JP2010116835A - High-pressure pump control device for cylinder injection type internal combustion engine - Google Patents

High-pressure pump control device for cylinder injection type internal combustion engine Download PDF

Info

Publication number
JP2010116835A
JP2010116835A JP2008290487A JP2008290487A JP2010116835A JP 2010116835 A JP2010116835 A JP 2010116835A JP 2008290487 A JP2008290487 A JP 2008290487A JP 2008290487 A JP2008290487 A JP 2008290487A JP 2010116835 A JP2010116835 A JP 2010116835A
Authority
JP
Japan
Prior art keywords
fuel
pressure
during
cut period
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008290487A
Other languages
Japanese (ja)
Inventor
Michimasa Magono
道征 孫野
Masahiro Yokoi
真浩 横井
Kota Noguchi
宏太 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008290487A priority Critical patent/JP2010116835A/en
Publication of JP2010116835A publication Critical patent/JP2010116835A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inhibit under shoot of fuel pressure in return from fuel cut due to fuel pressure rise during a fuel cut period while preventing fuel pressure drop during the fuel cut period in a high-pressure fuel system. <P>SOLUTION: A high-pressure pump 14 is feedback controlled by PI control or the like so as to make actual fuel pressure in the high-pressure fuel system detected by a fuel pressure sensor 32 consistent with a target fuel pressure during normal operation period and the fuel cut period of the engine. Even during the fuel cut period, fuel pressure in the high pressure fuel system is controlled to the target fuel pressure by fuel pressure feedback control, and fuel pressure drop during the fuel cut period is prevented. Even if a state continues in which deviation of the actual fuel pressure and the target fuel pressure is large due to fuel pressure rise during the fuel cut period by keeping I gain during the fuel cut period smaller than I gain during the normal operation period, under shoot of fuel pressure in return from fuel cut is inhibited by inhibiting I term of fuel pressure feedback control from increasing large in a fuel pressure drop direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高圧ポンプから燃料噴射弁に高圧の燃料を供給する筒内噴射式内燃機関の高圧ポンプ制御装置に関する発明である。   The present invention relates to a high pressure pump control device for a direct injection internal combustion engine that supplies high pressure fuel from a high pressure pump to a fuel injection valve.

気筒内に燃料を直接噴射する筒内噴射式エンジンは、吸気ポートに燃料を噴射する吸気ポート噴射式エンジンと比較して、噴射から燃焼までの時間が短く、噴射燃料を霧化させる時間を十分に稼ぐことができないため、噴射圧力を高圧にして噴射燃料を微粒化する必要がある。そのため、筒内噴射式エンジンでは、燃料タンクから低圧ポンプで汲み上げた燃料を、エンジンのカム軸で駆動される高圧ポンプに供給し、この高圧ポンプから吐出される高圧の燃料を高圧燃料配管を通して燃料噴射弁へ圧送するようにしている。   An in-cylinder injection engine that directly injects fuel into a cylinder has a shorter time from injection to combustion and sufficient time to atomize the injected fuel compared to an intake port injection engine that injects fuel into an intake port. Therefore, it is necessary to atomize the injected fuel by increasing the injection pressure. For this reason, in a direct injection engine, fuel pumped up from a fuel tank by a low pressure pump is supplied to a high pressure pump driven by the cam shaft of the engine, and high pressure fuel discharged from the high pressure pump is supplied to the fuel through a high pressure fuel pipe. Pressure is sent to the injection valve.

一般に、筒内噴射式エンジンでは、高圧燃料配管内の燃圧(燃料圧力)を燃圧センサで検出し、この燃圧センサで検出した燃圧を目標燃圧に一致させるように高圧ポンプの吐出量をフィードバック制御する燃圧フィードバック制御を行うようにしている。ここで、高圧ポンプの吐出量の制御は、燃料吸入行程で燃料を吸入するために開弁される開閉弁の閉じ時期(燃料吸入行程後に燃料吐出を開始する時期)を制御することにより行われる。   In general, in a cylinder injection engine, a fuel pressure (fuel pressure) in a high-pressure fuel pipe is detected by a fuel pressure sensor, and the discharge amount of the high-pressure pump is feedback-controlled so that the fuel pressure detected by the fuel pressure sensor matches a target fuel pressure. Fuel pressure feedback control is performed. Here, the discharge amount of the high-pressure pump is controlled by controlling the closing timing of the on-off valve that is opened to suck the fuel in the fuel intake stroke (the timing at which fuel discharge is started after the fuel intake stroke). .

このような燃圧フィードバック制御を行うシステムにおいては、特許文献1(特開2007−32323号公報)に記載されているように、燃圧センサで検出した燃圧と目標燃圧との偏差に基づいて高圧ポンプの要求吐出量を算出し、この要求吐出量に応じて高圧ポンプの開閉弁の閉じ時期を制御することで、高圧ポンプの吐出量を要求吐出量に制御して高圧燃料配管内の燃圧を目標燃圧に一致させるように制御すると共に、燃料噴射が停止される燃料カット期間中には燃圧フィードバック制御を停止するようにしたものがある。   In a system that performs such fuel pressure feedback control, as described in Patent Document 1 (Japanese Patent Laid-Open No. 2007-32323), the high-pressure pump is controlled based on the deviation between the fuel pressure detected by the fuel pressure sensor and the target fuel pressure. By calculating the required discharge amount and controlling the closing timing of the open / close valve of the high-pressure pump according to this required discharge amount, the discharge amount of the high-pressure pump is controlled to the required discharge amount, and the fuel pressure in the high-pressure fuel pipe is set to the target fuel pressure. In some cases, the fuel pressure feedback control is stopped during the fuel cut period in which the fuel injection is stopped.

また、一般に、高圧ポンプの吐出口側に、高圧燃料配管内の燃料の逆流を防止する逆止弁を設けることで、高圧燃料配管内の燃圧を高圧に維持するようにしているが、エンジン停止後に高圧燃料配管内の燃圧が高圧に維持されると、エンジン停止中に燃料噴射弁からの燃料漏れ量が多くなる傾向があり、その漏れ燃料が筒内に溜まって次の始動時に未燃焼のまま排出されてしまい、始動時の排気エミッションが悪化するという問題がある。   In general, a check valve is provided on the discharge port side of the high-pressure pump to prevent the backflow of fuel in the high-pressure fuel pipe so that the fuel pressure in the high-pressure fuel pipe is maintained at a high pressure. If the fuel pressure in the high-pressure fuel pipe is maintained at a high level later, the amount of fuel leakage from the fuel injection valve tends to increase while the engine is stopped, and the leaked fuel accumulates in the cylinder and remains unburned at the next start-up. There is a problem that exhaust emissions at the time of start-up deteriorate.

この対策として、特許文献2(特開2006−90222号公報)に記載されているように、高圧ポンプの吐出口側にリーク機能付きの逆止弁を設け、エンジン停止後(高圧ポンプ停止後)に、高圧燃料配管内の燃料を逆止弁に形成した細孔を通して低圧側に戻すことで、高圧燃料配管内の燃圧を低下させるようにしたものがある。
特開2007−32323号公報(第5頁〜第6頁等) 特開2006−90222号公報(第6頁〜第7頁等)
As a countermeasure, as described in Patent Document 2 (Japanese Patent Laid-Open No. 2006-90222), a check valve with a leak function is provided on the discharge port side of the high-pressure pump, and after the engine is stopped (after the high-pressure pump is stopped) In addition, there is one in which the fuel pressure in the high-pressure fuel pipe is lowered by returning the fuel in the high-pressure fuel pipe to the low-pressure side through the pore formed in the check valve.
JP 2007-32323 A (pages 5 to 6 etc.) JP-A-2006-90222 (pages 6 to 7 etc.)

ところで、高圧ポンプの逆止弁の経年劣化や異物噛み込み等により高圧燃料配管内の燃料が低圧側に漏れることがある。上記特許文献1の技術では、燃料カット期間中に燃料フィードバック制御が停止されるため、燃料カット期間中に高圧燃料配管内の燃料が低圧側に漏れると、高圧燃料配管内の燃圧が目標燃圧よりも低下してしまう欠点がある。また、上記特許文献2の技術のように、高圧ポンプにリーク機能付きの逆止弁を設けた構成でも、燃料カット期間中に高圧燃料配管内の燃料が低圧側にリークして高圧燃料配管内の燃圧が目標燃圧よりも低下してしまう欠点がある。燃料カット期間中に高圧燃料配管内の燃圧が目標燃圧よりも低下すると、燃料カット復帰時(燃料噴射再開時)に噴射燃料を十分に霧化させることができず、燃焼性が低下する可能性がある。   By the way, the fuel in the high-pressure fuel pipe may leak to the low-pressure side due to aging deterioration of the check valve of the high-pressure pump, biting of foreign matter, or the like. In the technique of the above-mentioned patent document 1, since the fuel feedback control is stopped during the fuel cut period, if the fuel in the high pressure fuel pipe leaks to the low pressure side during the fuel cut period, the fuel pressure in the high pressure fuel pipe exceeds the target fuel pressure. There is also a drawback that it is lowered. Further, even in a configuration in which a check valve with a leak function is provided in the high-pressure pump as in the technique of Patent Document 2 above, the fuel in the high-pressure fuel pipe leaks to the low-pressure side during the fuel cut period, and the inside of the high-pressure fuel pipe There is a drawback that the fuel pressure of the fuel is lower than the target fuel pressure. If the fuel pressure in the high-pressure fuel pipe falls below the target fuel pressure during the fuel cut period, the injected fuel cannot be sufficiently atomized when the fuel cut is restored (when fuel injection is resumed), and the combustibility may be reduced. There is.

この対策として、燃料カット期間中も燃圧フィードバック制御を実行することが考えられるが、燃料カット期間中に通常運転期間中と同じ条件で燃圧フィードバック制御を実行すると、次のような問題が発生する。   As a countermeasure, it is conceivable to execute the fuel pressure feedback control during the fuel cut period. However, if the fuel pressure feedback control is executed during the fuel cut period under the same conditions as during the normal operation period, the following problems occur.

燃料カット期間中は、エンジンの放熱によって高圧燃料配管内の燃料温度が上昇して、高圧燃料配管内の燃圧が目標燃圧よりも高くなることがあるが、燃料カット期間中は、高圧燃料配管内の燃料が消費(噴射)されないため、燃圧フィードバック制御を実行しても燃圧を低下させることができず、実燃圧と目標燃圧との偏差が大きい状態が続いて、燃圧フィードバック制御の積分項が燃圧低下方向に大きく増加し続けることになる。このため、燃料カット復帰時に燃料噴射が再開されて燃料消費量(要求吐出量)が急激に増加しても、燃圧フィードバック制御が高圧ポンプの吐出量の増加を抑制する方向に働いてしまい、燃料カット復帰時に高圧ポンプの吐出量を応答良く増加させることができない。その結果、燃料カット復帰時に高圧燃料配管内の燃圧が急低下して目標燃圧を大きく下回るアンダーシュートが発生する可能性がある。   During the fuel cut period, the fuel temperature in the high-pressure fuel pipe rises due to heat dissipation from the engine, and the fuel pressure in the high-pressure fuel pipe may become higher than the target fuel pressure. Because no fuel is consumed (injected), the fuel pressure cannot be reduced even if the fuel pressure feedback control is executed, and there is a large deviation between the actual fuel pressure and the target fuel pressure, and the integral term of the fuel pressure feedback control is the fuel pressure. It will continue to increase greatly in the downward direction. For this reason, even if fuel injection is resumed at the time of fuel cut recovery and the fuel consumption (required discharge amount) suddenly increases, the fuel pressure feedback control works in a direction to suppress the increase in the discharge amount of the high pressure pump. The discharge amount of the high-pressure pump cannot be increased with good response when cutting is restored. As a result, when the fuel cut is restored, the fuel pressure in the high-pressure fuel pipe may suddenly drop and an undershoot may occur that is significantly below the target fuel pressure.

本発明は、これらの事情を考慮してなされたものであり、従って本発明の目的は、燃料カット期間中の高圧燃料系内の燃圧低下を防止しながら、燃料カット期間中の燃圧上昇による燃料カット復帰時の燃圧のアンダーシュートを抑制することができる筒内噴射式内燃機関の高圧ポンプ制御装置を提供することにある。   The present invention has been made in consideration of these circumstances. Therefore, the object of the present invention is to prevent a fuel pressure increase during the fuel cut period while preventing a decrease in the fuel pressure in the high pressure fuel system during the fuel cut period. An object of the present invention is to provide a high-pressure pump control device for a direct injection internal combustion engine that can suppress undershoot of fuel pressure at the time of cut recovery.

上記目的を達成するために、請求項1に係る発明は、高圧ポンプから燃料噴射弁に高圧の燃料を供給する高圧燃料系内の燃料の圧力(以下「燃圧」という)を目標燃圧に一致させるように少なくとも積分項を用いた制御方式(例えばPI制御やPID制御等)で高圧ポンプをフィードバック制御する燃圧フィードバック制御を実行する燃圧制御手段を備えた筒内噴射式内燃機関の高圧ポンプ制御装置において、燃圧制御手段は、燃料噴射弁の燃料噴射が実行される通常運転期間中及び該燃料噴射が停止される燃料カット期間中に燃圧フィードバック制御を実行し、通常運転期間中と燃料カット期間中との間で積分項の算出に用いる積分ゲインを積分ゲイン切替手段により切り替えるようにしたものである。   In order to achieve the above object, the invention according to claim 1 makes the pressure of the fuel in the high-pressure fuel system (hereinafter referred to as “fuel pressure”) supplying high-pressure fuel from the high-pressure pump to the fuel injection valve coincide with the target fuel pressure. In a high-pressure pump control apparatus for a direct injection internal combustion engine equipped with fuel pressure control means for executing fuel pressure feedback control for feedback control of a high-pressure pump by a control method using at least an integral term (for example, PI control or PID control) The fuel pressure control means performs fuel pressure feedback control during a normal operation period in which fuel injection of the fuel injection valve is executed and during a fuel cut period in which the fuel injection is stopped, and during the normal operation period and the fuel cut period. The integral gain used for calculating the integral term is switched by integral gain switching means.

この構成では、燃料カット期間中も燃圧フィードバック制御を実行するため、燃料カット期間中に高圧燃料系から低圧側への燃料の漏れや戻りが発生しても、燃圧フィードバック制御により高圧燃料系内の燃圧を目標燃圧に維持して燃圧低下を防止することができる。また、通常運転期間中と燃料カット期間中との間で積分項の算出に用いる積分ゲインを切り替えるため、燃料カット期間中に、高圧燃料系内の燃料温度の上昇による燃圧上昇によって実燃圧と目標燃圧との偏差が大きい状態が続いても、燃圧フィードバック制御の積分項が燃圧低下方向に大きく増加することを抑制するように積分ゲインを切り替えるという制御が可能となる。これにより、燃料カット復帰時に高圧燃料系内の燃圧が急低下することを抑制して燃圧が目標燃圧よりも低下するアンダーシュートを抑制することができ、燃料カット復帰時の燃圧のアンダーシュートによる燃料霧化性・燃焼性の悪化の問題を解決することができる。   In this configuration, since the fuel pressure feedback control is executed even during the fuel cut period, even if fuel leaks or returns from the high pressure fuel system to the low pressure side during the fuel cut period, the fuel pressure feedback control controls the inside of the high pressure fuel system. The fuel pressure can be maintained at the target fuel pressure to prevent the fuel pressure from decreasing. In addition, since the integral gain used for calculating the integral term is switched between the normal operation period and the fuel cut period, the actual fuel pressure and the target are increased during the fuel cut period due to the increase in fuel pressure due to the increase in the fuel temperature in the high-pressure fuel system. Even when the deviation from the fuel pressure continues to be large, the integral gain can be controlled so as to suppress the integral term of the fuel pressure feedback control from greatly increasing in the fuel pressure lowering direction. As a result, the fuel pressure in the high-pressure fuel system can be prevented from suddenly decreasing at the time of fuel cut return and the undershoot in which the fuel pressure falls below the target fuel pressure can be suppressed. The problem of deterioration of atomization and combustibility can be solved.

具体的には、請求項2のように、燃料カット期間中の積分ゲインを通常運転期間中の積分ゲインよりも小さくすると良い。このようにすれば、通常運転期間中に比べて燃料カット期間中の燃圧フィードバック制御の積分項の変化を緩やかにすることができるため、燃料カット期間中に、高圧燃料系内の燃料温度の上昇による燃圧上昇によって実燃圧と目標燃圧との偏差が大きい状態が続いても、燃圧フィードバック制御の積分項が燃圧低下方向に増加することを確実に抑制することができる。しかも、燃料カット期間中の高圧燃料系から低圧側への燃料の漏れや戻りによる燃圧低下量は、高圧燃料系内の燃料温度の上昇による燃圧上昇量に比べて小さいため、燃料カット期間中の積分ゲインを通常運転期間中の積分ゲインよりも小さくして積分項の変化を緩やかにしても、高圧燃料系から低圧側への燃料の漏れや戻りによる燃圧低下を燃圧フィードバック制御により十分に防止することができる。   Specifically, as in claim 2, the integral gain during the fuel cut period is preferably smaller than the integral gain during the normal operation period. In this way, since the change in the integral term of the fuel pressure feedback control during the fuel cut period can be made slower than during the normal operation period, the fuel temperature in the high-pressure fuel system rises during the fuel cut period. Even if the deviation between the actual fuel pressure and the target fuel pressure continues to be large due to the fuel pressure increase due to the fuel pressure, it is possible to reliably suppress the integral term of the fuel pressure feedback control from increasing in the fuel pressure decreasing direction. Moreover, the fuel pressure drop due to fuel leakage or return from the high pressure fuel system to the low pressure side during the fuel cut period is smaller than the fuel pressure increase due to the increase in fuel temperature in the high pressure fuel system. Even if the integral gain is made smaller than the integral gain during normal operation and the change in the integral term is moderated, fuel pressure drop control due to fuel leakage from the high-pressure fuel system to the low-pressure side and fuel pressure drop are sufficiently prevented. be able to.

本発明は、燃料カット期間中の積分ゲインを予め設定した固定値としても良いが、請求項3のように、燃料カット期間中の高圧燃料系から低圧側への燃料の漏れ又は戻りの度合に応じて燃料カット期間中の積分ゲインを積分ゲイン学習手段により学習し、燃料カット期間中に積分ゲイン学習手段で学習した燃料カット期間中の積分ゲインに切り替えるようにしても良い。このようにすれば、燃料カット期間中の高圧燃料系から低圧側への燃料の漏れや戻りの度合に応じた適正な積分ゲインを用いて積分項を算出することができ、燃料カット期間中の燃料の漏れや戻りの度合に応じて燃圧フィードバック制御の積分動作を適正化することができる。   In the present invention, the integral gain during the fuel cut period may be a fixed value set in advance. However, as in claim 3, the degree of fuel leakage or return from the high pressure fuel system to the low pressure side during the fuel cut period. Accordingly, the integral gain during the fuel cut period may be learned by the integral gain learning means, and may be switched to the integral gain during the fuel cut period learned by the integral gain learning means during the fuel cut period. In this way, the integral term can be calculated using an appropriate integral gain according to the degree of fuel leakage or return from the high pressure fuel system to the low pressure side during the fuel cut period, and during the fuel cut period. The integration operation of the fuel pressure feedback control can be optimized according to the degree of fuel leakage or return.

燃料カット期間中の積分ゲインの具体的な学習方法としては、請求項4のように、燃料カット期間中に燃圧フィードバック制御を一時的に停止し、その燃圧フィードバック制御の停止中における高圧燃料系内の燃圧の低下度合(例えば低下速度や低下量等)に応じて燃料カット期間中の積分ゲインを学習することで、燃料カット期間中の高圧燃料系から低圧側への燃料の漏れ又は戻りの度合に応じて燃料カット期間中の積分ゲインを学習するようにしても良い。   As a specific learning method of the integral gain during the fuel cut period, as in claim 4, the fuel pressure feedback control is temporarily stopped during the fuel cut period, and the internal pressure of the high pressure fuel system during the fuel pressure feedback control is stopped. The degree of fuel leakage or return from the high-pressure fuel system to the low-pressure side during the fuel cut period is learned by learning the integral gain during the fuel cut period in accordance with the degree of decrease in the fuel pressure (for example, the speed or amount of decrease). Accordingly, the integral gain during the fuel cut period may be learned.

燃料カット期間中に燃圧フィードバック制御を停止すると、高圧燃料系から低圧側への燃料の漏れや戻りの度合に応じて高圧燃料系内の燃圧の低下度合(例えば低下速度や低下量等)が変化するため、燃料カット期間中の燃圧フィードバック制御停止中における燃圧の低下速度は、燃料カット期間中の高圧燃料系から低圧側への燃料の漏れや戻りの度合を反映した情報となる。従って、燃料カット期間中の燃圧フィードバック制御の停止中における高圧燃料系内の燃圧の低下度合に応じて燃料カット期間中の積分ゲインを学習すれば、燃料カット期間中の高圧燃料系から低圧側への燃料の漏れや戻りの度合に応じた燃料カット期間中の積分ゲインを精度良く学習することができる。   If the fuel pressure feedback control is stopped during the fuel cut period, the degree of fuel pressure reduction (for example, the rate of reduction or amount of reduction) in the high-pressure fuel system changes according to the degree of fuel leakage or return from the high-pressure fuel system to the low-pressure side. Therefore, the fuel pressure decrease rate during the stop of fuel pressure feedback control during the fuel cut period is information reflecting the degree of fuel leakage and return from the high pressure fuel system to the low pressure side during the fuel cut period. Therefore, if the integral gain during the fuel cut period is learned according to the degree of decrease in the fuel pressure in the high pressure fuel system during the stop of the fuel pressure feedback control during the fuel cut period, the high pressure fuel system during the fuel cut period is shifted from the low pressure side. The integral gain during the fuel cut period according to the degree of fuel leakage and return can be learned with high accuracy.

この場合、請求項5のように、燃圧フィードバック制御の停止中における高圧燃料系内の燃圧の低下度合が大きくなるほど燃料カット期間中の積分ゲインを大きくするように学習すると良い。このようにすれば、高圧燃料系内の燃圧の低下度合が大きくなる(つまり高圧燃料系から低圧側への燃料の漏れや戻りの度合が大きくなる)ほど、燃料カット期間中の積分ゲインを大きくして積分項の変化を速めるという制御が可能となり、燃料カット期間中の燃圧の低下度合が大きくても小さくても、それに応じた適正な積分ゲインの燃圧フィードバック制御により燃圧低下を確実に防止することができる。   In this case, as in claim 5, it is preferable to learn to increase the integral gain during the fuel cut period as the degree of decrease in the fuel pressure in the high-pressure fuel system when the fuel pressure feedback control is stopped increases. In this way, the integral gain during the fuel cut period increases as the degree of decrease in fuel pressure in the high-pressure fuel system increases (that is, the degree of fuel leakage or return from the high-pressure fuel system to the low-pressure side increases). Therefore, it is possible to control to accelerate the change of the integral term, and even if the degree of decrease in fuel pressure during the fuel cut period is large or small, fuel pressure decrease is reliably prevented by fuel pressure feedback control with appropriate integral gain accordingly be able to.

以下、本発明を実施するための最良の形態を具体化した一実施例を説明する。
まず、図1に基づいて筒内噴射式のエンジン(内燃機関)の燃料供給システム全体の概略構成を説明する。
Hereinafter, an embodiment embodying the best mode for carrying out the present invention will be described.
First, a schematic configuration of the entire fuel supply system of an in-cylinder injection engine (internal combustion engine) will be described with reference to FIG.

燃料を貯溜する燃料タンク11内には、燃料を汲み上げる低圧ポンプ12が設置されている。この低圧ポンプ12は、バッテリ(図示せず)を電源とする電動モータ(図示せず)によって駆動される。この低圧ポンプ12から吐出される燃料は、燃料配管13を通して高圧ポンプ14に供給される。燃料配管13には、プレッシャレギュレータ15が接続され、このプレッシャレギュレータ15によって低圧ポンプ12の吐出圧力(高圧ポンプ14への燃料供給圧力)が所定圧力に調圧され、その圧力を越える燃料の余剰分が燃料戻し管16により燃料タンク11内に戻されるようになっている。   A low pressure pump 12 that pumps up the fuel is installed in the fuel tank 11 that stores the fuel. The low-pressure pump 12 is driven by an electric motor (not shown) that uses a battery (not shown) as a power source. The fuel discharged from the low pressure pump 12 is supplied to the high pressure pump 14 through the fuel pipe 13. A pressure regulator 15 is connected to the fuel pipe 13, and the discharge pressure of the low-pressure pump 12 (fuel supply pressure to the high-pressure pump 14) is regulated to a predetermined pressure by the pressure regulator 15, and surplus fuel exceeding that pressure Is returned to the fuel tank 11 by the fuel return pipe 16.

高圧ポンプ14は、円筒状のポンプ室18内でピストン19を往復運動させて燃料を吸入/吐出するピストンポンプであり、ピストン19は、エンジンのカム軸20に嵌着されたカム21の回転運動によって駆動される。この高圧ポンプ14の吸入口22側には、燃圧制御弁23(開閉弁)が設けられている。この燃圧制御弁23は、常開型の電磁弁であり、吸入口22を開閉する弁体24と、この弁体24を開弁方向に付勢するスプリング25と、弁体24を閉弁方向に電磁駆動するソレノイド26とから構成されている。   The high-pressure pump 14 is a piston pump that reciprocates a piston 19 in a cylindrical pump chamber 18 and sucks / discharges fuel. The piston 19 rotates by a cam 21 fitted to a camshaft 20 of the engine. Driven by. A fuel pressure control valve 23 (open / close valve) is provided on the suction port 22 side of the high-pressure pump 14. The fuel pressure control valve 23 is a normally open type electromagnetic valve, and includes a valve body 24 that opens and closes the suction port 22, a spring 25 that urges the valve body 24 in the valve opening direction, and a valve body 24 in the valve closing direction. And a solenoid 26 that is electromagnetically driven.

高圧ポンプ14の吸入行程(ピストン19の下降時)においては、燃圧制御弁23が開弁されてポンプ室18内に燃料が吸入され、高圧ポンプ14の吐出行程(ピストン19の上昇時)においては、燃圧制御弁23の閉弁期間(閉弁開始時期からピストン19の上死点までの閉弁状態のクランク角区間)を制御することで、高圧ポンプ14の吐出量を制御して燃圧(吐出圧力)を制御する。   During the suction stroke of the high-pressure pump 14 (when the piston 19 is lowered), the fuel pressure control valve 23 is opened and fuel is sucked into the pump chamber 18, and during the discharge stroke of the high-pressure pump 14 (when the piston 19 is raised). By controlling the valve closing period of the fuel pressure control valve 23 (the crank angle section in the valve closing state from the valve closing start time to the top dead center of the piston 19), the discharge amount of the high pressure pump 14 is controlled to control the fuel pressure (discharge). Pressure).

つまり、燃圧を上昇させるときには、燃圧制御弁23の閉弁開始時期(通電時期)を進角させることで、燃圧制御弁23の閉弁期間を長くして高圧ポンプ14の吐出量を増加させ、逆に、燃圧を低下させるときには、燃圧制御弁23の閉弁開始時期(通電時期)を遅角させることで、燃圧制御弁23の閉弁期間を短くして高圧ポンプ14の吐出量を減少させる。   That is, when increasing the fuel pressure, the valve closing start timing (energization timing) of the fuel pressure control valve 23 is advanced, thereby extending the valve closing period of the fuel pressure control valve 23 and increasing the discharge amount of the high pressure pump 14. Conversely, when lowering the fuel pressure, the valve closing start timing (energization timing) of the fuel pressure control valve 23 is retarded, thereby shortening the valve closing period of the fuel pressure control valve 23 and reducing the discharge amount of the high-pressure pump 14. .

一方、高圧ポンプ14の吐出口27側には、吐出した燃料の逆流を防止する逆止弁28が設けられている。高圧ポンプ14から吐出された燃料は、高圧燃料配管29を通してデリバリパイプ30に送られ、このデリバリパイプ30からエンジンの各気筒の上部に取り付けられた燃料噴射弁31に高圧の燃料が分配される。デリバリパイプ30(又は高圧燃料配管29)には、デリバリパイプ30や高圧燃料配管29等の高圧燃料系内の燃圧(燃料圧力)を検出する燃圧センサ32が設けられている。また、デリバリパイプ30には、リリーフ弁33が設けられ、このリリーフ弁33の排出ポートがリリーフ配管34を介して燃料タンク11(又は低圧側の燃料配管13)に接続されている。   On the other hand, a check valve 28 for preventing the backflow of discharged fuel is provided on the discharge port 27 side of the high-pressure pump 14. The fuel discharged from the high-pressure pump 14 is sent to the delivery pipe 30 through the high-pressure fuel pipe 29, and the high-pressure fuel is distributed from the delivery pipe 30 to the fuel injection valve 31 attached to the upper part of each cylinder of the engine. The delivery pipe 30 (or the high-pressure fuel pipe 29) is provided with a fuel pressure sensor 32 that detects the fuel pressure (fuel pressure) in the high-pressure fuel system such as the delivery pipe 30 and the high-pressure fuel pipe 29. The delivery pipe 30 is provided with a relief valve 33, and a discharge port of the relief valve 33 is connected to the fuel tank 11 (or the low-pressure side fuel pipe 13) via a relief pipe 34.

尚、逆止弁28に微小孔径のオリフィスを設けて、ポンプ室18内の燃圧が高圧燃料配管29内の燃圧よりも低いときに、高圧燃料配管29内の燃料が少しずつオリフィスを通ってポンプ室18(低圧側)に戻る構成としても良い。   The check valve 28 is provided with an orifice having a minute hole diameter, and when the fuel pressure in the pump chamber 18 is lower than the fuel pressure in the high-pressure fuel pipe 29, the fuel in the high-pressure fuel pipe 29 gradually passes through the orifice. It is good also as a structure which returns to the chamber 18 (low pressure side).

また、エンジンには、吸入空気量を検出するエアフローメータ36や、クランク軸(図示せず)の回転に同期して所定クランク角毎にパルス信号を出力するクランク角センサ37が設けられている。このクランク角センサ37の出力信号に基づいてクランク角やエンジン回転速度が検出される。   Further, the engine is provided with an air flow meter 36 for detecting the amount of intake air and a crank angle sensor 37 for outputting a pulse signal at every predetermined crank angle in synchronization with rotation of a crankshaft (not shown). Based on the output signal of the crank angle sensor 37, the crank angle and the engine speed are detected.

これら各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)38に入力される。このECU38は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁31の燃料噴射量や点火プラグ(図示せず)の点火時期を制御する。   Outputs of these various sensors are input to an engine control circuit (hereinafter referred to as “ECU”) 38. The ECU 38 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium) to thereby determine the fuel injection amount of the fuel injection valve 31 according to the engine operating state. The ignition timing of a spark plug (not shown) is controlled.

また、ECU38は、後述する図2の燃圧制御ルーチンを実行することで、燃料噴射弁31の燃料噴射を実行する通常運転期間中及び燃料噴射を停止する燃料カット期間中に、燃圧センサ32で検出した高圧燃料系内の実燃圧を目標燃圧に一致させるようにPI制御やPID制御等のI項(積分項)を含む制御方式で高圧ポンプ14の吐出量(燃圧制御弁23の通電時期)をフィードバック制御する燃圧フィードバック制御を実行する。例えば、PI制御の場合には、目標燃圧と実燃圧との偏差と、Pゲイン(比例ゲイン)とを用いてP項(比例項)を算出すると共に、目標燃圧と実燃圧との偏差の積分値と、Iゲイン(積分ゲイン)とを用いてI項(積分項)を算出し、これらのP項とI項とを用いてフィードバック補正量(例えば燃圧制御弁23の通電時期の補正量)を算出する。   In addition, the ECU 38 detects the fuel pressure sensor 32 during a normal operation period in which the fuel injection of the fuel injection valve 31 is executed and a fuel cut period in which the fuel injection is stopped by executing a fuel pressure control routine of FIG. The discharge amount (energization timing of the fuel pressure control valve 23) of the high pressure pump 14 is controlled by a control method including an I term (integral term) such as PI control or PID control so that the actual fuel pressure in the high pressure fuel system matches the target fuel pressure. Fuel pressure feedback control for feedback control is executed. For example, in the case of PI control, the P term (proportional term) is calculated using the deviation between the target fuel pressure and the actual fuel pressure and the P gain (proportional gain), and the integral of the deviation between the target fuel pressure and the actual fuel pressure. The I term (integral term) is calculated using the value and the I gain (integral gain), and the feedback correction amount (for example, the correction amount of the energization timing of the fuel pressure control valve 23) is calculated using these P term and I term. Is calculated.

その際、本実施例では、通常運転期間中と燃料カット期間中との間でI項の算出に用いるIゲインを切り替えて、燃料カット期間中のIゲインを通常運転期間中のIゲインよりも小さくすることで、通常運転期間中に比べて燃料カット期間中の燃圧フィードバック制御のI項の変化を緩やかにする。   At this time, in this embodiment, the I gain used for the calculation of the I term is switched between the normal operation period and the fuel cut period, so that the I gain during the fuel cut period is more than the I gain during the normal operation period. By making it smaller, the change in the I term of the fuel pressure feedback control during the fuel cut period becomes more gradual than during the normal operation period.

以下、ECU38が実行する図2の燃圧制御ルーチンの処理内容を説明する。
図2に示す燃圧制御ルーチンは、ECU38の電源オン中に所定周期で繰り返し実行され、特許請求の範囲でいう燃圧制御手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ101で、燃料カット期間中であるか否かを判定する。その結果、燃料カット期間中ではない(通常運転期間中である)と判定された場合には、ステップ102に進み、エンジン運転状態(例えば、エンジン回転速度、目標燃圧と実燃圧との偏差等)に応じた通常運転期間中のIゲインをマップ又は数式等により算出し、それを今回の通常運転期間中のIゲインとして設定する。
Hereinafter, the processing content of the fuel pressure control routine of FIG. 2 executed by the ECU 38 will be described.
The fuel pressure control routine shown in FIG. 2 is repeatedly executed at a predetermined cycle while the ECU 38 is powered on, and serves as fuel pressure control means in the claims. When this routine is started, first, at step 101, it is determined whether or not it is during the fuel cut period. As a result, if it is determined that it is not during the fuel cut period (during the normal operation period), the routine proceeds to step 102 and the engine operating state (for example, the engine speed, the deviation between the target fuel pressure and the actual fuel pressure, etc.). The I gain during the normal operation period corresponding to is calculated by a map or a mathematical formula, and is set as the I gain during the current normal operation period.

一方、上記ステップ101で、燃料カット期間中であると判定された場合には、ステップ103に進み、所定のIゲイン学習条件が成立しているか否かを判定する。ここで、Iゲイン学習条件としては、例えば、燃圧センサ32が正常であること、燃料カット直前の高圧燃料系内の燃圧が所定値以上であること、前回のIゲインの学習から所定期間が経過した後であること等であり、これらの条件を全て満たすか否かでIゲイン学習条件が成立しているか否かを判定する。   On the other hand, if it is determined in step 101 that the fuel cut period is in progress, the process proceeds to step 103 to determine whether or not a predetermined I gain learning condition is satisfied. Here, as the I gain learning condition, for example, the fuel pressure sensor 32 is normal, the fuel pressure in the high pressure fuel system immediately before the fuel cut is greater than or equal to a predetermined value, and a predetermined period has elapsed since the previous learning of the I gain. Whether or not the I gain learning condition is satisfied is determined based on whether or not all of these conditions are satisfied.

この上記ステップ103で、Iゲイン学習条件が成立していると判定された場合には、ステップ104に進み、燃料カット期間中のIゲインを次のようにして学習する。まず、図3に示すように、燃料カット期間中に燃圧フィードバック制御を一時的に所定期間だけ停止し、その燃圧フィードバック制御の停止中における高圧燃料系内の燃圧の低下量ΔPと停止時間Δtとに基づいて燃圧の低下速度(ΔP/Δt)を算出する。   If it is determined in step 103 that the I gain learning condition is satisfied, the process proceeds to step 104 where the I gain during the fuel cut period is learned as follows. First, as shown in FIG. 3, the fuel pressure feedback control is temporarily stopped for a predetermined period during the fuel cut period, and the fuel pressure decrease amount ΔP and the stop time Δt in the high pressure fuel system during the stop of the fuel pressure feedback control, Based on the above, the fuel pressure decrease rate (ΔP / Δt) is calculated.

燃料カット期間中に燃圧フィードバック制御を停止すると、高圧燃料系から低圧側への燃料の漏れや戻りの度合に応じて高圧燃料系内の燃圧の低下速度が変化するため、燃料カット期間中の燃圧フィードバック制御停止中における高圧燃料系内の燃圧の低下速度(ΔP/Δt)は、燃料カット期間中の高圧燃料系から低圧側への燃料の漏れや戻りの度合を反映した情報となる。   If the fuel pressure feedback control is stopped during the fuel cut period, the rate of fuel pressure drop in the high pressure fuel system changes according to the degree of fuel leakage or return from the high pressure fuel system to the low pressure side. The fuel pressure drop rate (ΔP / Δt) in the high-pressure fuel system when feedback control is stopped is information reflecting the degree of fuel leakage or return from the high-pressure fuel system to the low-pressure side during the fuel cut period.

この後、図4に示す燃料カット期間中のIゲインのマップを参照して、燃圧の低下速度(ΔP/Δt)に応じた燃料カット期間中のIゲインを算出する。図4に示す燃料カット期間中のIゲインのマップは、燃圧の低下速度(ΔP/Δt)が大きくなるほど燃料カット期間中のIゲインが大きくなり、且つ、燃料カット期間中のIゲインが通常運転期間中のIゲインよりも小さくなるように設定されている。   Thereafter, with reference to the map of I gain during the fuel cut period shown in FIG. 4, the I gain during the fuel cut period corresponding to the fuel pressure decrease rate (ΔP / Δt) is calculated. The I gain map during the fuel cut period shown in FIG. 4 indicates that the I gain during the fuel cut period increases as the fuel pressure decrease rate (ΔP / Δt) increases, and the I gain during the fuel cut period is normal operation. It is set to be smaller than the I gain during the period.

このようにして、燃料カット期間中の燃圧フィードバック制御停止中における高圧燃料系内の燃圧の低下速度(ΔP/Δt)に応じて燃料カット期間中のIゲインを学習することで、燃料カット期間中の高圧燃料系から低圧側への燃料の漏れや戻りの度合に応じた燃料カット期間中のIゲインを精度良く学習し、その学習値を今回の燃料カット期間中のIゲインとして設定すると共に、ECU38のバックアップRAM(図示せず)等の書き換え可能な不揮発性メモリ(ECU38の電源オフ中でも記憶データを保持する書き換え可能なメモリ)に記憶されている前回の燃料カット期間中のIゲインの学習値を、今回の燃料カット期間中のIゲインの学習値で更新する。このステップ104の処理が特許請求の範囲でいう積分ゲイン学習手段としての役割を果たす。   In this way, by learning the I gain during the fuel cut period according to the fuel pressure decrease rate (ΔP / Δt) in the high-pressure fuel system while the fuel pressure feedback control is stopped during the fuel cut period, The I gain during the fuel cut period according to the degree of fuel leakage and return from the high pressure fuel system to the low pressure side is accurately learned, and the learned value is set as the I gain during the current fuel cut period, A learning value of the I gain during the previous fuel cut period stored in a rewritable nonvolatile memory (a rewritable memory that retains stored data even when the ECU 38 is powered off) such as a backup RAM (not shown) of the ECU 38 Is updated with the learned value of the I gain during the current fuel cut period. The processing in step 104 serves as integral gain learning means in the claims.

一方、上記ステップ103で、Iゲイン学習条件が成立していないと判定された場合には、燃料カット期間中のIゲインの学習を行うことなく、ステップ105に進み、ECU38のバックアップRAM等の不揮発性メモリに記憶されている前回の燃料カット期間中のIゲインの学習値を読み込み、その学習値を今回の燃料カット期間中のIゲインとして設定する。   On the other hand, if it is determined in step 103 that the I gain learning condition is not satisfied, the process proceeds to step 105 without performing the learning of the I gain during the fuel cut period, and the non-volatile memory such as the backup RAM of the ECU 38 is The learned value of I gain during the previous fuel cut period stored in the memory is read, and the learned value is set as the I gain during the current fuel cut period.

これらステップ101〜105の処理により、通常運転期間中と燃料カット期間中との間で燃圧フィードバック制御のI項の算出に用いるIゲインを切り替えて、燃料カット期間中のIゲインを通常運転期間中のIゲインよりも小さくする。この機能が特許請求の範囲でいう積分ゲイン切替手段としての役割を果たす。   By performing the processes of steps 101 to 105, the I gain used for calculating the I term of the fuel pressure feedback control is switched between the normal operation period and the fuel cut period, and the I gain during the fuel cut period is changed during the normal operation period. Less than the I gain. This function serves as an integral gain switching means in the claims.

以上のようにして、通常運転期間中のIゲイン又は燃料カット期間中のIゲインを設定した後、ステップ106に進み、エンジン運転状態(例えば、エンジン回転速度、エンジン負荷等)に応じて目標燃圧をマップ又は数式等により算出し、燃圧センサ32で検出した高圧燃料系内の実燃圧を目標燃圧に一致させるようにPI制御やPID制御等により高圧ポンプ14の吐出量(燃圧制御弁23の通電時期)をフィードバック制御する燃圧フィードバック制御を実行する。その際、通常運転期間中は、通常運転期間中のIゲインの算出値を用いて燃圧フィードバック制御を実行し、燃料カット期間中は、燃料カット期間中のIゲインの学習値を用いて燃圧フィードバック制御を実行する。   As described above, after setting the I gain during the normal operation period or the I gain during the fuel cut period, the routine proceeds to step 106, where the target fuel pressure is determined according to the engine operating state (for example, engine speed, engine load, etc.). Is calculated by a map or numerical formula, and the discharge amount of the high-pressure pump 14 (energization of the fuel pressure control valve 23) is performed by PI control, PID control or the like so that the actual fuel pressure in the high-pressure fuel system detected by the fuel pressure sensor 32 matches the target fuel pressure. Fuel pressure feedback control is performed to feedback control the timing. At that time, during the normal operation period, the fuel pressure feedback control is executed using the calculated value of the I gain during the normal operation period, and during the fuel cut period, the fuel pressure feedback is performed using the learned value of the I gain during the fuel cut period. Execute control.

以上説明した本実施例では、燃料カット期間中も燃圧フィードバック制御を実行するようにしたので、燃料カット期間中に高圧燃料系から低圧側への燃料の漏れや戻りが発生しても、燃圧フィードバック制御により高圧燃料系内の燃圧を目標燃圧に維持することができ、高圧燃料系内の燃圧低下を防止することができる。   In the present embodiment described above, the fuel pressure feedback control is executed even during the fuel cut period. Therefore, even if fuel leaks or returns from the high pressure fuel system to the low pressure side during the fuel cut period, the fuel pressure feedback control is performed. By controlling, the fuel pressure in the high-pressure fuel system can be maintained at the target fuel pressure, and a decrease in the fuel pressure in the high-pressure fuel system can be prevented.

また、通常運転期間中と燃料カット期間中との間で燃圧フィードバック制御のI項の算出に用いるIゲインを切り替えて、燃料カット期間中のIゲインを通常運転期間中のIゲインよりも小さくすることで、通常運転期間中に比べて燃料カット期間中の燃圧フィードバック制御のI項の変化を緩やかにするようにしたので、燃料カット期間中に、高圧燃料系内の燃料温度の上昇による燃圧上昇によって実燃圧と目標燃圧との偏差が大きい状態が続いても、燃圧フィードバック制御のI項が燃圧低下方向に大きく増加することを抑制することができる。これにより、燃料カット復帰時に高圧燃料系内の燃圧が急低下することを抑制して燃圧が目標燃圧よりも低下するアンダーシュートを抑制することができ、燃料カット復帰時の燃圧のアンダーシュートによる燃料霧化性・燃焼性の悪化の問題を解決することができる。   Further, the I gain used for calculating the I term of the fuel pressure feedback control is switched between the normal operation period and the fuel cut period so that the I gain during the fuel cut period is smaller than the I gain during the normal operation period. As a result, the change in the I term of the fuel pressure feedback control during the fuel cut period is moderated compared to during the normal operation period, so that the fuel pressure rises due to the increase in the fuel temperature in the high pressure fuel system during the fuel cut period. Therefore, even if the state where the deviation between the actual fuel pressure and the target fuel pressure is large continues, it is possible to suppress the I term of the fuel pressure feedback control from greatly increasing in the fuel pressure lowering direction. As a result, the fuel pressure in the high-pressure fuel system can be prevented from suddenly decreasing at the time of fuel cut return and the undershoot in which the fuel pressure falls below the target fuel pressure can be suppressed. The problem of deterioration of atomization and combustibility can be solved.

しかも、燃料カット期間中の高圧燃料系から低圧側への燃料の漏れや戻りによる燃圧低下量は、高圧燃料系内の燃料温度の上昇による燃圧上昇量に比べて小さいため、燃料カット期間中のIゲインを通常運転期間中のIゲインよりも小さくしてI項の変化を緩やかにしても、高圧燃料系から低圧側への燃料の漏れや戻りによる燃圧低下を燃圧フィードバック制御により十分に防止することができる。   Moreover, the fuel pressure drop due to fuel leakage or return from the high pressure fuel system to the low pressure side during the fuel cut period is smaller than the fuel pressure increase due to the increase in fuel temperature in the high pressure fuel system. Even if the I gain is made smaller than the I gain during the normal operation period and the change of the I term is moderated, fuel pressure drop control due to fuel leakage from the high pressure fuel system to the low pressure side and return is sufficiently prevented by fuel pressure feedback control. be able to.

また、本実施例では、燃料カット期間中に燃圧フィードバック制御を一時的に停止し、その燃圧フィードバック制御の停止中における高圧燃料系内の燃圧の低下速度に応じて燃料カット期間中のIゲインを学習することで、燃料カット期間中の高圧燃料系から低圧側への燃料の漏れ又は戻りの度合に応じて燃料カット期間中のIゲインを学習するようにしたので、燃料カット期間中の高圧燃料系から低圧側への燃料の漏れや戻りの度合に応じた適正なIゲインを用いてI項を算出することができ、燃料カット期間中の燃料の漏れや戻りの度合に応じて燃圧フィードバック制御の積分動作を適正化することができる。   In this embodiment, the fuel pressure feedback control is temporarily stopped during the fuel cut period, and the I gain during the fuel cut period is set according to the rate of decrease in the fuel pressure in the high pressure fuel system during the stop of the fuel pressure feedback control. By learning, the I gain during the fuel cut period is learned according to the degree of leakage or return of fuel from the high pressure fuel system to the low pressure side during the fuel cut period, so the high pressure fuel during the fuel cut period The I term can be calculated using an appropriate I gain according to the degree of fuel leakage or return from the system to the low pressure side, and fuel pressure feedback control according to the degree of fuel leakage or return during the fuel cut period The integration operation can be optimized.

その際、燃圧フィードバック制御の停止中における高圧燃料系内の燃圧の低下速度が大きくなるほど燃料カット期間中のIゲインを大きくするようにしたので、高圧燃料系内の燃圧の低下速度が大きくなる(つまり高圧燃料系から低圧側への燃料の漏れや戻りの度合が大きくなる)ほど、燃料カット期間中のIゲインを大きくしてI項の変化を速くすることができ、燃料カット期間中の高圧燃料系から低圧側への燃料の漏れや戻りによる燃圧低下を燃圧フィードバック制御により確実に防止することができる。   At that time, since the I gain during the fuel cut period is increased as the fuel pressure decrease rate in the high pressure fuel system during the stop of the fuel pressure feedback control increases, the fuel pressure decrease rate in the high pressure fuel system increases ( In other words, as the degree of fuel leakage and return from the high-pressure fuel system to the low-pressure side increases, the I gain during the fuel cut period can be increased and the change in the I term can be accelerated, and the high pressure during the fuel cut period can be increased. It is possible to reliably prevent the fuel pressure from being reduced due to fuel leakage or return from the fuel system to the low pressure side by the fuel pressure feedback control.

尚、上記実施例では、燃料カット期間中の燃圧フィードバック制御停止中における高圧燃料系内の燃圧の低下速度に応じて燃料カット期間中のIゲインを学習するようにしたが、これに限定されず、他の燃圧の低下度合の情報(例えば燃圧の低下量等)に応じて燃料カット期間中のIゲインを学習するようにしても良い等、燃料カット期間中のIゲインの学習方法を適宜変更しても良い。或は、燃料カット期間中のIゲインの学習を行わずに、燃料カット期間中のIゲインを予め設定した固定値(例えば通常運転期間中のIゲインよりも小さい値)としても良い。   In the above embodiment, the I gain during the fuel cut period is learned in accordance with the rate of decrease in the fuel pressure in the high pressure fuel system while the fuel pressure feedback control is stopped during the fuel cut period. However, the present invention is not limited to this. The method of learning the I gain during the fuel cut period may be changed as appropriate, such as learning the I gain during the fuel cut period according to other information on the degree of decrease in the fuel pressure (for example, the amount of decrease in the fuel pressure). You may do it. Alternatively, the I gain during the fuel cut period may be set to a fixed value (for example, a value smaller than the I gain during the normal operation period) without learning the I gain during the fuel cut period.

その他、本発明は、燃料供給システムの構成を適宜変更しても良い等、要旨を逸脱しない範囲内で種々変更して実施できる。   In addition, the present invention can be implemented with various modifications within a range not departing from the gist, such as appropriately changing the configuration of the fuel supply system.

本発明の一実施例における燃料供給システム全体の概略構成図である。It is a schematic block diagram of the whole fuel supply system in one Example of this invention. 燃圧制御ルーチンの処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of a process of a fuel pressure control routine. 燃料カット期間中のIゲインの学習方法を説明するタイムチャートである。It is a time chart explaining the learning method of I gain during a fuel cut period. 燃料カット期間中のIゲインのマップの一例を概念的に示す図である。It is a figure which shows notionally an example of the map of I gain during a fuel cut period.

符号の説明Explanation of symbols

11…燃料タンク、12…低圧ポンプ、14…高圧ポンプ、22…吸入口、23…燃圧制御弁、27…吐出口、28…逆止弁、29…高圧燃料配管、30…デリバリパイプ、31…燃料噴射弁、32…燃圧センサ、38…ECU(燃圧制御手段,積分ゲイン切替手段,積分ゲイン学習手段)   DESCRIPTION OF SYMBOLS 11 ... Fuel tank, 12 ... Low pressure pump, 14 ... High pressure pump, 22 ... Suction port, 23 ... Fuel pressure control valve, 27 ... Discharge port, 28 ... Check valve, 29 ... High pressure fuel piping, 30 ... Delivery pipe, 31 ... Fuel injection valve, 32 ... fuel pressure sensor, 38 ... ECU (fuel pressure control means, integral gain switching means, integral gain learning means)

Claims (5)

高圧ポンプから燃料噴射弁に高圧の燃料を供給する高圧燃料系内の燃料の圧力(以下「燃圧」という)を目標燃圧に一致させるように少なくとも積分項を用いた制御方式で前記高圧ポンプをフィードバック制御する燃圧フィードバック制御を実行する燃圧制御手段を備えた筒内噴射式内燃機関の高圧ポンプ制御装置において、
前記燃圧制御手段は、前記燃料噴射弁の燃料噴射が実行される通常運転期間中及び該燃料噴射が停止される燃料カット期間中に前記燃圧フィードバック制御を実行し、
前記通常運転期間中と前記燃料カット期間中との間で前記積分項の算出に用いる積分ゲインを切り替える積分ゲイン切替手段を備えていることを特徴とする筒内噴射式内燃機関の高圧ポンプ制御装置。
The high-pressure pump is fed back by a control method using at least an integral term so that the fuel pressure in the high-pressure fuel system (hereinafter referred to as “fuel pressure”) that supplies high-pressure fuel from the high-pressure pump to the fuel injection valve matches the target fuel pressure. In a high-pressure pump control device for a direct injection internal combustion engine provided with fuel pressure control means for performing fuel pressure feedback control to control,
The fuel pressure control means performs the fuel pressure feedback control during a normal operation period in which fuel injection of the fuel injection valve is executed and during a fuel cut period in which the fuel injection is stopped,
A high-pressure pump control device for a direct injection internal combustion engine, comprising integral gain switching means for switching an integral gain used for calculating the integral term between the normal operation period and the fuel cut period .
前記積分ゲイン切替手段は、前記燃料カット期間中の積分ゲインを前記通常運転期間中の積分ゲインよりも小さくすることを特徴とする請求項1に記載の筒内噴射式内燃機関の高圧ポンプ制御装置。   The high-pressure pump control device for a direct injection internal combustion engine according to claim 1, wherein the integral gain switching means makes the integral gain during the fuel cut period smaller than the integral gain during the normal operation period. . 前記燃料カット期間中の前記高圧燃料系から低圧側への燃料の漏れ又は戻りの度合に応じて前記燃料カット期間中の積分ゲインを学習する積分ゲイン学習手段を備え、
前記積分ゲイン切替手段は、前記燃料カット期間中に前記積分ゲイン学習手段で学習した燃料カット期間中の積分ゲインに切り替えることを特徴とする請求項1又は2に記載の筒内噴射式内燃機関の高圧ポンプ制御装置。
An integral gain learning means for learning an integral gain during the fuel cut period according to the degree of fuel leakage or return from the high pressure fuel system to the low pressure side during the fuel cut period;
The in-cylinder injection internal combustion engine according to claim 1 or 2, wherein the integral gain switching means switches to an integral gain during a fuel cut period learned by the integral gain learning means during the fuel cut period. High pressure pump control device.
前記積分ゲイン学習手段は、前記燃料カット期間中に前記燃圧フィードバック制御を一時的に停止し、その燃圧フィードバック制御の停止中における前記高圧燃料系内の燃圧の低下度合に応じて前記燃料カット期間中の積分ゲインを学習することで、前記燃料カット期間中の前記高圧燃料系から低圧側への燃料の漏れ又は戻りの度合に応じて前記燃料カット期間中の積分ゲインを学習することを特徴とする請求項3に記載の筒内噴射式内燃機関の高圧ポンプ制御装置。   The integral gain learning means temporarily stops the fuel pressure feedback control during the fuel cut period, and during the fuel cut period according to the degree of decrease in the fuel pressure in the high pressure fuel system during the stop of the fuel pressure feedback control. The integral gain during the fuel cut period is learned in accordance with the degree of fuel leakage or return from the high pressure fuel system to the low pressure side during the fuel cut period. The high-pressure pump control device for a direct injection internal combustion engine according to claim 3. 前記積分ゲイン学習手段は、前記燃圧フィードバック制御の停止中における前記高圧燃料系内の燃圧の低下度合が大きくなるほど前記燃料カット期間中の積分ゲインを大きくするように学習することを特徴とする請求項4に記載の筒内噴射式内燃機関の高圧ポンプ制御装置。   The integral gain learning means learns to increase the integral gain during the fuel cut period as the degree of decrease in the fuel pressure in the high pressure fuel system during the stop of the fuel pressure feedback control increases. 4. A high pressure pump control device for a direct injection internal combustion engine according to claim 4.
JP2008290487A 2008-11-13 2008-11-13 High-pressure pump control device for cylinder injection type internal combustion engine Pending JP2010116835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008290487A JP2010116835A (en) 2008-11-13 2008-11-13 High-pressure pump control device for cylinder injection type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008290487A JP2010116835A (en) 2008-11-13 2008-11-13 High-pressure pump control device for cylinder injection type internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010116835A true JP2010116835A (en) 2010-05-27

Family

ID=42304648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008290487A Pending JP2010116835A (en) 2008-11-13 2008-11-13 High-pressure pump control device for cylinder injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010116835A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067634A (en) * 2010-09-21 2012-04-05 Hitachi Automotive Systems Ltd Fuel supply control device of internal combustion engine
JP2013002309A (en) * 2011-06-13 2013-01-07 Denso Corp Control device of fuel pump
JP2015229967A (en) * 2014-06-05 2015-12-21 トヨタ自動車株式会社 Fuel pressure control unit
JP2016011601A (en) * 2014-06-27 2016-01-21 トヨタ自動車株式会社 Internal combustion engine fuel injection control unit
JP2016075153A (en) * 2014-10-02 2016-05-12 いすゞ自動車株式会社 Fuel injection control device
JP7465162B2 (en) 2020-06-30 2024-04-10 日立Astemo株式会社 Engine Control Unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067634A (en) * 2010-09-21 2012-04-05 Hitachi Automotive Systems Ltd Fuel supply control device of internal combustion engine
JP2013002309A (en) * 2011-06-13 2013-01-07 Denso Corp Control device of fuel pump
JP2015229967A (en) * 2014-06-05 2015-12-21 トヨタ自動車株式会社 Fuel pressure control unit
JP2016011601A (en) * 2014-06-27 2016-01-21 トヨタ自動車株式会社 Internal combustion engine fuel injection control unit
JP2016075153A (en) * 2014-10-02 2016-05-12 いすゞ自動車株式会社 Fuel injection control device
JP7465162B2 (en) 2020-06-30 2024-04-10 日立Astemo株式会社 Engine Control Unit

Similar Documents

Publication Publication Date Title
JP5234431B2 (en) Fuel pressure control device for in-cylinder internal combustion engine
JP5282878B2 (en) In-cylinder injection internal combustion engine control device
JP4333619B2 (en) In-cylinder injection type internal combustion engine start control device
JP2007046482A (en) Control device for cylinder injection type internal combustion engine
JP2009115009A (en) After-stop fuel pressure control device of direct injection engine
JP4349451B2 (en) Fuel injection control device and fuel injection system using the same
JP2010019088A (en) Idling stop control device and fuel injection system using same
JP2010116835A (en) High-pressure pump control device for cylinder injection type internal combustion engine
JP2009079514A (en) Fuel pressure control device for cylinder injection type internal combustion engine
JPWO2012056534A1 (en) Fuel injection control system for internal combustion engine
JP2009079564A (en) High-pressure pump control device of internal combustion engine
JP2011163220A (en) Control device for fuel supply system
JP6146274B2 (en) Control device for internal combustion engine
JP2011185158A (en) Failure diagnostic device of high pressure fuel supply system of internal combustion engine
JP2007303372A (en) Fuel supply system of internal combustion engine
JP2010196472A (en) Fuel supply control device for internal combustion engine
JP2009091963A (en) After-stop fuel pressure control device for cylinder injection internal combustion engine
JP2012229623A (en) High-pressure fuel feeding device of internal combustion engine
US10508611B2 (en) Control device and control method for internal combustion engine
JP2008274842A (en) Pressure reducing valve controller and fuel injection system using same
WO2016189803A1 (en) Internal-combustion engine high-pressure pump control device
JP2009221906A (en) Low pressure pump control device of direct injection type internal combustion engine
JP4155168B2 (en) Common rail fuel injection system
JP5991268B2 (en) Fuel supply device for internal combustion engine
JP5344312B2 (en) Abnormality diagnosis device for fuel supply system of internal combustion engine