダ群とするように構成すれば、給気冷却器から離れているシリンダ入口の吸気温度が高くなり且つ第1のシリンダ群を吸気温度及び排気温度の上昇度の小さい排気弁内部EGR方式として排気温度を許容排気温度以下に保持し、給気冷却器に近く該給気冷却器からの低温の吸気を供給可能な第2のシリンダ群を内部EGRによる吸気温度及び排気温度の上昇度の大きい吸気弁内部EGR方式として、内部EGR時の排気温度を許容排気温度以下に保持でき、従って吸気弁内部EGR及び排気弁内部EGRによるNOx低減効果を発揮しつつ、全シリンダで排気温度を許容排気温度以下に保持できる。   Further, the cylinder closer to the intake air cooler is used as the second cylinder group for performing the intake valve internal EGR, and the cylinder farther from the intake air cooler than the second cylinder group is used for performing the exhaust valve internal EGR. If the first cylinder group is configured, the intake air temperature at the cylinder inlet remote from the intake air cooler becomes high, and the first cylinder group has a small increase in the intake air temperature and the exhaust gas temperature. As a system, the second cylinder group that maintains the exhaust temperature below the allowable exhaust temperature and can supply the low-temperature intake air from the intake air cooler close to the intake air cooler is used to increase the intake air temperature and the exhaust gas temperature by the internal EGR. As a large intake valve internal EGR system, the exhaust temperature at the time of internal EGR can be kept below the allowable exhaust temperature. Therefore, while exhibiting the NOx reduction effect by the intake valve internal EGR and the exhaust valve internal EGR, In can hold the exhaust gas temperature to below the allowable exhaust temperature.

また、給気冷却器を、低温冷却水で吸気を冷却する低温側給気冷却器と、高温の高温冷却水で吸気を冷却する高温側給気冷却器とにより構成し、低温側給気冷却器に吸気弁内部EGRを行う第2のシリンダ群を接続し、高温側給気冷却器に排気弁内部EGRを行う第1のシリンダ群を接続し、その上で前記と同様に、第2のシリンダ群を第1のシリンダ群よりも低温側給気冷却器あるいは高温側給気冷却器に近い側に配置するように構成すれば、エンジンのジャケット出口冷却水のような高温冷却水で吸気を冷却する高温側給気冷却器からの比較的高温の吸気を、内部EGRによる吸気温度及び排気温度の上昇度の小さい排気弁内部EGR方式を行う第1のシリンダ群に供給することにより排気温度を許容排気温度以下に保持し、エンジン入口冷却水のような低温冷却水で吸気を冷却する低温側給気冷却器からの比較的低温の吸気を、内部EGRによる吸気温度及び排気温度の上昇度の大きい吸気弁内部EGR方式を行う第2のシリンダ群に供給することにより内部EGR時の排気温度を許容排気温度以下に保持でき、従って吸気弁内部EGR及び排気弁内部EGRによるNOx低減効果を発揮しつつ、全シリンダで排気温度を許容排気温度以下に保持できる。   Also, the supply air cooler is composed of a low temperature side air supply cooler that cools the intake air with low temperature cooling water and a high temperature side air supply cooler that cools the intake air with high temperature high temperature cooling water, and the low temperature side air supply cooling The second cylinder group for performing the EGR inside the intake valve is connected to the exhaust gas, and the first cylinder group for performing the EGR inside the exhaust valve is connected to the high-temperature side intake air cooler. If the cylinder group is arranged on the side closer to the low temperature side air supply cooler or the high temperature side air supply cooler than the first cylinder group, the intake air is sucked with high temperature cooling water such as engine jacket outlet cooling water. The relatively high temperature intake air from the high temperature side air supply cooler to be cooled is supplied to the first cylinder group that performs the exhaust valve internal EGR system in which the intake air temperature by the internal EGR and the exhaust gas temperature increase are small, thereby reducing the exhaust temperature. Hold below the allowable exhaust temperature and enter the engine. A relatively low temperature intake air from a low-temperature side intake air cooler that cools intake air with low-temperature cooling water such as cooling water is subjected to an intake valve internal EGR system in which the intake air temperature and exhaust gas temperature rise by the internal EGR is large. By supplying to the cylinder group, the exhaust temperature during internal EGR can be kept below the allowable exhaust temperature, and therefore the exhaust temperature is allowed to exhaust in all cylinders while exhibiting the NOx reduction effect by the intake valve internal EGR and exhaust valve internal EGR. It can be kept below the temperature.

以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.

図3は本発明の実施例に係る内部EGRシステムを備えた多シリンダ4サイクルディーゼルエンジンのシリンダ及び吸気、排気弁中心線に沿う要部断面図である。
図3において、100はエンジン(4サイクルディーゼルエンジン)、1は該エンジン100のシリンダ、1aは該シリンダ1内に形成された燃焼室、2はピストンである。
3はシリンダヘッド、4は各シリンダヘッド3に形成された吸気ポート、5は各吸気ポート4を開閉する吸気弁、6は各シリンダヘッド3に形成された排気ポート、7は前記各排気ポート6を開閉する排気弁である。
FIG. 3 is a cross-sectional view of the main part along the cylinder and intake / exhaust valve center line of the multi-cylinder four-cycle diesel engine having the internal EGR system according to the embodiment of the present invention.
In FIG. 3, 100 is an engine (4-cycle diesel engine), 1 is a cylinder of the engine 100, 1a is a combustion chamber formed in the cylinder 1, and 2 is a piston.
3 is a cylinder head, 4 is an intake port formed in each cylinder head 3, 5 is an intake valve for opening and closing each intake port 4, 6 is an exhaust port formed in each cylinder head 3, and 7 is each exhaust port 6 It is an exhaust valve that opens and closes.

12aは図示しないクランク軸に連動される吸気カム軸、12は該吸気カム軸12aに形成された吸気カム、13aは図示しないクランク軸に連動される排気カム軸、13は該排気カム軸13aに形成された排気カムである。9は吸気弁タペット、8は吸気弁ばね、11は排気弁タペット、10は排気弁ばねであり、これらにより動弁装置を構成する。
かかる動弁装置において、図示しないクランク軸により、前記吸気カム軸12a及び吸気カム12が回転駆動されて吸気弁タペット9を介して、前記吸気弁5が各吸気ポート4を開閉し、前記クランク軸により排気カム軸13a及び排気カム13が回転駆動されて排気弁タペット11を介して、前記排気弁7が各排気ポート6を開閉する。
12a is an intake camshaft linked to a crankshaft (not shown), 12 is an intake cam formed on the intake camshaft 12a, 13a is an exhaust camshaft linked to a crankshaft (not shown), and 13 is an exhaust camshaft 13a. It is the formed exhaust cam. 9 is an intake valve tappet, 8 is an intake valve spring, 11 is an exhaust valve tappet, and 10 is an exhaust valve spring, and these constitute a valve operating device.
In such a valve operating apparatus, the intake camshaft 12a and the intake cam 12 are rotationally driven by a crankshaft (not shown), and the intake valve 5 opens and closes each intake port 4 via the intake valve tappet 9, and the crankshaft As a result, the exhaust camshaft 13a and the exhaust cam 13 are driven to rotate, and the exhaust valve 7 opens and closes the exhaust ports 6 via the exhaust valve tappet 11.

かかる4サイクルディーゼルエンジンにおいて、図示しない過給機のコンプレッサから圧送された吸気(空気)は、吸気マニホールド21(図1参照)から各シリンダの吸気ポート4に分配され、吸気弁5の開弁により燃焼室1a内に導入される。
また、前記各燃焼室1aでの着火燃焼後の排気ガスは、前記排気弁7の開弁により排気ポート6を通って排気マニホール23(図1参照)に溜められてから、過給機に送り込まれて該過給機のタービンを駆動する。
本発明は、以上のような多シリンダ4サイクルエンジンにおける内部EGRシステムの改良に係るものである。
In such a 4-cycle diesel engine, intake air (air) pumped from a compressor of a supercharger (not shown) is distributed from the intake manifold 21 (see FIG. 1) to the intake port 4 of each cylinder, and the intake valve 5 is opened. It is introduced into the combustion chamber 1a.
Further, the exhaust gas after ignition combustion in each combustion chamber 1a is stored in the exhaust manifold 23 (see FIG. 1) through the exhaust port 6 by opening the exhaust valve 7, and then sent to the supercharger. To drive the turbocharger turbine.
The present invention relates to an improvement of the internal EGR system in the multi-cylinder four-cycle engine as described above.

図4は、内部EGRシステムを備えた図1に示されるような4サイクルエンジンの吸、排気弁タイミング線図である。
4サイクルエンジンにおける吸気弁内部EGR方式即ち吸気弁サブリフト式の内部EGR方式においては、図4に示されるように、排気行程時に、吸気弁5を、吸気行程時の主リフトInとは離れて微小量サブリフト(Is)させて燃焼室1a内の燃焼ガスの一部を吸気ポート4に送り込み吸気に混入させ、該燃焼ガスを前記吸気弁5の主リフトInによる開弁時に燃焼室1aに還流する。
また排気弁内部EGR方式即ち排気弁サブリフト式の内部EGR方式においては、吸気行程時に排気行程時の排気弁7の主リフトExとは離れて該排気弁7を微小量サブリフト(Es)させて、排気ポート6内の排気ガスの一部を燃焼室1a内に送り込んで吸気に混入させる。
FIG. 4 is a suction and exhaust valve timing diagram for a four-cycle engine as shown in FIG. 1 with an internal EGR system.
In the intake valve internal EGR method, that is, the intake valve sublift internal EGR method in a four-cycle engine, as shown in FIG. 4, the intake valve 5 is separated from the main lift In during the intake stroke and is slightly separated during the exhaust stroke. Then, a part of the combustion gas in the combustion chamber 1a is sent to the intake port 4 and mixed with intake air, and the combustion gas is recirculated to the combustion chamber 1a when the intake valve 5 is opened by the main lift In. .
Further, in the exhaust valve internal EGR system, that is, the exhaust valve sublift internal EGR system, the exhaust valve 7 is separated from the main lift Ex of the exhaust valve 7 during the exhaust stroke during the intake stroke, and the exhaust valve 7 is sub-lifted (Es) by a small amount. A part of the exhaust gas in the exhaust port 6 is sent into the combustion chamber 1a and mixed into the intake air.

図1は本発明の第1実施例に係る多シリンダ4サイクルエンジン(この例では4シリンダを示す)の平面模式図である。
図1において、図示しない過給機からの吸気(空気)を冷却する給気冷却器は符号30で示され、該給気冷却器30の吸気出口には4シリンダ分の吸気マニホールド21が接続されている。該吸気マニホールド21には各シリンダ1への吸気枝管22が接続され、各吸気枝管22は前記吸気弁5により開閉される吸気ポート4(図4も参照)に接続されている。
一方、各シリンダ1の排気弁7により開閉される排気ポート6(図4も参照)は、排気枝管24に接続され、各排気枝管24は4シリンダ分の排気マニホールド23に接続されている。
FIG. 1 is a schematic plan view of a multi-cylinder four-cycle engine (in this example, four cylinders are shown) according to a first embodiment of the present invention.
In FIG. 1, a charge air cooler for cooling intake air (air) from a supercharger (not shown) is denoted by reference numeral 30, and an intake manifold 21 for four cylinders is connected to the intake outlet of the charge air cooler 30. ing. An intake branch pipe 22 to each cylinder 1 is connected to the intake manifold 21, and each intake branch pipe 22 is connected to an intake port 4 (see also FIG. 4) that is opened and closed by the intake valve 5.
On the other hand, an exhaust port 6 (see also FIG. 4) opened and closed by the exhaust valve 7 of each cylinder 1 is connected to an exhaust branch pipe 24, and each exhaust branch pipe 24 is connected to an exhaust manifold 23 for four cylinders. .

この第1実施例においては、多シリンダ(この例では4シリンダ)のシリンダを第1のシリンダ群と第2のシリンダ群との2つのシリンダ群に分け、第1のシリンダ群の排気カムのカムプロフィルを前記排気弁内部EGRを行う排気弁EGRカムプロフィルに設定し、第2のシリンダ群の吸気カムのカムプロフィルを前記吸気弁内部EGRを行う吸気弁EGRカムプロフィルに設定している。
即ち、かかる第1実施例においては、1台の前記給気冷却器30からの吸気を前記排気弁内部EGRを行う第1のシリンダ群及び前記吸気弁内部EGRを行う第2のシリンダ群に供給するように構成し、該給気冷却器30に近い側のシリンダである#1シリンダ及び#2シリンダを吸気弁内部EGRを行う前記第2のシリンダ群とし、該第2のシリンダ群よりも前記給気冷却器30に遠い側のシリンダである#3シリンダ及び#4シリンダを排気弁内部EGRを行う第1のシリンダ群としている。
図1において、30aは前記給気冷却器30の冷却水入口管、30bは冷却水出口管である。
In this first embodiment, the multi-cylinder (four cylinders in this example) cylinder is divided into two cylinder groups, a first cylinder group and a second cylinder group, and the cam of the exhaust cam of the first cylinder group. The profile is set to the exhaust valve EGR cam profile for performing the exhaust valve internal EGR, and the cam profile of the intake cam of the second cylinder group is set to the intake valve EGR cam profile for performing the intake valve internal EGR.
In other words, in the first embodiment, the intake air from one air supply cooler 30 is supplied to the first cylinder group that performs the exhaust valve internal EGR and the second cylinder group that performs the intake valve internal EGR. The # 1 cylinder and the # 2 cylinder, which are the cylinders close to the air supply cooler 30, are used as the second cylinder group for performing the intake valve internal EGR, and the cylinder is more than the second cylinder group. The # 3 cylinder and the # 4 cylinder, which are cylinders far from the air supply cooler 30, are used as a first cylinder group that performs exhaust valve internal EGR.
In FIG. 1, 30a is a cooling water inlet pipe of the supply air cooler 30, and 30b is a cooling water outlet pipe.

かかる第1実施例において、前記第1のシリンダ群と第2のシリンダ群との区分けは、必ずしも前記のように2シリンダずつでなくてもよく、エンジンの製作段階で、前記給気冷却器30から各シリンダまでの距離、シリンダ間隔、吸気マニホールド21内における吸気の流量分布のシミュレーション解析等によって、各シリンダ1の吸気温度の分布を求めて、吸気温度が高くなる給気冷却器30に遠い側の1ないし複数シリンダ(第1のシリンダ群)の排気カム13のカムプロフィルを排気弁内部EGRを行う排気弁EGRカムプロフィルに設定し、吸気温度が前記シリンダ1よりも低くなる給気冷却器30に近い側の残りの1ないし複数シリンダ(第2のシリンダ群)の吸気カム12のカムプロフィルを吸気弁内部EGRを行う吸気弁EGRカムプロフィルに設定して、エンジンを組み立てる。   In the first embodiment, the division between the first cylinder group and the second cylinder group does not necessarily have to be two cylinders as described above. The distribution of the intake air temperature of each cylinder 1 is obtained by simulation analysis of the distance from each cylinder to each cylinder, the cylinder interval, and the intake air flow distribution in the intake manifold 21, and the far side from the supply air cooler 30 where the intake air temperature increases. The cam profile of the exhaust cam 13 of one or more cylinders (first cylinder group) is set to the exhaust valve EGR cam profile for performing the exhaust valve internal EGR, and the intake air cooler 30 in which the intake air temperature becomes lower than the cylinder 1 The intake valve E that performs the intake valve internal EGR on the cam profile of the intake cam 12 of the remaining one or more cylinders (second cylinder group) on the side close to Is set to R cam profile, assembled engine.

以上の第1実施例によれば、多シリンダの4サイクルエンジンにおいて、シリンダを2つの群に分け、第1のシリンダ群の排気カム13のカムプロフィルを吸気行程時に排気弁7を微小量サブリフト(Es)させ、排気ポート6内の排気ガスの一部を燃焼室1a内に還流して吸気に混入させる排気弁内部EGRを行う排気弁EGRカムプロフィルに設定し、残りの第2のシリンダ群の吸気カム12のカムプロフィルを排気行程時に吸気弁5を微小量サブリフト(Is)させ燃焼室1a内の燃焼ガスの一部を吸気ポート4に送り込み吸気に混入させて吸気弁5の主リフト(In)による開弁時に吸気混入燃焼ガスを燃焼室1aに還流する吸気弁内部EGRを行う吸気弁EGRカムプロフィルに設定するので、エンジン100の製作段階で、シリンダ1の配置や吸気マニホールド21内における吸気の流量分布等によって各シリンダ1の吸気温度及び排気温度の温度状態を把握しておき、吸気温度及び排気温度が高い傾向にあると把握された前記第1のシリンダ群の排気カム13のカムプロフィルを、吸気弁内部EGR方式よりも吸気温度及び排気温度の上昇度の小さい排気弁内部EGR方式で行うように排気弁EGRカムプロフィルに設定して、内部EGRによる吸気温度及び排気温度の上昇を抑える一方、吸気温度及び排気温度が第1のシリンダ群よりも低い傾向にあって吸気温度及び排気温度の許容最高値に対して余裕があると把握された前記第2のシリンダ群の吸気カム12のカムプロフィルを、前記のように排気弁内部EGR方式よりも吸気温度及び排気温度の上昇度が大きい吸気弁内部EGR方式で行うように排気弁EGRカムプロフィルに設定することが可能となる。   According to the first embodiment described above, in a multi-cylinder four-cycle engine, the cylinders are divided into two groups, and the cam profile of the exhaust cam 13 of the first cylinder group is set to a small amount of sublift ( Es), an exhaust valve EGR cam profile for performing an exhaust valve internal EGR that causes a part of the exhaust gas in the exhaust port 6 to recirculate into the combustion chamber 1a and be mixed into the intake air is set, and the remaining second cylinder group During the exhaust stroke of the cam profile of the intake cam 12, the intake valve 5 is sub-lifted (Is) by a small amount, a part of the combustion gas in the combustion chamber 1a is sent to the intake port 4 and mixed into the intake air, and the main lift (In ) Is set to the intake valve EGR cam profile for performing EGR inside the intake valve for returning the intake mixed combustion gas to the combustion chamber 1a when the valve is opened. The temperature state of the intake air temperature and the exhaust gas temperature of each cylinder 1 is ascertained based on the arrangement of the compressor 1, the flow rate distribution of the intake air in the intake manifold 21, and the like. The cam profile of the exhaust cam 13 of one cylinder group is set to the exhaust valve EGR cam profile so as to be performed by the exhaust valve internal EGR method in which the intake air temperature and the exhaust temperature rise are smaller than those of the intake valve internal EGR method. While suppressing the rise in intake and exhaust temperatures due to EGR, it was understood that the intake and exhaust temperatures tend to be lower than the first cylinder group, and that there is room for the maximum allowable intake and exhaust temperatures. As described above, the cam profile of the intake cam 12 of the second cylinder group is higher in the intake air temperature and the exhaust gas temperature than in the exhaust valve internal EGR system. It is possible to set the exhaust valve EGR cam profile as performed by the intake valves of internal EGR system.

従ってかかる第1実施例によれば、エンジン100の製作段階で、シリンダ1の吸気温度及び排気温度の温度状態を予め把握しておき、前記温度状態の高い第1のシリンダ群について排気弁内部EGR方式のカムプロフィルを適用し、前記温度状態の低い第2のシリンダ群について吸気弁内部EGR方式のカムプロフィルを適用することにより、エンジン100の運転中に調整を行うことなく、排気弁内部EGR方式に設定された第1のシリンダ群においては特にエンジンの耐久性の保持が要求される高出力レベルの運転時に排気温度を常時許容排気温度以下に保持して所要のNOx低減効果を発揮しつつ排気温度の上昇に伴うエンジン強度及び耐久性の低下を防止することができ、吸気弁内部EGR方式に設定された第2のシリンダ群においては特にEGRによるNOx低減効果が多く要求される低出力レベルの運転時に吸気温度及び排気温度を許容温度以下に抑えつつ大きなNOx低減効果を得ることができる。   Therefore, according to the first embodiment, in the manufacturing stage of the engine 100, the temperature states of the intake air temperature and the exhaust gas temperature of the cylinder 1 are grasped in advance, and the exhaust valve internal EGR for the first cylinder group having the high temperature state is obtained. By applying the cam profile of the system and applying the cam profile of the intake valve internal EGR system to the second cylinder group having the low temperature state, the exhaust valve internal EGR system is not adjusted during the operation of the engine 100. In the first cylinder group set to, the exhaust temperature is kept below the allowable exhaust temperature at the time of operation at a high output level where maintenance of the durability of the engine is particularly required, and the required NOx reduction effect is exhibited while exhausting. In the second cylinder group set to the intake valve internal EGR system, it is possible to prevent a decrease in engine strength and durability due to temperature rise. In particular, a large NOx reduction effect can be obtained while suppressing the intake air temperature and the exhaust gas temperature to the permissible temperature or lower during operation at a low output level where a large NOx reduction effect by EGR is required.

また、前記給気冷却器30に近い側のシリンダ(たとえば#1,#2シリンダ)を吸気弁内部EGRを行う第2のシリンダ群とし、該第2のシリンダ群よりも給気冷却器30に遠い側のシリンダ(たとえば#3,#4シリンダ)を排気弁内部EGRを行う前記第1のシリンダ群とするように構成したので、給気冷却器30から離れていてシリンダ1入口の吸気温度が高くなり勝ちな第1のシリンダ群を吸気温度及び排気温度の上昇度の小さい排気弁内部EGR方式として排気温度を許容排気温度以下に保持し、給気冷却器30に近く該給気冷却器30からの低温の吸気を供給可能な第2のシリンダ群を内部EGRによる吸気温度及び排気温度の上昇度の大きい吸気弁内部EGR方式として、内部EGR時の排気温度を許容排気温度以下に保持でき、従って吸気弁内部EGR及び排気弁内部EGRによるNOx低減効果を発揮しつつ、全シリンダで排気温度を許容排気温度以下に保持できる。   Further, the cylinders (for example, # 1 and # 2 cylinders) closer to the supply air cooler 30 are used as a second cylinder group for performing the intake valve internal EGR, and the supply air cooler 30 is arranged more than the second cylinder group. Since the far side cylinders (for example, # 3 and # 4 cylinders) are configured as the first cylinder group that performs the exhaust valve internal EGR, the intake air temperature at the inlet of the cylinder 1 is separated from the supply air cooler 30. The first cylinder group, which tends to be high, is an exhaust valve internal EGR system in which the intake air temperature and the exhaust gas temperature increase are small, and the exhaust gas temperature is kept below the allowable exhaust gas temperature. The second cylinder group that can supply low-temperature intake air from the intake valve internal EGR system with a large increase in intake air temperature and exhaust temperature due to internal EGR, keeps the exhaust temperature during internal EGR below the allowable exhaust temperature Can, therefore while exhibiting NOx reduction effect due to the internal EGR and the exhaust valve internal EGR intake valve can hold exhaust gas temperature below the allowable exhaust temperature at all cylinders.

図2は本発明の第2実施例に係る多シリンダ4サイクルエンジン(この例では4シリンダを示す)の平面模式図である。
この第2実施例においては、給気冷却器を、エンジン入口冷却水のような低温冷却水で吸気を冷却する低温側給気冷却器45と、エンジンのジャケット出口冷却水のような前記低温冷却水よりも高温の高温冷却水で吸気を冷却する高温側給気冷却器40とにより構成するとともに、前記低温側給気冷却器45に前記吸気弁内部EGRを行う第2のシリンダ群(この例では#1,#2シリンダ)に連通される低温側吸気マニホールド47を接続し、前記高温側給気冷却器40に前記排気弁内部EGRを行う第1のシリンダ群(この例では#3,#4シリンダ)に連通される高温側吸気マニホールド43を接続している。
図2において、46は前記低温側給気冷却器45の冷却水入口管、47は冷却水出口管、また41は前記高温側給気冷却器40の冷却水入口管、42は冷却水出口管である。
FIG. 2 is a schematic plan view of a multi-cylinder four-cycle engine (in this example, four cylinders are shown) according to a second embodiment of the present invention.
In this second embodiment, the supply air cooler includes a low temperature side supply air cooler 45 that cools the intake air with low temperature cooling water such as engine inlet cooling water, and the low temperature cooling such as engine jacket outlet cooling water. A second cylinder group (this example) that includes a high-temperature side air supply cooler 40 that cools intake air with high-temperature cooling water that is higher than water, and that performs the intake valve internal EGR in the low-temperature side air supply cooler 45 In the first cylinder group (# 3, # 2 in this example), a low temperature side intake manifold 47 connected to # 1 and # 2 cylinders is connected, and the high temperature side air supply cooler 40 performs the exhaust valve internal EGR. The high temperature side intake manifold 43 communicated with the four cylinders) is connected.
In FIG. 2, 46 is a cooling water inlet pipe of the low temperature side air supply cooler 45, 47 is a cooling water outlet pipe, 41 is a cooling water inlet pipe of the high temperature side air supply cooler 40, and 42 is a cooling water outlet pipe. It is.

この第2実施例は以上のように構成されているが、好ましくは前記構成に加えて、前記第1実施例と同様に、前記高温側給気冷却器40及び低温側給気冷却器45に近い側のシリンダである#1シリンダ及び#2シリンダを吸気弁内部EGRを行う前記第2のシリンダ群とし、該第2のシリンダ群よりも前記高温側給気冷却器40及び低温側給気冷却器45に遠い側のシリンダである#3シリンダ及び#4シリンダを排気弁内部EGRを行う第1のシリンダ群とする。
その他の構成は前記第1実施例と同様であり、図2において第1実施例と同一の部材は同一の符号で示す。
The second embodiment is configured as described above. Preferably, in addition to the above-described configuration, the high temperature side air supply cooler 40 and the low temperature side air supply cooler 45 are provided in the same manner as the first embodiment. The # 1 cylinder and # 2 cylinder, which are the closer cylinders, are used as the second cylinder group for performing the EGR inside the intake valve, and the higher temperature side air supply cooler 40 and the lower temperature side air supply cooling than the second cylinder group. The cylinders # 3 and # 4, which are the cylinders far from the chamber 45, serve as a first cylinder group that performs exhaust valve internal EGR.
Other configurations are the same as those of the first embodiment, and in FIG. 2, the same members as those of the first embodiment are denoted by the same reference numerals.

以上の第2実施例によれば、給気冷却器を、低温冷却水で吸気を冷却する低温側給気冷却器45と、高温の高温冷却水で吸気を冷却する高温側給気冷却器40とにより構成し、低温側給気冷却器45に吸気弁内部EGRを行う第2のシリンダ群(この例では#1,#2シリンダ)を接続し、高温側給気冷却器40に排気弁内部EGRを行う第1のシリンダ群を接続し(この例では#3,#4シリンダ)、その上で前記第1実施例と同様に、第2のシリンダ群を第1のシリンダ群よりも低温側給気冷却器45及び高温側給気冷却器40に近い側に配置するように構成したので、エンジン100のジャケット出口冷却水のような高温冷却水で吸気を冷却する高温側給気冷却器40からの比較的高温の吸気を高温側吸気マニホールド43を介して、内部EGRによる吸気温度及び排気温度の上昇度の小さい排気弁内部EGR方式を行う第1のシリンダ群(この例では#3,#4シリンダ)に供給することにより排気温度を許容排気温度以下に保持し、エンジン入口冷却水のような低温冷却水で吸気を冷却する低温側給気冷却器45からの比較的低温の吸気を低温側吸気マニホールド47を介して、内部EGRによる吸気温度及び排気温度の上昇度の大きい吸気弁内部EGR方式を行う第2のシリンダ群(この例では#1,#2シリンダ)に供給することにより、内部EGR時の排気温度を許容排気温度以下に保持でき、従って吸気弁内部EGR及び排気弁内部EGRによるNOx低減効果を発揮しつつ、全シリンダで排気温度を許容排気温度以下に保持でき、吸気温度及び排気温度の上昇に伴うエンジン強度及び耐久性の低下を防止することができる。   According to the second embodiment described above, the supply air cooler includes the low temperature side air supply cooler 45 that cools the intake air with the low temperature cooling water, and the high temperature side air supply cooler 40 that cools the intake air with the high temperature high temperature cooling water. And a second cylinder group (in this example, # 1 and # 2 cylinders) that performs EGR inside the intake valve is connected to the low temperature side air supply cooler 45, and the exhaust valve inside is connected to the high temperature side air supply cooler 40. The first cylinder group for performing EGR is connected (# 3 and # 4 cylinders in this example), and then the second cylinder group is placed on the lower temperature side than the first cylinder group as in the first embodiment. Since the air supply cooler 45 and the high temperature side air supply cooler 40 are arranged on the side close to the supply air cooler 45, the high temperature side air supply cooler 40 that cools the intake air with high temperature cooling water such as jacket outlet cooling water of the engine 100. From the relatively high temperature intake air through the high temperature side intake manifold 43, The exhaust gas temperature is kept below the allowable exhaust gas temperature by supplying it to the first cylinder group (# 3 and # 4 cylinders in this example) that performs the exhaust valve internal EGR system in which the rise of the intake air temperature and exhaust gas temperature by the part EGR is small Then, the relatively low temperature intake air from the low temperature side intake air cooler 45 that cools the intake air with the low temperature cooling water such as the engine inlet cooling water is supplied to the intake air temperature and the exhaust gas temperature by the internal EGR via the low temperature side intake manifold 47. By supplying to the second cylinder group (# 1 and # 2 cylinders in this example) that performs the intake valve internal EGR system with a large degree of increase, the exhaust temperature at the time of internal EGR can be kept below the allowable exhaust temperature. While exhibiting the NOx reduction effect of the valve internal EGR and exhaust valve internal EGR, the exhaust temperature can be kept below the allowable exhaust temperature in all cylinders, and the intake temperature and exhaust temperature rise The reduction in engine strength and durability associated can be prevented.

本発明によれば、シリンダによる吸気温度の高低の発生による内部EGR時の吸気温度及び排気温度の過昇を防止して、NOx低減効果を発揮しつつエンジン強度及び耐久性の低下を回避可能な内部EGRシステム付き多シリンダ4サイクルエンジンを提供できる。   According to the present invention, it is possible to prevent the intake air temperature and the exhaust gas temperature from excessively rising during internal EGR due to the occurrence of high and low intake air temperatures by the cylinder, and to avoid a decrease in engine strength and durability while exhibiting a NOx reduction effect. A multi-cylinder four-cycle engine with an internal EGR system can be provided.

本発明の第1実施例に係る多シリンダ4サイクルエンジンの平面模式図である。1 is a schematic plan view of a multi-cylinder four-cycle engine according to a first embodiment of the present invention. 本発明の第2実施例に係る多シリンダ4サイクルエンジンの平面模式図である。FIG. 3 is a schematic plan view of a multi-cylinder four-cycle engine according to a second embodiment of the present invention. 本発明の実施例に係る内部EGRシステムを備えた多シリンダ4サイクルディーゼルエンジンのシリンダ及び吸気、排気弁中心線に沿う要部断面図である。It is principal part sectional drawing in alignment with the cylinder of a multi-cylinder 4 cycle diesel engine provided with the internal EGR system which concerns on the Example of this invention, and an intake and an exhaust valve. 内部EGRシステムを備えた4サイクルエンジンの吸、排気弁タイミング線図である。FIG. 6 is a timing diagram of intake and exhaust valves of a 4-cycle engine equipped with an internal EGR system.

符号の説明Explanation of symbols

1 シリンダ
1a 燃焼室
2 ピストン
3 シリンダヘッド
4 吸気ポート
5 吸気弁
6 排気ポート
7 排気弁
12 吸気カム
12a 吸気カム軸
13 排気カム
13a 排気カム軸
21 吸気マニホールド
23 排気マニホールド
30 給気冷却器
40 高温側給気冷却器
43 高温側給気マニホールド
45 低温側給気冷却器
47 低温側給気マニホールド
100 エンジン(4サイクルディーゼルエンジン)
In 吸気弁主リフト
Is 吸気弁サブリフト
Ex 排気弁主リフト
Es 排気弁サブリフト
DESCRIPTION OF SYMBOLS 1 Cylinder 1a Combustion chamber 2 Piston 3 Cylinder head 4 Intake port 5 Intake valve 6 Exhaust port 7 Exhaust valve 12 Intake cam 12a Intake cam shaft 13 Exhaust cam 13a Exhaust cam shaft 21 Intake manifold 23 Exhaust manifold 30 Supply air cooler 40 High temperature side Supply air cooler 43 High temperature side supply manifold 45 Low temperature side supply air cooler 47 Low temperature side supply manifold 100 Engine (4-cycle diesel engine)
In Intake valve main lift Is Intake valve sublift Ex Exhaust valve main lift Es Exhaust valve sublift

Claims (4)

給気冷却器をそなえた多シリンダの4サイクルエンジンであって、排気行程時に吸気行程時の吸気弁の主リフトとは離れて該吸気弁を微小量サブリフトさせて、燃焼室内の燃焼ガスの一部を吸気通路に送り込んで吸気に混入させ、該燃焼ガスを前記吸気弁の主リフトによる開弁時に燃焼室に還流する吸気弁内部EGRを行うとともに、吸気行程時に排気行程時の排気弁の主リフトとは離れて該排気弁を微小量サブリフトさせて、排気通路内の排気ガスの一部を燃焼室内に送り込んで吸気に混入させる排気弁内部EGRを行うように構成された内部EGRシステム付き多シリンダ4サイクルエンジンにおいて、前記多シリンダのうち第1のシリンダ群の排気カムのカムプロフィルを前記排気弁内部EGRを行う排気弁EGRカムプロフィルに設定し、前記第1のシリンダ群以外の第2のシリンダ群の吸気カムのカムプロフィルを前記吸気弁内部EGRを行う吸気弁EGRカムプロフィルに設定したことを特徴とする内部EGRシステム付き多シリンダ4サイクルエンジン。   A multi-cylinder four-cycle engine equipped with an intake air cooler, which is separated from the main lift of the intake valve during the intake stroke during the exhaust stroke, and a small amount of the intake valve is sub-lifted so that the combustion gas in the combustion chamber The intake valve is fed into the intake passage and mixed into the intake air, and the intake valve internal EGR is returned to the combustion chamber when the intake gas is opened by the main lift of the intake valve, and the main exhaust valve during the exhaust stroke is performed during the intake stroke. Separately from the lift, the exhaust valve is sub-lifted by a small amount, and an exhaust valve internal EGR configured to perform a part of the exhaust gas in the exhaust passage into the combustion chamber and mix it with the intake air. In the cylinder four-cycle engine, the cam profile of the exhaust cam of the first cylinder group in the multi-cylinder is provided in the exhaust valve EGR cam profile that performs the exhaust valve internal EGR. The multi-cylinder four-cycle with internal EGR system is characterized in that the cam profile of the intake cam of the second cylinder group other than the first cylinder group is set to the intake valve EGR cam profile for performing the intake valve internal EGR. engine. 前記給気冷却器1台からの吸気を前記排気弁内部EGRを行う前記第1のシリンダ群及び前記吸気弁内部EGRを行う前記第2のシリンダ群に供給するように構成し、前記給気冷却器に近い側のシリンダを吸気弁内部EGRを行う前記第2のシリンダ群とし、該第2のシリンダ群よりも前記給気冷却器に遠い側のシリンダを排気弁内部EGRを行う前記第1のシリンダ群としたことを特徴とする請求項1記載の内部EGRシステム付き多シリンダ4サイクルエンジン。   The intake air cooler is configured to supply intake air to the first cylinder group that performs the exhaust valve internal EGR and the second cylinder group that performs the intake valve internal EGR, and the supply air cooling The cylinder on the side closer to the exhaust is used as the second cylinder group for performing the intake valve internal EGR, and the cylinder on the side farther from the supply air cooler than the second cylinder group is used for the exhaust valve internal EGR. The multi-cylinder four-cycle engine with an internal EGR system according to claim 1, wherein the multi-cylinder four-cycle engine has an internal EGR system. 前記給気冷却器を、低温冷却水で吸気を冷却する低温側給気冷却器と、該低温冷却水よりも高温の高温冷却水で吸気を冷却する高温側給気冷却器とにより構成するとともに、前記低温側給気冷却器に前記吸気弁内部EGRを行う第2のシリンダ群を接続し、前記高温側給気冷却器に前記排気弁内部EGRを行う第1のシリンダ群を接続したことを特徴とする請求項1記載の内部EGRシステム付き多シリンダ4サイクルエンジン。   The supply air cooler is constituted by a low temperature side air supply cooler that cools the intake air with low temperature cooling water, and a high temperature side air supply cooler that cools the intake air with high temperature cooling water higher in temperature than the low temperature cooling water. A second cylinder group that performs the intake valve internal EGR is connected to the low temperature side air supply cooler, and a first cylinder group that performs the exhaust valve internal EGR is connected to the high temperature side air supply cooler. The multi-cylinder four-cycle engine with an internal EGR system according to claim 1. 前記吸気弁内部EGRを行う第2のシリンダ群を、前記排気弁内部EGRを行う第1のシリンダ群よりも前記低温側給気冷却器あるいは前記高温側給気冷却器に近い側に配置したことを特徴とする請求項3記載の内部EGRシステム付き多シリンダ4サイクルエンジン。   The second cylinder group that performs the intake valve internal EGR is disposed closer to the low temperature side air supply cooler or the high temperature side air supply cooler than the first cylinder group that performs the exhaust valve internal EGR. The multi-cylinder four-cycle engine with an internal EGR system according to claim 3.
JP2006348688A 2006-12-25 2006-12-25 Multi-cylinder 4-cycle engine with internal EGR system Expired - Fee Related JP4719142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006348688A JP4719142B2 (en) 2006-12-25 2006-12-25 Multi-cylinder 4-cycle engine with internal EGR system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006348688A JP4719142B2 (en) 2006-12-25 2006-12-25 Multi-cylinder 4-cycle engine with internal EGR system

Publications (2)

Publication Number Publication Date
JP2008157157A true JP2008157157A (en) 2008-07-10
JP4719142B2 JP4719142B2 (en) 2011-07-06

Family

ID=39658348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006348688A Expired - Fee Related JP4719142B2 (en) 2006-12-25 2006-12-25 Multi-cylinder 4-cycle engine with internal EGR system

Country Status (1)

Country Link
JP (1) JP4719142B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009034763A1 (en) 2009-07-25 2010-02-04 Daimler Ag Internal-combustion engine e.g. gasoline engine, operating method, involves implementing opening and closing of inlet valve during ejection stroke, and implementing opening and closing of outlet valve during intake stroke

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103195595B (en) * 2013-04-01 2015-09-09 天津大学 External feed stream heating and internal EGR strategy coordination controlling method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133726A (en) * 1993-11-10 1995-05-23 Nippondenso Co Ltd Intake air controller of internal combustion engine
JPH10252512A (en) * 1997-03-13 1998-09-22 Toyota Motor Corp Compressed ignition internal combustion engine
JP2000204984A (en) * 1999-01-13 2000-07-25 Nippon Soken Inc Internal egr system for direct injection gasoline engine
JP2006090170A (en) * 2004-09-22 2006-04-06 Yanmar Co Ltd Multi-cylinder premixed compression self-ignition type engine
JP2006097657A (en) * 2004-09-30 2006-04-13 Mazda Motor Corp Four cycle engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133726A (en) * 1993-11-10 1995-05-23 Nippondenso Co Ltd Intake air controller of internal combustion engine
JPH10252512A (en) * 1997-03-13 1998-09-22 Toyota Motor Corp Compressed ignition internal combustion engine
JP2000204984A (en) * 1999-01-13 2000-07-25 Nippon Soken Inc Internal egr system for direct injection gasoline engine
JP2006090170A (en) * 2004-09-22 2006-04-06 Yanmar Co Ltd Multi-cylinder premixed compression self-ignition type engine
JP2006097657A (en) * 2004-09-30 2006-04-13 Mazda Motor Corp Four cycle engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009034763A1 (en) 2009-07-25 2010-02-04 Daimler Ag Internal-combustion engine e.g. gasoline engine, operating method, involves implementing opening and closing of inlet valve during ejection stroke, and implementing opening and closing of outlet valve during intake stroke

Also Published As

Publication number Publication date
JP4719142B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP2007315230A (en) Apparatus for recirculating exhaust gas of internal combustion engine
US20080196406A1 (en) Homogeneous charge compression ignition engine and air intake and exhaust system thereof
JP5288046B2 (en) Control device for internal combustion engine
JP2005090468A (en) Egr device of premixed compression self ignition internal combustion engine, and ignition timing control method of premixed compression self ignition internal combustion engine
JP2006200381A (en) Egr device
JP4563301B2 (en) 4-cycle engine with internal EGR system
JP2009287434A (en) Exhaust recirculation device for internal combustion engine
US20100204903A1 (en) Control apparatus and control method for internal combustion engine
JP2018115591A (en) Controller of internal combustion engine
KR20080065526A (en) Engine with internal egr system
JP6181868B2 (en) Automotive internal combustion engine and method for operating such an internal combustion engine
JP2010024974A (en) Control device of internal combustion engine with supercharger
JP2007032402A (en) Exhaust gas recirculation device for internal combustion engine
US9464541B2 (en) Control device of internal combustion engine and variable valve device of internal combustion engine
JP5803326B2 (en) Lean burn engine with turbocharger
JP2009085053A (en) Control device for compression ignition internal combustion engine
JP4563369B2 (en) 4-cycle engine with internal EGR system
EP2820276A1 (en) Method for operating internal combustion engine
JP2009156090A (en) Exhaust recirculating device of variable cylinder internal combustion engine
JP4719142B2 (en) Multi-cylinder 4-cycle engine with internal EGR system
RU2537660C1 (en) Method of ice adjustment
JP6701868B2 (en) Engine warm-up device
JP5077071B2 (en) Exhaust gas recirculation device for internal combustion engine
JP4523906B2 (en) 4-cycle engine with internal EGR system
JP2016109081A (en) Temperature control device for intercooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110311

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees