JP4563301B2 - 4-cycle engine with internal EGR system - Google Patents

4-cycle engine with internal EGR system Download PDF

Info

Publication number
JP4563301B2
JP4563301B2 JP2005337560A JP2005337560A JP4563301B2 JP 4563301 B2 JP4563301 B2 JP 4563301B2 JP 2005337560 A JP2005337560 A JP 2005337560A JP 2005337560 A JP2005337560 A JP 2005337560A JP 4563301 B2 JP4563301 B2 JP 4563301B2
Authority
JP
Japan
Prior art keywords
intake
internal egr
engine
cylinder
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005337560A
Other languages
Japanese (ja)
Other versions
JP2007138904A (en
Inventor
浩之 遠藤
祥久 松丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005337560A priority Critical patent/JP4563301B2/en
Publication of JP2007138904A publication Critical patent/JP2007138904A/en
Application granted granted Critical
Publication of JP4563301B2 publication Critical patent/JP4563301B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、主として4サイクルディーゼルエンジン及び4サイクガスエンジンに適用され、吸気弁を排気行程時に吸気行程時の主リフトとは離れて微小量サブリフトさせ、燃焼室内の燃焼ガスの一部を吸気通路に送り込み吸気に混入させ、該燃焼ガスを吸気弁の主リフトによる開弁時に燃焼室に還流する内部EGRシステム付き4サイクルエンジンであって、内部EGRガスを含む吸気通路内のガスを冷却する吸気通路冷却手段をそなえた内部EGRシステム付き4サイクルエンジンに関する。   The present invention is mainly applied to a four-cycle diesel engine and a four-cycle gas engine, and an intake valve is sub-lifted by a minute amount away from a main lift during an intake stroke during an exhaust stroke, and a part of the combustion gas in the combustion chamber is taken into an intake passage. Is a four-cycle engine with an internal EGR system that mixes the intake gas into intake air and returns the combustion gas to the combustion chamber when the intake valve is opened by the main lift of the intake valve, and cools the gas in the intake passage including the internal EGR gas. The present invention relates to a 4-cycle engine with an internal EGR system provided with a passage cooling means.

4サイクルディーゼルエンジン、4サイクルガスエンジン等においては、吸気弁を排気行程時に吸気行程時の主リフトとは離れて微小量サブリフトさせ、燃焼室内の燃焼ガスの一部を吸気通路に送り込み吸気に混入させ、該燃焼ガスを吸気弁の主リフトによる開弁時に燃焼室に還流する吸気サブリフト式内部EGRシステムを備えた4サイクルエンジンが提供されている。   In a 4-cycle diesel engine, 4-cycle gas engine, etc., the intake valve is separated from the main lift during the intake stroke by a small amount during the exhaust stroke, and a part of the combustion gas in the combustion chamber is sent to the intake passage and mixed into the intake air There is provided a four-cycle engine having an intake sublift type internal EGR system that recirculates the combustion gas to a combustion chamber when the intake valve is opened by a main lift of the intake valve.

図5は前記吸気サブリフト式内部EGRシステムが適用される4シリンダ4サイクルディーゼルエンジンにおける吸気装置のエンジン周りの配置を示す平面構成図である。
図5において、100はエンジン(4サイクルディーゼルエンジン)で、この例では4シリンダの4サイクルディーゼルエンジンを示し、1は該エンジン100のシリンダである。
5はエンジン100のシリンダヘッド20に形成された吸気ポート、2は前記各吸気ポート5を開閉する吸気弁、7は前記各吸気ポート5に接続される吸気枝管である。4は4シリンダ分の前記吸気枝管7が接続される吸気マニホールドである。
6はエンジン1のシリンダヘッド20に形成された排気ポート、3は前記各排気ポート6を開閉する排気弁、9は前記各排気ポート6に接続される排気枝管である。8は4シリンダ分の前記排気枝管9が接続される排気マニホールドである。
FIG. 5 is a plan view showing the arrangement of the intake device around the engine in a 4-cylinder 4-cycle diesel engine to which the intake sublift internal EGR system is applied.
In FIG. 5, reference numeral 100 denotes an engine (four-cycle diesel engine). In this example, a four-cylinder four-cycle diesel engine is shown, and 1 is a cylinder of the engine 100.
Reference numeral 5 denotes an intake port formed in the cylinder head 20 of the engine 100, 2 denotes an intake valve that opens and closes each intake port 5, and 7 denotes an intake branch pipe connected to each intake port 5. Reference numeral 4 denotes an intake manifold to which the intake branch pipes 7 for 4 cylinders are connected.
Reference numeral 6 denotes an exhaust port formed in the cylinder head 20 of the engine 1, 3 denotes an exhaust valve that opens and closes each exhaust port 6, and 9 denotes an exhaust branch pipe connected to each exhaust port 6. Reference numeral 8 denotes an exhaust manifold to which the exhaust branch pipes 9 for 4 cylinders are connected.

図4は図5に示されるような4シリンダ4サイクルディーゼルエンジンに適用される吸気サブリフト式内部EGRシステムの♯1、♯2における吸、排気タイミング線図である。
図4において、Inは吸気弁2の主リフト、Isは吸気弁2のサブリフト、Exは排気弁3のリフト(主リフト)であり、該吸気サブリフト式内部EGRシステムにおいては、たとえば♯1シリンダにおいて、排気弁3が主リフトExしている排気行程時に、吸気弁2を吸気行程時の主リフトInとは離れて(進角して)微小量サブリフトIsさせ、シリンダ1の燃焼室内の燃焼ガスの一部である内部EGRガスを吸気ポート5、吸気枝管7、吸気マニホールド4等の吸気通路に送り込み該吸気通路中の吸気に混入させ、この内部EGRガスを吸気弁2の主リフトInによる開弁時に前記燃焼室内に還流するようになっている。
FIG. 4 is an intake / exhaust timing diagram in # 1 and # 2 of the intake sublift internal EGR system applied to the 4-cylinder 4-cycle diesel engine as shown in FIG.
In FIG. 4, In is the main lift of the intake valve 2, Is is the sub-lift of the intake valve 2, Ex is the lift (main lift) of the exhaust valve 3, and in the intake sub-lift internal EGR system, for example, in the # 1 cylinder During the exhaust stroke when the exhaust valve 3 is performing the main lift Ex, the intake valve 2 is moved away from the main lift In during the intake stroke (advanced) to make a small amount of sublift Is, and the combustion gas in the combustion chamber of the cylinder 1 The internal EGR gas which is a part of the intake air is sent to the intake passage such as the intake port 5, the intake branch pipe 7, the intake manifold 4, and mixed with the intake air in the intake passage, and this internal EGR gas is generated by the main lift In of the intake valve 2. When the valve is opened, it is recirculated into the combustion chamber.

尚、かかる内部EGRシステムを備えたエンジンに関する技術の1つに、特許文献1(特開平7−133726号公報)にて提供された技術がある。
前記特許文献1の技術においては、吸気通路に該吸気通路を開閉して吸気通路面積を変化せしめる吸気制御弁を設置し、排気行程の終了直前に吸気制御弁よりも先に吸気弁を開き、負圧になっている吸気通路内にピストンの上昇によって燃焼ガス(EGRガス)を押し込み、吸気行程時にEGRガス混入の吸気を燃焼室内に還流し、前記吸気制御弁を吸気弁の開閉時期と関連させるとともにエンジン負荷、エンジン回転数等のエンジン運転条件によって開閉制御して、吸気制御弁と吸気弁との間の圧力(負圧)を制御して内部EGR量を所望の値に制御している。
As one of the technologies related to the engine provided with such an internal EGR system, there is a technology provided in Patent Document 1 (Japanese Patent Laid-Open No. 7-133726).
In the technique of Patent Document 1, an intake control valve that opens and closes the intake passage to change the intake passage area is installed in the intake passage, and the intake valve is opened before the intake control valve immediately before the end of the exhaust stroke. The combustion gas (EGR gas) is pushed into the intake passage, which is under negative pressure, as the piston rises, and the intake air mixed with EGR gas is recirculated into the combustion chamber during the intake stroke. In addition, the internal EGR amount is controlled to a desired value by controlling the pressure (negative pressure) between the intake control valve and the intake valve by controlling the opening and closing according to engine operating conditions such as engine load and engine speed. .

特開平7−133726号公報JP-A-7-133726

内部EGRシステムを備えた4サイクルエンジンのうち、特に図4に示されるような吸気弁サブリフト方式の内部EGRシステムをそなえたエンジンでは、図4〜図5において、排気弁3が主リフトExしている排気行程時に、吸気弁2を吸気行程時の主リフトInに対して進角して微小量サブリフトIsさせ、燃焼室内の内部EGRガスを吸気ポート5、吸気枝管7、吸気マニホールド4等の吸気通路に送り込み該吸気通路中の吸気に混入させてから、この内部EGRガスを吸気弁2の主リフトInによる開弁時に燃焼室内に還流するようになっている。   Among the four-cycle engines having the internal EGR system, in particular, in the engine having the intake valve sub-lift type internal EGR system as shown in FIG. 4, the exhaust valve 3 in FIG. 4 to FIG. During the exhaust stroke, the intake valve 2 is advanced with respect to the main lift In during the intake stroke to cause a small amount of sublift Is, and the internal EGR gas in the combustion chamber is supplied to the intake port 5, the intake branch pipe 7, the intake manifold 4, etc. After being fed into the intake passage and mixed with the intake air in the intake passage, the internal EGR gas is recirculated into the combustion chamber when the intake valve 2 is opened by the main lift In.

このため、内部EGRガスとして高温の燃焼ガスを吸気通路に送り込み、吸気に混入させてから吸気弁2の主リフトInによる開弁時に燃焼室内に還流することから、高温の燃焼ガスを混入したことによって吸気温度が上昇する。
従って、かかる吸気弁サブリフト方式の内部EGRシステムをそなえたエンジンでは、前述のような吸気温度の上昇によって、吸気の流量(重量流量)が減少することによるエンジンの出力低下、吸気温度の上昇に伴なう筒内燃焼温度の上昇による燃焼室周りの熱負荷の上昇、筒内燃焼温度の上昇に伴う内部EGRでのNOx低減効果の低下等の問題が生ずる。
尚、前記特許文献1(特開平7−133726号公報)にて提供された技術は、排気行程時に、吸気弁を吸気行程時の主リフトとは離れて微小量サブリフトさせ、燃焼室内の燃焼ガスの一部を吸気通路に送り込み吸気に混入させ、該燃焼ガスを吸気弁の主リフトによる開弁時に燃焼室に還流するようにした内部EGRシステムをそなえた4サイクルエンジンが開示されているにとどまり、前記のような、吸気温度の上昇に伴う問題を解決する手段は示されていない。
For this reason, high-temperature combustion gas is introduced into the combustion chamber when it is opened by the main lift In of the intake valve 2 after the high-temperature combustion gas is sent to the intake passage as internal EGR gas and mixed into the intake air. As a result, the intake air temperature rises.
Therefore, in an engine equipped with such an intake valve sub-lift type internal EGR system, an increase in intake air temperature as described above causes a decrease in engine output and an increase in intake air temperature due to a decrease in intake air flow rate (weight flow rate). Problems such as an increase in the heat load around the combustion chamber due to an increase in the in-cylinder combustion temperature and a decrease in NOx reduction effect in the internal EGR due to an increase in the in-cylinder combustion temperature occur.
The technique provided in Patent Document 1 (Japanese Patent Application Laid-Open No. 7-133726) allows the intake valve to be sub-lifted by a minute amount away from the main lift during the intake stroke during the exhaust stroke, and the combustion gas in the combustion chamber Only a four-cycle engine having an internal EGR system in which a part of the engine is fed into the intake passage and mixed into the intake air and the combustion gas is returned to the combustion chamber when the intake valve is opened by the main lift of the intake valve is disclosed. No means for solving the problems associated with the rise in intake air temperature as described above is shown.

本発明はかかる従来技術の課題に鑑み、内部EGRに伴う吸気温度の上昇を抑制して、かかる吸気温度の上昇に伴なう、吸気流量の減少によるエンジンの出力低下、筒内燃焼温度の上昇による燃焼室周りの熱負荷の上昇、及び筒内燃焼温度の上昇によるNOx低減効果の低下、等を防止した内部EGRシステム付き4サイクルエンジンを提供することを目的とする。   In view of the problems of the prior art, the present invention suppresses an increase in intake air temperature associated with internal EGR, and causes a decrease in engine output due to a decrease in intake air flow and an increase in in-cylinder combustion temperature accompanying the increase in intake air temperature. An object of the present invention is to provide a four-cycle engine with an internal EGR system that prevents an increase in the heat load around the combustion chamber due to the above and a decrease in NOx reduction effect due to an increase in the in-cylinder combustion temperature.

本発明はかかる目的を達成するもので、複数シリンダを有するエンジンの各シリンダヘッドに形成された吸気ポートと、前記各吸気ポートを開閉する吸気弁と、前記各吸気ポートに接続される各シリンダ分の吸気枝管を有する吸気マニホールドとを具え、
前記各シリンダの吸気弁を、排気行程時に吸気行程時の主リフトとは離れて微小量サブリフトさせて燃焼室内の燃焼ガスの一部(以下内部EGRガスという)を、前記吸気枝管を介して前記各シリンダヘッドの吸気ポートに送り込み吸気に混入させ、該燃焼ガスを吸気弁の前記主リフトによる開弁時に燃焼室に還流する内部EGR(排気再循環)システムを備えた4サイクルエンジンにおいて、
前記吸気マニホールドより、前記吸気枝管を介して前記各シリンダヘッドの吸気ポート内に挿設される冷却チューブを設け、該冷却チューブ内に冷却液を通流させて、前記吸気枝管を介して前記各シリンダヘッドの吸気ポートに送り込まれた前記内部EGRガスを含む吸気ガスを冷却させるとともに、前記冷却チューブを2つ割りの吸気マニホールドに取付けてなることを特徴とする
The present invention achieves such an object. An intake port formed in each cylinder head of an engine having a plurality of cylinders, an intake valve that opens and closes each intake port, and each cylinder connected to each intake port. An intake manifold having a plurality of intake branch pipes,
Wherein the intake valve of each cylinder, part of the combustion gas in the combustion chamber by a small amount Saburifuto apart from the main lift during intake stroke during the exhaust stroke (hereinafter referred internal EGR gas), through the intake manifold In a four-cycle engine having an internal EGR (exhaust gas recirculation) system that feeds into the intake port of each cylinder head and mixes with intake air, and returns the combustion gas to the combustion chamber when the intake valve is opened by the main lift,
A cooling tube inserted into the intake port of each cylinder head is provided from the intake manifold via the intake branch pipe, and a coolant is allowed to flow through the cooling tube to pass through the intake branch pipe. The intake gas including the internal EGR gas sent to the intake port of each cylinder head is cooled , and the cooling tube is attached to a two-part intake manifold .

かかる発明によれば、冷却チューブ内若しくは冷却ジャケットからなる吸気通路に冷却液を通流させて吸気通路冷却手段を構成し、該吸気通路冷却手段により前記吸気枝管を介して前記各シリンダヘッドの吸気ポートに送り込まれた前記内部EGRガスを含む吸気ガスを冷却するようにしたので、排気行程時に吸気弁をサブリフトさせることにより、吸気通路内に送り込まれた内部EGRガスによって温度上昇せしめられている吸気通路内の吸気を、前記吸気通路冷却手段によって冷却することによって、内部EGRガスの混入による吸気温度の上昇を抑制することができる。
これにより、内部EGRガスの混入による吸気温度の上昇に伴なって吸気流量が減少することによるエンジンの出力低下、吸気温度の上昇に伴なう筒内燃焼温度の上昇による燃焼室周りの熱負荷の上昇、及び吸気温度の上昇に伴なう筒内燃焼温度の上昇によるNOx低減効果の低下、等の不具合の発生を防止でき、所要のエンジン出力を保持し、燃焼室構成部材の耐久性を向上し、さらには所要のNOx低減効果が得られる内部EGRシステム付き4サイクルエンジンを提供できる。
According to this invention, the cooling liquid is allowed to flow through the intake tube comprising the cooling tube or the cooling jacket to constitute the intake passage cooling means, and the intake passage cooling means passes through the intake branch pipe to each cylinder head. Since the intake gas including the internal EGR gas sent to the intake port is cooled , the temperature is raised by the internal EGR gas sent into the intake passage by sub-lifting the intake valve during the exhaust stroke. By cooling the intake air in the intake passage by the intake passage cooling means, it is possible to suppress an increase in intake air temperature due to mixing of internal EGR gas.
As a result, the engine load decreases due to a decrease in the intake air flow rate due to the increase in the intake air temperature due to the mixing of the internal EGR gas, and the heat load around the combustion chamber due to the increase in the in-cylinder combustion temperature due to the increase in the intake air temperature. And the occurrence of problems such as a decrease in NOx reduction effect due to an increase in the in-cylinder combustion temperature accompanying an increase in the intake air temperature, the required engine output is maintained, and the durability of the combustion chamber components is improved. It is possible to provide a 4-cycle engine with an internal EGR system that can improve and further achieve the required NOx reduction effect.

かかる発明によれば、冷却チューブを各シリンダの吸気弁近傍まで吸気ポートの奥深く挿入して吸気通路内のガスを冷却でき、しかも薄肉の冷却チューブを吸気通路の形状に従って自在に曲げて設置できるので、吸気の冷却効果がきわめて大きくなって、前記のような吸気温度の上昇防止効果も大きくなる。
また、冷却チューブを吸気マニホールドに取付けて吸気枝管及び吸気ポート内に挿入することによって設置できるので、既設のシリンダヘッドに該シリンダヘッドの改修を行なうことなく設置できる。
According to this invention , the cooling tube can be inserted deep into the intake port to the vicinity of the intake valve of each cylinder to cool the gas in the intake passage, and the thin cooling tube can be freely bent according to the shape of the intake passage. As a result, the intake air cooling effect is greatly increased, and the intake air temperature rise preventing effect is also increased.
In addition, since the cooling tube can be installed by being attached to the intake manifold and inserted into the intake branch pipe and the intake port, it can be installed on the existing cylinder head without modifying the cylinder head.

本発明によれば、前記構成により、内部EGRガスの混入による吸気温度の上昇に伴なって吸気流量が減少することによるエンジンの出力低下、吸気温度の上昇に伴なう筒内燃焼温度の上昇による燃焼室周りの熱負荷の上昇、及び吸気温度の上昇に伴なう筒内燃焼温度の上昇によるNOx低減効果の低下、等の不具合の発生を防止でき、所要のエンジン出力を保持し、燃焼室構成部材の耐久性を向上し、さらには所要のNOx低減効果が得られる内部EGRシステム付き4サイクルエンジンを提供できる。 According to the present invention, with the above-described configuration , the engine output decreases due to the intake flow rate decreasing due to the increase in intake air temperature due to mixing of internal EGR gas, and the in-cylinder combustion temperature increases as the intake air temperature increases. Can prevent the occurrence of problems such as an increase in the heat load around the combustion chamber due to combustion and a decrease in NOx reduction effect due to an increase in in-cylinder combustion temperature accompanying an increase in intake air temperature, while maintaining the required engine output and combustion It is possible to provide a four-cycle engine with an internal EGR system that improves the durability of the chamber constituent members and further provides the required NOx reduction effect.

以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.

図1は、本発明の第1実施例に係る吸気通路冷却手段をそなえた内部EGRシステム付き4サイクルエンジンのエンジン周りの配置を示す平面構成図、図2は前記実施例における吸気通路冷却手段の詳細を示し(A)は図1のZ部拡大断面図、(B)は(A)におけるA−A線断面図である。
図1〜2において、100はエンジン(4サイクルディーゼルエンジン)で、この実施例では4シリンダの4サイクルディーゼルエンジンを示し、1は該エンジン100のシリンダである。
5はエンジン100の各シリンダヘッド20に形成された吸気ポート、2は前記各吸気ポート5を開閉する吸気弁、7は前記各吸気ポート5に接続される吸気枝管である。4は4シリンダ分の前記吸気枝管7が接続される吸気マニホールドである。
6はエンジン1の各シリンダヘッド20に形成された排気ポート、3は前記各排気ポート6を開閉する排気弁、9は前記各排気ポート6に接続される排気枝管である。8は4シリンダ分の前記排気枝管9が接続される排気マニホールドである。
FIG. 1 is a plan view showing a layout around an engine of a 4-cycle engine with an internal EGR system having an intake passage cooling means according to a first embodiment of the present invention, and FIG. 2 is a diagram of the intake passage cooling means in the embodiment. FIG. 2A is an enlarged cross-sectional view of a Z portion in FIG. 1, and FIG. 2B is a cross-sectional view taken along line AA in FIG.
1 and 2, reference numeral 100 denotes an engine (a four-cycle diesel engine). In this embodiment, a four-cylinder four-cycle diesel engine is shown, and 1 is a cylinder of the engine 100.
Reference numeral 5 denotes an intake port formed in each cylinder head 20 of the engine 100, 2 denotes an intake valve that opens and closes each intake port 5, and 7 denotes an intake branch pipe connected to each intake port 5. Reference numeral 4 denotes an intake manifold to which the intake branch pipes 7 for 4 cylinders are connected.
Reference numeral 6 denotes an exhaust port formed in each cylinder head 20 of the engine 1, 3 denotes an exhaust valve for opening and closing each exhaust port 6, and 9 denotes an exhaust branch pipe connected to each exhaust port 6. Reference numeral 8 denotes an exhaust manifold to which the exhaust branch pipes 9 for 4 cylinders are connected.

10は内部を冷却水が流過する冷却チューブで、前記吸気マニホールド4内を長手方向に貫通するとともに、各シリンダ毎に屈曲して吸気枝館7及び吸気ポート5の内部に入り込む冷却管吸気ポート挿入部10aをそなえて、吸気ポート5の奥まった部位まで冷却可能に構成されている。
前記のような、長尺の冷却チューブ10を吸気マニホールド4から各シリンダの吸気ポート5の奥まった部位まで挿入するため、図2のように前記吸気マニホールド4は吸気枝館7側の本体部42と蓋部41との2つ割に構成され、前記冷却チューブ10を挿入後、複数のボルト43で流体密に締め付けるようになっている。
Reference numeral 10 denotes a cooling tube through which cooling water flows. The cooling tube intake port penetrates the intake manifold 4 in the longitudinal direction and is bent for each cylinder and enters the intake branch 7 and the intake port 5. The insertion portion 10a is provided so as to be able to cool down to the deep part of the intake port 5.
Since the long cooling tube 10 as described above is inserted from the intake manifold 4 to the deep part of the intake port 5 of each cylinder, the intake manifold 4 has a main body 42 on the intake branch 7 side as shown in FIG. The lid portion 41 is divided into two parts. After the cooling tube 10 is inserted, it is tightened fluid-tightly with a plurality of bolts 43.

上記のように構成することにより、前記冷却チューブ10を各シリンダ1の吸気弁2の近傍まで吸気ポート5の奥深く挿入して、吸気枝館7及び吸気ポート5内のガスを冷却でき、しかも薄肉の冷却チューブ10を吸気通路(吸気枝館7及び吸気ポート5)の形状に従って自在に曲げて設置できるので、吸気の冷却効果がきわめて大きくなって、吸気温度の上昇防止効果も大きくなる。
また、冷却チューブ10を2つ割りの吸気マニホールド41,42に取付けて吸気枝管7及び吸気ポート5内に挿入することによって設置できるので、既設のシリンダヘッド20に該シリンダヘッド20の改修を行なうことなく設置できる。
By configuring as described above, the cooling tube 10 can be inserted deeply into the intake port 5 to the vicinity of the intake valve 2 of each cylinder 1 to cool the gas in the intake branch 7 and the intake port 5, and the thin wall The cooling tube 10 can be freely bent according to the shape of the intake passage (the intake branch 7 and the intake port 5), so that the intake air cooling effect becomes extremely large and the intake temperature rise prevention effect is also increased.
Further, since the cooling tube 10 can be installed by being attached to the two intake manifolds 41 and 42 and inserted into the intake branch pipe 7 and the intake port 5, the cylinder head 20 is modified to the existing cylinder head 20. It can be installed without

かかる第1実施例において、図示しない過給機のコンプレッサから圧送された吸気(空気)は、前記吸気マニホールド4を通って各吸気枝管7及び吸気ポート5及び吸気弁2を通ってシリンダ1内に導入される。
また、前記各シリンダ1内からの排気ガスは、前記各排気弁3の開弁毎にそれぞれの排気弁3、排気ポート6及び排気枝管9を通って排気マニホールド8に溜められてから、図示しない過給機に送り込まれて該過給機のタービンを駆動する。
吸気の冷却水は、吸気マニホールド4内の冷却チューブ10から各シリンダ1の冷却管吸気ポート挿入部10aを順に流過することにより、各吸気枝管7及び吸気ポート5内の吸気を冷却してから、吸気マニホールド4内の冷却チューブ10を経て外部に送出される。
In the first embodiment, intake air (air) pumped from a compressor of a supercharger (not shown) passes through the intake manifold 4, passes through the intake branch pipes 7, the intake ports 5, and the intake valves 2 in the cylinder 1. To be introduced.
The exhaust gas from the cylinders 1 is stored in the exhaust manifold 8 through the exhaust valves 3, the exhaust ports 6 and the exhaust branch pipes 9 every time the exhaust valves 3 are opened. The turbocharger is fed to the turbocharger that does not drive the turbocharger.
The cooling water for intake air cools the intake air in each intake branch pipe 7 and intake port 5 by flowing through the cooling tube intake port insertion portion 10a of each cylinder 1 from the cooling tube 10 in the intake manifold 4 in order. Then, it is sent to the outside through the cooling tube 10 in the intake manifold 4.

図3は、本発明の第2実施例に係る吸気通路冷却手段をそなえた内部EGRシステム付き4サイクルエンジンのエンジン周りの配置を示す平面構成図(図1対応図)である。
この第2実施例においては、各シリンダ1の前記吸気枝管7の外周を覆って、内部を冷却水が通流する冷却ジャケット23を設けている。
20は前記吸気マニホールド4内に長手方向に貫通して設けられた冷却水主管で、該冷却水主管20に各シリンダ1の入口枝管21及び出口枝管23が接続されている。各シリンダ1の前記入口枝管21及び出口枝管23は、前記冷却ジャケット23の両端部に開口して、冷却水が冷却ジャケット23内を万遍なく流れるようになっている。
FIG. 3 is a plan configuration diagram (corresponding to FIG. 1) showing an arrangement around the engine of a 4-cycle engine with an internal EGR system provided with an intake passage cooling means according to a second embodiment of the present invention.
In the second embodiment, a cooling jacket 23 that covers the outer periphery of the intake branch pipe 7 of each cylinder 1 and through which cooling water flows is provided.
A cooling water main pipe 20 is provided in the intake manifold 4 so as to penetrate in the longitudinal direction. An inlet branch pipe 21 and an outlet branch pipe 23 of each cylinder 1 are connected to the cooling water main pipe 20. The inlet branch pipe 21 and the outlet branch pipe 23 of each cylinder 1 are opened at both ends of the cooling jacket 23 so that the cooling water flows uniformly in the cooling jacket 23.

かかる第2実施例において、吸気の冷却水は、吸気マニホールド4内の冷却水主管20から各シリンダ毎に分岐して、入口枝管21から冷却ジャケット23に入り、該冷却ジャケット23の内側の吸気枝管7内を流れる吸気を冷却し、出口枝管23を通って冷却水主管20の出口側に流出する。
かかる第2実施例によれば、冷却ジャケット23の冷却水循環流量を増加することが可能となるので、かかる冷却液循環流量の増加によって吸気の冷却効果を上昇できる。
In the second embodiment, the intake cooling water branches from the cooling water main pipe 20 in the intake manifold 4 for each cylinder, enters the cooling jacket 23 from the inlet branch pipe 21, and takes the intake air inside the cooling jacket 23. The intake air flowing through the branch pipe 7 is cooled and flows out through the outlet branch pipe 23 to the outlet side of the cooling water main pipe 20.
According to the second embodiment, the cooling water circulation flow rate of the cooling jacket 23 can be increased. Therefore, the intake air cooling effect can be increased by increasing the cooling liquid circulation flow rate.

以上の第1、第2実施例によれば、吸気枝館7及び吸気ポートからなる吸気通路に、冷却水を通流させて該吸気通路に送り込まれた内部EGRガスを含む該吸気通路内のガスを冷却する冷却チューブ10、冷却ジャケット23等の吸気通路冷却手段を設けたので、排気行程時に吸気弁2をサブリフトさせることによって、前記吸気通路内に送り込まれた内部EGRガスによって温度上昇せしめられている該吸気通路内の吸気を、前記吸気通路冷却手段によって冷却することにより、内部EGRガスの混入による吸気温度の上昇を抑制することができる。
これにより、内部EGRガスの混入による吸気温度の上昇に伴なって吸気流量が減少することによるエンジンの出力低下、吸気温度の上昇に伴なう筒内燃焼温度の上昇による燃焼室周りの熱負荷の上昇、及び吸気温度の上昇に伴なう筒内燃焼温度の上昇によるNOx低減効果の低下、等の不具合の発生を防止できる。
According to the first and second embodiments described above, the inside of the intake passage including the internal EGR gas that is supplied to the intake passage by flowing the cooling water through the intake passage composed of the intake branch 7 and the intake port. Since the intake passage cooling means such as the cooling tube 10 and the cooling jacket 23 for cooling the gas are provided, the temperature is raised by the internal EGR gas sent into the intake passage by sub-lifting the intake valve 2 during the exhaust stroke. By cooling the intake air in the intake passage by the intake passage cooling means, it is possible to suppress an increase in intake air temperature due to mixing of internal EGR gas.
As a result, the engine load decreases due to a decrease in the intake air flow rate due to the increase in the intake air temperature due to the mixing of the internal EGR gas, and the heat load around the combustion chamber due to the increase in the in-cylinder combustion temperature accompanying the increase in the intake air temperature. It is possible to prevent the occurrence of problems such as a decrease in NOx reduction effect due to an increase in combustion temperature and an increase in in-cylinder combustion temperature accompanying an increase in intake air temperature.

本発明によれば、内部EGRに伴う吸気温度の上昇を抑制して、かかる吸気温度の上昇に伴なう、吸気流量の減少によるエンジンの出力低下、筒内燃焼温度の上昇による燃焼室周りの熱負荷の上昇、及び筒内燃焼温度の上昇によるNOx低減効果の低下、等を防止した内部EGRシステム付き4サイクルエンジンを提供できる。   According to the present invention, an increase in the intake air temperature associated with the internal EGR is suppressed, and an increase in the intake air temperature causes a decrease in engine output due to a decrease in intake air flow rate, and an increase in in-cylinder combustion temperature. It is possible to provide a four-cycle engine with an internal EGR system that prevents an increase in heat load and a decrease in NOx reduction effect due to an increase in in-cylinder combustion temperature.

本発明の第1実施例に係る吸気通路冷却手段をそなえた内部EGRシステム付き4サイクルエンジンのエンジン周りの配置を示す平面構成図である。1 is a plan configuration diagram showing an arrangement around an engine of a 4-cycle engine with an internal EGR system provided with an intake passage cooling means according to a first embodiment of the present invention. 前記実施例における吸気通路冷却手段の詳細を示し(A)は図1のZ部拡大断面図、(B)は(A)におけるA−A線断面図である。The details of the intake passage cooling means in the embodiment are shown (A) is an enlarged sectional view of a Z portion in FIG. 1, and (B) is a sectional view taken along the line AA in (A). 本発明の第2実施例に係る吸気通路冷却手段をそなえた内部EGRシステム付き4サイクルエンジンのエンジン周りの配置を示す平面構成図(図1対応図)である。FIG. 5 is a plan configuration diagram (corresponding to FIG. 1) showing an arrangement around an engine of a four-cycle engine with an internal EGR system provided with an intake passage cooling means according to a second embodiment of the present invention. 4シリンダ4サイクルディーゼルエンジンに適用される吸気サブリフト式内部EGRシステムの♯1、♯2における吸、排気タイミング線図である。It is an intake and exhaust timing diagram in # 1 and # 2 of an intake sublift type internal EGR system applied to a 4-cylinder 4-cycle diesel engine. 従来の吸気サブリフト式内部EGRシステムが適用される4シリンダ4サイクルディーゼルエンジンにおける吸気装置のエンジン周りの配置を示す平面構成図である。It is a plane block diagram which shows arrangement | positioning around the engine of the intake device in the 4 cylinder 4 cycle diesel engine to which the conventional intake sublift type internal EGR system is applied.

符号の説明Explanation of symbols

1 シリンダ
2 吸気弁
3 排気弁
4 吸気マニホールド
5 吸気ポート
6 排気ポート
7 吸気枝管
8 排気マニホールド
9 排気枝管
10 冷却チューブ
10a 冷却管吸気ポート挿入部
1 Cylinder 2 Intake Valve 3 Exhaust Valve 4 Intake Manifold 5 Intake Port 6 Exhaust Port 7 Intake Branch Pipe 8 Exhaust Manifold 9 Exhaust Branch Pipe 10 Cooling Tube 10a Cooling Pipe Intake Port Insertion Port

Claims (1)

複数シリンダを有するエンジンの各シリンダヘッドに形成された吸気ポートと、前記各吸気ポートを開閉する吸気弁と、前記各吸気ポートに接続される各シリンダ分の吸気枝管を有する吸気マニホールドとを具え、
前記各シリンダの吸気弁を、排気行程時に吸気行程時の主リフトとは離れて微小量サブリフトさせて燃焼室内の燃焼ガスの一部(以下内部EGRガスという)を、前記吸気枝管を介して前記各シリンダヘッドの吸気ポートに送り込み吸気に混入させ、該燃焼ガスを吸気弁の前記主リフトによる開弁時に燃焼室に還流する内部EGRシステムを備えた4サイクルエンジンにおいて、
前記吸気マニホールドより、前記吸気枝管を介して前記各シリンダヘッドの吸気ポート内に挿設される冷却チューブを設け、該冷却チューブ内に冷却液を通流させて、前記吸気枝管を介して前記各シリンダヘッドの吸気ポートに送り込まれた前記内部EGRガスを含む吸気ガスを冷却させるとともに、前記冷却チューブを2つ割りの吸気マニホールドに取付けてなることを特徴とする内部EGRシステム付き4サイクルエンジン。
An intake port formed in each cylinder head of an engine having a plurality of cylinders, an intake valve for opening and closing each intake port, and an intake manifold having intake branch pipes for each cylinder connected to each intake port ,
Wherein the intake valve of each cylinder, part of the combustion gas in the combustion chamber by a small amount Saburifuto apart from the main lift during intake stroke during the exhaust stroke (hereinafter referred internal EGR gas), through the intake manifold wherein is mixed into feed inlet to the intake port of each cylinder head, the four-stroke engine with internal EG R system for recirculating combustion gas into the combustion chamber when the valve is opened by the main lift of the intake valve,
A cooling tube inserted into the intake port of each cylinder head is provided from the intake manifold via the intake branch pipe, and a coolant is passed through the cooling tube to pass through the intake branch pipe. A four-cycle engine with an internal EGR system , wherein the intake gas including the internal EGR gas sent to the intake port of each cylinder head is cooled , and the cooling tube is attached to a two-part intake manifold. .
JP2005337560A 2005-11-22 2005-11-22 4-cycle engine with internal EGR system Expired - Fee Related JP4563301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005337560A JP4563301B2 (en) 2005-11-22 2005-11-22 4-cycle engine with internal EGR system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005337560A JP4563301B2 (en) 2005-11-22 2005-11-22 4-cycle engine with internal EGR system

Publications (2)

Publication Number Publication Date
JP2007138904A JP2007138904A (en) 2007-06-07
JP4563301B2 true JP4563301B2 (en) 2010-10-13

Family

ID=38202076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005337560A Expired - Fee Related JP4563301B2 (en) 2005-11-22 2005-11-22 4-cycle engine with internal EGR system

Country Status (1)

Country Link
JP (1) JP4563301B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5440806B2 (en) 2011-04-05 2014-03-12 株式会社デンソー Intake device
JP5682541B2 (en) * 2011-11-09 2015-03-11 株式会社デンソー Intake air cooling system
JP5747807B2 (en) * 2011-12-21 2015-07-15 トヨタ自動車株式会社 EGR gas cooling system for internal combustion engine
JP5664586B2 (en) * 2012-04-05 2015-02-04 株式会社デンソー Intake system for internal combustion engine
JP2013253493A (en) * 2012-06-05 2013-12-19 Denso Corp Intake device
JP6026825B2 (en) * 2012-09-06 2016-11-16 株式会社デンソー Intake device for internal combustion engine
WO2014103585A1 (en) * 2012-12-25 2014-07-03 日産自動車株式会社 Internal combustion engine
US20170234208A1 (en) * 2016-02-11 2017-08-17 Ford Global Technologies, Llc Multiple Intake Air Coolers Arranged in Parallel
EP3306048A1 (en) * 2016-10-05 2018-04-11 MANN+HUMMEL GmbH Air duct arrangement and cooler
EP3309368A1 (en) * 2016-10-14 2018-04-18 AVL List GmbH Air intake tract arrangement for an internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032402A (en) * 2005-07-26 2007-02-08 Yanmar Co Ltd Exhaust gas recirculation device for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032402A (en) * 2005-07-26 2007-02-08 Yanmar Co Ltd Exhaust gas recirculation device for internal combustion engine

Also Published As

Publication number Publication date
JP2007138904A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP4563301B2 (en) 4-cycle engine with internal EGR system
US9188050B2 (en) Engine cooling system
JP5288046B2 (en) Control device for internal combustion engine
AU4466099A (en) Engine air intake manifold having built-in intercooler
JP5799963B2 (en) Exhaust circulation device for internal combustion engine
JP2009287434A (en) Exhaust recirculation device for internal combustion engine
US10900442B2 (en) Cylinder head with integrated exhaust manifold and engine cooling system having the same
JP2011047305A (en) Internal combustion engine
JP2009062836A (en) Cylinder head of internal combustion engine
JP2007032402A (en) Exhaust gas recirculation device for internal combustion engine
EP3112656B1 (en) Intake air supply construction for engine
US10196969B2 (en) Exhaust device for engine
JP2009085094A (en) Exhaust gas recirculation device for engine
JP2002285915A (en) Exhaust gas recirculation passage of cylinder head
KR20170103090A (en) Exhaust Gas Recirculation for vehicle
JP4719142B2 (en) Multi-cylinder 4-cycle engine with internal EGR system
JP2006161689A (en) Cooling water passage structure for engine with supercharger
JP4523906B2 (en) 4-cycle engine with internal EGR system
JP2010031688A (en) Spark-ignition internal combustion engine
JP4775196B2 (en) Engine supercharger
JP5757709B2 (en) Internal combustion engine
JP2013002371A (en) Internal combustion engine
JP2010053737A (en) Control device of internal combustion engine and cooling system of internal combustion engine
JP2016125419A (en) Turbo intake air cooling system and engine
JP2010031687A (en) Spark ignition internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees