JP6090112B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP6090112B2
JP6090112B2 JP2013224919A JP2013224919A JP6090112B2 JP 6090112 B2 JP6090112 B2 JP 6090112B2 JP 2013224919 A JP2013224919 A JP 2013224919A JP 2013224919 A JP2013224919 A JP 2013224919A JP 6090112 B2 JP6090112 B2 JP 6090112B2
Authority
JP
Japan
Prior art keywords
injection
fuel
discharge
amount
fuel pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013224919A
Other languages
Japanese (ja)
Other versions
JP2015086763A (en
Inventor
学宏 近藤
学宏 近藤
喜幸 後藤
喜幸 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013224919A priority Critical patent/JP6090112B2/en
Priority to PCT/JP2014/005420 priority patent/WO2015064075A1/en
Publication of JP2015086763A publication Critical patent/JP2015086763A/en
Application granted granted Critical
Publication of JP6090112B2 publication Critical patent/JP6090112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、内燃機関で駆動される高圧ポンプから吐出される燃料を各気筒の燃料噴射弁に供給する内燃機関の制御装置に関する発明である。   The present invention relates to a control device for an internal combustion engine that supplies fuel discharged from a high-pressure pump driven by the internal combustion engine to a fuel injection valve of each cylinder.

内燃機関の気筒間の噴射量ばらつき(気筒間の空燃比ばらつき)を補正する技術として、例えば、特許文献1(特開2010−43614号公報)に記載されたものがある。このものは、燃圧(燃料圧力)を検出する燃圧センサの出力に基づいて各気筒毎に燃料噴射弁の燃料噴射に伴う燃圧降下量を噴射量ばらつきの情報として算出し、各気筒の燃圧降下量に基づいて各気筒の燃料噴射弁の噴射パルス幅を補正することで、各気筒の燃料噴射弁の噴射量ばらつきを補正するようにしている。   As a technique for correcting injection amount variation (cylinder air-fuel ratio variation) between cylinders of an internal combustion engine, for example, there is one described in Patent Document 1 (Japanese Patent Laid-Open No. 2010-43614). This is based on the output of the fuel pressure sensor that detects the fuel pressure (fuel pressure), and calculates the amount of fuel pressure drop that accompanies the fuel injection of the fuel injector for each cylinder as information on the variation in injection amount. By correcting the injection pulse width of the fuel injection valve of each cylinder based on the above, variation in the injection amount of the fuel injection valve of each cylinder is corrected.

しかし、内燃機関で駆動される高圧ポンプから吐出される燃料を各気筒の燃料噴射弁に供給するシステムでは、内燃機関の運転領域によっては、燃料噴射弁の噴射期間と高圧ポンプの吐出期間とが重複することがある。燃料噴射弁の噴射期間と高圧ポンプの吐出期間とが重複する運転領域では、燃圧センサの出力に基づいて燃料噴射弁の燃料噴射に伴う燃圧降下量を算出する際に、高圧ポンプの燃料吐出による燃圧上昇の影響を受けて、燃料噴射弁の燃料噴射に伴う燃圧降下量を精度良く算出することが困難になる。   However, in a system that supplies fuel discharged from a high-pressure pump driven by an internal combustion engine to a fuel injection valve of each cylinder, the injection period of the fuel injection valve and the discharge period of the high-pressure pump may vary depending on the operating region of the internal combustion engine. May overlap. In the operation region where the injection period of the fuel injection valve and the discharge period of the high pressure pump overlap, when calculating the fuel pressure drop due to the fuel injection of the fuel injection valve based on the output of the fuel pressure sensor, the fuel discharge of the high pressure pump Under the influence of the increase in fuel pressure, it becomes difficult to accurately calculate the amount of decrease in fuel pressure accompanying the fuel injection of the fuel injection valve.

そこで、上記特許文献1では、高圧ポンプの無吐出期間中に燃圧センサにより検出される燃圧に基づいて燃料噴射弁の燃料噴射に伴う燃圧降下量を算出するようにしている。つまり、燃料噴射弁の噴射期間と高圧ポンプの吐出期間とが重複しない運転領域のときに、燃圧センサの出力に基づいて燃料噴射弁の燃料噴射に伴う燃圧降下量を算出するようにしている。   Therefore, in Patent Document 1, the amount of fuel pressure drop accompanying fuel injection of the fuel injection valve is calculated based on the fuel pressure detected by the fuel pressure sensor during the non-discharge period of the high-pressure pump. In other words, when the fuel injection valve injection period and the high-pressure pump discharge period are in the operating region, the fuel pressure drop accompanying the fuel injection of the fuel injection valve is calculated based on the output of the fuel pressure sensor.

特開2010−43614号公報JP 2010-43614 A

各気筒の燃料噴射弁の噴射量ばらつきは、燃料噴射弁の噴射量に対して一律ではなく、内燃機関の運転領域に応じて燃料噴射弁の噴射量が変化すると、各気筒の燃料噴射弁の噴射量ばらつきも変化する。このため、特定の運転領域だけでなく幅広い運転領域で、各気筒の燃料噴射弁の噴射量ばらつきを補正することが好ましい。   The variation in the injection amount of the fuel injection valve of each cylinder is not uniform with respect to the injection amount of the fuel injection valve, and if the injection amount of the fuel injection valve changes according to the operating region of the internal combustion engine, The injection amount variation also changes. For this reason, it is preferable to correct the injection amount variation of the fuel injection valve of each cylinder not only in a specific operation region but also in a wide operation region.

しかし、上記特許文献1の技術では、燃料噴射弁の噴射期間と高圧ポンプの吐出期間とが重複しない運転領域のときに、燃料噴射弁の燃料噴射に伴う燃圧降下量を算出するだけであるため、燃料噴射弁の噴射期間と高圧ポンプの吐出期間とが重複する運転領域(噴射吐出重複領域)では、燃料噴射弁の燃料噴射に伴う燃圧降下量(噴射量ばらつきの情報)を算出することができない。このため、噴射吐出重複領域では、各気筒の燃料噴射弁の噴射量ばらつきを精度良く補正することができず、気筒間の噴射量ばらつきを精度良く補正できる領域が限定されてしまうという欠点がある。   However, in the technique of the above-mentioned Patent Document 1, only in the operation region where the injection period of the fuel injection valve and the discharge period of the high pressure pump do not overlap, only the amount of fuel pressure drop accompanying the fuel injection of the fuel injection valve is calculated. In the operation region (injection / discharge overlap region) where the injection period of the fuel injection valve and the discharge period of the high-pressure pump overlap, it is possible to calculate the fuel pressure drop amount (information on the injection amount variation) accompanying the fuel injection of the fuel injection valve. Can not. For this reason, in the injection discharge overlapping region, there is a drawback that the injection amount variation of the fuel injection valve of each cylinder cannot be corrected with high accuracy, and the region where the injection amount variation between cylinders can be corrected with high accuracy is limited. .

そこで、本発明が解決しようとする課題は、気筒間の噴射量ばらつきを精度良く補正できる領域を拡大することができる内燃機関の制御装置を提供することにある。   Accordingly, the problem to be solved by the present invention is to provide a control device for an internal combustion engine that can expand the region where the variation in the injection amount between the cylinders can be accurately corrected.

上記課題を解決するために、請求項1に係る発明は、内燃機関で駆動される高圧ポンプ(14)から吐出される燃料を高圧燃料通路(29,30)を通して各気筒の燃料噴射弁(31)に供給するシステムに適用され、高圧燃料通路(29,30)内の燃料圧力(以下「燃圧」という)を検出する燃圧センサ(32)と、この燃圧センサ(32)の出力に基づいて各気筒毎に燃料噴射弁(31)の燃料噴射による燃圧降下量を算出し、該燃料噴射による燃圧降下量に基づいて各気筒の燃料噴射弁(31)の噴射量ばらつきを補正する噴射量ばらつき補正手段(38)とを備えた内燃機関の制御装置において、噴射量ばらつき補正手段(38)は、燃料噴射弁(31)の噴射期間と高圧ポンプ(14)の吐出期間とが重複する運転領域(以下「噴射吐出重複領域」という)のときに、燃圧センサ(32)の出力に基づいて各気筒の燃料噴射弁(31)の噴射量ばらつきを補正するようにしたものである。   In order to solve the above problems, the invention according to claim 1 is directed to a fuel injection valve (31) for each cylinder through which fuel discharged from a high pressure pump (14) driven by an internal combustion engine passes through a high pressure fuel passage (29, 30). ) And a fuel pressure sensor (32) for detecting a fuel pressure (hereinafter referred to as “fuel pressure”) in the high pressure fuel passages (29, 30), and each output based on the output of the fuel pressure sensor (32). An injection amount variation correction for calculating a fuel pressure drop amount due to fuel injection of the fuel injection valve (31) for each cylinder and correcting a fuel injection amount variation of the fuel injection valve (31) of each cylinder based on the fuel pressure drop amount due to the fuel injection. In the control device for an internal combustion engine provided with the means (38), the injection amount variation correcting means (38) is an operation region (the operation period in which the injection period of the fuel injection valve (31) and the discharge period of the high-pressure pump (14) overlap. Less than" When morphisms discharge of overlapping area "), in which the injection quantity variation of the fuel injection valve of each cylinder (31) on the basis of the output of the fuel pressure sensor (32) and is corrected.

このようにすれば、噴射吐出重複領域でも、燃圧センサ(32)の出力に基づいて各気筒の燃料噴射弁の噴射量ばらつきを精度良く補正することができ、気筒間の噴射量ばらつきを精度良く補正できる領域を拡大することができる。   In this way, even in the injection discharge overlap region, it is possible to accurately correct the injection amount variation of the fuel injection valve of each cylinder based on the output of the fuel pressure sensor (32), and to accurately correct the injection amount variation between the cylinders. The area that can be corrected can be enlarged.

この場合、請求項2のように、噴射量ばらつき補正手段(38)は、噴射吐出重複領域のときに、燃圧センサ(32)の出力に基づいて各気筒毎に噴射期間の開始時期と吐出期間の開始時期のうちの早い方から噴射期間の終了時期と吐出期間の終了時期のうちの遅い方までの期間(以下「噴射吐出期間」という)の前後の燃圧の差を噴射吐出による燃圧変化量として算出し、該噴射吐出による燃圧変化量に基づいて各気筒の燃料噴射弁(31)の噴射量ばらつきを補正するようにすると良い。   In this case, as in the second aspect, the injection amount variation correcting means (38) is configured so that the injection period start timing and the discharge period are determined for each cylinder based on the output of the fuel pressure sensor (32) in the injection discharge overlap region. The difference in fuel pressure before and after the period from the earlier start time to the later end time of the injection period and the later end time of the discharge period (hereinafter referred to as “injection / discharge period”) And the variation in the injection amount of the fuel injection valve (31) of each cylinder may be corrected based on the amount of change in fuel pressure due to the injection and discharge.

本出願人の研究によると、噴射吐出重複領域(燃料噴射弁の噴射期間と高圧ポンプの吐出期間とが重複する運転領域)では、燃料噴射弁の噴射期間と高圧ポンプの吐出期間とのOL量(オーバーラップ量)によらず、燃料噴射弁の噴射量ばらつきと噴射吐出による燃圧変化量(噴射吐出期間の前後の燃圧の差)との間に相関関係があることが判明した(図4参照)。つまり、燃料噴射弁の噴射量ばらつきに応じて噴射吐出による燃圧変化量が変化するため、噴射吐出による燃圧変化量は燃料噴射弁の噴射量ばらつきを反映した情報となる。   According to the applicant's research, in the injection / discharge overlap region (the operation region where the injection period of the fuel injection valve and the discharge period of the high-pressure pump overlap), the OL amount between the injection period of the fuel injection valve and the discharge period of the high-pressure pump Regardless of the (overlap amount), it has been found that there is a correlation between the injection amount variation of the fuel injection valve and the fuel pressure change amount due to injection / discharge (difference in fuel pressure before and after the injection / discharge period) (see FIG. 4). ). That is, since the amount of change in fuel pressure due to injection / discharge changes in accordance with the variation in injection amount of the fuel injection valve, the amount of change in fuel pressure due to injection / discharge becomes information reflecting the variation in injection amount of the fuel injection valve.

この点に着目して、本発明は、噴射吐出重複領域のときに、燃圧センサの出力に基づいて各気筒毎に噴射吐出による燃圧変化量(噴射吐出期間の前後の燃圧の差)を噴射量ばらつきの情報として算出し、各気筒の噴射吐出による燃圧変化量に基づいて各気筒の燃料噴射弁の噴射量ばらつきを補正するようにしている。これにより、噴射吐出重複領域でも、各気筒の燃料噴射弁の噴射量ばらつきを精度良く補正することができる。   Focusing on this point, the present invention calculates the amount of change in fuel pressure (difference in fuel pressure before and after the injection / discharge period) for each cylinder based on the output of the fuel pressure sensor in the injection / discharge overlap region. It is calculated as variation information, and the variation in the injection amount of the fuel injection valve in each cylinder is corrected based on the amount of change in fuel pressure due to the injection and discharge in each cylinder. Thereby, it is possible to accurately correct the injection amount variation of the fuel injection valve of each cylinder even in the injection discharge overlapping region.

その結果、噴射吐出重複領域以外の運転領域(燃料噴射弁の噴射期間と高圧ポンプの吐出期間とが重複しない運転領域)では、各気筒の燃料噴射による燃圧降下量に基づいて各気筒の燃料噴射弁の噴射量ばらつきを精度良く補正することができると共に、噴射吐出重複領域では、各気筒の噴射吐出による燃圧変化量に基づいて各気筒の燃料噴射弁の噴射量ばらつきを精度良く補正することができ、気筒間の噴射量ばらつきを精度良く補正できる領域を拡大することができる。   As a result, in the operation region other than the injection discharge overlap region (operation region where the injection period of the fuel injection valve and the discharge period of the high pressure pump do not overlap), the fuel injection of each cylinder is performed based on the fuel pressure drop amount due to the fuel injection of each cylinder. It is possible to correct the injection amount variation of the valve with high accuracy and to accurately correct the injection amount variation of the fuel injection valve of each cylinder based on the fuel pressure change amount due to the injection discharge of each cylinder in the injection discharge overlapping region. Thus, it is possible to enlarge the region where the variation in the injection amount between the cylinders can be corrected with high accuracy.

図1は本発明の一実施例における筒内噴射式エンジンの燃料供給システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a fuel supply system for a direct injection engine according to an embodiment of the present invention. 図2は燃料噴射による燃圧降下量を説明する図である。FIG. 2 is a diagram for explaining the amount of fuel pressure drop due to fuel injection. 図3は噴射吐出による燃圧変化量を説明する図である。FIG. 3 is a diagram for explaining the amount of change in fuel pressure due to ejection and discharge. 図4は噴射量ばらつきと噴射吐出による燃圧変化量との関係を示す図である。FIG. 4 is a diagram showing the relationship between the variation in the injection amount and the amount of change in the fuel pressure due to the injection and discharge. 図5は噴射量ばらつき補正ルーチンの処理の流れを示すフローチャートである。FIG. 5 is a flowchart showing the flow of processing of the injection amount variation correction routine.

以下、本発明を実施するための形態を具体化した一実施例を説明する。
まず、図1に基づいて筒内噴射式のエンジン(内燃機関)の燃料供給システムの概略構成を説明する。
Hereinafter, an embodiment embodying a mode for carrying out the present invention will be described.
First, a schematic configuration of a fuel supply system of a cylinder injection engine (internal combustion engine) will be described with reference to FIG.

燃料を貯溜する燃料タンク11内には、燃料を汲み上げる低圧ポンプ12が設置されている。この低圧ポンプ12は、バッテリ(図示せず)を電源とする電動モータ(図示せず)によって駆動される。この低圧ポンプ12から吐出される燃料は、燃料配管13を通して高圧ポンプ14に供給される。燃料配管13には、プレッシャレギュレータ15が接続され、このプレッシャレギュレータ15によって低圧ポンプ12の吐出圧力(高圧ポンプ14への燃料供給圧力)が所定圧力に調圧され、その圧力を越える燃料の余剰分が燃料戻し管16により燃料タンク11内に戻されるようになっている。   A low pressure pump 12 that pumps up the fuel is installed in the fuel tank 11 that stores the fuel. The low-pressure pump 12 is driven by an electric motor (not shown) that uses a battery (not shown) as a power source. The fuel discharged from the low pressure pump 12 is supplied to the high pressure pump 14 through the fuel pipe 13. A pressure regulator 15 is connected to the fuel pipe 13, and the pressure regulator 15 regulates the discharge pressure of the low-pressure pump 12 (fuel supply pressure to the high-pressure pump 14) to a predetermined pressure. Is returned to the fuel tank 11 by the fuel return pipe 16.

高圧ポンプ14は、円筒状のポンプ室18内でピストン19(プランジャ)を往復運動させて燃料を吸入/吐出するピストンポンプであり、ピストン19は、エンジン(例えば4気筒エンジン)のカム軸20に嵌着されたカム21(例えば4つのカム山を有する4山カム)の回転運動によって駆動される。   The high-pressure pump 14 is a piston pump that sucks / discharges fuel by reciprocating a piston 19 (plunger) in a cylindrical pump chamber 18. The piston 19 is connected to a camshaft 20 of an engine (for example, a four-cylinder engine). It is driven by the rotational movement of the fitted cam 21 (for example, a four mountain cam having four cam mountains).

この高圧ポンプ14の吸入口22側には、燃圧制御弁23が設けられている。この燃圧制御弁23は、常開型の電磁弁であり、吸入口22を開閉する弁体24と、この弁体24を開弁方向に付勢するスプリング25と、弁体24を閉弁方向に電磁駆動するソレノイド26とから構成されている。   A fuel pressure control valve 23 is provided on the suction port 22 side of the high-pressure pump 14. The fuel pressure control valve 23 is a normally open type electromagnetic valve, and includes a valve body 24 that opens and closes the suction port 22, a spring 25 that urges the valve body 24 in the valve opening direction, and a valve body 24 in the valve closing direction. And a solenoid 26 that is electromagnetically driven.

高圧ポンプ14の吸入行程(ピストン19の下降時)において燃圧制御弁23の弁体24が開弁してポンプ室18内に燃料が吸入され、高圧ポンプ14の吐出行程(ピストン19の上昇時)において燃圧制御弁23の弁体24が閉弁してポンプ室18内の燃料が吐出されるように燃圧制御弁23のソレノイド26の通電を制御する。その際、燃圧制御弁23(ソレノイド26)の通電開始時期を制御して燃圧制御弁23の閉弁期間(閉弁開始時期からピストン19の上死点までの閉弁状態のクランク角区間)を制御することで、高圧ポンプ14の吐出量を制御して燃圧(燃料圧力)を制御する。尚、燃圧制御弁23の通電開始時期は、所定の基準クランク角位置(例えばピストン19の上死点に相当するクランク角位置)からのクランク角で設定される。   During the intake stroke of the high-pressure pump 14 (when the piston 19 is lowered), the valve body 24 of the fuel pressure control valve 23 is opened and fuel is sucked into the pump chamber 18, and the discharge stroke of the high-pressure pump 14 (when the piston 19 is raised). , The energization of the solenoid 26 of the fuel pressure control valve 23 is controlled so that the valve body 24 of the fuel pressure control valve 23 is closed and the fuel in the pump chamber 18 is discharged. At that time, the energization start timing of the fuel pressure control valve 23 (solenoid 26) is controlled to set the closing period of the fuel pressure control valve 23 (the crank angle section in the closed state from the valve closing start timing to the top dead center of the piston 19). By controlling, the discharge amount of the high-pressure pump 14 is controlled to control the fuel pressure (fuel pressure). The energization start timing of the fuel pressure control valve 23 is set by a crank angle from a predetermined reference crank angle position (for example, a crank angle position corresponding to the top dead center of the piston 19).

例えば、燃圧を上昇させるときには、燃圧制御弁23の通電開始時期を進角させて燃圧制御弁23の閉弁開始時期を進角させることで、燃圧制御弁23の閉弁期間を長くして高圧ポンプ14の吐出量を増加させる。逆に、燃圧を低下させるときには、燃圧制御弁23の通電開始時期を遅角させて燃圧制御弁23の閉弁開始時期を遅角させることで、燃圧制御弁23の閉弁期間を短くして高圧ポンプ14の吐出量を減少させる。   For example, when the fuel pressure is increased, the energization start timing of the fuel pressure control valve 23 is advanced to advance the valve closing start timing of the fuel pressure control valve 23, thereby extending the valve closing period of the fuel pressure control valve 23 and increasing the pressure. The discharge amount of the pump 14 is increased. Conversely, when the fuel pressure is decreased, the closing period of the fuel pressure control valve 23 is shortened by delaying the energization start timing of the fuel pressure control valve 23 and delaying the closing start timing of the fuel pressure control valve 23. The discharge amount of the high-pressure pump 14 is reduced.

一方、高圧ポンプ14の吐出口27側には、吐出した燃料の逆流を防止する逆止弁28が設けられている。高圧ポンプ14から吐出される燃料は、高圧燃料配管29を通してデリバリパイプ30に送られ、このデリバリパイプ30からエンジンの各気筒に取り付けられた燃料噴射弁31に高圧の燃料が分配される。デリバリパイプ30(又は高圧燃料配管29)には、高圧燃料配管29やデリバリパイプ30等の高圧燃料通路内の燃圧(燃料圧力)を検出する燃圧センサ32が設けられている。また、デリバリパイプ30には、リリーフ弁33が設けられ、このリリーフ弁33の排出ポートがリリーフ配管34を介して燃料タンク11(又は低圧側の燃料配管13)に接続されている。   On the other hand, a check valve 28 for preventing the backflow of discharged fuel is provided on the discharge port 27 side of the high-pressure pump 14. The fuel discharged from the high-pressure pump 14 is sent to the delivery pipe 30 through the high-pressure fuel pipe 29, and the high-pressure fuel is distributed from the delivery pipe 30 to the fuel injection valve 31 attached to each cylinder of the engine. The delivery pipe 30 (or the high-pressure fuel pipe 29) is provided with a fuel pressure sensor 32 that detects a fuel pressure (fuel pressure) in a high-pressure fuel passage such as the high-pressure fuel pipe 29 or the delivery pipe 30. The delivery pipe 30 is provided with a relief valve 33, and a discharge port of the relief valve 33 is connected to the fuel tank 11 (or the low-pressure side fuel pipe 13) via a relief pipe 34.

本実施例では、4気筒エンジンの各気筒に燃料噴射弁31が設けられ、高圧ポンプ14を駆動するカム21として、4つのカム山を有する4山カムが用いられている。これにより、エンジンのカム軸20が1回転(つまりクランク軸が2回転)する毎に燃料噴射弁31の燃料噴射が4回行われると共に高圧ポンプ14の燃料吐出が4回行われる。   In this embodiment, a fuel injection valve 31 is provided in each cylinder of a four-cylinder engine, and a four-crest cam having four cam crests is used as the cam 21 for driving the high-pressure pump 14. As a result, every time the camshaft 20 of the engine rotates once (that is, the crankshaft rotates twice), fuel injection of the fuel injection valve 31 is performed four times and fuel discharge of the high-pressure pump 14 is performed four times.

また、エンジンには、吸入空気量を検出するエアフローメータ36や、クランク軸(図示せず)の回転に同期して所定クランク角毎にパルス信号を出力するクランク角センサ37が設けられている。このクランク角センサ37の出力信号に基づいてクランク角やエンジン回転速度が検出される。   Further, the engine is provided with an air flow meter 36 for detecting the amount of intake air and a crank angle sensor 37 for outputting a pulse signal at every predetermined crank angle in synchronization with rotation of a crankshaft (not shown). Based on the output signal of the crank angle sensor 37, the crank angle and the engine speed are detected.

上述した各種センサの出力は、電子制御ユニット(以下「ECU」と表記する)38に入力される。このECU38は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御用のプログラムを実行することで、エンジン運転状態に応じて、燃料噴射量、点火時期、スロットル開度(吸入空気量)等を制御する。   Outputs of the various sensors described above are input to an electronic control unit (hereinafter referred to as “ECU”) 38. The ECU 38 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel injection amount and the ignition timing are determined according to the engine operating state. The throttle opening (intake air amount) and the like are controlled.

その際、ECU38は、エンジン運転状態(例えばエンジン回転速度やエンジン負荷等)に応じて目標燃圧をマップ等により算出し、燃圧センサ32で検出した高圧燃料通路内の実燃圧を目標燃圧に一致させるように高圧ポンプ14の吐出量(燃圧制御弁23の通電時期)をフィードバック制御する燃圧フィードバック制御を実行する。   At that time, the ECU 38 calculates a target fuel pressure from a map or the like according to the engine operating state (for example, engine speed, engine load, etc.), and matches the actual fuel pressure in the high-pressure fuel passage detected by the fuel pressure sensor 32 with the target fuel pressure. As described above, the fuel pressure feedback control is executed to feedback control the discharge amount of the high-pressure pump 14 (energization timing of the fuel pressure control valve 23).

また、ECU38は、エンジン運転状態(例えばエンジン回転速度やエンジン負荷等)に応じて要求噴射量を算出して、この要求噴射量と燃圧センサ32で検出した実燃圧(又は目標燃圧)とに応じて燃料噴射弁31の噴射時間(噴射パルス幅)を算出し、この噴射時間で燃料噴射弁31を開弁駆動して要求噴射量分の燃料を噴射する。   Further, the ECU 38 calculates a required injection amount according to the engine operating state (for example, engine speed, engine load, etc.), and according to the required injection amount and the actual fuel pressure (or target fuel pressure) detected by the fuel pressure sensor 32. Then, the injection time (injection pulse width) of the fuel injection valve 31 is calculated, and the fuel injection valve 31 is driven to open during this injection time to inject fuel for the required injection amount.

更に、ECU38は、所定の空燃比フィードバック制御実行条件が成立したときに、エンジンの排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ(例えば空燃比センサや酸素センサ等)の出力に基づいて排出ガスの空燃比を目標空燃比に一致させるように空燃比フィードバック補正量を算出し、この空燃比フィードバック補正量を用いて要求噴射量を補正する空燃比フィードバック制御を実行する。   Further, the ECU 38 is based on the output of an exhaust gas sensor (for example, an air-fuel ratio sensor or an oxygen sensor) that detects the air-fuel ratio or rich / lean of the engine exhaust gas when a predetermined air-fuel ratio feedback control execution condition is satisfied. Then, the air-fuel ratio feedback correction amount is calculated so that the air-fuel ratio of the exhaust gas matches the target air-fuel ratio, and air-fuel ratio feedback control for correcting the required injection amount using this air-fuel ratio feedback correction amount is executed.

ところで、各気筒の燃料噴射弁31の噴射時間(噴射パルス幅)が同一であっても、各気筒の燃料噴射弁31の個体差(製造ばらつき)や経時変化等によって各気筒の燃料噴射弁31の噴射量にばらつきが生じることがある。   By the way, even if the injection time (injection pulse width) of the fuel injection valve 31 of each cylinder is the same, the fuel injection valve 31 of each cylinder depends on individual differences (manufacturing variation) of the fuel injection valves 31 of each cylinder, changes over time, and the like. There may be variations in the injection amount.

そこで、ECU38は、燃圧センサ32の出力に基づいて各気筒毎に燃料噴射弁31の燃料噴射による燃圧降下量を噴射量ばらつきの情報として算出し、各気筒の燃料噴射による燃圧降下量に基づいて各気筒の燃料噴射弁31の噴射量ばらつきを補正するようにしている。   Therefore, the ECU 38 calculates the fuel pressure drop amount due to the fuel injection of the fuel injection valve 31 for each cylinder based on the output of the fuel pressure sensor 32 as information on the injection amount variation, and based on the fuel pressure drop amount due to the fuel injection of each cylinder. Variations in the injection amount of the fuel injection valve 31 of each cylinder are corrected.

しかし、エンジンで駆動される高圧ポンプ14から吐出される燃料を各気筒の燃料噴射弁31に供給するシステムでは、エンジンの運転領域によっては、燃料噴射弁31の噴射期間と高圧ポンプ14の吐出期間とが重複することがある。燃料噴射弁31の噴射期間と高圧ポンプ14の吐出期間とが重複する運転領域(以下「噴射吐出重複領域」という)では、燃圧センサ32の出力に基づいて燃料噴射弁31の燃料噴射による燃圧降下量を算出する際に、高圧ポンプ14の燃料吐出による燃圧上昇の影響を受けて、燃料噴射弁31の燃料噴射による燃圧降下量を精度良く算出することが困難になる。   However, in a system that supplies fuel discharged from the high-pressure pump 14 driven by the engine to the fuel injection valve 31 of each cylinder, the injection period of the fuel injection valve 31 and the discharge period of the high-pressure pump 14 depend on the engine operating region. And may overlap. In an operation region where the injection period of the fuel injection valve 31 and the discharge period of the high-pressure pump 14 overlap (hereinafter referred to as “injection / discharge overlap region”), the fuel pressure drop due to fuel injection of the fuel injection valve 31 based on the output of the fuel pressure sensor 32. When calculating the amount, it is difficult to accurately calculate the amount of fuel pressure decrease due to fuel injection of the fuel injection valve 31 due to the influence of fuel pressure increase due to fuel discharge of the high-pressure pump 14.

そこで、本実施例では、ECU38により後述する図5の噴射量ばらつき補正ルーチンを実行することで、噴射吐出重複領域以外の運転領域のときには、燃圧センサ32の出力に基づいて各気筒毎に燃料噴射弁31の燃料噴射による燃圧降下量(図2参照)を算出し、各気筒の燃料噴射による燃圧降下量に基づいて各気筒の燃料噴射弁31の噴射量ばらつきを補正する。一方、噴射吐出重複領域のときには、燃圧センサ32の出力に基づいて各気筒毎に噴射期間の開始時期と吐出期間の開始時期のうちの早い方から噴射期間の終了時期と吐出期間の終了時期のうちの遅い方までの期間(以下「噴射吐出期間」という)の前後の燃圧の差を噴射吐出による燃圧変化量(図3参照)として算出し、各気筒の噴射吐出による燃圧変化量に基づいて各気筒の燃料噴射弁31の噴射量ばらつきを補正するようにしている。   Therefore, in this embodiment, the ECU 38 executes an injection amount variation correction routine, which will be described later, with reference to the output of the fuel pressure sensor 32 for each cylinder based on the output of the fuel pressure sensor 32. The amount of fuel pressure drop due to fuel injection of the valve 31 (see FIG. 2) is calculated, and the injection amount variation of the fuel injection valve 31 of each cylinder is corrected based on the amount of fuel pressure drop due to fuel injection of each cylinder. On the other hand, in the injection / discharge overlap region, the end of the injection period and the end of the discharge period are determined from the earlier of the start time of the injection period and the start time of the discharge period for each cylinder based on the output of the fuel pressure sensor 32. The difference in fuel pressure before and after the later period (hereinafter referred to as “injection / discharge period”) is calculated as the amount of change in fuel pressure by injection / discharge (see FIG. 3), and based on the amount of change in fuel pressure by injection / discharge of each cylinder. Variations in the injection amount of the fuel injection valve 31 of each cylinder are corrected.

図4に示すように、本出願人の研究によると、噴射吐出重複領域(燃料噴射弁31の噴射期間と高圧ポンプ14の吐出期間とが重複する運転領域)では、燃料噴射弁31の噴射期間と高圧ポンプ14の吐出期間とのOL量(オーバーラップ量)によらず、燃料噴射弁31の噴射量ばらつきと噴射吐出による燃圧変化量(噴射吐出期間の前後の燃圧の差)との間に相関関係があることが判明した。つまり、燃料噴射弁31の噴射量ばらつきに応じて噴射吐出による燃圧変化量が変化するため、噴射吐出による燃圧変化量は燃料噴射弁31の噴射量ばらつきを反映した情報となる。   As shown in FIG. 4, according to the study by the present applicant, in the injection / discharge overlapping region (the operation region where the injection period of the fuel injection valve 31 and the discharge period of the high-pressure pump 14 overlap), the injection period of the fuel injection valve 31. Regardless of the OL amount (overlap amount) between the high pressure pump 14 and the discharge period of the high-pressure pump 14, between the injection amount variation of the fuel injection valve 31 and the fuel pressure change amount due to the injection discharge (difference in fuel pressure before and after the injection discharge period). It was found that there was a correlation. That is, the amount of change in fuel pressure due to injection / discharge changes according to the variation in injection amount of the fuel injection valve 31, so the amount of fuel pressure change due to injection / discharge becomes information reflecting the variation in injection amount of the fuel injection valve 31.

従って、噴射吐出重複領域のときに、燃圧センサ32の出力に基づいて各気筒毎に噴射吐出による燃圧変化量を噴射量ばらつきの情報として算出し、各気筒の噴射吐出による燃圧変化量に基づいて各気筒の燃料噴射弁31の噴射量ばらつきを補正するようにすれば、噴射吐出重複領域でも、各気筒の燃料噴射弁31の噴射量ばらつきを精度良く補正することができる。   Therefore, in the overlapping region of injection and discharge, the amount of change in fuel pressure due to injection and discharge is calculated as information on the variation in injection amount for each cylinder based on the output of the fuel pressure sensor 32, and the amount of change in fuel pressure due to injection and discharge in each cylinder is calculated. If the variation in the injection amount of the fuel injection valve 31 in each cylinder is corrected, the variation in the injection amount of the fuel injection valve 31 in each cylinder can be accurately corrected even in the injection discharge overlap region.

また、本実施例では、高圧ポンプ14の各燃料吐出の吐出量ばらつきの影響を補償するために、噴射吐出重複領域以外の運転領域のときに、燃圧センサ32の出力に基づいて高圧ポンプ14の各燃料吐出毎に燃料吐出による燃圧上昇量を算出し、この燃料吐出による燃圧上昇量に基づいて高圧ポンプ14の各燃料吐出の吐出量ばらつきを学習する。そして、噴射吐出重複領域のときに、各燃料吐出の吐出量ばらつき(学習値)を用いて各気筒の噴射吐出による燃圧変化量を補正し、補正後の各気筒の噴射吐出による燃圧変化量に基づいて各気筒の燃料噴射弁31の噴射量ばらつきを補正するようにしている。   Further, in the present embodiment, in order to compensate for the influence of the variation in the discharge amount of each fuel discharge of the high-pressure pump 14, the high-pressure pump 14 of the high-pressure pump 14 is based on the output of the fuel pressure sensor 32 in the operation region other than the injection discharge overlap region. The amount of increase in fuel pressure due to fuel discharge is calculated for each fuel discharge, and the variation in discharge amount of each fuel discharge of the high-pressure pump 14 is learned based on the amount of fuel pressure increase due to fuel discharge. Then, in the injection / discharge overlap region, the fuel pressure change amount due to the injection / discharge of each cylinder is corrected using the discharge amount variation (learned value) of each fuel discharge, and the corrected fuel pressure change amount due to the injection / discharge of each cylinder is corrected. Based on this, the injection amount variation of the fuel injection valve 31 of each cylinder is corrected.

以下、本実施例でECU38が実行する図5の噴射量ばらつき補正ルーチンの処理内容を説明する。
図5に示す噴射量ばらつき補正ルーチンは、ECU38の電源オン期間中(イグニッションスイッチのオン期間中)に所定周期で繰り返し実行され、特許請求の範囲でいう噴射量ばらつき補正手段としての役割を果たす。
Hereinafter, the processing content of the injection amount variation correction routine of FIG. 5 executed by the ECU 38 in this embodiment will be described.
The injection amount variation correction routine shown in FIG. 5 is repeatedly executed at a predetermined period during the power-on period of the ECU 38 (while the ignition switch is on), and plays a role as an injection amount variation correction means in the claims.

本ルーチンが起動されると、まず、ステップ101で、燃料噴射弁31の制御量と高圧ポンプ14の制御量とに基づいて噴射吐出重複領域(燃料噴射弁31の噴射期間と高圧ポンプ14の吐出期間とが重複する運転領域)であるか否かを判定する。例えば、燃料噴射弁31の噴射時期と噴射時間から噴射の開始タイミングと終了タイミングを求め、以下の方法で求めた高圧ポンプ14の吐出タイミングと重複していないか判定する。まず、高圧ポンプ14のピストン19を駆動するカム21の位相から高圧ポンプ14のピストン19の上死点タイミングを求める。次に、燃圧センサ32の出力と目標燃圧等に基づいて燃圧制御弁23の通電開始時期を求める。高圧ポンプ14の吐出タイミングは、燃圧制御弁23の通電開始時期とピストン19の上死点タイミングに基づいて求められる。   When this routine is started, first, in step 101, the injection / discharge overlap region (the injection period of the fuel injection valve 31 and the discharge of the high-pressure pump 14) is determined based on the control amount of the fuel injection valve 31 and the control amount of the high-pressure pump 14. It is determined whether or not the operation region overlaps with the period. For example, an injection start timing and an end timing are obtained from the injection timing and injection time of the fuel injection valve 31, and it is determined whether or not there is an overlap with the discharge timing of the high-pressure pump 14 obtained by the following method. First, the top dead center timing of the piston 19 of the high-pressure pump 14 is obtained from the phase of the cam 21 that drives the piston 19 of the high-pressure pump 14. Next, the energization start timing of the fuel pressure control valve 23 is obtained based on the output of the fuel pressure sensor 32, the target fuel pressure, and the like. The discharge timing of the high-pressure pump 14 is obtained based on the energization start timing of the fuel pressure control valve 23 and the top dead center timing of the piston 19.

このステップ101で、噴射吐出重複領域はないと判定された場合、つまり、噴射吐出重複領域以外の運転領域(燃料噴射弁31の噴射期間と高圧ポンプ14の吐出期間とが重複しない運転領域)であると判定された場合には、ステップ102に進み、燃圧センサ32の出力に基づいて各気筒毎に燃料噴射弁31の燃料噴射による燃圧降下量を算出する。この場合、例えば、各気筒毎に、それぞれ燃料噴射開始直前の所定期間に検出した燃圧(例えば複数回の検出値の平均値)と、燃料噴射終了直後の所定期間に検出した燃圧(例えば複数回の検出値の平均値)との差を、燃料噴射による燃圧降下量として算出する。   If it is determined in step 101 that there is no injection / discharge overlap region, that is, in an operation region other than the injection / discharge overlap region (an operation region where the injection period of the fuel injection valve 31 and the discharge period of the high-pressure pump 14 do not overlap). If it is determined that there is, the routine proceeds to step 102, where the fuel pressure drop due to the fuel injection of the fuel injection valve 31 is calculated for each cylinder based on the output of the fuel pressure sensor 32. In this case, for example, for each cylinder, the fuel pressure detected for a predetermined period immediately before the start of fuel injection (for example, an average value of a plurality of detected values) and the fuel pressure detected for a predetermined period immediately after the end of fuel injection (for example, a plurality of times) The difference between the detected value and the average value is calculated as the amount of fuel pressure drop due to fuel injection.

この後、ステップ103に進み、全気筒の燃料噴射による燃圧降下量の平均値を算出し、各気筒毎に、それぞれ燃料噴射による燃圧降下量と平均値との偏差を噴射量ばらつきとして算出することで、各気筒の燃料噴射弁31の噴射量ばらつきを算出する。   Thereafter, the process proceeds to step 103, where the average value of the fuel pressure drop due to the fuel injection of all cylinders is calculated, and the deviation between the fuel pressure drop due to the fuel injection and the average value is calculated as the injection amount variation for each cylinder. Thus, the injection amount variation of the fuel injection valve 31 of each cylinder is calculated.

この後、ステップ104に進み、燃圧センサ32の出力に基づいて高圧ポンプ14の各燃料吐出毎に燃料吐出による燃圧上昇量を算出する。この場合、例えば、高圧ポンプ14の各燃料吐出毎に、それぞれ燃料吐出終了直後の所定期間に検出した燃圧(例えば複数回の検出値の平均値)と、燃料吐出開始直前の所定期間に検出した燃圧(例えば複数回の検出値の平均値)との差を、燃料吐出による燃圧上昇量として算出する。   Thereafter, the routine proceeds to step 104 where the fuel pressure increase amount due to fuel discharge is calculated for each fuel discharge of the high-pressure pump 14 based on the output of the fuel pressure sensor 32. In this case, for example, for each fuel discharge of the high-pressure pump 14, the fuel pressure (for example, an average value of a plurality of detection values) detected in a predetermined period immediately after the end of fuel discharge and a predetermined period immediately before the start of fuel discharge are detected. A difference from the fuel pressure (for example, an average value of a plurality of detection values) is calculated as an increase in fuel pressure due to fuel discharge.

この後、ステップ105に進み、高圧ポンプ14の各燃料吐出毎に、それぞれ燃料吐出による燃圧上昇量と基準値との偏差を吐出量ばらつきとして算出することで、高圧ポンプ14の各燃料吐出の吐出量ばらつきを算出する。そして、高圧ポンプ14の各燃料吐出の吐出量ばらつきをECU38等のメモリに記憶することで、高圧ポンプ14の各燃料吐出の吐出量ばらつきを学習する。これらのステップ104,105の処理が特許請求の範囲でいう吐出量ばらつき学習手段としての役割を果たす。   Thereafter, the process proceeds to step 105, and for each fuel discharge of the high pressure pump 14, the difference between the fuel pressure increase amount due to the fuel discharge and the reference value is calculated as a discharge amount variation, thereby discharging each fuel discharge of the high pressure pump 14. The amount variation is calculated. Then, the discharge amount variation of each fuel discharge of the high-pressure pump 14 is stored in a memory such as the ECU 38 to learn the discharge amount variation of each fuel discharge of the high-pressure pump 14. The processing of these steps 104 and 105 serves as a discharge amount variation learning means in the claims.

この後、ステップ109に進み、各気筒毎に、それぞれ燃料噴射弁31の噴射量ばらつきが小さくなるように噴射量ばらつき補正量を算出する。ECU38は、各気筒毎に、それぞれ噴射量ばらつき補正量を用いて要求噴射量を補正することで、各気筒の燃料噴射弁31の噴射量を気筒毎に補正して、各気筒の燃料噴射弁31の噴射量ばらつきを小さくする(気筒間の噴射量ばらつきを小さくする)。   Thereafter, the process proceeds to step 109, and the injection amount variation correction amount is calculated for each cylinder so that the variation in the injection amount of the fuel injection valve 31 is reduced. The ECU 38 corrects the required injection amount for each cylinder by using the injection amount variation correction amount, thereby correcting the injection amount of the fuel injection valve 31 of each cylinder for each cylinder. The injection amount variation of 31 is reduced (the injection amount variation between cylinders is reduced).

一方、上記ステップ101で、噴射吐出重複領域である判定された場合には、ステップ106に進み、燃圧センサ32の出力に基づいて各気筒毎に噴射吐出による燃圧変化量(噴射吐出期間の開始前の燃圧と噴射吐出期間の終了後の燃圧との差)を算出する。   On the other hand, if it is determined in step 101 that the region is an overlapping region of injection and discharge, the process proceeds to step 106, and the fuel pressure change amount due to injection and discharge for each cylinder based on the output of the fuel pressure sensor 32 (before the start of the injection and discharge period). And the difference between the fuel pressure after the end of the injection and discharge period).

図3(a)に示すように、噴射期間の後側部と吐出期間の前側部とが重複する場合、つまり、噴射期間の開始時期から吐出期間の終了時期までが噴射吐出期間となる場合には、噴射吐出による燃圧変化量を次のようにして算出する。各気筒毎に、それぞれ燃料噴射弁31の燃料噴射開始直前の所定期間に検出した燃圧(例えば複数回の検出値の平均値)と、高圧ポンプ14の燃料吐出終了直後の所定期間に検出した燃圧(例えば複数回の検出値の平均値)との差を、噴射吐出による燃圧変化量として算出する。   As shown in FIG. 3A, when the rear side portion of the injection period overlaps with the front side portion of the discharge period, that is, when the injection discharge period is from the start time of the injection period to the end time of the discharge period. Calculates the amount of change in fuel pressure due to injection and discharge as follows. For each cylinder, the fuel pressure detected for a predetermined period immediately before the start of fuel injection of the fuel injection valve 31 (for example, the average value of a plurality of detected values) and the fuel pressure detected for a predetermined period immediately after the end of fuel discharge of the high-pressure pump 14 A difference from (for example, an average value of a plurality of detection values) is calculated as a fuel pressure change amount due to injection and discharge.

図3(b)に示すように、吐出期間の後側部と噴射期間の前側部とが重複する場合、つまり、吐出期間の開始時期から噴射期間の終了時期までが噴射吐出期間となる場合には、噴射吐出による燃圧変化量を次のようにして算出する。各気筒毎に、それぞれ高圧ポンプ14の燃料吐出開始直前の所定期間に検出した燃圧(例えば複数回の検出値の平均値)と、燃料噴射弁31の燃料噴射終了直後の所定期間に検出した燃圧(例えば複数回の検出値の平均値)との差を、噴射吐出による燃圧変化量として算出する。   As shown in FIG. 3B, when the rear side of the discharge period overlaps with the front side of the injection period, that is, when the period from the start time of the discharge period to the end time of the injection period becomes the injection discharge period. Calculates the amount of change in fuel pressure due to injection and discharge as follows. For each cylinder, the fuel pressure detected for a predetermined period immediately before the start of fuel discharge of the high-pressure pump 14 (for example, the average value of a plurality of detected values) and the fuel pressure detected for a predetermined period immediately after the end of fuel injection of the fuel injection valve 31 A difference from (for example, an average value of a plurality of detection values) is calculated as a fuel pressure change amount due to injection and discharge.

図3(c)に示すように、噴射期間が吐出期間を包括するように重複する場合(吐出期間全体が噴射期間内に含まれるように重複する場合)、つまり、噴射期間の開始時期から噴射期間の終了時期までが噴射吐出期間となる場合には、噴射吐出による燃圧変化量を次のようにして算出する。各気筒毎に、それぞれ燃料噴射弁31の燃料噴射開始直前の所定期間に検出した燃圧(例えば複数回の検出値の平均値)と、燃料噴射弁31の燃料噴射終了直後の所定期間に検出した燃圧(例えば複数回の検出値の平均値)との差を、噴射吐出による燃圧変化量として算出する。   As shown in FIG. 3C, when the injection periods overlap so as to encompass the discharge period (when the entire discharge period overlaps within the injection period), that is, injection from the start time of the injection period When the period until the end of the period is the injection discharge period, the amount of change in fuel pressure due to injection discharge is calculated as follows. For each cylinder, the fuel pressure detected during a predetermined period immediately before the start of fuel injection of the fuel injection valve 31 (for example, the average value of a plurality of detected values) and the predetermined period immediately after the end of fuel injection of the fuel injection valve 31 are detected. A difference from the fuel pressure (for example, an average value of a plurality of detection values) is calculated as a fuel pressure change amount due to injection / discharge.

図3(d)に示すように、吐出期間が噴射期間を包括するように重複する場合(噴射期間全体が吐出期間内に含まれるように重複する場合)、つまり、吐出期間の開始時期から吐出期間の終了時期までが噴射吐出期間となる場合には、噴射吐出による燃圧変化量を次のようにして算出する。各気筒毎に、それぞれ高圧ポンプ14の燃料吐出開始直前の所定期間に検出した燃圧(例えば複数回の検出値の平均値)と、高圧ポンプ14の燃料吐出終了直後の所定期間に検出した燃圧(例えば複数回の検出値の平均値)との差を、噴射吐出による燃圧変化量として算出する。   As shown in FIG. 3D, when the discharge periods overlap so as to encompass the injection period (when the entire injection period overlaps within the discharge period), that is, discharge from the start time of the discharge period. When the period until the end of the period is the injection discharge period, the amount of change in fuel pressure due to injection discharge is calculated as follows. For each cylinder, the fuel pressure detected for a predetermined period immediately before the start of fuel discharge of the high-pressure pump 14 (for example, an average value of a plurality of detected values) and the fuel pressure detected for a predetermined period immediately after the end of fuel discharge of the high-pressure pump 14 ( For example, a difference from an average value of a plurality of detection values) is calculated as a fuel pressure change amount due to injection and discharge.

この後、ステップ107に進み、高圧ポンプ14の各燃料吐出の吐出量ばらつき(学習値)を用いて各気筒の噴射吐出による燃圧変化量を補正する。この場合、例えば、各気筒毎に、それぞれ噴射吐出による燃圧変化量に該当気筒の燃料噴射に対応する燃料吐出の吐出量ばらつきを加算することで、各気筒の噴射吐出による燃圧変化量を補正する。   Thereafter, the process proceeds to step 107, and the fuel pressure change amount due to the injection / discharge of each cylinder is corrected using the discharge amount variation (learning value) of each fuel discharge of the high-pressure pump 14. In this case, for example, for each cylinder, the variation in the fuel pressure due to the injection / discharge of each cylinder is corrected by adding the variation in the fuel discharge amount corresponding to the fuel injection in the corresponding cylinder to the amount of the fuel pressure variation due to the injection / discharge. .

この後、ステップ108に進み、補正後の各気筒の噴射吐出による燃圧変化量を用いて、全気筒の噴射吐出による燃圧変化量の平均値を算出し、各気筒毎に、それぞれ噴射吐出による燃圧変化量と平均値との偏差を噴射量ばらつきとして算出することで、各気筒の燃料噴射弁31の噴射量ばらつきを算出する。   Thereafter, the routine proceeds to step 108, where the average value of the fuel pressure change amount due to the injection / discharge of all cylinders is calculated using the corrected fuel pressure change amount due to the injection / discharge of each cylinder, and the fuel pressure due to the injection / discharge for each cylinder. By calculating the deviation between the change amount and the average value as the injection amount variation, the injection amount variation of the fuel injection valve 31 of each cylinder is calculated.

この後、ステップ109に進み、各気筒毎に、それぞれ燃料噴射弁31の噴射量ばらつきが小さくなるように噴射量ばらつき補正量を算出する。ECU38は、各気筒毎に、それぞれ噴射量ばらつき補正量を用いて要求噴射量を補正することで、各気筒の燃料噴射弁31の噴射量を気筒毎に補正して、各気筒の燃料噴射弁31の噴射量ばらつきを小さくする(気筒間の噴射量ばらつきを小さくする)。   Thereafter, the process proceeds to step 109, and the injection amount variation correction amount is calculated for each cylinder so that the variation in the injection amount of the fuel injection valve 31 is reduced. The ECU 38 corrects the required injection amount for each cylinder by using the injection amount variation correction amount, thereby correcting the injection amount of the fuel injection valve 31 of each cylinder for each cylinder. The injection amount variation of 31 is reduced (the injection amount variation between cylinders is reduced).

以上説明した本実施例では、噴射吐出重複領域以外の運転領域のときには、燃圧センサ32の出力に基づいて各気筒毎に燃料噴射弁31の燃料噴射による燃圧降下量を噴射量ばらつきの情報として算出し、各気筒の燃料噴射による燃圧降下量に基づいて各気筒の燃料噴射弁31の噴射量ばらつきを補正する。一方、噴射吐出重複領域のときには、燃圧センサ32の出力に基づいて各気筒毎に噴射吐出による燃圧変化量(噴射吐出期間の前後の燃圧の差)を噴射量ばらつきの情報として算出し、各気筒の噴射吐出による燃圧変化量に基づいて各気筒の燃料噴射弁31の噴射量ばらつきを補正する。   In the present embodiment described above, in the operation region other than the injection discharge overlap region, the fuel pressure drop amount due to the fuel injection of the fuel injection valve 31 is calculated as information on the injection amount variation for each cylinder based on the output of the fuel pressure sensor 32. Then, the injection amount variation of the fuel injection valve 31 of each cylinder is corrected based on the amount of fuel pressure drop due to the fuel injection of each cylinder. On the other hand, in the overlapping region of injection and discharge, the amount of change in fuel pressure due to injection and discharge (difference in fuel pressure before and after the injection and discharge period) is calculated for each cylinder based on the output of the fuel pressure sensor 32 as information on the variation in injection amount. The variation in the injection amount of the fuel injection valve 31 of each cylinder is corrected based on the amount of change in the fuel pressure due to the injection and discharge.

これにより、噴射吐出重複領域以外の運転領域では、各気筒の燃料噴射による燃圧降下量に基づいて各気筒の燃料噴射弁31の噴射量ばらつきを精度良く補正することができると共に、噴射吐出重複領域では、各気筒の噴射吐出による燃圧変化量に基づいて各気筒の燃料噴射弁31の噴射量ばらつきを精度良く補正することができ、気筒間の噴射量ばらつきを精度良く補正できる領域を拡大することができる。   Accordingly, in the operation region other than the injection / discharge overlapping region, the injection amount variation of the fuel injection valve 31 of each cylinder can be accurately corrected based on the fuel pressure drop amount due to the fuel injection of each cylinder, and the injection / discharge overlapping region. Then, it is possible to accurately correct the injection amount variation of the fuel injection valve 31 of each cylinder based on the amount of change in the fuel pressure due to the injection / discharge of each cylinder, and to enlarge the region where the injection amount variation among the cylinders can be accurately corrected. Can do.

また、本実施例では、高圧ポンプ14の各燃料吐出の吐出量ばらつきを学習し、噴射吐出重複領域のときに、各燃料吐出の吐出量ばらつき(学習値)を用いて各気筒の噴射吐出による燃圧変化量を補正し、補正後の各気筒の噴射吐出による燃圧変化量に基づいて各気筒の燃料噴射弁31の噴射量ばらつきを補正するようにしている。これにより、吐出量ばらつきの影響による燃圧変化量の変動を補償することができ、各気筒の燃料噴射弁31の噴射量ばらつきの補正精度を向上させることができる。   Further, in this embodiment, the variation in the discharge amount of each fuel discharge of the high-pressure pump 14 is learned, and in the injection discharge overlap region, the variation in the discharge amount of each fuel discharge (learned value) is used for the injection discharge of each cylinder. The fuel pressure change amount is corrected, and the variation in the injection amount of the fuel injection valve 31 of each cylinder is corrected based on the corrected fuel pressure change amount due to the injection and discharge of each cylinder. As a result, it is possible to compensate for fluctuations in the amount of change in the fuel pressure due to the influence of the variation in the discharge amount, and it is possible to improve the correction accuracy of the variation in the injection amount of the fuel injection valve 31 of each cylinder.

しかも、本実施例では、噴射吐出重複領域以外の運転領域のときに、燃圧センサ32の出力に基づいて高圧ポンプ14の各燃料吐出毎に燃料吐出による燃圧上昇量を算出し、この燃料吐出による燃圧上昇量に基づいて高圧ポンプ14の各燃料吐出の吐出量ばらつきを学習するようにしている。これにより、燃料噴射弁31の燃料噴射による燃圧降下の影響を受けずに、高圧ポンプ14の燃料吐出による燃圧上昇量を精度良く算出することができ、この燃料吐出による燃圧上昇量に基づいて高圧ポンプ14の吐出量ばらつきを精度良く学習することができる。   In addition, in this embodiment, in the operation region other than the injection discharge overlap region, the fuel pressure increase amount due to the fuel discharge is calculated for each fuel discharge of the high pressure pump 14 based on the output of the fuel pressure sensor 32, and the fuel discharge Based on the fuel pressure increase, the discharge amount variation of each fuel discharge of the high-pressure pump 14 is learned. Thereby, the fuel pressure increase amount due to the fuel discharge of the high-pressure pump 14 can be accurately calculated without being influenced by the fuel pressure drop due to the fuel injection of the fuel injection valve 31, and the high pressure is based on the fuel pressure increase amount due to the fuel discharge. It is possible to learn the discharge amount variation of the pump 14 with high accuracy.

尚、上記実施例では、噴射吐出による燃圧変化量を算出する際に、所定期間に検出した燃圧(例えば複数回の検出値の平均値)を用いるようにしたが、これに限定されず、燃圧センサ32の出力を特定の周波数帯を除去するフィルタを用いて処理した値を用いるようにしても良い。具体的には、噴射吐出期間の開始前における燃圧センサ32の出力をフィルタ処理した値と噴射吐出期間の終了後における燃圧センサ32の出力をフィルタ処理した値との差を噴射吐出による燃圧変化量をとして算出するようにしても良い。   In the above embodiment, the fuel pressure detected during a predetermined period (for example, an average value of a plurality of detected values) is used when calculating the amount of change in fuel pressure due to injection / discharge. You may make it use the value which processed the output of the sensor 32 using the filter which removes a specific frequency band. Specifically, the difference between the value obtained by filtering the output of the fuel pressure sensor 32 before the start of the injection / discharge period and the value obtained by filtering the output of the fuel pressure sensor 32 after the end of the injection / discharge period is the amount of change in fuel pressure due to the injection / discharge. You may make it calculate as.

また、上記実施例では、噴射吐出重複領域のときに、高圧ポンプ14の各燃料吐出の吐出量ばらつき(学習値)を用いて各気筒の噴射吐出による燃圧変化量を補正し、補正後の各気筒の噴射吐出による燃圧変化量に基づいて各気筒の燃料噴射弁31の噴射量ばらつきを算出するようにしたが、これに限定されず、例えば、各気筒の噴射吐出による燃圧変化量に基づいて各気筒の燃料噴射弁31の噴射量ばらつきを算出した後、高圧ポンプ14の各燃料吐出の吐出量ばらつき(学習値)を用いて各気筒の燃料噴射弁31の噴射量ばらつきを補正するようにしても良い。   In the above embodiment, the fuel pressure change amount due to the injection / discharge of each cylinder is corrected using the discharge amount variation (learning value) of each fuel discharge of the high-pressure pump 14 in the injection / discharge overlapping region, The variation in the injection amount of the fuel injection valve 31 of each cylinder is calculated based on the amount of change in the fuel pressure due to the injection / discharge of the cylinder. However, the present invention is not limited to this, for example, based on the amount of change in the fuel pressure due to the injection / discharge of each cylinder. After calculating the injection amount variation of the fuel injection valve 31 of each cylinder, the injection amount variation of the fuel injection valve 31 of each cylinder is corrected using the discharge amount variation (learning value) of each fuel discharge of the high-pressure pump 14. May be.

また、上記実施例では、噴射吐出重複領域のときに、噴射吐出による燃圧変化量と吐出量ばらつきとに基づいて各気筒の燃料噴射弁31の噴射量ばらつきを補正するようにしたが、これに限定されず、例えば、高圧ポンプ14の各燃料吐出の吐出量ばらつきが小さい場合には、吐出量ばらつきを用いずに、噴射吐出による燃圧変化量のみに基づいて各気筒の燃料噴射弁31の噴射量ばらつきを補正するようにしても良い。   Further, in the above embodiment, the injection amount variation of the fuel injection valve 31 of each cylinder is corrected based on the fuel pressure change amount and the discharge amount variation due to the injection discharge in the injection discharge overlapping region. For example, when the discharge amount variation of each fuel discharge of the high-pressure pump 14 is small, the injection of the fuel injection valve 31 of each cylinder is based only on the fuel pressure change amount by the injection discharge without using the discharge amount variation. The amount variation may be corrected.

また、上記実施例では、噴射吐出重複領域のときに、噴射吐出期間の前後の燃圧の差を噴射吐出による燃圧変化量として算出するようにしたが、これに限定されず、例えば、噴射吐出期間(又は噴射吐出期間の開始前から終了後までの期間)において燃圧を積分し、その積分値を噴射吐出による燃圧変化量の情報(噴射吐出による燃圧変化量を評価するパラメータ)として用いるようにしても良い。   In the above embodiment, the fuel pressure difference before and after the injection / discharge period is calculated as the fuel pressure change amount by the injection / discharge in the injection / discharge overlapping region. However, the present invention is not limited to this. The fuel pressure is integrated in (or the period from the start to the end of the injection / discharge period), and the integrated value is used as information on the amount of change in fuel pressure by injection / discharge (a parameter for evaluating the amount of change in fuel pressure by injection / discharge). Also good.

また、上記実施例では、噴射吐出重複領域のときに、各気筒の噴射吐出による燃圧変化量と平均値との偏差を噴射量ばらつきとして算出するようにしたが、これに限定されず、例えば、各気筒の噴射吐出による燃圧変化量を噴射量増減率(又は噴射量増減量)に変換した後、各気筒の噴射量増減率(又は噴射量増減量)と平均値との偏差を噴射量ばらつきとして算出するようにしても良い。   Further, in the above embodiment, when the injection discharge overlap region, the deviation between the fuel pressure change amount due to the injection discharge of each cylinder and the average value is calculated as the injection amount variation. After the fuel pressure change amount due to the injection discharge of each cylinder is converted into the injection amount increase / decrease rate (or injection amount increase / decrease amount), the deviation between the injection amount increase / decrease rate (or injection amount increase / decrease amount) and the average value of each cylinder varies with the injection amount. It may be calculated as:

また、上記実施例では、噴射吐出重複領域以外の領域のときに、各気筒の燃料噴射による燃圧降下量と平均値との偏差を噴射量ばらつきとして算出するようにしたが、これに限定されず、例えば、各気筒の燃料噴射による燃圧降下量を噴射量増減率(又は噴射量増減量)に変換した後、各気筒の噴射量増減率(又は噴射量増減量)と平均値との偏差を噴射量ばらつきとして算出するようにしても良い。   Further, in the above embodiment, the deviation between the fuel pressure drop amount and the average value due to the fuel injection of each cylinder is calculated as the injection amount variation in the region other than the injection discharge overlapping region. However, the present invention is not limited to this. For example, after converting the fuel pressure drop amount due to fuel injection in each cylinder into the injection amount increase / decrease rate (or injection amount increase / decrease amount), the deviation between the injection amount increase / decrease rate (or injection amount increase / decrease amount) and the average value of each cylinder is calculated. You may make it calculate as injection amount dispersion | variation.

また、上記実施例では、各燃料吐出毎の燃料吐出による燃圧上昇量と基準値との偏差を吐出量ばらつきとして算出するようにしたが、これに限定されず、例えば、各燃料吐出毎の燃料吐出による燃圧上昇量を吐出量増減率(又は吐出量増減量)に変換した後、各燃料吐出毎の吐出量増減率(又は吐出量増減量)と平均値との偏差を吐出量ばらつきとして算出するようにしても良い。   Further, in the above embodiment, the deviation between the fuel pressure increase amount due to fuel discharge for each fuel discharge and the reference value is calculated as the discharge amount variation. However, the present invention is not limited to this. For example, the fuel for each fuel discharge After the fuel pressure increase due to discharge is converted into the discharge amount increase / decrease rate (or discharge amount increase / decrease amount), the deviation between the discharge amount increase / decrease rate (or discharge amount increase / decrease amount) and the average value for each fuel discharge is calculated as the discharge amount variation. You may make it do.

また、本発明の適用範囲は、4気筒エンジンに限定されず、3気筒以下のエンジンや5気筒以上のエンジンに本発明を適用しても良い。更に、高圧ポンプ14のピストン19を駆動するカム21として、4つのカム山を有する4山カムを用いた構成に限定されず、例えば、3つのカム山を有する3山カムを用いた構成や2つのカム山を有する2山カムを用いた構成としても良い。   Further, the application range of the present invention is not limited to a four-cylinder engine, and the present invention may be applied to an engine having three or less cylinders or an engine having five or more cylinders. Further, the cam 21 for driving the piston 19 of the high-pressure pump 14 is not limited to the configuration using the four cams having four cam peaks, and for example, the configuration using the three cams having three cam peaks or 2 It is good also as a structure using the two mountain cam which has one cam mountain.

つまり、上記実施例では、4気筒エンジンでカム軸が1回転(クランク軸が2回転)する毎に燃料噴射弁の燃料噴射が4回行われると共に高圧ポンプの燃料吐出が4回行われるシステムに本発明を適用したが、これに限定されず、例えば、6気筒エンジンでカム軸が1回転(クランク軸が2回転)する毎に燃料噴射弁の燃料噴射が6回行われると共に高圧ポンプの燃料吐出が3回行われるシステムや8気筒エンジンでカム軸が1回転(クランク軸が2回転)する毎に燃料噴射弁の燃料噴射が8回行われると共に高圧ポンプの燃料吐出が4回行われるシステムに本発明を適用しても良い。   In other words, in the above-described embodiment, in a four-cylinder engine, every time the camshaft rotates once (the crankshaft rotates twice), the fuel injection valve performs fuel injection four times and the high-pressure pump discharges fuel four times. Although the present invention is applied, the present invention is not limited to this. For example, in a six-cylinder engine, every time the camshaft rotates once (the crankshaft rotates twice), fuel injection of the fuel injection valve is performed six times and the fuel of the high-pressure pump A system in which the discharge is performed three times or a system in which the fuel injection valve performs fuel injection eight times and the high-pressure pump performs fuel discharge four times each time the camshaft rotates once (crankshaft rotates twice) in an 8-cylinder engine. The present invention may be applied to.

その他、本発明は、高圧ポンプの構成や燃料供給システムの構成を適宜変更しても良い等、要旨を逸脱しない範囲内で種々変更して実施できる。   In addition, the present invention can be implemented with various modifications without departing from the gist, such as appropriately changing the configuration of the high-pressure pump and the configuration of the fuel supply system.

14…高圧ポンプ、29…高圧燃料配管(高圧燃料通路)、30…デリバリパイプ(高圧燃料通路)、31…燃料噴射弁、32…燃圧センサ、38…ECU(噴射量ばらつき補正手段,吐出量ばらつき学習手段)   DESCRIPTION OF SYMBOLS 14 ... High pressure pump, 29 ... High pressure fuel piping (high pressure fuel passage), 30 ... Delivery pipe (high pressure fuel passage), 31 ... Fuel injection valve, 32 ... Fuel pressure sensor, 38 ... ECU (Injection amount variation correction means, Discharge amount variation) Learning means)

Claims (8)

内燃機関で駆動される高圧ポンプ(14)から吐出される燃料を高圧燃料通路(29,30)を通して各気筒の燃料噴射弁(31)に供給するシステムに適用され、前記高圧燃料通路(29,30)内の燃料圧力(以下「燃圧」という)を検出する燃圧センサ(32)と、前記燃圧センサ(32)の出力に基づいて前記各気筒毎に前記燃料噴射弁(31)の燃料噴射による燃圧降下量を算出し、該燃料噴射による燃圧降下量に基づいて前記各気筒の燃料噴射弁(31)の噴射量ばらつきを補正する噴射量ばらつき補正手段(38)とを備えた内燃機関の制御装置において、
前記噴射量ばらつき補正手段(38)は、前記燃料噴射弁(31)の噴射期間と前記高圧ポンプ(14)の吐出期間とが重複する運転領域(以下「噴射吐出重複領域」という)のときに、前記燃圧センサ(32)の出力に基づいて前記各気筒の燃料噴射弁(31)の噴射量ばらつきを補正することを特徴とする内燃機関の制御装置。
The present invention is applied to a system for supplying fuel discharged from a high pressure pump (14) driven by an internal combustion engine to a fuel injection valve (31) of each cylinder through a high pressure fuel passage (29, 30). 30) a fuel pressure sensor (32) for detecting the fuel pressure in the fuel (hereinafter referred to as "fuel pressure"), and fuel injection of the fuel injection valve (31) for each cylinder based on the output of the fuel pressure sensor (32). Control of an internal combustion engine comprising an injection amount variation correcting means (38) for calculating a fuel pressure decrease amount and correcting an injection amount variation of the fuel injection valve (31) of each cylinder based on the fuel pressure decrease amount due to the fuel injection. In the device
The injection amount variation correcting means (38) is in an operation region where the injection period of the fuel injection valve (31) and the discharge period of the high-pressure pump (14) overlap (hereinafter referred to as “injection / discharge overlap region”). A control apparatus for an internal combustion engine, wherein the variation in the injection amount of the fuel injection valve (31) of each cylinder is corrected based on the output of the fuel pressure sensor (32).
前記噴射量ばらつき補正手段(38)は、前記噴射吐出重複領域のときに、前記燃圧センサ(32)の出力に基づいて前記各気筒毎に前記噴射期間の開始時期と前記吐出期間の開始時期のうちの早い方から前記噴射期間の終了時期と前記吐出期間の終了時期のうちの遅い方までの期間(以下「噴射吐出期間」という)の前後の燃圧の差を噴射吐出による燃圧変化量として算出し、該噴射吐出による燃圧変化量に基づいて前記各気筒の燃料噴射弁(31)の噴射量ばらつきを補正することを特徴とする請求項1に記載の内燃機関の制御装置。   The injection amount variation correcting means (38) determines the start timing of the injection period and the start time of the discharge period for each cylinder based on the output of the fuel pressure sensor (32) in the injection discharge overlap region. The difference in fuel pressure before and after the period from the earliest to the later of the end time of the injection period and the end time of the discharge period (hereinafter referred to as “injection / discharge period”) is calculated as the amount of change in fuel pressure due to injection / discharge. The control device for an internal combustion engine according to claim 1, wherein the variation in the injection amount of the fuel injection valve (31) of each cylinder is corrected based on the amount of change in fuel pressure due to the injection discharge. 前記高圧ポンプ(14)の各燃料吐出の吐出量ばらつきを学習する吐出量ばらつき学習手段(38)を備え、
前記噴射量ばらつき補正手段(38)は、前記噴射吐出重複領域のときに、前記噴射吐出による燃圧変化量と前記吐出量ばらつきとに基づいて前記各気筒の燃料噴射弁(31)の噴射量ばらつきを補正することを特徴とする請求項2に記載の内燃機関の制御装置。
Discharge amount variation learning means (38) for learning the discharge amount variation of each fuel discharge of the high-pressure pump (14),
The injection amount variation correction means (38) varies the injection amount of the fuel injection valve (31) of each cylinder based on the fuel pressure change amount due to the injection discharge and the variation in the discharge amount in the injection discharge overlap region. The control apparatus for an internal combustion engine according to claim 2, wherein:
前記吐出量ばらつき学習手段(38)は、前記噴射吐出重複領域以外の運転領域のときに、前記燃圧センサ(32)の出力に基づいて前記高圧ポンプ(14)の各燃料吐出毎に燃料吐出による燃圧上昇量を算出し、該燃料吐出による燃圧上昇量に基づいて前記高圧ポンプ(14)の各燃料吐出の吐出量ばらつきを学習することを特徴とする請求項3に記載の内燃機関の制御装置。   The discharge amount variation learning means (38) performs fuel discharge for each fuel discharge of the high-pressure pump (14) based on the output of the fuel pressure sensor (32) in an operation region other than the injection discharge overlap region. The control apparatus for an internal combustion engine according to claim 3, wherein a fuel pressure increase amount is calculated, and a variation in the discharge amount of each fuel discharge of the high-pressure pump (14) is learned based on the fuel pressure increase amount due to the fuel discharge. . 前記噴射量ばらつき補正手段(38)は、前記噴射吐出重複領域のときに、前記噴射吐出期間の開始前の所定期間における前記燃圧センサ(32)の出力の平均値と前記噴射吐出期間の終了後の所定期間における前記燃圧センサ(32)の出力の平均値との差を前記噴射吐出による燃圧変化量として算出することを特徴とする請求項2乃至4のいずれかに記載の内燃機関の制御装置。   The injection amount variation correcting means (38) is configured to output an average value of the output of the fuel pressure sensor (32) in a predetermined period before the start of the injection / discharge period and after the end of the injection / discharge period in the injection / discharge overlapping region. The control device for an internal combustion engine according to any one of claims 2 to 4, wherein a difference from an average value of the output of the fuel pressure sensor (32) during a predetermined period is calculated as a fuel pressure change amount due to the injection and discharge. . 前記噴射量ばらつき補正手段(38)は、前記噴射吐出重複領域のときに、前記噴射吐出期間の開始前及び前記噴射吐出期間の終了後における前記燃圧センサ(32)の出力をフィルタを用いて処理した値に基づいて前記噴射吐出による燃圧変化量を算出することを特徴とする請求項2乃至4のいずれかに記載の内燃機関の制御装置。   The injection amount variation correcting means (38) uses a filter to process the output of the fuel pressure sensor (32) before the start of the injection / discharge period and after the end of the injection / discharge period in the injection / discharge overlapping region. The control device for an internal combustion engine according to any one of claims 2 to 4, wherein a fuel pressure change amount due to the injection and discharge is calculated based on the obtained value. 前記噴射量ばらつき補正手段(38)は、前記燃料噴射弁(31)の制御量と前記高圧ポンプ(14)の制御量とに基づいて前記噴射吐出重複領域であるか否かを判定することを特徴とする請求項1乃至6のいずれかに記載の内燃機関の制御装置。   The injection amount variation correcting means (38) determines whether or not the injection discharge overlapping region is based on a control amount of the fuel injection valve (31) and a control amount of the high pressure pump (14). The control apparatus for an internal combustion engine according to any one of claims 1 to 6. 前記噴射量ばらつき補正手段(38)は、前記燃料噴射弁(31)の制御量である噴射時期、噴射期間と、前記高圧ポンプ(14)の制御量である目標燃圧、該高圧ポンプ(14)のピストン(19)を駆動するカム(21)の位相とに基づいて前記噴射吐出重複領域であるか否かを判定することを特徴とする請求項7に記載の内燃機関の制御装置。   The injection amount variation correcting means (38) includes an injection timing and an injection period as control amounts of the fuel injection valve (31), a target fuel pressure as a control amount of the high pressure pump (14), and the high pressure pump (14). 8. The control apparatus for an internal combustion engine according to claim 7, wherein it is determined whether or not the injection discharge overlapping region is based on a phase of a cam (21) for driving the piston (19) of the engine.
JP2013224919A 2013-10-30 2013-10-30 Control device for internal combustion engine Active JP6090112B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013224919A JP6090112B2 (en) 2013-10-30 2013-10-30 Control device for internal combustion engine
PCT/JP2014/005420 WO2015064075A1 (en) 2013-10-30 2014-10-27 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013224919A JP6090112B2 (en) 2013-10-30 2013-10-30 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2015086763A JP2015086763A (en) 2015-05-07
JP6090112B2 true JP6090112B2 (en) 2017-03-08

Family

ID=53003704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013224919A Active JP6090112B2 (en) 2013-10-30 2013-10-30 Control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP6090112B2 (en)
WO (1) WO2015064075A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3025003B1 (en) * 2014-08-20 2018-01-12 Peugeot Citroen Automobiles Sa METHOD FOR DETERMINING THE QUANTITY OF FUEL INJECTED IN A CYLINDER OF AN INTERNAL COMBUSTION ENGINE
JP6473045B2 (en) * 2015-05-20 2019-02-20 ヤマハ発動機株式会社 Multi-cylinder engine and outboard motor
JP6819257B2 (en) 2015-12-15 2021-01-27 三菱自動車工業株式会社 Internal combustion engine control device
JP6658592B2 (en) 2017-02-13 2020-03-04 トヨタ自動車株式会社 Fuel injection control device
US11795887B1 (en) * 2022-07-19 2023-10-24 Caterpillar Inc. Fuel injector variability reduction

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4497044B2 (en) * 2005-07-21 2010-07-07 株式会社デンソー Fuel injection control device
JP4951380B2 (en) * 2007-03-26 2012-06-13 日立オートモティブシステムズ株式会社 High pressure fuel system controller
JP4416026B2 (en) * 2007-09-28 2010-02-17 株式会社デンソー Control device for accumulator fuel injection system

Also Published As

Publication number Publication date
WO2015064075A1 (en) 2015-05-07
JP2015086763A (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP4081819B2 (en) Fuel injection system
JP6090112B2 (en) Control device for internal combustion engine
JP2009057928A (en) Fuel injection controller for internal combustion engine
US10113499B2 (en) Fuel injection control device for internal combustion engine
US10450991B2 (en) Fuel injection control apparatus of internal combustion engine
JP2005307747A (en) Fuel supply device for internal combustion engine
US9404457B2 (en) Fuel supply system for internal combustion engine
JP6451789B2 (en) Control device for internal combustion engine
JP6167830B2 (en) Control device for internal combustion engine
JP6146274B2 (en) Control device for internal combustion engine
JP5040884B2 (en) Fuel injection control device
JP2012229623A (en) High-pressure fuel feeding device of internal combustion engine
JP2011202597A (en) High-pressure pump control device for internal combustion engine
JP2009221906A (en) Low pressure pump control device of direct injection type internal combustion engine
JP2009103059A (en) Control device for cylinder injection internal combustion engine
JP3948294B2 (en) Fuel injection device
JP2005048659A (en) Fuel temperature estimation device
JP2002047983A (en) Abnormality diagnostic device for high pressure fuel supply system of internal combustion engine
JP2013253508A (en) Fuel supply device of direct injection type internal combustion engine
JP4349339B2 (en) Injection quantity control device for internal combustion engine
US20100043754A1 (en) Controller for internal combustion engine
JP2019178662A (en) Fuel injection control device
JP6489298B2 (en) Fuel injection control device for internal combustion engine
EP2975247B1 (en) Fuel injection control apparatus of internal combustion engine
JP6011264B2 (en) Discharge amount learning control device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160307

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R151 Written notification of patent or utility model registration

Ref document number: 6090112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250