JP5344312B2 - Abnormality diagnosis device for fuel supply system of internal combustion engine - Google Patents

Abnormality diagnosis device for fuel supply system of internal combustion engine Download PDF

Info

Publication number
JP5344312B2
JP5344312B2 JP2010093583A JP2010093583A JP5344312B2 JP 5344312 B2 JP5344312 B2 JP 5344312B2 JP 2010093583 A JP2010093583 A JP 2010093583A JP 2010093583 A JP2010093583 A JP 2010093583A JP 5344312 B2 JP5344312 B2 JP 5344312B2
Authority
JP
Japan
Prior art keywords
pressure
fuel
low
pressure pump
discharge amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010093583A
Other languages
Japanese (ja)
Other versions
JP2011220313A (en
Inventor
向井  弥寿夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010093583A priority Critical patent/JP5344312B2/en
Publication of JP2011220313A publication Critical patent/JP2011220313A/en
Application granted granted Critical
Publication of JP5344312B2 publication Critical patent/JP5344312B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、低圧ポンプから吐出される燃料を高圧ポンプに供給し、この高圧ポンプから吐出される燃料を燃料噴射弁に供給する内燃機関の燃料供給システムの異常診断装置に関する発明である。   The present invention relates to an abnormality diagnosis device for a fuel supply system of an internal combustion engine that supplies fuel discharged from a low pressure pump to a high pressure pump and supplies fuel discharged from the high pressure pump to a fuel injection valve.

気筒内に燃料を直接噴射する筒内噴射式エンジンは、吸気ポートに燃料を噴射する吸気ポート噴射式エンジンと比較して、噴射から燃焼までの時間が短く、噴射燃料を霧化させる時間を十分に稼ぐことができないため、噴射圧力を高圧にして噴射燃料を微粒化する必要がある。そのため、筒内噴射式エンジンでは、電動式の低圧ポンプで燃料タンクから汲み上げた燃料を、エンジンのカム軸で駆動される高圧ポンプに供給し、この高圧ポンプから吐出される高圧の燃料を燃料噴射弁へ圧送するようにしている。   An in-cylinder injection engine that directly injects fuel into a cylinder has a shorter time from injection to combustion and sufficient time to atomize the injected fuel compared to an intake port injection engine that injects fuel into an intake port. Therefore, it is necessary to atomize the injected fuel by increasing the injection pressure. For this reason, in a cylinder injection engine, fuel pumped up from a fuel tank by an electric low-pressure pump is supplied to a high-pressure pump driven by the camshaft of the engine, and high-pressure fuel discharged from the high-pressure pump is injected into the fuel. It is trying to pump to the valve.

一般に、筒内噴射式エンジンでは、高圧ポンプから燃料噴射弁に高圧の燃料を供給する高圧燃料系内の燃圧(燃料圧力)を検出する燃圧センサを設け、この燃圧センサで検出した高圧燃料系内の燃圧を目標燃圧に一致させるように高圧ポンプの吐出量をフィードバック制御するようにしている。   Generally, in-cylinder injection engines are provided with a fuel pressure sensor that detects a fuel pressure (fuel pressure) in a high-pressure fuel system that supplies high-pressure fuel from a high-pressure pump to a fuel injection valve. The discharge amount of the high-pressure pump is feedback-controlled so that the fuel pressure of the fuel becomes equal to the target fuel pressure.

このような燃料供給システムの異常診断技術としては、例えば、特許文献1(特許第3958839号公報)に記載されているように、高圧ポンプの停止中(エンジン停止中)に低圧ポンプを作動させて高圧燃料系内の燃圧を低圧燃料系内の燃圧と等しくし、この状態で燃圧センサで検出した高圧燃料系内の燃圧(=低圧燃料系内の燃圧)に基づいて低圧燃料系の異常診断を行うようにしたものがある。   As such a fuel supply system abnormality diagnosis technique, for example, as described in Patent Document 1 (Japanese Patent No. 3958839), the low pressure pump is operated while the high pressure pump is stopped (the engine is stopped). Make the fuel pressure in the high-pressure fuel system equal to the fuel pressure in the low-pressure fuel system, and diagnose the abnormality of the low-pressure fuel system based on the fuel pressure in the high-pressure fuel system (= fuel pressure in the low-pressure fuel system) detected by the fuel pressure sensor in this state. There is something to do.

特許第3958839号公報(第2頁等)Japanese Patent No. 3958839 (second page, etc.)

しかし、上記特許文献1の技術では、高圧ポンプの停止中(エンジン停止中)に低圧ポンプを作動させて高圧燃料系内の燃圧を低圧燃料系内の燃圧と等しくした状態で低圧燃料系の異常診断を行うものであるため、高圧ポンプの作動中には低圧燃料系の異常診断を行うことができない。しかも、高圧ポンプの停止直後は、まだ高圧燃料系内の燃圧が低圧燃料系内の燃圧よりも高いため、高圧ポンプの停止後に高圧燃料系内の燃圧が低圧燃料系内の燃圧付近に低下するまで待ってからでないと、低圧燃料系の異常診断を行うことができない。このため、低圧燃料系の異常診断の実行頻度をあまり高くすることができず、低圧燃料系の異常が発生した場合に、その異常を早期に検出できない可能性がある。   However, in the technique of Patent Document 1 described above, an abnormality in the low-pressure fuel system occurs when the low-pressure pump is operated while the high-pressure pump is stopped (while the engine is stopped) and the fuel pressure in the high-pressure fuel system is equal to the fuel pressure in the low-pressure fuel system. Since the diagnosis is performed, the abnormality diagnosis of the low-pressure fuel system cannot be performed while the high-pressure pump is operating. Moreover, immediately after the high-pressure pump is stopped, the fuel pressure in the high-pressure fuel system is still higher than the fuel pressure in the low-pressure fuel system. Therefore, after the high-pressure pump is stopped, the fuel pressure in the high-pressure fuel system drops to near the fuel pressure in the low-pressure fuel system. It is necessary to wait until the low-pressure fuel system abnormality is diagnosed. For this reason, the execution frequency of the abnormality diagnosis of the low-pressure fuel system cannot be made very high, and when the abnormality of the low-pressure fuel system occurs, the abnormality may not be detected early.

そこで、本発明が解決しようとする課題は、高圧ポンプの作動中に低圧燃料系の異常診断を行うことができ、低圧燃料系の異常が発生した場合に、その異常を早期に検出することができる内燃機関の燃料供給システムの異常診断装置を提供することにある。   Therefore, the problem to be solved by the present invention is that it is possible to perform abnormality diagnosis of the low-pressure fuel system during operation of the high-pressure pump, and to detect the abnormality early when a low-pressure fuel system abnormality occurs. An object of the present invention is to provide an abnormality diagnosis device for a fuel supply system of an internal combustion engine.

上記課題を解決するために、請求項1に係る発明は、低圧ポンプから吐出される燃料を高圧ポンプに供給し、この高圧ポンプから吐出される燃料を燃料噴射弁に供給する内燃機関の燃料供給システムに適用され、高圧ポンプから燃料噴射弁に燃料を供給する高圧燃料系内の燃料の圧力(以下「燃圧」という)を検出する燃圧検出手段と、燃圧検出手段で検出した高圧燃料系内の燃圧を目標燃圧に一致させるように高圧ポンプをフィードバック制御する高圧側燃圧フィードバック制御を実行する燃圧制御手段とを備えた内燃機関の燃料供給システムの異常診断装置において、高圧側燃圧フィードバック制御の実行中に低圧ポンプの吐出量を強制的に変化させる低圧ポンプ吐出量強制変化制御を実行し、該低圧ポンプ吐出量強制変化制御を実行したときの高圧側燃圧フィードバック制御の制御状態に基づいて、低圧ポンプから高圧ポンプに燃料を供給する低圧燃料系の異常の有無を判定する異常診断手段とを備えた構成としたものである。   In order to solve the above-mentioned problem, the invention according to claim 1 is directed to a fuel supply for an internal combustion engine that supplies fuel discharged from a low-pressure pump to a high-pressure pump and supplies fuel discharged from the high-pressure pump to a fuel injection valve. A fuel pressure detecting means for detecting fuel pressure (hereinafter referred to as “fuel pressure”) in the high pressure fuel system that is applied to the system and supplying fuel from the high pressure pump to the fuel injection valve; and in the high pressure fuel system detected by the fuel pressure detecting means An abnormality diagnosis device for a fuel supply system of an internal combustion engine having a high-pressure side fuel pressure feedback control for performing high-pressure side fuel pressure feedback control to feedback-control a high-pressure pump so that the fuel pressure matches a target fuel pressure. The low-pressure pump discharge amount forced change control for forcibly changing the discharge amount of the low-pressure pump is executed, and the low-pressure pump discharge amount forced change control is executed. Based on the control state of the high pressure side fuel pressure feedback control when, is obtained by a structure in which a diagnosis means for determining the presence or absence of an abnormality in the low-pressure fuel system that supplies fuel from the low pressure pump to the high pressure pump.

高圧側燃圧フィードバック制御の実行中に、低圧ポンプの吐出量を強制的に変化させる低圧ポンプ吐出量強制変化制御を実行すると、それに伴って高圧燃料系内の燃圧が変化して高圧側燃圧フィードバック制御の制御状態(例えばフィードバック補正値等)が変化するが、その際、低圧燃料系(例えば低圧ポンプ等)の異常時には、高圧側燃圧フィードバック制御の制御状態が低圧燃料系の正常時とは異なってくる。従って、高圧側燃圧フィードバック制御の実行中に低圧ポンプ吐出量強制変化制御を実行したときの高圧側燃圧フィードバック制御の制御状態を監視すれば、低圧燃料系の異常の有無を精度良く判定することができる。このようにすれば、高圧ポンプの作動中に低圧燃料系の異常診断を行うことができるため、低圧燃料系の異常診断の実行頻度を十分に高くすることができ、低圧燃料系の異常が発生した場合に、その異常を早期に検出することができる。   If the low pressure pump discharge amount forced change control that forcibly changes the discharge amount of the low pressure pump during execution of the high pressure side fuel pressure feedback control, the fuel pressure in the high pressure fuel system changes accordingly, and the high pressure side fuel pressure feedback control Control state (for example, feedback correction value, etc.) changes, but when the low-pressure fuel system (for example, low-pressure pump) is abnormal, the control state of the high-pressure side fuel pressure feedback control is different from that when the low-pressure fuel system is normal. come. Therefore, by monitoring the control state of the high-pressure side fuel pressure feedback control when the low-pressure pump discharge amount forced change control is executed during the execution of the high-pressure side fuel pressure feedback control, it is possible to accurately determine whether there is an abnormality in the low-pressure fuel system. it can. In this way, the abnormality diagnosis of the low-pressure fuel system can be performed during the operation of the high-pressure pump, so that the frequency of executing the abnormality diagnosis of the low-pressure fuel system can be sufficiently increased, and an abnormality of the low-pressure fuel system occurs. In such a case, the abnormality can be detected at an early stage.

この場合、請求項2のように、低圧ポンプ吐出量強制変化制御の際に低圧ポンプの吐出量を強制的に増加又は減少させるようにすると良い。例えば、低圧ポンプの吐出量を強制的に増加させる低圧ポンプ吐出量強制変化制御を実行したにも拘らず、高圧側燃圧フィードバック制御の制御状態の変化が小さい場合には、低圧燃料系の異常(例えば低圧ポンプから高圧ポンプに供給する燃圧が正常に上昇しない燃圧低下異常)有りと判断できる。一方、低圧ポンプの吐出量を強制的に減少させる低圧ポンプ吐出量強制変化制御を実行したにも拘らず、高圧側燃圧フィードバック制御の制御状態の変化が小さい場合には、低圧燃料系の異常(例えば低圧ポンプから高圧ポンプに供給する燃圧が正常に低下しない燃圧上昇異常)有りと判断できる。   In this case, it is preferable to forcibly increase or decrease the discharge amount of the low pressure pump during the low pressure pump discharge amount forced change control. For example, if the change in the control state of the high-pressure side fuel pressure feedback control is small despite the low-pressure pump discharge amount forced change control for forcibly increasing the discharge amount of the low-pressure pump, For example, it can be determined that the fuel pressure supplied from the low-pressure pump to the high-pressure pump does not increase normally. On the other hand, when the change in the control state of the high-pressure side fuel pressure feedback control is small despite the execution of the low-pressure pump discharge amount forced change control for forcibly reducing the discharge amount of the low-pressure pump, an abnormality in the low-pressure fuel system ( For example, it can be determined that there is a fuel pressure increase abnormality in which the fuel pressure supplied from the low pressure pump to the high pressure pump does not drop normally.

ところで、低圧ポンプ吐出量強制変化制御によって高圧燃料系内の燃圧(燃料噴射弁に供給する燃圧)が大きく変化し過ぎると、燃料噴射制御精度が低下して、排気エミッションが悪化する可能性がある。   By the way, if the fuel pressure in the high-pressure fuel system (fuel pressure supplied to the fuel injection valve) changes too much due to the forced change control of the low-pressure pump discharge amount, the fuel injection control accuracy may deteriorate and exhaust emissions may deteriorate. .

そこで、請求項3のように、低圧ポンプ吐出量強制変化制御によって発生する高圧燃料系内の燃圧変化を抑制する方向に予め高圧ポンプの制御量を補正するようにしても良い。このようにすれば、低圧ポンプ吐出量強制変化制御による高圧燃料系内の燃圧変化を抑制することができ、これにより、燃料噴射制御精度の低下を防止して、排気エミッションの悪化を防止することができる。   Therefore, as described in claim 3, the control amount of the high-pressure pump may be corrected in advance so as to suppress the fuel pressure change in the high-pressure fuel system generated by the low-pressure pump discharge amount forced change control. In this way, it is possible to suppress a change in the fuel pressure in the high-pressure fuel system due to the forced change control of the discharge amount of the low-pressure pump, thereby preventing the deterioration of the fuel injection control accuracy and the deterioration of the exhaust emission. Can do.

また、請求項4のように、異常診断手段により低圧燃料系の異常有りと判定された場合に低圧ポンプの吐出量を通常時(低圧燃料系の正常時)よりも減少させるフェールセーフ制御手段を備えた構成としても良い。このようにすれば、低圧燃料系の異常によって低圧燃料系内や高圧燃料系内の燃圧が異常に高圧になることを防止することができる。   Further, as in claim 4, there is provided fail-safe control means for reducing the discharge amount of the low-pressure pump from the normal time (when the low-pressure fuel system is normal) when the abnormality diagnosis means determines that there is an abnormality in the low-pressure fuel system. It is good also as a structure provided. In this way, it is possible to prevent the fuel pressure in the low-pressure fuel system or the high-pressure fuel system from becoming abnormally high due to an abnormality in the low-pressure fuel system.

図1は本発明の実施例1における筒内噴射式エンジンの燃料供給システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a fuel supply system for a direct injection engine according to Embodiment 1 of the present invention. 図2は実施例1の異常診断ルーチンの処理の流れを説明するフローチャートである。FIG. 2 is a flowchart for explaining the flow of processing of the abnormality diagnosis routine of the first embodiment. 図3はフェールセーフ制御ルーチンの処理の流れを説明するフローチャートである。FIG. 3 is a flowchart for explaining the flow of processing of the fail-safe control routine. 図4は実施例2の異常診断ルーチンの処理の流れを説明するフローチャートである。FIG. 4 is a flowchart for explaining the flow of processing of the abnormality diagnosis routine of the second embodiment. 図5は実施例3の異常診断ルーチンの処理の流れを説明するフローチャートである。FIG. 5 is a flowchart for explaining the flow of processing of the abnormality diagnosis routine of the third embodiment. 図6は実施例4の異常診断ルーチンの処理の流れを説明するフローチャートである。FIG. 6 is a flowchart for explaining the flow of processing of the abnormality diagnosis routine of the fourth embodiment.

以下、本発明を実施するための形態を具体化した幾つかの実施例を説明する。   Hereinafter, some embodiments embodying the mode for carrying out the present invention will be described.

本発明の実施例1を図1乃至図3に基づいて説明する。
まず、図1に基づいて筒内噴射式のエンジン(内燃機関)の燃料供給システム全体の概略構成を説明する。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire fuel supply system of an in-cylinder injection engine (internal combustion engine) will be described with reference to FIG.

燃料を貯溜する燃料タンク11内には、燃料を汲み上げる低圧ポンプ12が設置されている。この低圧ポンプ12は、バッテリ(図示せず)を電源とする電動モータ(図示せず)によって駆動される。低圧ポンプ12は、駆動電圧をデューティ制御することで吐出量を連続的に変化可能なポンプを用いても良いし、或は、駆動電圧を複数段階に切り換えることで吐出量を複数段階(例えば3段階)に切り換え可能なポンプを用いても良い。   A low pressure pump 12 that pumps up the fuel is installed in the fuel tank 11 that stores the fuel. The low-pressure pump 12 is driven by an electric motor (not shown) that uses a battery (not shown) as a power source. The low-pressure pump 12 may use a pump that can continuously change the discharge amount by duty-controlling the drive voltage, or the discharge amount may be changed to a plurality of levels (for example, 3) by switching the drive voltage to a plurality of levels. A pump that can be switched to a stage) may be used.

この低圧ポンプ12から吐出される燃料は、燃料配管13を通して高圧ポンプ14に供給される。燃料配管13には、プレッシャレギュレータ15が接続され、このプレッシャレギュレータ15によって低圧ポンプ12の吐出圧力(高圧ポンプ14への燃料供給圧力)が所定圧力に調圧され、その圧力を越える燃料の余剰分が燃料戻し管16により燃料タンク11内に戻されるようになっている。   The fuel discharged from the low pressure pump 12 is supplied to the high pressure pump 14 through the fuel pipe 13. A pressure regulator 15 is connected to the fuel pipe 13, and the pressure regulator 15 regulates the discharge pressure of the low-pressure pump 12 (fuel supply pressure to the high-pressure pump 14) to a predetermined pressure. Is returned to the fuel tank 11 by the fuel return pipe 16.

高圧ポンプ14は、円筒状のポンプ室18内でピストン19を往復運動させて燃料を吸入/吐出するピストンポンプであり、ピストン19は、エンジンのカム軸20に嵌着されたカム21の回転運動によって駆動される。このカム21は、例えば、2つのカム山を有する2山カムを用いるようにしても良いが、これに限定されず、3つのカム山を有する3山カムや4つのカム山を有する4山カムを用いるようにしても良い。   The high-pressure pump 14 is a piston pump that reciprocates a piston 19 in a cylindrical pump chamber 18 and sucks / discharges fuel. The piston 19 rotates by a cam 21 fitted to a camshaft 20 of the engine. Driven by. For example, a double mountain cam having two cam peaks may be used as the cam 21, but the cam 21 is not limited to this, and a three mountain cam having three cam peaks and a four mountain cam having four cam peaks are used. May be used.

この高圧ポンプ14の吸入口22側には、燃圧制御弁23が設けられている。この燃圧制御弁23は、常開型の電磁弁であり、吸入口22を開閉する弁体24と、この弁体24を開弁方向に付勢するスプリング25と、弁体24を閉弁方向に電磁駆動するソレノイド26とから構成されている。   A fuel pressure control valve 23 is provided on the suction port 22 side of the high-pressure pump 14. The fuel pressure control valve 23 is a normally open type electromagnetic valve, and includes a valve body 24 that opens and closes the suction port 22, a spring 25 that urges the valve body 24 in the valve opening direction, and a valve body 24 in the valve closing direction. And a solenoid 26 that is electromagnetically driven.

高圧ポンプ14の吸入行程(ピストン19の下降時)においては、燃圧制御弁23が開弁されてポンプ室18内に燃料が吸入され、高圧ポンプ14の吐出行程(ピストン19の上昇時)においては、燃圧制御弁23の閉弁期間(閉弁開始時期からピストン19の上死点までの閉弁状態のクランク角区間)を制御することで、高圧ポンプ14の吐出量を制御して燃圧(吐出圧力)を制御する。   During the suction stroke of the high-pressure pump 14 (when the piston 19 is lowered), the fuel pressure control valve 23 is opened and fuel is sucked into the pump chamber 18, and during the discharge stroke of the high-pressure pump 14 (when the piston 19 is raised). By controlling the valve closing period of the fuel pressure control valve 23 (the crank angle section in the valve closing state from the valve closing start time to the top dead center of the piston 19), the discharge amount of the high pressure pump 14 is controlled to control the fuel pressure (discharge). Pressure).

つまり、燃圧を上昇させるときには、燃圧制御弁23の閉弁開始時期(通電時期)を進角させることで、燃圧制御弁23の閉弁期間を長くして高圧ポンプ14の吐出量を増加させ、逆に、燃圧を低下させるときには、燃圧制御弁23の閉弁開始時期(通電時期)を遅角させることで、燃圧制御弁23の閉弁期間を短くして高圧ポンプ14の吐出量を減少させる。   That is, when increasing the fuel pressure, the valve closing start timing (energization timing) of the fuel pressure control valve 23 is advanced, thereby extending the valve closing period of the fuel pressure control valve 23 and increasing the discharge amount of the high pressure pump 14. Conversely, when lowering the fuel pressure, the valve closing start timing (energization timing) of the fuel pressure control valve 23 is retarded, thereby shortening the valve closing period of the fuel pressure control valve 23 and reducing the discharge amount of the high-pressure pump 14. .

一方、高圧ポンプ14の吐出口27側には、吐出した燃料の逆流を防止する逆止弁28が設けられている。高圧ポンプ14から吐出される燃料は、高圧燃料配管29を通してデリバリパイプ30に送られ、このデリバリパイプ30からエンジンの各気筒に取り付けられた燃料噴射弁31に高圧の燃料が分配される。デリバリパイプ30(又は高圧燃料配管29)には、高圧燃料配管29やデリバリパイプ30等の高圧燃料系内の燃圧(燃料圧力)を検出する燃圧センサ32(燃圧検出手段)が設けられている。また、デリバリパイプ30には、リリーフ弁33が設けられ、このリリーフ弁33の排出ポートがリリーフ配管34を介して燃料タンク11(又は低圧側の燃料配管13)に接続されている。   On the other hand, a check valve 28 for preventing the backflow of discharged fuel is provided on the discharge port 27 side of the high-pressure pump 14. The fuel discharged from the high-pressure pump 14 is sent to the delivery pipe 30 through the high-pressure fuel pipe 29, and the high-pressure fuel is distributed from the delivery pipe 30 to the fuel injection valve 31 attached to each cylinder of the engine. The delivery pipe 30 (or the high-pressure fuel pipe 29) is provided with a fuel pressure sensor 32 (fuel pressure detection means) that detects the fuel pressure (fuel pressure) in the high-pressure fuel system such as the high-pressure fuel pipe 29 and the delivery pipe 30. The delivery pipe 30 is provided with a relief valve 33, and a discharge port of the relief valve 33 is connected to the fuel tank 11 (or the low-pressure side fuel pipe 13) via a relief pipe 34.

また、エンジンには、吸入空気量を検出するエアフローメータ36や、クランク軸(図示せず)の回転に同期して所定クランク角毎にパルス信号を出力するクランク角センサ37が設けられている。このクランク角センサ37の出力信号に基づいてクランク角やエンジン回転速度が検出される。   Further, the engine is provided with an air flow meter 36 for detecting the amount of intake air and a crank angle sensor 37 for outputting a pulse signal at every predetermined crank angle in synchronization with rotation of a crankshaft (not shown). Based on the output signal of the crank angle sensor 37, the crank angle and the engine speed are detected.

これら各種センサの出力は、電子制御回路(以下「ECU」と表記する)38に入力される。このECU38は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁31の燃料噴射量や点火プラグ(図示せず)の点火時期を制御する。   Outputs of these various sensors are input to an electronic control circuit (hereinafter referred to as “ECU”) 38. The ECU 38 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium) to thereby determine the fuel injection amount of the fuel injection valve 31 according to the engine operating state. The ignition timing of a spark plug (not shown) is controlled.

その際、ECU38は、燃圧制御ルーチン(図示せず)を実行することで、特許請求の範囲でいう燃圧制御手段として機能し、エンジン運転状態(例えば、エンジン回転速度やエンジン負荷等)に応じて目標燃圧をマップ等により算出し、燃圧センサ32で検出した高圧燃料系内の燃圧を目標燃圧に一致させるように燃圧F/B補正値を算出して、この燃圧F/B補正値を用いて高圧ポンプ14の吐出量(燃圧制御弁23の通電時期)を補正する高圧側燃圧F/B制御を実行する。ここで、「F/B」は「フィードバック」を意味する(以下、同様)。   At that time, the ECU 38 executes a fuel pressure control routine (not shown), thereby functioning as a fuel pressure control means in the claims, and according to the engine operating state (for example, engine speed, engine load, etc.). The target fuel pressure is calculated from a map or the like, the fuel pressure F / B correction value is calculated so that the fuel pressure in the high-pressure fuel system detected by the fuel pressure sensor 32 matches the target fuel pressure, and this fuel pressure F / B correction value is used. High-pressure side fuel pressure F / B control for correcting the discharge amount of the high-pressure pump 14 (energization timing of the fuel pressure control valve 23) is executed. Here, “F / B” means “feedback” (hereinafter the same).

また、ECU38は、後述する図2の異常診断ルーチンを実行することで、特許請求の範囲でいう異常診断手段として機能し、高圧側燃圧F/B制御の実行中に低圧ポンプ12の吐出量を強制的に変化(例えば増加)させる低圧ポンプ吐出量強制変化制御を実行し、この低圧ポンプ吐出量強制変化制御を実行したときの高圧側燃圧F/B制御の制御状態(例えば燃圧F/B補正値)に基づいて、低圧燃料系(例えば、低圧ポンプ12、燃料配管13、プレッシャレギュレータ15、低圧ポンプ12の制御系等)の異常の有無を判定する。   Further, the ECU 38 functions as an abnormality diagnosis means in the scope of claims by executing an abnormality diagnosis routine shown in FIG. 2 to be described later, and controls the discharge amount of the low pressure pump 12 during execution of the high pressure side fuel pressure F / B control. A low pressure pump discharge amount forced change control for forcibly changing (for example, increasing) is executed, and a control state of the high pressure side fuel pressure F / B control when the low pressure pump discharge amount forced change control is executed (for example, fuel pressure F / B correction) Value) to determine whether there is an abnormality in the low-pressure fuel system (for example, the low-pressure pump 12, the fuel pipe 13, the pressure regulator 15, the control system of the low-pressure pump 12).

高圧側燃圧F/B制御の実行中に、低圧ポンプ12の吐出量を強制的に変化(例えば増加)させる低圧ポンプ吐出量強制変化制御を実行すると、それに伴って高圧燃料系内の燃圧が変化して高圧側燃圧F/B制御の制御状態(例えば燃圧F/B補正値)が変化するが、その際、低圧燃料系の異常時には、高圧側燃圧F/B制御の制御状態が低圧燃料系の正常時とは異なってくる。従って、高圧側燃圧F/B制御の実行中に低圧ポンプ吐出量強制変化制御を実行したときの高圧側燃圧F/B制御の制御状態を監視すれば、低圧燃料系の異常の有無を精度良く判定することができる。   When low-pressure pump discharge amount forced change control is performed to forcibly change (for example, increase) the discharge amount of the low-pressure pump 12 during execution of the high-pressure side fuel pressure F / B control, the fuel pressure in the high-pressure fuel system changes accordingly. Then, the control state of the high pressure side fuel pressure F / B control (for example, the fuel pressure F / B correction value) changes. At this time, when the low pressure fuel system is abnormal, the control state of the high pressure side fuel pressure F / B control is the low pressure fuel system. It will be different from the normal time. Therefore, if the control state of the high-pressure side fuel pressure F / B control when the low-pressure pump discharge amount forced change control is executed during execution of the high-pressure side fuel pressure F / B control, the presence or absence of abnormality in the low-pressure fuel system can be accurately detected. Can be determined.

更に、ECU38は、後述する図3のフェールセーフ制御ルーチンを実行することで、特許請求の範囲でいうフェールセーフ制御手段として機能し、図2の異常診断ルーチンにより低圧燃料系の異常有りと判定された場合に、低圧ポンプ12の吐出量を通常時(低圧燃料系の正常時)よりも少ないフェールセーフ用の吐出量(例えば、エンジン11を運転可能な吐出量の下限値又はそれよりも少し大きい値)に減少させるフェールセーフ制御を実行する。
以下、ECU38が実行する図2の異常診断ルーチン及び図3のフェールセーフ制御ルーチンの処理内容を説明する。
Further, the ECU 38 executes a fail-safe control routine shown in FIG. 3 to be described later, thereby functioning as a fail-safe control means in the scope of claims. It is determined by the abnormality diagnosis routine shown in FIG. 2 that there is an abnormality in the low-pressure fuel system. In this case, the discharge amount of the low-pressure pump 12 is smaller than that at normal time (when the low-pressure fuel system is normal). Fail-safe control to be reduced to (value).
The processing contents of the abnormality diagnosis routine of FIG. 2 and the fail safe control routine of FIG. 3 executed by the ECU 38 will be described below.

[異常診断ルーチン]
図2に示す異常診断ルーチンは、ECU38の電源オン中に所定周期で繰り返し実行される。本ルーチンが起動されると、まず、ステップ101で、高圧側燃圧F/B制御の実行中であるか否かを判定し、高圧側燃圧F/B制御の実行中ではないと判定された場合には、ステップ102以降の処理を実行することなく、本ルーチンを終了する。
[Abnormal diagnosis routine]
The abnormality diagnosis routine shown in FIG. 2 is repeatedly executed at a predetermined cycle while the ECU 38 is powered on. When this routine is started, first, in step 101, it is determined whether or not the high-pressure side fuel pressure F / B control is being executed, and if it is determined that the high-pressure side fuel pressure F / B control is not being executed. In this case, the routine is terminated without executing the processing from step 102 onward.

一方、上記ステップ101で、高圧側燃圧F/B制御の実行中であると判定された場合には、ステップ102以降の処理を次のようにして実行する。まず、ステップ102で、燃圧センサ32で検出した高圧燃料系内の燃圧が安定しているか否かを、例えば、高圧燃料系内の燃圧の変化量(例えば前回値と今回値との差)が所定範囲内であるか否か等によって判定する。   On the other hand, if it is determined in step 101 that the high-pressure side fuel pressure F / B control is being executed, the processing after step 102 is executed as follows. First, in step 102, whether or not the fuel pressure in the high-pressure fuel system detected by the fuel pressure sensor 32 is stable is determined, for example, by the amount of change in the fuel pressure in the high-pressure fuel system (for example, the difference between the previous value and the current value). Judgment is made based on whether or not it is within a predetermined range.

このステップ102で、高圧燃料系内の燃圧が安定していると判定されれば、ステップ103に進み、低圧ポンプ吐出量強制変化制御の実行前の燃圧F/B補正値を記憶した後、ステップ104に進み、低圧ポンプ12の吐出量を強制的に所定量だけ増加させる低圧ポンプ吐出量強制変化制御を実行する。   If it is determined in step 102 that the fuel pressure in the high-pressure fuel system is stable, the process proceeds to step 103, and after storing the fuel pressure F / B correction value before execution of the low-pressure pump discharge amount forced change control, step Proceeding to 104, low-pressure pump discharge amount forced change control for forcibly increasing the discharge amount of the low-pressure pump 12 by a predetermined amount is executed.

この後、ステップ105に進み、低圧ポンプ吐出量強制変化制御の実行中の燃圧F/B補正値を記憶した後、ステップ106に進み、低圧ポンプ吐出量強制変化制御の実行前の燃圧F/B補正値と、低圧ポンプ吐出量強制変化制御の実行中の燃圧F/B補正値との偏差の絶対値を、燃圧F/B補正値の変化量として算出する。   After this, the routine proceeds to step 105, where the fuel pressure F / B correction value during execution of the low pressure pump discharge amount forced change control is stored, and then proceeds to step 106, where fuel pressure F / B before execution of the low pressure pump discharge amount forced change control. The absolute value of the deviation between the correction value and the fuel pressure F / B correction value during execution of the low pressure pump discharge amount forced change control is calculated as the change amount of the fuel pressure F / B correction value.

この後、ステップ107に進み、燃圧F/B補正値の変化量が異常判定値よりも大きいか否かを判定する。このステップ107で、燃圧F/B補正値の変化量が異常判定値よりも大きいと判定された場合には、ステップ108に進み、低圧燃料系(例えば、低圧ポンプ12、燃料配管13、プレッシャレギュレータ15、低圧ポンプ12の制御系等)の異常無し(正常)と判定して異常フラグをOFFに維持して、本ルーチンを終了する。   Thereafter, the routine proceeds to step 107, where it is determined whether or not the change amount of the fuel pressure F / B correction value is larger than the abnormality determination value. If it is determined in step 107 that the change amount of the fuel pressure F / B correction value is larger than the abnormality determination value, the process proceeds to step 108 and the low-pressure fuel system (for example, the low-pressure pump 12, the fuel pipe 13, the pressure regulator). 15, the control system of the low-pressure pump 12) is determined to be normal (normal), the abnormal flag is maintained OFF, and this routine is terminated.

これに対して、上記ステップ107で、燃圧F/B補正値の変化量が異常判定値以下であると判定された場合には、低圧ポンプ12の吐出量を強制的に増加させる低圧ポンプ吐出量強制変化制御を実行したにも拘らず、燃圧F/B補正値の変化量が小さいため、ステップ109に進み、低圧燃料系の異常(例えば低圧ポンプ12から高圧ポンプ14に供給する燃圧が正常に上昇しない燃圧低下異常)有りと判定して異常フラグをONにセットし、運転席のインストルメントパネルに設けられた警告ランプ(図示せず)を点灯したり、或は、運転席のインストルメントパネルの警告表示部(図示せず)に警告表示して運転者に警告すると共に、その異常情報(異常コード等)をECU38のバックアップRAM(図示せず)等の書き換え可能な不揮発性メモリ(ECU38の電源オフ中でも記憶データを保持する書き換え可能なメモリ)に記憶する等の異常時処理を実行して、本ルーチンを終了する。   On the other hand, if it is determined in step 107 that the change amount of the fuel pressure F / B correction value is equal to or less than the abnormality determination value, the low pressure pump discharge amount forcibly increasing the discharge amount of the low pressure pump 12. In spite of execution of the forced change control, the change amount of the fuel pressure F / B correction value is small, so the process proceeds to step 109, where the low pressure fuel system abnormality (for example, the fuel pressure supplied from the low pressure pump 12 to the high pressure pump 14 is normal). It is determined that there is a fuel pressure drop abnormality that does not rise), the abnormality flag is set to ON, a warning lamp (not shown) provided on the driver's seat instrument panel is turned on, or the driver's seat instrument panel Is displayed on a warning display unit (not shown) to warn the driver, and the abnormality information (abnormal code, etc.) can be rewritten in a backup RAM (not shown) of the ECU 38 or the like. Running abnormality processing such as stored in the volatile memory (rewritable memory that holds stored data even during ECU38 power off), the routine ends.

[フェールセーフ制御ルーチン]
図3に示すフェールセーフ制御ルーチンは、ECU38の電源オン中に所定周期で繰り返し実行される。本ルーチンが起動されると、まず、ステップ201で、図2の異常診断ルーチンの異常診断結果に基づいて低圧燃料系が異常であるか否かを判定する。
このステップ201で、低圧燃料系が異常ではない(正常である)と判定された場合には、ステップ202の処理を行うことなく、本ルーチンを終了する。
[Fail-safe control routine]
The fail safe control routine shown in FIG. 3 is repeatedly executed at a predetermined cycle while the ECU 38 is powered on. When this routine is started, first, at step 201, it is determined whether or not the low-pressure fuel system is abnormal based on the abnormality diagnosis result of the abnormality diagnosis routine of FIG.
If it is determined in step 201 that the low-pressure fuel system is not abnormal (normal), the routine ends without performing the process of step 202.

一方、上記ステップ201で、低圧燃料系が異常であると判定された場合には、ステップ202に進み、低圧ポンプ12の吐出量を通常時(低圧燃料系の正常時)よりも少ないフェールセーフ用の吐出量(例えば、エンジン11を運転可能な吐出量の下限値又はそれよりも少し大きい値)に減少させるフェールセーフ制御を実行する。   On the other hand, if it is determined in step 201 that the low-pressure fuel system is abnormal, the process proceeds to step 202, where the discharge amount of the low-pressure pump 12 is less than that for normal operation (when the low-pressure fuel system is normal). Fail-safe control is performed to reduce the discharge amount to a lower discharge amount (for example, a lower limit value of a discharge amount at which the engine 11 can be operated or a value slightly larger than that).

以上説明した本実施例1では、高圧側燃圧F/B制御の実行中に低圧ポンプ12の吐出量を強制的に増加させる低圧ポンプ吐出量強制変化制御を実行し、この低圧ポンプ吐出量強制変化制御を実行したときの高圧側燃圧F/B制御の燃圧F/B補正値の変化量に基づいて低圧燃料系の異常の有無を判定するようにしたので、高圧ポンプ14の作動中に低圧燃料系の異常診断を行うことができて、低圧燃料系の異常診断の実行頻度を十分に高くすることができ、低圧燃料系の異常が発生した場合に、その異常を早期に検出することができる。   In the first embodiment described above, the low pressure pump discharge amount forced change control for forcibly increasing the discharge amount of the low pressure pump 12 is executed during the execution of the high pressure side fuel pressure F / B control. Since the presence or absence of an abnormality in the low-pressure fuel system is determined based on the amount of change in the fuel pressure F / B correction value of the high-pressure side fuel pressure F / B control when the control is executed, the low-pressure fuel during operation of the high-pressure pump 14 is determined. System abnormality diagnosis can be performed, the frequency of low-pressure fuel system abnormality diagnosis can be sufficiently increased, and when a low-pressure fuel system abnormality occurs, the abnormality can be detected early .

また、本実施例1では、低圧燃料系の異常有りと判定された場合に、低圧ポンプ12の吐出量を通常時(低圧燃料系の正常時)よりも少ないフェールセーフ用の吐出量に減少させるフェールセーフ制御を実行するようにしたので、低圧燃料系の異常によって低圧燃料系内や高圧燃料系内の燃圧が異常に高圧になることを防止することができる。   In the first embodiment, when it is determined that there is an abnormality in the low-pressure fuel system, the discharge amount of the low-pressure pump 12 is reduced to a discharge amount for fail-safe that is smaller than normal (when the low-pressure fuel system is normal). Since fail-safe control is executed, it is possible to prevent the fuel pressure in the low-pressure fuel system or the high-pressure fuel system from becoming abnormally high due to an abnormality in the low-pressure fuel system.

次に、図4を用いて本発明の実施例2を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 2 of the present invention will be described with reference to FIG. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

前記実施例1では、低圧ポンプ吐出量強制変化制御の際に低圧ポンプ12の吐出量を強制的に増加させるようにしたが、本実施例2では、ECU38により後述する図4の異常診断ルーチンを実行することで、低圧ポンプ吐出量強制変化制御の際に低圧ポンプ12の吐出量を強制的に減少させるようにしている。図4のルーチンは、前記実施例1で説明した図2のルーチンのステップ104の処理をステップ104aの処理に変更したものであり、それ以外の各ステップの処理は図2と同じである。   In the first embodiment, the discharge amount of the low-pressure pump 12 is forcibly increased during the low-pressure pump discharge amount forced change control. In the second embodiment, the abnormality diagnosis routine of FIG. By executing, the discharge amount of the low-pressure pump 12 is forcibly decreased during the forced change control of the low-pressure pump discharge amount. The routine of FIG. 4 is obtained by changing the process of step 104 of the routine of FIG. 2 described in the first embodiment to the process of step 104a, and the processes of other steps are the same as those of FIG.

更に、ECU38は、前述した図3のフェールセーフ制御ルーチンを実行することで、図4の異常診断ルーチンにより低圧燃料系の異常有りと判定された場合に、低圧ポンプ12の吐出量を通常時よりも少ないフェールセーフ用の吐出量に減少させるフェールセーフ制御を実行する。   Further, the ECU 38 executes the fail-safe control routine of FIG. 3 described above, and when the abnormality diagnosis routine of FIG. 4 determines that there is an abnormality in the low-pressure fuel system, the ECU 38 reduces the discharge amount of the low-pressure pump 12 from the normal time. Fail-safe control is performed to reduce the discharge amount for fail-safe.

以下、本実施例2でECU38が実行する図4の異常診断ルーチンの処理内容を説明する。本ルーチンでは、高圧側燃圧F/B制御の実行中に高圧燃料系内の燃圧が安定していると判定されれば、低圧ポンプ吐出量強制変化制御の実行前の燃圧F/B補正値を記憶する(ステップ101〜103)。
この後、ステップ104aに進み、低圧ポンプ12の吐出量を強制的に所定量だけ減少させる低圧ポンプ吐出量強制変化制御を実行する。
Hereinafter, the processing contents of the abnormality diagnosis routine of FIG. 4 executed by the ECU 38 in the second embodiment will be described. In this routine, if it is determined that the fuel pressure in the high-pressure fuel system is stable during execution of the high-pressure side fuel pressure F / B control, the fuel pressure F / B correction value before execution of the low-pressure pump discharge amount forced change control is calculated. Store (steps 101-103).
Thereafter, the process proceeds to step 104a, and low-pressure pump discharge amount forced change control for forcibly reducing the discharge amount of the low-pressure pump 12 by a predetermined amount is executed.

この後、低圧ポンプ吐出量強制変化制御の実行中の燃圧F/B補正値を記憶した後、低圧ポンプ吐出量強制変化制御の実行前と実行中の燃圧F/B補正値の偏差の絶対値を燃圧F/B補正値の変化量として算出し、この燃圧F/B補正値の変化量が異常判定値よりも大きいか否かを判定する(ステップ105〜107)。
その結果、燃圧F/B補正値の変化量が異常判定値よりも大きいと判定された場合には、低圧燃料系の異常無し(正常)と判定する(ステップ108)。
Thereafter, after storing the fuel pressure F / B correction value during execution of the low pressure pump discharge amount forced change control, the absolute value of the deviation between the fuel pressure F / B correction value before and during execution of the low pressure pump discharge amount forced change control is stored. Is calculated as the change amount of the fuel pressure F / B correction value, and it is determined whether or not the change amount of the fuel pressure F / B correction value is larger than the abnormality determination value (steps 105 to 107).
As a result, when it is determined that the change amount of the fuel pressure F / B correction value is larger than the abnormality determination value, it is determined that there is no abnormality (normal) in the low-pressure fuel system (step 108).

これに対して、燃圧F/B補正値の変化量が異常判定値以下であると判定された場合には、低圧ポンプ12の吐出量を強制的に減少させる低圧ポンプ吐出量強制変化制御を実行したにも拘らず、燃圧F/B補正値の変化量が小さいため、低圧燃料系の異常(例えば低圧ポンプ12から高圧ポンプ14に供給する燃圧が正常に低下しない燃圧上昇異常)有りと判定する(ステップ109)。   On the other hand, when it is determined that the change amount of the fuel pressure F / B correction value is equal to or less than the abnormality determination value, the low pressure pump discharge amount forced change control for forcibly reducing the discharge amount of the low pressure pump 12 is executed. Nevertheless, since the change amount of the fuel pressure F / B correction value is small, it is determined that there is an abnormality in the low-pressure fuel system (for example, an abnormality in fuel pressure increase in which the fuel pressure supplied from the low-pressure pump 12 to the high-pressure pump 14 does not drop normally). (Step 109).

以上説明した本実施例2では、高圧側燃圧F/B制御の実行中に低圧ポンプ12の吐出量を強制的に減少させる低圧ポンプ吐出量強制変化制御を実行し、この低圧ポンプ吐出量強制変化制御を実行したときの高圧側燃圧F/B制御の燃圧F/B補正値の変化量に基づいて低圧燃料系の異常の有無を判定するようにしたので、前記実施例1とほぼ同じ効果を得ることができる。   In the second embodiment described above, the low-pressure pump discharge amount forced change control for forcibly reducing the discharge amount of the low-pressure pump 12 is executed during the execution of the high-pressure side fuel pressure F / B control. Since the presence or absence of abnormality of the low-pressure fuel system is determined based on the amount of change in the fuel pressure F / B correction value of the high-pressure side fuel pressure F / B control when the control is executed, the same effect as in the first embodiment is obtained. Can be obtained.

次に、図5を用いて本発明の実施例3を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 3 of the present invention will be described with reference to FIG. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

本実施例3では、ECU38により後述する図5の異常診断ルーチンを実行することで、高圧側燃圧F/B制御の実行中に低圧ポンプ12の吐出量を強制的に増加させる低圧ポンプ吐出量強制変化制御を実行する際に、この低圧ポンプ吐出量強制変化制御によって発生する高圧燃料系内の燃圧上昇を抑制する方向に予め高圧ポンプ14の吐出量(燃圧制御弁23の通電時期)を補正する燃圧F/F補正を実行するようにしている。ここで、「F/F」は「フィードフォワード」を意味する(以下、同様)。   In the third embodiment, the ECU 38 executes an abnormality diagnosis routine of FIG. 5 described later, thereby forcibly increasing the discharge amount of the low-pressure pump 12 during execution of the high-pressure side fuel pressure F / B control. When executing the change control, the discharge amount of the high-pressure pump 14 (the energization timing of the fuel pressure control valve 23) is corrected in advance in a direction to suppress the increase in the fuel pressure in the high-pressure fuel system generated by the low-pressure pump discharge amount forced change control. Fuel pressure F / F correction is executed. Here, “F / F” means “feed forward” (the same applies hereinafter).

更に、ECU38は、前述した図3のフェールセーフ制御ルーチンを実行することで、図5の異常診断ルーチンにより低圧燃料系の異常有りと判定された場合に、低圧ポンプ12の吐出量を通常時よりも少ないフェールセーフ用の吐出量に減少させるフェールセーフ制御を実行する。   Further, the ECU 38 executes the fail-safe control routine of FIG. 3 described above, and when the abnormality diagnosis routine of FIG. 5 determines that there is an abnormality in the low-pressure fuel system, the ECU 38 reduces the discharge amount of the low-pressure pump 12 from the normal time. Fail-safe control is performed to reduce the discharge amount for fail-safe.

以下、本実施例3でECU38が実行する図5の異常診断ルーチンの処理内容を説明する。本ルーチンでは、高圧側燃圧F/B制御の実行中に高圧燃料系内の燃圧が安定していると判定されれば、低圧ポンプ吐出量強制変化制御の実行前の燃圧F/B補正値を記憶する(ステップ301〜303)。   Hereinafter, the processing content of the abnormality diagnosis routine of FIG. 5 executed by the ECU 38 in the third embodiment will be described. In this routine, if it is determined that the fuel pressure in the high-pressure fuel system is stable during execution of the high-pressure side fuel pressure F / B control, the fuel pressure F / B correction value before execution of the low-pressure pump discharge amount forced change control is calculated. Store (steps 301-303).

この後、ステップ304に進み、低圧ポンプ12の吐出量を強制的に所定量だけ増加させる低圧ポンプ吐出量強制変化制御を実行した後、ステップ305に進み、低圧ポンプ吐出量強制変化制御によって発生する高圧燃料系内の燃圧上昇を抑制する方向に予め高圧ポンプ14の吐出量(燃圧制御弁23の通電時期)を補正する燃圧F/F補正を実行する。この燃圧F/F補正では、低圧ポンプ吐出量強制変化制御によって発生する高圧燃料系内の燃圧上昇分だけ高圧燃料系内の燃圧を低下させる(つまり高圧ポンプ14の吐出量を減少させる)ように燃圧F/F補正値を算出し、この燃圧F/F補正値を用いて高圧ポンプ14の吐出量(燃圧制御弁23の通電時期)を補正する。   Thereafter, the process proceeds to step 304, and after executing low pressure pump discharge amount forced change control for forcibly increasing the discharge amount of the low pressure pump 12 by a predetermined amount, the process proceeds to step 305 and is generated by the low pressure pump discharge amount forced change control. Fuel pressure F / F correction for correcting the discharge amount of the high-pressure pump 14 (energization timing of the fuel pressure control valve 23) in advance in a direction to suppress the increase in fuel pressure in the high-pressure fuel system is executed. In this fuel pressure F / F correction, the fuel pressure in the high-pressure fuel system is reduced (that is, the discharge amount of the high-pressure pump 14 is reduced) by the fuel pressure increase in the high-pressure fuel system generated by the low-pressure pump discharge amount forced change control. A fuel pressure F / F correction value is calculated, and the discharge amount of the high-pressure pump 14 (energization timing of the fuel pressure control valve 23) is corrected using the fuel pressure F / F correction value.

この後、ステップ306に進み、低圧ポンプ吐出量強制変化制御の実行中の燃圧F/B補正値を記憶した後、ステップ307に進み、低圧ポンプ吐出量強制変化制御の実行前の燃圧F/B補正値と、低圧ポンプ吐出量強制変化制御の実行中の燃圧F/B補正値との偏差の絶対値を、燃圧F/B補正値の変化量として算出する。   Thereafter, the process proceeds to step 306, and after storing the fuel pressure F / B correction value during execution of the low pressure pump discharge amount forced change control, the process proceeds to step 307, where the fuel pressure F / B before execution of the low pressure pump discharge amount forced change control is executed. The absolute value of the deviation between the correction value and the fuel pressure F / B correction value during execution of the low pressure pump discharge amount forced change control is calculated as the change amount of the fuel pressure F / B correction value.

この後、ステップ308に進み、燃圧F/B補正値の変化量が異常判定値よりも小さいか否かを判定する。このステップ308で、燃圧F/B補正値の変化量が異常判定値よりも小さいと判定された場合には、ステップ309に進み、低圧燃料系の異常無し(正常)と判定する。   Thereafter, the process proceeds to step 308, where it is determined whether or not the change amount of the fuel pressure F / B correction value is smaller than the abnormality determination value. If it is determined in step 308 that the change amount of the fuel pressure F / B correction value is smaller than the abnormality determination value, the process proceeds to step 309 to determine that there is no abnormality (normal) in the low-pressure fuel system.

これに対して、上記ステップ308で、燃圧F/B補正値の変化量が異常判定値以上であると判定された場合には、低圧ポンプ12の吐出量を強制的に増加させる低圧ポンプ吐出量強制変化制御を実行する際に、この低圧ポンプ吐出量強制変化制御によって発生する高圧燃料系内の燃圧上昇を抑制する方向に予め高圧ポンプ14の吐出量を補正する燃圧F/F補正を実行したにも拘らず、燃圧F/B補正値の変化量が大きいため、ステップ310に進み、低圧燃料系の異常(例えば低圧ポンプ12から高圧ポンプ14に供給する燃圧が正常に上昇しない燃圧低下異常)有りと判定する。   On the other hand, if it is determined in step 308 that the amount of change in the fuel pressure F / B correction value is greater than or equal to the abnormality determination value, the discharge amount of the low pressure pump forcibly increasing the discharge amount of the low pressure pump 12. When executing the forced change control, the fuel pressure F / F correction for correcting the discharge amount of the high pressure pump 14 in advance in a direction to suppress the increase in the fuel pressure in the high pressure fuel system generated by the low pressure pump discharge amount forced change control is executed. Nevertheless, since the change amount of the fuel pressure F / B correction value is large, the process proceeds to step 310, and the low-pressure fuel system abnormality (for example, the fuel pressure lowering abnormality in which the fuel pressure supplied from the low-pressure pump 12 to the high-pressure pump 14 does not rise normally) Judge that there is.

以上説明した本実施例3では、低圧ポンプ12の吐出量を強制的に増加させる低圧ポンプ吐出量強制変化制御を実行する際に、この低圧ポンプ吐出量強制変化制御によって発生する高圧燃料系内の燃圧上昇を抑制する方向に予め高圧ポンプ14の吐出量(燃圧制御弁23の通電時期)を補正する燃圧F/F補正を実行するようにしたので、低圧ポンプ吐出量強制変化制御による高圧燃料系内の燃圧変化を抑制することができ、これにより、燃料噴射制御精度の低下を防止して、排気エミッションの悪化を防止することができる。   In the third embodiment described above, when the low-pressure pump discharge amount forced change control for forcibly increasing the discharge amount of the low-pressure pump 12 is executed, the low-pressure pump discharge amount forced change control in the high-pressure fuel system generated by the low-pressure pump discharge amount forced change control is executed. Since the fuel pressure F / F correction for correcting the discharge amount of the high pressure pump 14 (energization timing of the fuel pressure control valve 23) in advance in the direction of suppressing the increase in the fuel pressure is executed, the high pressure fuel system by the low pressure pump discharge amount forced change control The change in the fuel pressure can be suppressed, thereby preventing the fuel injection control accuracy from being lowered and the exhaust emission from being deteriorated.

次に、図6を用いて本発明の実施例4を説明する。但し、前記実施例3と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例3と異なる部分について説明する。   Next, Embodiment 4 of the present invention will be described with reference to FIG. However, description of substantially the same parts as in the third embodiment will be omitted or simplified, and different parts from the third embodiment will be mainly described.

本実施例4では、ECU38により後述する図6の異常診断ルーチンを実行することで、高圧側燃圧F/B制御の実行中に低圧ポンプ12の吐出量を強制的に減少させる低圧ポンプ吐出量強制変化制御を実行する際に、この低圧ポンプ吐出量強制変化制御によって発生する高圧燃料系内の燃圧低下を抑制する方向に予め高圧ポンプ14の吐出量(燃圧制御弁23の通電時期)を補正する燃圧F/F補正を実行するようにしている。図6のルーチンは、前記実施例3で説明した図5のルーチンのステップ304,305の処理をステップ304a,305aの処理に変更したものであり、それ以外の各ステップの処理は図5と同じである。   In the fourth embodiment, the ECU 38 executes an abnormality diagnosis routine shown in FIG. 6 to be described later, thereby forcibly reducing the discharge amount of the low-pressure pump 12 during the execution of the high-pressure side fuel pressure F / B control. When the change control is executed, the discharge amount of the high-pressure pump 14 (energization timing of the fuel pressure control valve 23) is corrected in advance so as to suppress the fuel pressure drop in the high-pressure fuel system generated by the low-pressure pump discharge amount forced change control. Fuel pressure F / F correction is executed. The routine of FIG. 6 is obtained by changing the processing of steps 304 and 305 of the routine of FIG. 5 described in the third embodiment to the processing of steps 304a and 305a. The processing of other steps is the same as that of FIG. It is.

更に、ECU38は、前述した図3のフェールセーフ制御ルーチンを実行することで、図6の異常診断ルーチンにより低圧燃料系の異常有りと判定された場合に、低圧ポンプ12の吐出量を通常時よりも少ないフェールセーフ用の吐出量に減少させるフェールセーフ制御を実行する。   Further, the ECU 38 executes the fail-safe control routine of FIG. 3 described above, and when it is determined by the abnormality diagnosis routine of FIG. 6 that there is an abnormality in the low-pressure fuel system, the discharge amount of the low-pressure pump 12 is increased from the normal time. Fail-safe control is performed to reduce the discharge amount for fail-safe.

以下、本実施例4でECU38が実行する図6の異常診断ルーチンの処理内容を説明する。本ルーチンでは、高圧側燃圧F/B制御の実行中に高圧燃料系内の燃圧が安定していると判定されれば、低圧ポンプ吐出量強制変化制御の実行前の燃圧F/B補正値を記憶する(ステップ301〜303)。   Hereinafter, the processing contents of the abnormality diagnosis routine of FIG. 6 executed by the ECU 38 in the fourth embodiment will be described. In this routine, if it is determined that the fuel pressure in the high-pressure fuel system is stable during execution of the high-pressure side fuel pressure F / B control, the fuel pressure F / B correction value before execution of the low-pressure pump discharge amount forced change control is calculated. Store (steps 301-303).

この後、ステップ304aに進み、低圧ポンプ12の吐出量を強制的に所定量だけ減少させる低圧ポンプ吐出量強制変化制御を実行した後、ステップ305aに進み、低圧ポンプ吐出量強制変化制御によって発生する高圧燃料系内の燃圧低下を抑制する方向に予め高圧ポンプ14の吐出量(燃圧制御弁23の通電時期)を補正する燃圧F/F補正を実行する。この燃圧F/F補正では、低圧ポンプ吐出量強制変化制御によって発生する高圧燃料系内の燃圧低下分だけ高圧燃料系内の燃圧を上昇させる(つまり高圧ポンプ14の吐出量を増加させる)ように燃圧F/F補正値を算出し、この燃圧F/F補正値を用いて高圧ポンプ14の吐出量(燃圧制御弁23の通電時期)を補正する。   Thereafter, the process proceeds to step 304a, and after executing low pressure pump discharge amount forced change control for forcibly reducing the discharge amount of the low pressure pump 12 by a predetermined amount, the process proceeds to step 305a and is generated by the low pressure pump discharge amount forced change control. Fuel pressure F / F correction for correcting the discharge amount of the high pressure pump 14 (energization timing of the fuel pressure control valve 23) in advance in a direction to suppress the fuel pressure drop in the high pressure fuel system is executed. In this fuel pressure F / F correction, the fuel pressure in the high-pressure fuel system is increased by the amount of fuel pressure decrease in the high-pressure fuel system generated by the low-pressure pump discharge amount forced change control (that is, the discharge amount of the high-pressure pump 14 is increased). A fuel pressure F / F correction value is calculated, and the discharge amount of the high-pressure pump 14 (energization timing of the fuel pressure control valve 23) is corrected using the fuel pressure F / F correction value.

この後、低圧ポンプ吐出量強制変化制御の実行中の燃圧F/B補正値を記憶した後、低圧ポンプ吐出量強制変化制御の実行前の実行中の燃圧F/B補正値の偏差の絶対値を燃圧F/B補正値の変化量として算出し、この燃圧F/B補正値の変化量が異常判定値よりも小さいか否かを判定する(ステップ306〜308)。
その結果、燃圧F/B補正値の変化量が異常判定値よりも小さいと判定された場合には、低圧燃料系の異常無し(正常)と判定する(ステップ309)。
After this, after storing the fuel pressure F / B correction value during execution of the low pressure pump discharge amount forced change control, the absolute value of the deviation of the fuel pressure F / B correction value during execution before execution of the low pressure pump discharge amount forced change control Is calculated as the change amount of the fuel pressure F / B correction value, and it is determined whether or not the change amount of the fuel pressure F / B correction value is smaller than the abnormality determination value (steps 306 to 308).
As a result, when it is determined that the change amount of the fuel pressure F / B correction value is smaller than the abnormality determination value, it is determined that there is no abnormality (normal) in the low-pressure fuel system (step 309).

これに対して、燃圧F/B補正値の変化量が異常判定値以上であると判定された場合には、低圧ポンプ12の吐出量を強制的に減少させる低圧ポンプ吐出量強制変化制御を実行する際に、この低圧ポンプ吐出量強制変化制御によって発生する高圧燃料系内の燃圧低下を抑制する方向に予め高圧ポンプ14の吐出量を補正する燃圧F/F補正を実行したにも拘らず、燃圧F/B補正値の変化量が大きいため、低圧燃料系の異常(例えば低圧ポンプ12から高圧ポンプ14に供給する燃圧が正常に低下しない燃圧低下異常)有りと判定する(ステップ310)。   On the other hand, when it is determined that the amount of change in the fuel pressure F / B correction value is greater than or equal to the abnormality determination value, low-pressure pump discharge amount forced change control that forcibly decreases the discharge amount of the low-pressure pump 12 is executed. When performing the fuel pressure F / F correction for correcting the discharge amount of the high-pressure pump 14 in a direction to suppress the decrease in the fuel pressure in the high-pressure fuel system generated by the low-pressure pump discharge amount forced change control, Since the change amount of the fuel pressure F / B correction value is large, it is determined that there is an abnormality in the low-pressure fuel system (for example, a fuel pressure decrease abnormality in which the fuel pressure supplied from the low-pressure pump 12 to the high-pressure pump 14 does not decrease normally) (step 310).

以上説明した本実施例4では、低圧ポンプ12の吐出量を強制的に減少させる低圧ポンプ吐出量強制変化制御を実行する際に、この低圧ポンプ吐出量強制変化制御によって発生する高圧燃料系内の燃圧低下を抑制する方向に予め高圧ポンプ14の吐出量(燃圧制御弁23の通電時期)を補正する燃圧F/F補正を実行するようにしたので、前記実施例3とほぼ同じ効果を得ることができる。   In the fourth embodiment described above, when the low-pressure pump discharge amount forced change control for forcibly reducing the discharge amount of the low-pressure pump 12 is executed, the low-pressure pump discharge amount forced change control generates the internal pressure of the high-pressure fuel system. Since the fuel pressure F / F correction for correcting the discharge amount of the high-pressure pump 14 (the energization timing of the fuel pressure control valve 23) in advance in the direction of suppressing the decrease in the fuel pressure is performed, substantially the same effect as the third embodiment can be obtained. Can do.

尚、上記各実施例1〜4では、高圧側燃圧F/B制御の燃圧F/B補正値に基づいて低圧燃料系の異常の有無を判定するようにしたが、これに限定されず、例えば、高圧側燃圧F/B制御の燃圧F/B補正値を用いて補正した高圧ポンプ14の制御量(例えば燃圧制御弁23の通電時期等)に基づいて低圧燃料系の異常の有無を判定するようにしても良い。   In each of the first to fourth embodiments, the presence / absence of abnormality of the low-pressure fuel system is determined based on the fuel pressure F / B correction value of the high-pressure side fuel pressure F / B control. The presence or absence of an abnormality in the low-pressure fuel system is determined based on the control amount of the high-pressure pump 14 corrected using the fuel pressure F / B correction value of the high-pressure side fuel pressure F / B control (for example, the energization timing of the fuel pressure control valve 23). You may do it.

また、上記各実施例1〜4では、筒内噴射式エンジンの燃料供給システムに本発明を適用したが、これに限定されず、低圧ポンプと高圧ポンプを備えた燃料供給システムであれば、吸気ポート噴射式エンジンの燃料供給システムや、吸気ポート噴射用の燃料噴射弁と筒内噴射用の燃料噴射弁の両方を備えたデュアル噴射式のエンジンの燃料供給システムに本発明を適用しても良い。   Further, in each of the first to fourth embodiments, the present invention is applied to the fuel supply system of the direct injection type engine. However, the present invention is not limited to this, and if the fuel supply system includes a low pressure pump and a high pressure pump, the intake air The present invention may be applied to a fuel supply system of a port injection type engine or a dual injection type engine fuel supply system including both a fuel injection valve for intake port injection and a fuel injection valve for in-cylinder injection. .

その他、本発明は、燃料供給システムの構成を適宜変更しても良い等、要旨を逸脱しない範囲内で種々変更して実施できる。   In addition, the present invention can be implemented with various modifications within a range not departing from the gist, such as appropriately changing the configuration of the fuel supply system.

11…燃料タンク、12…低圧ポンプ、13…燃料配管、14…高圧ポンプ、15…プレッシャレギュレータ、23…燃圧制御弁、29…高圧燃料配管、30…デリバリパイプ、31…燃料噴射弁、32…燃圧センサ(燃圧検出手段)、38…ECU(燃圧制御手段,異常診断手段,フェールセーフ制御手段)   DESCRIPTION OF SYMBOLS 11 ... Fuel tank, 12 ... Low pressure pump, 13 ... Fuel piping, 14 ... High pressure pump, 15 ... Pressure regulator, 23 ... Fuel pressure control valve, 29 ... High pressure fuel piping, 30 ... Delivery pipe, 31 ... Fuel injection valve, 32 ... Fuel pressure sensor (fuel pressure detection means), 38 ECU (fuel pressure control means, abnormality diagnosis means, fail safe control means)

Claims (4)

低圧ポンプから吐出される燃料を高圧ポンプに供給し、この高圧ポンプから吐出される燃料を燃料噴射弁に供給する内燃機関の燃料供給システムに適用され、前記高圧ポンプから前記燃料噴射弁に燃料を供給する高圧燃料系内の燃料の圧力(以下「燃圧」という)を検出する燃圧検出手段と、前記燃圧検出手段で検出した高圧燃料系内の燃圧を目標燃圧に一致させるように前記高圧ポンプをフィードバック制御する高圧側燃圧フィードバック制御を実行する燃圧制御手段とを備えた内燃機関の燃料供給システムの異常診断装置において、
前記高圧側燃圧フィードバック制御の実行中に前記低圧ポンプの吐出量を強制的に変化させる低圧ポンプ吐出量強制変化制御を実行し、該低圧ポンプ吐出量強制変化制御を実行したときの前記高圧側燃圧フィードバック制御の制御状態に基づいて、前記低圧ポンプから前記高圧ポンプに燃料を供給する低圧燃料系の異常の有無を判定する異常診断手段と
を備えていることを特徴とする内燃機関の燃料供給システムの異常診断装置。
The present invention is applied to a fuel supply system of an internal combustion engine that supplies fuel discharged from a low-pressure pump to a high-pressure pump and supplies fuel discharged from the high-pressure pump to a fuel injection valve. Fuel is supplied from the high-pressure pump to the fuel injection valve. A fuel pressure detecting means for detecting the pressure of the fuel in the high pressure fuel system to be supplied (hereinafter referred to as “fuel pressure”), and the high pressure pump so that the fuel pressure in the high pressure fuel system detected by the fuel pressure detecting means matches the target fuel pressure. In an abnormality diagnosis device for a fuel supply system of an internal combustion engine, comprising a fuel pressure control means for executing high pressure side fuel pressure feedback control for feedback control,
During the execution of the high pressure side fuel pressure feedback control, the low pressure pump discharge amount forced change control for forcibly changing the discharge amount of the low pressure pump is executed, and the high pressure side fuel pressure when the low pressure pump discharge amount forced change control is executed A fuel supply system for an internal combustion engine, comprising: an abnormality diagnosing unit that determines whether there is an abnormality in a low-pressure fuel system that supplies fuel from the low-pressure pump to the high-pressure pump based on a control state of feedback control Abnormality diagnosis device.
前記異常診断手段は、前記低圧ポンプ吐出量強制変化制御の際に前記低圧ポンプの吐出量を強制的に増加又は減少させることを特徴とする請求項1に記載の内燃機関の燃料供給システムの異常診断装置。   2. The fuel supply system abnormality of the internal combustion engine according to claim 1, wherein the abnormality diagnosis unit forcibly increases or decreases a discharge amount of the low-pressure pump during the low-pressure pump discharge amount forced change control. Diagnostic device. 前記異常診断手段は、前記低圧ポンプ吐出量強制変化制御によって発生する高圧燃料系内の燃圧変化を抑制する方向に予め前記高圧ポンプの制御量を補正する手段を有することを特徴とする請求項1又は2に記載の内燃機関の燃料供給システムの異常診断装置。   2. The abnormality diagnosing means includes means for correcting a control amount of the high pressure pump in advance in a direction to suppress a change in fuel pressure in the high pressure fuel system generated by the forced change control of the low pressure pump discharge amount. Or the abnormality diagnosis apparatus of the fuel supply system of the internal combustion engine of 2. 前記異常診断手段により前記低圧燃料系の異常有りと判定された場合に前記低圧ポンプの吐出量を通常時よりも減少させるフェールセーフ制御手段を備えていることを特徴とする請求項1乃至3のいずれかに記載の内燃機関の燃料供給システムの異常診断装置。   The fail-safe control means for reducing the discharge amount of the low-pressure pump as compared with the normal time when the abnormality diagnosis means determines that there is an abnormality in the low-pressure fuel system. An abnormality diagnosis device for a fuel supply system of an internal combustion engine according to any one of the above.
JP2010093583A 2010-04-14 2010-04-14 Abnormality diagnosis device for fuel supply system of internal combustion engine Expired - Fee Related JP5344312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010093583A JP5344312B2 (en) 2010-04-14 2010-04-14 Abnormality diagnosis device for fuel supply system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010093583A JP5344312B2 (en) 2010-04-14 2010-04-14 Abnormality diagnosis device for fuel supply system of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011220313A JP2011220313A (en) 2011-11-04
JP5344312B2 true JP5344312B2 (en) 2013-11-20

Family

ID=45037586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010093583A Expired - Fee Related JP5344312B2 (en) 2010-04-14 2010-04-14 Abnormality diagnosis device for fuel supply system of internal combustion engine

Country Status (1)

Country Link
JP (1) JP5344312B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5741149B2 (en) * 2011-04-01 2015-07-01 トヨタ自動車株式会社 Control device for internal combustion engine
DE102016214760B4 (en) * 2016-04-28 2018-03-01 Mtu Friedrichshafen Gmbh Method for operating an internal combustion engine, device for controlling and / or regulating an internal combustion engine, injection system and internal combustion engine
CN113074057A (en) * 2021-04-06 2021-07-06 浙江吉利控股集团有限公司 Fuel pumping control method and system and vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11210532A (en) * 1998-01-29 1999-08-03 Toyota Motor Corp High pressure fuel feeder for internal combustion engine
JP2004028038A (en) * 2002-06-28 2004-01-29 Hitachi Ltd Fuel supply device for cylinder injection engine
JP2005307931A (en) * 2004-04-26 2005-11-04 Hitachi Ltd Fuel supply device for internal combustion engine
JP4088627B2 (en) * 2005-01-24 2008-05-21 三菱電機株式会社 Fuel pressure control device for internal combustion engine
JP2010025102A (en) * 2008-06-16 2010-02-04 Hitachi Ltd Control diagnostic system of internal combustion engine
JP2010031816A (en) * 2008-07-31 2010-02-12 Denso Corp Control device for pressure accumulation type fuel supply system
JP2010053741A (en) * 2008-08-27 2010-03-11 Hitachi Automotive Systems Ltd Diagnostic device of fuel supply system of internal combustion engine

Also Published As

Publication number Publication date
JP2011220313A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
JP5387538B2 (en) Fail safe control device for in-cylinder internal combustion engine
JP4508020B2 (en) Diagnostic device for electromagnetic relief valve in fuel supply system
US7258110B2 (en) Fuel supply apparatus and internal combustion engine
JP4428405B2 (en) Fuel injection control device and engine control system
JP5234431B2 (en) Fuel pressure control device for in-cylinder internal combustion engine
US7835850B2 (en) Injection characteristic detection apparatus, control system, and method for the same
US7373918B2 (en) Diesel engine control system
JP2005337031A (en) Abnormality diagnosis apparatus for high pressure fuel system of cylinder injection type internal combustion engine
JP2006291785A (en) Start controller of cylinder injection type internal combustion engine
JP2010019199A (en) Controller for internal combustion engine
JP2013113145A (en) Control device for internal combustion engine
JP2011185158A (en) Failure diagnostic device of high pressure fuel supply system of internal combustion engine
JP4623157B2 (en) Anomaly detection device
JP2006329033A (en) Accumulator fuel injection device
JP2016037923A (en) Control device for internal combustion engine
JP6090112B2 (en) Control device for internal combustion engine
JP2015040493A (en) Characteristic abnormality diagnosis device of fuel pressure sensor
JP5344312B2 (en) Abnormality diagnosis device for fuel supply system of internal combustion engine
JP6167830B2 (en) Control device for internal combustion engine
JP2013253560A (en) Fuel supply device
JP2011202597A (en) High-pressure pump control device for internal combustion engine
JP2012229623A (en) High-pressure fuel feeding device of internal combustion engine
JP2010116835A (en) High-pressure pump control device for cylinder injection type internal combustion engine
JP2012229674A (en) Internal combustion engine fuel supply apparatus
JP5287673B2 (en) Abnormal site diagnosis device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130801

R151 Written notification of patent or utility model registration

Ref document number: 5344312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees