JP2013002371A - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP2013002371A
JP2013002371A JP2011134696A JP2011134696A JP2013002371A JP 2013002371 A JP2013002371 A JP 2013002371A JP 2011134696 A JP2011134696 A JP 2011134696A JP 2011134696 A JP2011134696 A JP 2011134696A JP 2013002371 A JP2013002371 A JP 2013002371A
Authority
JP
Japan
Prior art keywords
passage
egr
internal combustion
intake
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011134696A
Other languages
Japanese (ja)
Inventor
Yasuhisa Ono
泰久 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2011134696A priority Critical patent/JP2013002371A/en
Publication of JP2013002371A publication Critical patent/JP2013002371A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an internal combustion engine capable of stabilizing the combustion in the transient period where the engine rotation or the vehicle speed decelerates.SOLUTION: A curved section 35 is formed upstream of a compressor 51 in a suction passage 3, and an outlet from a low-pressure loop EGR passage 2 is connected with a part directly after the curved section 35 and facing the inside portion of the curved flow passage. The new gas flowing in the suction passage 3 undergoes exfoliation when it passes the curved section 35. Directly after the curved section 35, the inner peripheral portion of the flow passage becomes at negative pressure. Through utilization thereof, circulation of the EGR gas back to the suction passage 3 is promoted.

Description

本発明は、排気ガス再循環(Exhaust Gas Recirculation)装置を付帯させた内燃機関に関する。   The present invention relates to an internal combustion engine with an exhaust gas recirculation device.

気筒の燃焼温度を低下させてNOxの排出量を削減しつつ、ポンピングロスの低減を図るEGR装置が周知である。EGR装置は、排気経路と吸気経路とをEGR通路を介して接続し、気筒で発生する燃焼ガスの一部をEGR通路経由で吸気経路に還流させて吸気に混入するものである。 While reducing the emissions of the combustion temperature to reduce the by NO x cylinders, a EGR device known to reduce the pumping loss. The EGR device connects an exhaust path and an intake path via an EGR passage, and part of combustion gas generated in the cylinder is recirculated to the intake path via the EGR path and mixed into the intake air.

排気ターボ過給機のタービン及び排気ガス浄化用の触媒を通過した排気ガスを吸気通路に還流するものが、低圧ループEGRである(例えば、下記特許文献1を参照)。低圧ループEGRは、大量のEGRガスを吸気に混入できる点で有利である。一方で、低圧ループEGRガスは大気圧に近い低圧低温のガスであり、吸気通路内の新気の圧力が高い時期にはEGRガスの還流が困難になる。   A low-pressure loop EGR recirculates exhaust gas that has passed through a turbine of an exhaust turbocharger and an exhaust gas purification catalyst to the intake passage (see, for example, Patent Document 1 below). The low pressure loop EGR is advantageous in that a large amount of EGR gas can be mixed into the intake air. On the other hand, the low-pressure loop EGR gas is a low-pressure and low-temperature gas close to the atmospheric pressure, and it is difficult to recirculate the EGR gas when the pressure of fresh air in the intake passage is high.

従来は、吸気通路における、EGR通路の出口よりも上流側に吸気絞り弁を配設し、この吸気絞り弁を絞ることでEGR通路の出口周辺に負圧を作り出してEGRガスを還流させるようにしていた。   Conventionally, an intake throttle valve is provided upstream of the outlet of the EGR passage in the intake passage, and the intake throttle valve is throttled to create a negative pressure around the outlet of the EGR passage to recirculate the EGR gas. It was.

特開2011−089470号公報JP 2011-089470 A

本発明は、低圧ループEGRシステムにおいて、EGRガスをより円滑に吸気通路に還流させるようにすることを所期の目的としている。   An object of the present invention is to recirculate EGR gas more smoothly to an intake passage in a low-pressure loop EGR system.

本発明では、排気通路に設けられたタービンと、吸気通路に設けられ前記タービンにより駆動されるコンプレッサと、排気通路における前記タービンの下流側と吸気通路における前記コンプレッサの上流側とを連通するEGR通路と、前記EGR通路に設けられたEGR弁とを具備する排気ガス再循環装置が付帯した内燃機関であって、吸気通路における前記コンプレッサの上流側に湾曲部を形成し、その湾曲部の直後の、湾曲した流路の内周側(換言すれば、入隅側)に臨む部位に前記EGR通路の出口を接続していることを特徴とする内燃機関を構成した。   In the present invention, an EGR passage that communicates a turbine provided in the exhaust passage, a compressor provided in the intake passage and driven by the turbine, and a downstream side of the turbine in the exhaust passage and an upstream side of the compressor in the intake passage. And an exhaust gas recirculation device provided with an EGR valve provided in the EGR passage, wherein a curved portion is formed on the upstream side of the compressor in the intake passage, and immediately after the curved portion. The internal combustion engine is characterized in that the outlet of the EGR passage is connected to a portion facing the inner peripheral side (in other words, the corner of entry) of the curved flow path.

吸気通路の湾曲部の直後では、新気に剥離渦が発生し、湾曲した流路の内周側が外周側(出隅側)に比べて低圧となる。本発明では、吸気通路の湾曲部の直後における負圧化する部位にEGR通路の出口を接続して、EGRガスの還流を促進することとした。   Immediately after the curved portion of the intake passage, a separation vortex is generated in the fresh air, and the inner peripheral side of the curved flow path becomes a lower pressure than the outer peripheral side (outside corner side). In the present invention, the outlet of the EGR passage is connected to a portion where the negative pressure is generated immediately after the curved portion of the intake passage to promote the recirculation of the EGR gas.

本発明によれば、低圧ループEGRシステムにおいて、EGRガスをより円滑に吸気通路に還流させることができる。   According to the present invention, in the low-pressure loop EGR system, EGR gas can be more smoothly recirculated to the intake passage.

本発明の一実施形態における内燃機関の全体構成を示す図。The figure which shows the whole structure of the internal combustion engine in one Embodiment of this invention. 同実施形態の内燃機関の吸気通路及びその屈曲部、並びにEGR通路の出口を拡大して示す図。The figure which expands and shows the inlet passage of the internal combustion engine of the embodiment, its bending part, and the exit of an EGR passage. 本発明の変形例の一を示す図。The figure which shows one of the modifications of this invention. 同変形例を示す図。The figure which shows the modification. 本発明の変形例の一を示す図。The figure which shows one of the modifications of this invention. 同変形例を示す図。The figure which shows the modification. 本発明の変形例の一を示す図。The figure which shows one of the modifications of this invention. 同変形例を示す図。The figure which shows the modification. 本発明の変形例の一を示す図。The figure which shows one of the modifications of this invention.

本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関の概要を示す。本実施形態の内燃機関は、複数の気筒1(図1には、そのうち一つを図示している)と、各気筒1内に燃料を噴射するインジェクタ11と、各気筒1に吸気を供給するための吸気通路3と、各気筒1から排気を排出するための排気通路4と、吸気通路3を流通する吸気を過給する排気ターボ過給機5と、排気通路4から吸気通路3に向けてEGRガスを還流させる外部EGR装置2とを具備している。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of an internal combustion engine for a vehicle in the present embodiment. The internal combustion engine of the present embodiment supplies a plurality of cylinders 1 (one of which is shown in FIG. 1), an injector 11 that injects fuel into each cylinder 1, and intake air to each cylinder 1. An intake passage 3 for exhausting exhaust from each cylinder 1, an exhaust turbocharger 5 for supercharging intake air flowing through the intake passage 3, and from the exhaust passage 4 toward the intake passage 3. And an external EGR device 2 for refluxing the EGR gas.

本実施形態における内燃機関は、二気筒の4サイクルエンジンであり、第一気筒1の行程と第二気筒1の行程との間には360°CA(クランク角度)の位相差が存在する。つまり、第一気筒1のピストン12と第二気筒1のピストン12とは同時に上昇し、また同時に下降する。   The internal combustion engine in the present embodiment is a two-cylinder four-cycle engine, and there is a phase difference of 360 ° CA (crank angle) between the stroke of the first cylinder 1 and the stroke of the second cylinder 1. That is, the piston 12 of the first cylinder 1 and the piston 12 of the second cylinder 1 are simultaneously raised and simultaneously lowered.

吸気通路3は、外部から空気を取り入れて気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、過給機5のコンプレッサ51、インタクーラ32、電子スロットル弁33、サージタンク34、吸気マニホルド36を、上流からこの順序に配置している。   The intake passage 3 takes in air from the outside and guides it to the intake port of the cylinder 1. On the intake passage 3, an air cleaner 31, a compressor 51 of the supercharger 5, an intercooler 32, an electronic throttle valve 33, a surge tank 34, and an intake manifold 36 are arranged in this order from the upstream side.

排気通路4は、気筒1内で燃料を燃焼させた結果発生した排気を気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42、過給機5の駆動タービン52及び三元触媒41を配置している。加えて、タービン52を迂回する排気バイパス通路43、及びこのバイパス通路43の入口を開閉するバイパス弁であるウェイストゲート弁44を設けてある。ウェイストゲート弁44は、アクチュエータに制御信号lを入力することで開閉操作することが可能な電動ウェイストゲート弁であり、そのアクチュエータとしてDCサーボモータを用いている。   The exhaust passage 4 guides exhaust generated as a result of burning fuel in the cylinder 1 from the exhaust port of the cylinder 1 to the outside. An exhaust manifold 42, a drive turbine 52 for the supercharger 5, and a three-way catalyst 41 are disposed on the exhaust passage 4. In addition, an exhaust bypass passage 43 that bypasses the turbine 52 and a waste gate valve 44 that is a bypass valve that opens and closes the inlet of the bypass passage 43 are provided. The waste gate valve 44 is an electric waste gate valve that can be opened and closed by inputting a control signal l to the actuator, and a DC servo motor is used as the actuator.

排気ターボ過給機5は、駆動タービン52とコンプレッサ51とを同軸で連結し連動するように構成したものである。そして、駆動タービン52を排気のエネルギを利用して回転駆動し、その回転力を以てコンプレッサ51にポンプ作用を営ませることにより、吸入空気を加圧圧縮(過給)して気筒1に送り込む。   The exhaust turbocharger 5 is configured such that the drive turbine 52 and the compressor 51 are connected and linked in a coaxial manner. Then, the driving turbine 52 is rotationally driven by using the energy of the exhaust gas, and the compressor 51 is pumped by using the rotational force, whereby the intake air is pressurized and compressed (supercharged) and sent to the cylinder 1.

外部EGR通路2は、いわゆる低圧ループEGRを実現するものである。低圧ループEGRでは、大気圧に近い低圧の排気ガスをEGR通路2を通じて吸気通路3に還流する。低圧ループEGR通路2の圧力損失は、数百Pa程度と非常に小さい。外部EGR通路2上には、EGRクーラ21及びEGR弁22を設ける。外部EGR通路2の入口は、排気通路4における三元触媒41の下流の所定箇所に接続している。   The external EGR passage 2 realizes a so-called low pressure loop EGR. In the low-pressure loop EGR, low-pressure exhaust gas close to atmospheric pressure is recirculated to the intake passage 3 through the EGR passage 2. The pressure loss in the low-pressure loop EGR passage 2 is as small as several hundred Pa. An EGR cooler 21 and an EGR valve 22 are provided on the external EGR passage 2. The inlet of the external EGR passage 2 is connected to a predetermined location downstream of the three-way catalyst 41 in the exhaust passage 4.

外部EGR通路2の出口は、吸気通路3におけるエアクリーナ31の下流かつコンプレッサ51の上流の所定箇所に接続する。図1及び図2(図2以降では、EGR弁22の図示を省略している)に示しているように、本実施形態では、吸気通路3の当該領域に湾曲部35を形成しており、その湾曲部35の直後にEGR通路2の出口を接続している。   The outlet of the external EGR passage 2 is connected to a predetermined location downstream of the air cleaner 31 and upstream of the compressor 51 in the intake passage 3. As shown in FIG. 1 and FIG. 2 (illustration of the EGR valve 22 is omitted in FIG. 2 and thereafter), in this embodiment, a curved portion 35 is formed in the region of the intake passage 3. Immediately after the curved portion 35, the outlet of the EGR passage 2 is connected.

吸気通路3を流れる新気は、湾曲部35を通過する際に剥離を引き起こす。図中、気流の剥離が生じる部分を、網点で表示している。湾曲部35の直後では、湾曲している流路の内周(内回り、入隅)側に剥離渦が発生するため、流路の内周側が外周側に比べて(つまりは、大気圧よりも)低圧になる。このことを利用して、本実施形態では、湾曲部35の直後における気流の剥離により負圧化する部位、即ち湾曲した流路の内周側に臨む部位にEGR通路2の出口を接続し、EGRガスの吸気通路3への還流の促進を図っている。気流の剥離に起因した負圧の度合いは、湾曲部35の曲率半径が小さいほど強くなる。   The fresh air flowing through the intake passage 3 causes separation when passing through the curved portion 35. In the figure, the portion where the air flow is separated is indicated by halftone dots. Immediately after the curved portion 35, a separation vortex is generated on the inner circumference (inner circumference, entry corner) side of the curved flow path, so that the inner circumference side of the flow path is larger than the outer circumference side (that is, more than atmospheric pressure). ) Low pressure. By utilizing this, in the present embodiment, the outlet of the EGR passage 2 is connected to a portion that becomes negative pressure due to separation of the air flow immediately after the bending portion 35, that is, a portion that faces the inner peripheral side of the curved flow path, The return of EGR gas to the intake passage 3 is promoted. The degree of negative pressure resulting from the separation of the airflow increases as the curvature radius of the curved portion 35 decreases.

内燃機関の運転制御を司るECU(電子制御装置)0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。入力インタフェースには、車速を検出する車速センサから出力される車速信号a、エンジン回転数を検出する回転数センサから出力される回転数信号b、アクセルペダルの踏込量を検出するアクセルセンサから出力されるアクセル開度信号c、吸気通路3(特に、サージタンク34)内の吸気温及び吸気圧(過給圧)を検出する温度・圧力センサから出力される温度・圧力信号d、内燃機関の冷却水温を検出する水温センサから出力される冷却水温信号e、吸気カムシャフトの端部にあるタイミングセンサから出力されるクランク角度信号及び気筒判別用信号f、排気カムシャフトの端部にあるタイミングセンサから所定クランク角度の回転毎に出力される排気カム信号g等が入力される。出力インタフェースからは、インジェクタ11に対して燃料噴射信号h、点火プラグ(のイグニッションコイル)に対して点火信号i、EGR弁22に対して開度操作信号j、スロットル弁33に対して開度操作信号k、ウェイストゲート弁44に対して開度操作信号l等を出力する。アクセルペダルの踏込量は、運転者が指令する要求負荷(エンジン出力)と捉えることができる。   An ECU (electronic control unit) 0 that controls operation of the internal combustion engine is a microcomputer system having a processor, a memory, an input interface, an output interface, and the like. The input interface outputs a vehicle speed signal a output from a vehicle speed sensor that detects the vehicle speed, a rotation speed signal b output from a rotation speed sensor that detects the engine rotation speed, and an accelerator sensor that detects the amount of depression of the accelerator pedal. An accelerator opening signal c, a temperature / pressure signal d output from a temperature / pressure sensor that detects intake air temperature and intake pressure (supercharging pressure) in the intake passage 3 (particularly, the surge tank 34), and cooling of the internal combustion engine A coolant temperature signal e output from a water temperature sensor for detecting the water temperature, a crank angle signal and cylinder discrimination signal f output from a timing sensor at the end of the intake camshaft, and a timing sensor at the end of the exhaust camshaft An exhaust cam signal g or the like output every rotation of a predetermined crank angle is input. From the output interface, the fuel injection signal h for the injector 11, the ignition signal i for the ignition plug (ignition coil thereof), the opening operation signal j for the EGR valve 22, and the opening operation for the throttle valve 33. An opening operation signal l and the like are output to the signal k and the waste gate valve 44. The amount of depression of the accelerator pedal can be considered as a required load (engine output) commanded by the driver.

ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行して、内燃機関の運転を制御する。ECU0は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、gを入力インタフェースを介して取得し、それらに基づいて吸気量や要求燃料噴射量、点火時期、要求EGR率(または、EGR量)等を演算する。そして、演算結果に対応した各種制御信号h、i、j、k、lを出力インタフェースを介して印加する。上記制御入力h、i、j、k、lの算定手法は、既知の内燃機関の運転制御と同様とすることができるので、詳細な解説は割愛する。   The processor of the ECU 0 interprets and executes a program stored in the memory in advance and controls the operation of the internal combustion engine. The ECU 0 acquires various information a, b, c, d, e, f, and g necessary for operation control of the internal combustion engine via the input interface, and based on them, the intake air amount, the required fuel injection amount, the ignition timing, A required EGR rate (or EGR amount) or the like is calculated. Then, various control signals h, i, j, k, and l corresponding to the calculation result are applied through the output interface. Since the calculation method of the control inputs h, i, j, k, and l can be the same as the operation control of a known internal combustion engine, a detailed description is omitted.

本実施形態では、排気通路4に設けられたタービン52と、吸気通路3に設けられ前記タービン52により駆動されるコンプレッサ51と、排気通路4における前記タービン52の下流側と吸気通路3における前記コンプレッサ51の上流側とを連通するEGR通路2と、前記EGR通路2に設けられたEGR弁22とを具備するEGR装置が付帯した内燃機関であって、吸気通路3における前記コンプレッサ51の上流側に湾曲部35を形成し、その湾曲部35の直後の、湾曲した流路の内周側に臨む部位に前記EGR通路2の出口を接続していることを特徴とする内燃機関を構成した。   In the present embodiment, a turbine 52 provided in the exhaust passage 4, a compressor 51 provided in the intake passage 3 and driven by the turbine 52, a downstream side of the turbine 52 in the exhaust passage 4, and the compressor in the intake passage 3. 51 is an internal combustion engine attached with an EGR device including an EGR passage 2 communicating with the upstream side of 51 and an EGR valve 22 provided in the EGR passage 2, and in the intake passage 3 upstream of the compressor 51. An internal combustion engine characterized in that a curved portion 35 is formed, and an outlet of the EGR passage 2 is connected to a portion facing the inner peripheral side of the curved flow path immediately after the curved portion 35.

本実施形態によれば、湾曲部35を通過する新気の剥離現象に起因した負圧を利用し、簡便な構造により低コストにて大気圧に近い低圧EGRガスを吸気通路3に還流せしめることができる。新気の剥離現象は、吸気脈動及びその最大流速が大きい少数気筒(二気筒または単気筒)の内燃機関において特に顕著となり、より多量のEGRガスを吸気に混入することが可能となって、燃費の向上及び排気ガスの清浄化に資する。さらには、吸気通路3における、EGR通路2の出口の上流側に吸気絞り弁を設置する必要がなくなる。   According to this embodiment, the low pressure EGR gas close to the atmospheric pressure is recirculated to the intake passage 3 at a low cost with a simple structure using the negative pressure resulting from the separation of fresh air passing through the curved portion 35. Can do. The fresh air separation phenomenon becomes particularly noticeable in an internal combustion engine having a small number of cylinders (two cylinders or a single cylinder) having a large intake pulsation and its maximum flow velocity, and a larger amount of EGR gas can be mixed into the intake air. Contributes to improvement of exhaust gas and purification of exhaust gas. Furthermore, it is not necessary to install an intake throttle valve in the intake passage 3 upstream of the outlet of the EGR passage 2.

なお、本発明は以上に詳述した実施形態に限られるものではない。上記実施形態では、吸気通路3における湾曲部35よりも下流の部位と、当該部位に接続するEGR通路2とを略直交させていたが、図3及び図4(図3は正面視、図4は平面視)、または図5及び図6(図5は正面視、図6は平面視)に示すように、吸気通路3とEGR通路2とを直交させず、吸気通路3を流れる新気の流通方向とEGR通路2を流れるEGRガスの流通方向とがなす角度を直角よりも小さくするようにしてもよい。   The present invention is not limited to the embodiment described in detail above. In the above embodiment, the portion of the intake passage 3 downstream from the curved portion 35 and the EGR passage 2 connected to the portion are substantially orthogonal to each other, but FIG. 3 and FIG. 4 (FIG. 3 is a front view, FIG. Is a plan view), or FIG. 5 and FIG. 6 (FIG. 5 is a front view, FIG. 6 is a plan view), the intake passage 3 and the EGR passage 2 are not orthogonally crossed and the fresh air flowing through the intake passage 3 The angle formed by the flow direction and the flow direction of the EGR gas flowing through the EGR passage 2 may be made smaller than a right angle.

また、図7及び図8(図7は斜視、図8は平面視)に示すように、湾曲部35及びその直前の部位37、直後の部位38における吸気通路3の断面を、その他の部位の断面とは異形の扁平形状、例えば長円、楕円、長方形等に成形してもよい。即ち、湾曲部35の直前の部位37については、直後の部位38の流路の延伸方向に沿った内寸L1を、当該方向と直交する方向の内寸L2よりも長くする。並びに、湾曲部35の直後の部位38については、直前の部位37の流路の延伸方向に沿った内寸L3を、当該方向と直交する方向の内寸L4よりも長くする。これにより、湾曲部35の直後の部位における新気の剥離現象を強化できる。   Further, as shown in FIGS. 7 and 8 (FIG. 7 is a perspective view and FIG. 8 is a plan view), the cross section of the intake passage 3 in the curved portion 35 and the portion 37 immediately before and the portion 38 immediately after the curved portion 35 is replaced with other portions. You may shape | mold in the flat shape of an unusual shape from a cross section, for example, an ellipse, an ellipse, a rectangle. That is, for the portion 37 immediately before the curved portion 35, the inner dimension L1 along the extending direction of the flow path of the immediately subsequent portion 38 is made longer than the inner dimension L2 in the direction orthogonal to the direction. And about the site | part 38 immediately after the curved part 35, the internal dimension L3 along the extending direction of the flow path of the front site | part 37 is made longer than the internal dimension L4 of the direction orthogonal to the said direction. Thereby, the fresh air peeling phenomenon in the part immediately after the bending part 35 can be strengthened.

加えて、図9(図9は平面視)に示すように、EGR通路2の出口近傍を一旦分岐させた後再び合流させて、吸気通路3の湾曲部35の直後の部位38に接続しても構わない。   In addition, as shown in FIG. 9 (FIG. 9 is a plan view), the vicinity of the outlet of the EGR passage 2 is once branched and then joined again, and connected to a portion 38 immediately after the curved portion 35 of the intake passage 3. It doesn't matter.

その他各部の具体的構成は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   Other specific configurations of each part can be variously modified without departing from the spirit of the present invention.

本発明は、車両等に搭載される内燃機関に利用することができる。   The present invention can be used for an internal combustion engine mounted on a vehicle or the like.

2…EGR通路
22…EGR弁
3…吸気通路
35…湾曲部
4…排気通路
51…コンプレッサ
52…タービン
2 ... EGR passage 22 ... EGR valve 3 ... Intake passage 35 ... Curved portion 4 ... Exhaust passage 51 ... Compressor 52 ... Turbine

Claims (1)

排気通路に設けられたタービンと、
吸気通路に設けられ前記タービンにより駆動されるコンプレッサと、
排気通路における前記タービンの下流側と吸気通路における前記コンプレッサの上流側とを連通するEGR通路と、
前記EGR通路に設けられたEGR弁と
を具備する排気ガス再循環装置が付帯した内燃機関であって、
吸気通路における前記コンプレッサの上流側に湾曲部を形成し、その湾曲部の直後の、湾曲した流路の内周側に臨む部位に前記EGR通路の出口を接続していることを特徴とする内燃機関。
A turbine provided in the exhaust passage;
A compressor provided in the intake passage and driven by the turbine;
An EGR passage communicating the downstream side of the turbine in the exhaust passage and the upstream side of the compressor in the intake passage;
An internal combustion engine attached with an exhaust gas recirculation device comprising an EGR valve provided in the EGR passage,
An internal combustion engine characterized in that a curved portion is formed on the upstream side of the compressor in the intake passage, and an outlet of the EGR passage is connected to a portion facing the inner peripheral side of the curved flow path immediately after the curved portion. organ.
JP2011134696A 2011-06-17 2011-06-17 Internal combustion engine Withdrawn JP2013002371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011134696A JP2013002371A (en) 2011-06-17 2011-06-17 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011134696A JP2013002371A (en) 2011-06-17 2011-06-17 Internal combustion engine

Publications (1)

Publication Number Publication Date
JP2013002371A true JP2013002371A (en) 2013-01-07

Family

ID=47671203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011134696A Withdrawn JP2013002371A (en) 2011-06-17 2011-06-17 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP2013002371A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015169099A (en) * 2014-03-05 2015-09-28 日産自動車株式会社 Exhaust gas recirculation device
JP2021099032A (en) * 2019-12-19 2021-07-01 株式会社クボタ Intake system for diesel engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015169099A (en) * 2014-03-05 2015-09-28 日産自動車株式会社 Exhaust gas recirculation device
JP2021099032A (en) * 2019-12-19 2021-07-01 株式会社クボタ Intake system for diesel engine

Similar Documents

Publication Publication Date Title
JP5579023B2 (en) Internal combustion engine
US10344688B2 (en) Apparatus and method for engine control
JP5822445B2 (en) Blowby gas recirculation system
JP5092962B2 (en) Control device for an internal combustion engine with a supercharger
JP2007092618A (en) Internal combustion engine with supercharger
JP2013060914A (en) Control device of internal combustion engine
JP5679185B2 (en) Control device for internal combustion engine
JP2013002371A (en) Internal combustion engine
JP5812711B2 (en) Internal combustion engine
JP2012225315A (en) Controller of internal-combustion engine
JP2010168954A (en) Control device for internal combustion engine
JP2012047093A (en) Internal combustion engine
JP2010116894A (en) Control device of internal combustion engine
JP5570317B2 (en) Control method for internal combustion engine
JP2005188359A (en) Internal combustion engine with supercharger
JP2014234808A (en) Device and method for exhaust gas recirculation of internal combustion engine with supercharger
JP5769506B2 (en) Control device for internal combustion engine
JP2012163009A (en) Control device for internal combustion engine
JP2012082737A (en) Internal combustion engine
JP2012246800A (en) Internal combustion engine control device
US10890129B1 (en) High pressure loop exhaust gas recirculation and twin scroll turbocharger flow control
KR20190043388A (en) Engine system
JP5757709B2 (en) Internal combustion engine
JP5760382B2 (en) Engine supercharger
JP2018184870A (en) Control device for engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902