JP2005188359A - Internal combustion engine with supercharger - Google Patents

Internal combustion engine with supercharger Download PDF

Info

Publication number
JP2005188359A
JP2005188359A JP2003429512A JP2003429512A JP2005188359A JP 2005188359 A JP2005188359 A JP 2005188359A JP 2003429512 A JP2003429512 A JP 2003429512A JP 2003429512 A JP2003429512 A JP 2003429512A JP 2005188359 A JP2005188359 A JP 2005188359A
Authority
JP
Japan
Prior art keywords
engine
compressor
exhaust
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003429512A
Other languages
Japanese (ja)
Inventor
Masaru Nakajima
大 中島
Kiyohiro Shimokawa
清広 下川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2003429512A priority Critical patent/JP2005188359A/en
Publication of JP2005188359A publication Critical patent/JP2005188359A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal combustion engine with a supercharger capable of exhaust recirculation with high efficiency. <P>SOLUTION: This internal combustion engine with a supercharger operates a turbine 3 of a turbo-charger 2 by the exhaust G of the engine 1 and supplies intake air A compressed by a compressor 4 of the turbo-charger 2 to the engine 1 through an inter cooler 11. With this constitution, an exhaust manifold 6 of the engine 1 is connected to the downstream side of the inter cooler 11 through an EGR conduit 18 with the compressor 17 installed to increase the flow rate of the exhaust G to be circulated to the engine 1 with the compressor 17. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はEGR装置を装備した過給機付内燃機関に関するものである。   The present invention relates to a supercharged internal combustion engine equipped with an EGR device.

従来、排気再循環(EGR:Exhaust Gas Recirculation)を適用した過給機付内燃機関では、エンジン排気経路から分流した排気をエンジン吸気経路へ送給して燃焼温度の低下を図り、NOxの発生を低減させている(例えば、特許文献1参照)。   Conventionally, in an internal combustion engine with a supercharger to which exhaust gas recirculation (EGR) is applied, exhaust gas diverted from the engine exhaust path is sent to the engine intake path to lower the combustion temperature, thereby generating NOx. (For example, refer to Patent Document 1).

この過給機付内燃機関は図2に示すように、エンジン1とターボチャージャ2を備え、当該ターボチャージャ2は、タービン3、コンプレッサ4、タービン翼車をコンプレッサ翼車に連結する伝達軸5などで構成されている。   As shown in FIG. 2, the internal combustion engine with a supercharger includes an engine 1 and a turbocharger 2. The turbocharger 2 includes a turbine 3, a compressor 4, a transmission shaft 5 for connecting the turbine impeller to the compressor impeller, and the like. It consists of

タービン3は、排気導入口がエンジン1の排気マニホールド6に接続され、排気送出口が排気管7によりマフラ8に連通し、排気導入口には、流路断面調整機構(図示せず)が設けられている。
また、コンプレッサ4は、吸気導入口が吸気管9によりエアクリーナ10に接続され、吸気送出口がインタクーラ11を有する吸気管12によりエンジン1の吸気マニホールド13に連通している。
The turbine 3 has an exhaust introduction port connected to the exhaust manifold 6 of the engine 1, an exhaust delivery port communicates with the muffler 8 through an exhaust pipe 7, and a flow path cross-sectional adjustment mechanism (not shown) is provided at the exhaust introduction port. It has been.
The compressor 4 has an intake inlet connected to an air cleaner 10 via an intake pipe 9 and an intake outlet connected to an intake manifold 13 of the engine 1 via an intake pipe 12 having an intercooler 11.

これに加えて、排気マニホールド6に、EGRクーラ14とEGRバルブ15を直列に組み込んだEGR管路16の上流端を接続し、吸気管12のインタクーラ11よりも下流側個所に、EGR管路16の下流端を接続している。
上記のインタクーラ11には、空冷方式のフィン形熱交換器が用いられ、EGRクーラ14には、液冷方式の管形熱交換器が用いられている。
In addition, an upstream end of an EGR pipe 16 in which an EGR cooler 14 and an EGR valve 15 are incorporated in series is connected to the exhaust manifold 6, and the EGR pipe 16 Is connected to the downstream end.
The intercooler 11 is an air-cooled fin-type heat exchanger, and the EGR cooler 14 is a liquid-cooled tubular heat exchanger.

図2に示す過給機付内燃機関では、エンジン1が稼働状態であるとき、排気Gの大部分は、排気マニホールド6からタービン3へ流入してコンプレッサ4を駆動し、排気管7やマフラ8などを経て大気中に放出される。
また、エアクリーナ10、吸気管9を経てコンプレッサ4に流入し且つ圧縮された吸気Aは、吸気管12やインタクーラ11を通って吸気マニホールド13へ送給され、同時に排気Gの一部が排気マニホールド6からEGR管路16へ流入して、EGRクーラ14で冷却され且つEGRバルブ15により流量調整が行なわれた排気Gが吸気Aとともに吸気マニホールド13へ送給される。
In the supercharged internal combustion engine shown in FIG. 2, when the engine 1 is in an operating state, most of the exhaust G flows from the exhaust manifold 6 into the turbine 3 to drive the compressor 4, and the exhaust pipe 7 and the muffler 8. After being released into the atmosphere.
The compressed air A that flows into the compressor 4 through the air cleaner 10 and the intake pipe 9 and is compressed is supplied to the intake manifold 13 through the intake pipe 12 and the intercooler 11, and at the same time, a part of the exhaust G is exhausted from the exhaust manifold 6. Then, the exhaust gas G flows into the EGR pipe line 16, is cooled by the EGR cooler 14, and the flow rate is adjusted by the EGR valve 15, and is supplied to the intake manifold 13 together with the intake air A.

これにより、燃焼温度の低下が図られ、NOxの発生が低減することになる。
特開平9−256915号公報
As a result, the combustion temperature is lowered and the generation of NOx is reduced.
Japanese Patent Laid-Open No. 9-256915

しかしながら、図2に示す従来の過給機付内燃機関において、EGR管路16から吸気マニホールド13へ送給される排気Gの流量を多くするために、流路断面調整機構によりタービン3へ流入しようとする排気Gの流量を抑えると、エンジン1のポンピングロスが増えて燃料消費が過大になってしまう。   However, in the conventional turbocharged internal combustion engine shown in FIG. 2, in order to increase the flow rate of the exhaust G fed from the EGR pipe line 16 to the intake manifold 13, let it flow into the turbine 3 by the flow path cross-sectional adjustment mechanism. If the flow rate of the exhaust gas G is suppressed, the pumping loss of the engine 1 increases and fuel consumption becomes excessive.

そのうえ、エンジン1が低速高負荷運転領域で稼働している状態で、タービン3へ流入しようとする排気Gの流量を抑え過ぎた場合、コンプレッサ4を通過する吸気Aの流量が相対的に少なくなり、サージの発生によってコンプレッサ4が損傷することが懸念される。   In addition, if the flow rate of the exhaust gas G that flows into the turbine 3 is excessively suppressed while the engine 1 is operating in the low speed and high load operation region, the flow rate of the intake air A that passes through the compressor 4 is relatively reduced. There is a concern that the compressor 4 may be damaged by the occurrence of a surge.

また車両加速時には、EGR管路16からエンジン1のシリンダ内へ還流する排気Gの流量増加がエンジン1の回転数上昇に対して遅れるため、NOxを効果的に低減することができない。   Further, when the vehicle is accelerated, the increase in the flow rate of the exhaust gas G returning from the EGR line 16 into the cylinder of the engine 1 is delayed with respect to the increase in the rotational speed of the engine 1, so that NOx cannot be effectively reduced.

本発明は上述した実情に鑑みてなしたもので、排気再循環を効率よく行なえる過給機付内燃機関を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an internal combustion engine with a supercharger that can efficiently perform exhaust gas recirculation.

上記目的を達成するために、請求項1に記載の発明は、エンジンとターボチャージャを備え、該ターボチャージャのタービンをエンジンの排気で作動させ且つターボチャージャのコンプレッサが圧縮した吸気をインタクーラを介してエンジンへ送給する過給機付内燃機関において、エンジン排気経路のタービンよりも上流側からエンジン吸気経路のコンプレッサよりも下流側へ至るEGR管路を設け、エンジン吸気経路へ向けて排気を圧送可能な送風手段をEGR管路に組み込んでいる。   In order to achieve the above object, an invention according to claim 1 is provided with an engine and a turbocharger, the turbine of the turbocharger is operated by the exhaust of the engine, and the intake air compressed by the compressor of the turbocharger is passed through the intercooler. In an internal combustion engine with a turbocharger that delivers to the engine, an EGR pipe is provided from the upstream side of the turbine in the engine exhaust path to the downstream side of the compressor in the engine intake path, and exhaust can be pumped toward the engine intake path. A simple air blowing means is incorporated in the EGR pipe.

請求項2に記載の発明は、モータ駆動の気体圧縮機を送風手段に用いている。
請求項3に記載の発明は、電力回生手段を気体圧縮機に装備させている。
請求項4に記載の発明は、送風手段を経ずにエンジン吸気経路へ排気を導き得るバイパス流路をEGR管路に付帯させている。
The invention described in claim 2 uses a motor-driven gas compressor as the blowing means.
According to a third aspect of the present invention, the gas compressor is equipped with power regeneration means.
According to a fourth aspect of the present invention, a bypass passage that can guide exhaust to the engine intake path without passing through the air blowing means is attached to the EGR pipe.

請求項1に記載の発明においては、EGR管路を流通する排気に対して送風手段により圧力を付与し、エンジン排気経路の圧力を高めずに、エンジン吸気経路へ還流すべき排気の流量を増加させる。   In the first aspect of the present invention, pressure is applied to the exhaust gas flowing through the EGR pipe by the blowing means, and the flow rate of the exhaust gas to be recirculated to the engine intake path is increased without increasing the pressure of the engine exhaust path. Let

請求項2に記載の発明においては、エンジン吸気経路へ還流すべき排気の流量を、気体圧縮機によって速やかに増加させる。   In the invention according to claim 2, the flow rate of the exhaust gas to be recirculated to the engine intake path is quickly increased by the gas compressor.

請求項3に記載の発明においては、非駆動時に気体圧縮機が排気から得る運動エネルギを電力回生手段によって電力に変換する。   In the third aspect of the invention, the kinetic energy obtained from the exhaust gas by the gas compressor when not driven is converted into electric power by the electric power regeneration means.

請求項4に記載の発明においては、送風手段による排気還流の助勢を必要としない場合に、排気をバイパス流路によってエンジン吸気経路へ流入させる。   According to the fourth aspect of the present invention, the exhaust gas is caused to flow into the engine intake path by the bypass flow path when the exhaust gas recirculation assistance by the air blowing means is not required.

(1)請求項1に記載の発明では、送風手段によりエンジン吸気経路へ還流すべき排気の圧力を増加させて、低速高負荷運転領域でエンジンが稼働するときのコンプレッサへの通過気体流量を減らさずに、エンジン吸気経路に還流する排気を増やすことができるので、コンプレッサのサージを防止することができ、また、高速運転領域でエンジンが稼働するときのポンピングロスが解消されるので、燃料消費を軽減できる。   (1) In the first aspect of the present invention, the pressure of exhaust gas to be recirculated to the engine intake path is increased by the blowing means to reduce the flow rate of gas passing to the compressor when the engine is operated in the low speed and high load operation region. Therefore, it is possible to increase the amount of exhaust gas recirculated into the engine intake path, thereby preventing surges in the compressor and eliminating the pumping loss when the engine is operating in the high-speed operation region. Can be reduced.

(2)請求項2に記載の発明では、気体圧縮機によりエンジン吸気流路への排気還流量を、エンジンの回転数上昇に追従して速やかに増加させることができるので、車両加速時にもNOxを効果的に低減できる。   (2) In the invention described in claim 2, since the exhaust gas recirculation amount to the engine intake flow path can be increased rapidly following the increase in the engine speed by the gas compressor, NOx can be increased even during vehicle acceleration. Can be effectively reduced.

(3)請求項3に記載の発明では、気体圧縮機が排気から得た運動エネルギを、電力に変換して有効に活用することができる。   (3) In the invention described in claim 3, the kinetic energy obtained from the exhaust gas by the gas compressor can be converted into electric power and effectively utilized.

(4)請求項4に記載の発明では、気体圧縮機による排気還流の助勢を必要としない際には、排気をバイパス流路からエンジン吸気経路へ導いて流路抵抗の増大を回避することができる。   (4) In the invention according to claim 4, when it is not necessary to assist the exhaust gas recirculation by the gas compressor, the exhaust is led from the bypass flow path to the engine intake path to avoid an increase in the flow path resistance. it can.

以下、本発明の実施の形態を図面に基づき説明する。
図1は本発明の過給機付内燃機関の実施の形態の一例であり、図中、図2と同一の符号を付した部分は同一物を表わしている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of an embodiment of an internal combustion engine with a supercharger according to the present invention. In the figure, the same reference numerals as those in FIG. 2 denote the same components.

この過給機付内燃機関では、排気マニホールド6に、EGRクーラ14、開閉弁28、遠心式などの非容積形のコンプレッサ17、並びにEGRバルブ15を直列に組み込んだEGR管路18の上流端を接続し、吸気管12のインタクーラ11よりも下流側個所に、EGR管路18の下流端を接続している。
EGR管路18には、コンプレッサ17の入口側と出口側とを結び且つ切換バルブ19を有するバイパス流路20が付帯している。
In this internal combustion engine with a supercharger, an upstream end of an EGR pipe line 18 in which an EGR cooler 14, an on-off valve 28, a non-volumetric compressor 17 such as a centrifugal type, and an EGR valve 15 are incorporated in series in an exhaust manifold 6 is provided. The downstream end of the EGR pipe line 18 is connected to a location downstream of the intercooler 11 of the intake pipe 12.
The EGR pipe line 18 is accompanied by a bypass flow path 20 that connects the inlet side and the outlet side of the compressor 17 and has a switching valve 19.

これに加えて、コンプレッサ17を駆動するモータ21、排気マニホールド6の圧力を検出する圧力センサ22、アクセル開度をエンジン1の負荷して検出するアクセルセンサ23、エンジン1の回転数を検出する回転センサ24、吸気Aの流入量と温度を検出する吸気センサ25、インタクーラ11の出口側の圧力を検出する圧力センサ26、及び燃料噴射制御、EGRバルブ15の開度調整、切換バルブ19,28の開閉などを行なう制御ユニット(ECU:Electronic Control Unit)27を有している。   In addition to this, a motor 21 for driving the compressor 17, a pressure sensor 22 for detecting the pressure of the exhaust manifold 6, an accelerator sensor 23 for detecting the accelerator opening by loading the engine 1, and a rotation for detecting the rotational speed of the engine 1 A sensor 24, an intake sensor 25 that detects the inflow amount and temperature of the intake air A, a pressure sensor 26 that detects the pressure on the outlet side of the intercooler 11, fuel injection control, opening adjustment of the EGR valve 15, switching valves 19, 28 A control unit (ECU: Electronic Control Unit) 27 for opening and closing is provided.

制御ユニット27は、
A.圧力センサ22で得た排気マニホールド6の圧力が所定値(ポンピングロスの増加が顕著になる値)を上回ったときに、EGR管路18から吸気管12への排気Gの還流量が増えるようにモータ21を作動させ、これと同時に切換バルブ19を閉じた状態にし且つ切換バルブ28を開いた状態にする機能、
B.アクセルセンサ23で得たアクセル開度、圧力センサ26で得たインタクーラ11の出口側の圧力、回転センサ24で得たエンジン1の回転数、吸気センサ25で得た吸気Aの流入量、及び燃料噴射量などに基づき、車両の加速に伴って要求される排気Gの還流量を算出し、当該算出値に見合う量の排気Gがエンジン1の回転数上昇に追従して速やかに還流するようにモータ21を作動させる機能、
C.モータ21が稼働していないときに、排気Gがコンプレッサ17を迂回して流通するように切換バルブ19を開いた状態にし且つ切換バルブ28を閉じた状態にする機能、
を具備している。
The control unit 27 is
A. When the pressure of the exhaust manifold 6 obtained by the pressure sensor 22 exceeds a predetermined value (a value at which an increase in pumping loss becomes remarkable), the recirculation amount of the exhaust G from the EGR pipe 18 to the intake pipe 12 is increased. A function of operating the motor 21 and simultaneously closing the switching valve 19 and opening the switching valve 28;
B. The accelerator opening obtained by the accelerator sensor 23, the pressure on the outlet side of the intercooler 11 obtained by the pressure sensor 26, the rotational speed of the engine 1 obtained by the rotation sensor 24, the inflow amount of the intake air A obtained by the intake sensor 25, and the fuel Based on the injection amount or the like, the recirculation amount of the exhaust G required as the vehicle is accelerated is calculated, and the exhaust G having an amount corresponding to the calculated value is quickly recirculated following the increase in the rotational speed of the engine 1. The function of operating the motor 21,
C. A function of opening the switching valve 19 and closing the switching valve 28 so that the exhaust G flows around the compressor 17 when the motor 21 is not operating;
It has.

図1に示す過給機付内燃機関では、エンジン1の稼働時に排気マニホールド6の圧力が所定値を上回ると、A項の機能によりコンプレッサ17の駆動用のモータ21が作動し、EGR管路18から吸気マニホールド13へ還流すべき排気Gの流量が増え、燃焼温度の低下が図られ、NOxの発生が低減することになる。   In the supercharged internal combustion engine shown in FIG. 1, when the pressure of the exhaust manifold 6 exceeds a predetermined value during operation of the engine 1, the motor 21 for driving the compressor 17 is activated by the function of A term, and the EGR line 18 Therefore, the flow rate of the exhaust gas G to be returned to the intake manifold 13 is increased, the combustion temperature is lowered, and the generation of NOx is reduced.

すなわち、エンジン1が低速高負荷運転領域が稼働している場合は、流路断面調整機構などによりタービン3へ送給される排気Gの流量を抑える行為によりターボチャージャ2のコンプレッサ4の吸気Aの通過流量を減らさなくても、エンジン1へ還流すべき排気Gが増え、コンプレッサ4のサージの発生を防止することができる。
また、エンジン1が高速運転領域で稼働している場合は、ポンピングロスがなくなり、燃料消費を減らすことができる。
That is, when the engine 1 is operating in the low-speed and high-load operation region, the action of suppressing the flow rate of the exhaust G fed to the turbine 3 by a flow path cross-section adjusting mechanism or the like causes the intake A of the compressor 4 of the turbocharger 2 to Even if the passage flow rate is not reduced, the amount of exhaust G to be recirculated to the engine 1 increases, and the occurrence of surge in the compressor 4 can be prevented.
Further, when the engine 1 is operating in the high speed operation region, there is no pumping loss, and fuel consumption can be reduced.

車両が加速するときには、B項の機能によりコンプレッサ17の駆動用のモータ21が作動し、EGR管路18から吸気マニホールド13へ還流すべき排気Gの流量が、前述の算出値に見合うようにエンジン1の回転数上昇に追従して増え、これにより、車両加速時にもNOxを効果的に低減できる。   When the vehicle accelerates, the motor 21 for driving the compressor 17 is actuated by the function of the B term, and the engine G so that the flow rate of the exhaust gas G to be recirculated from the EGR pipe line 18 to the intake manifold 13 matches the calculated value. This increases following the increase in the rotational speed of 1, so that NOx can be effectively reduced even during vehicle acceleration.

コンプレッサ17の駆動用のモータ21が作動していないときには、C項の機能により切換バルブ19が開き且つ切換バルブ28が閉じるため、バイパス流路20を経た排気Gが吸気管12から吸気マニホールド13へ流入する。
すなわち、排気Gの還流の助勢を必要としない場合には、排気Gがコンプレッサ17を迂回し、流路抵抗の増大を回避することができる。
When the motor 21 for driving the compressor 17 is not operating, the switching valve 19 is opened and the switching valve 28 is closed by the function of the term C, so that the exhaust G that has passed through the bypass flow path 20 passes from the intake pipe 12 to the intake manifold 13. Inflow.
That is, when it is not necessary to assist the recirculation of the exhaust gas G, the exhaust gas G can bypass the compressor 17 and an increase in flow resistance can be avoided.

更に、インバータとバッテリなどで構成した電力回生手段をモータ21に装備し、C項の機能に代えて、EGR管路18を流れる排気Gによりコンプレッサ17を介してモータ21を駆動する構成を採用すれば、排気Gから得た運動エネルギを、電力に変換して有効に活用することができる。   Furthermore, the motor 21 is equipped with power regeneration means composed of an inverter and a battery, and instead of the function of the C term, the motor 21 is driven via the compressor 17 by the exhaust G flowing through the EGR pipe line 18. For example, the kinetic energy obtained from the exhaust G can be converted into electric power and used effectively.

なお、本発明の過給機付内燃機関は上述した実施の形態のみに限定されるものではなく、EGR管路に開閉弁を組み込まずにバイパス管路の開閉弁だけで排気流路の切り換えを行なう構成とすること、その他、本発明の要旨を逸脱しない範囲において変更を加え得ることは勿論である。   The supercharger-equipped internal combustion engine of the present invention is not limited to the above-described embodiment, and the exhaust flow path can be switched only by the open / close valve of the bypass line without incorporating the open / close valve in the EGR line. Of course, it is possible to make changes within a range that does not depart from the gist of the present invention.

本発明の過給機付内燃機関は、車両用のディーゼルエンジンをはじめとして各種の内燃機関に適用できる。   The supercharged internal combustion engine of the present invention can be applied to various internal combustion engines including a diesel engine for vehicles.

本発明の過給機付内燃機関の実施の形態の一例を示す概念図である。It is a conceptual diagram which shows an example of embodiment of the internal combustion engine with a supercharger of this invention. 従来の過給機付内燃機関の一例を示す概念図である。It is a conceptual diagram which shows an example of the conventional internal combustion engine with a supercharger.

符号の説明Explanation of symbols

1 エンジン
2 ターボチャージャ
3 タービン
4 コンプレッサ
6 排気マニホールド(エンジン排気経路)
11 インタクーラ
12 吸気管(エンジン吸気経路)
17 コンプレッサ(送風手段)
18 EGR管路
20 バイパス管路
21 モータ
A 吸気
G 排気
1 Engine 2 Turbocharger 3 Turbine 4 Compressor 6 Exhaust manifold (engine exhaust path)
11 Intercooler 12 Intake pipe (engine intake path)
17 Compressor (air blowing means)
18 EGR line 20 Bypass line 21 Motor A Intake G Exhaust

Claims (4)

エンジンとターボチャージャを備え、該ターボチャージャのタービンをエンジンの排気で作動させ且つターボチャージャのコンプレッサが圧縮した吸気をインタクーラを介してエンジンへ送給する過給機付内燃機関において、エンジン排気経路のタービンよりも上流側からエンジン吸気経路のコンプレッサよりも下流側へ至るEGR管路を設け、エンジン吸気経路へ向けて排気を圧送可能な送風手段をEGR管路に組み込んだことを特徴とする過給機付内燃機関。   An internal combustion engine with a supercharger comprising an engine and a turbocharger, wherein the turbocharger turbine is operated by engine exhaust and the intake air compressed by the turbocharger compressor is supplied to the engine via an intercooler. The supercharging system is characterized in that an EGR pipe line is provided from the upstream side of the turbine to the downstream side of the compressor in the engine intake path, and a blowing means capable of pumping exhaust gas toward the engine intake path is incorporated in the EGR pipe. Internal combustion engine with a machine. モータ駆動の気体圧縮機を送風手段に用いた請求項1に記載の過給機付内燃機関。   The internal combustion engine with a supercharger according to claim 1, wherein a motor-driven gas compressor is used as a blowing means. 電力回生手段を気体圧縮機に装備させた請求項2に記載の過給機付内燃機関。   The internal combustion engine with a supercharger according to claim 2, wherein a power regeneration means is provided in the gas compressor. 送風手段を経ずにエンジン吸気経路へ排気を導き得るバイパス流路をEGR管路に付帯させた請求項1に記載の過給機付内燃機関。   The supercharger-equipped internal combustion engine according to claim 1, wherein a bypass passage capable of guiding exhaust gas to the engine intake passage without passing through the air blowing means is attached to the EGR pipe.
JP2003429512A 2003-12-25 2003-12-25 Internal combustion engine with supercharger Pending JP2005188359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003429512A JP2005188359A (en) 2003-12-25 2003-12-25 Internal combustion engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003429512A JP2005188359A (en) 2003-12-25 2003-12-25 Internal combustion engine with supercharger

Publications (1)

Publication Number Publication Date
JP2005188359A true JP2005188359A (en) 2005-07-14

Family

ID=34788147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003429512A Pending JP2005188359A (en) 2003-12-25 2003-12-25 Internal combustion engine with supercharger

Country Status (1)

Country Link
JP (1) JP2005188359A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167827A (en) * 2008-01-11 2009-07-30 Toyota Motor Corp Supercharging system of internal combustion engine
WO2011065447A1 (en) 2009-11-27 2011-06-03 三菱重工業株式会社 Exhaust gas treatment device
CN102242670A (en) * 2010-05-10 2011-11-16 曼柴油机欧洲股份公司曼柴油机德国分公司 Large-sized two-stroke diesel engine having exhaust gas purifying system
JP2013505392A (en) * 2009-09-23 2013-02-14 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Internal combustion engine
KR20140073984A (en) * 2012-12-07 2014-06-17 현대자동차주식회사 Device and method for detecting surface defects of shaft
JP2016113895A (en) * 2014-12-11 2016-06-23 日野自動車株式会社 EGR system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167827A (en) * 2008-01-11 2009-07-30 Toyota Motor Corp Supercharging system of internal combustion engine
US8720202B2 (en) 2009-09-23 2014-05-13 Robert Bosch Gmbh Internal combustion engine
JP2013505392A (en) * 2009-09-23 2013-02-14 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Internal combustion engine
KR101373454B1 (en) * 2009-11-27 2014-03-13 미츠비시 쥬고교 가부시키가이샤 Exhaust gas treatment device
WO2011065447A1 (en) 2009-11-27 2011-06-03 三菱重工業株式会社 Exhaust gas treatment device
JP2011112006A (en) * 2009-11-27 2011-06-09 Mitsubishi Heavy Ind Ltd Exhaust gas treatment device
CN102597479A (en) * 2009-11-27 2012-07-18 三菱重工业株式会社 Exhaust gas treatment device
CN103216298A (en) * 2010-05-10 2013-07-24 曼柴油机欧洲股份公司曼柴油机德国分公司 Large two-stroke diesel engine with an exhaust gas purification system
CN102242670A (en) * 2010-05-10 2011-11-16 曼柴油机欧洲股份公司曼柴油机德国分公司 Large-sized two-stroke diesel engine having exhaust gas purifying system
CN103216298B (en) * 2010-05-10 2016-08-24 曼柴油机欧洲股份公司曼柴油机德国分公司 There is the large-sized two-stroke diesel engine of waste gas cleaning system
KR20140073984A (en) * 2012-12-07 2014-06-17 현대자동차주식회사 Device and method for detecting surface defects of shaft
KR101865719B1 (en) * 2012-12-07 2018-06-08 현대자동차 주식회사 Device and method for detecting surface defects of shaft
JP2016113895A (en) * 2014-12-11 2016-06-23 日野自動車株式会社 EGR system

Similar Documents

Publication Publication Date Title
JP4134816B2 (en) Turbocharged engine
JP4741678B2 (en) Diesel engine with supercharger
JP5527486B2 (en) Ventilation control device for internal combustion engine
JP4525544B2 (en) Internal combustion engine with a supercharger
US20050188693A1 (en) Internal combustion engine comprising a compressor in the induction tract
US6883324B2 (en) Control apparatus and control method for internal combustion engine
JP2006097591A (en) Internal combustion engine with supercharger
WO2014208221A1 (en) Diesel engine and method of controlling same
JP2013108479A (en) Diesel engine
JP6060492B2 (en) Internal combustion engine and control method thereof
JP2009174493A (en) Supercharging device of diesel engine
JP2010255525A (en) Internal combustion engine and method for controlling the same
JP2007127070A (en) Internal combustion engine with supercharger
JP2008075589A (en) Egr gas scavenging device for internal combustion engine
JP2005009314A (en) Supercharger for engine
JP4511845B2 (en) Internal combustion engine with a supercharger
JP2016188607A (en) Internal combustion engine and supercharging method for the same
JP2005188359A (en) Internal combustion engine with supercharger
WO2004104390A1 (en) A turbocharger apparatus
JP6642321B2 (en) engine
JP2012158997A (en) Internal combustion engine control device
JP4206934B2 (en) Supercharging system for internal combustion engines
US10890129B1 (en) High pressure loop exhaust gas recirculation and twin scroll turbocharger flow control
JP2014148940A (en) Control device of internal combustion engine with supercharger
JP5757709B2 (en) Internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106