JP5342101B2 - Pneumatic transport system for slurry-like soil - Google Patents

Pneumatic transport system for slurry-like soil Download PDF

Info

Publication number
JP5342101B2
JP5342101B2 JP2006163738A JP2006163738A JP5342101B2 JP 5342101 B2 JP5342101 B2 JP 5342101B2 JP 2006163738 A JP2006163738 A JP 2006163738A JP 2006163738 A JP2006163738 A JP 2006163738A JP 5342101 B2 JP5342101 B2 JP 5342101B2
Authority
JP
Japan
Prior art keywords
transport pipe
sand
earth
slurry
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006163738A
Other languages
Japanese (ja)
Other versions
JP2007332600A (en
Inventor
朗夫 小島
徳明 小島
忠順 鈴木
智徳 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojimagumi Co Ltd
Original Assignee
Kojimagumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojimagumi Co Ltd filed Critical Kojimagumi Co Ltd
Priority to JP2006163738A priority Critical patent/JP5342101B2/en
Publication of JP2007332600A publication Critical patent/JP2007332600A/en
Application granted granted Critical
Publication of JP5342101B2 publication Critical patent/JP5342101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水を含み粘性を有するスラリ状土砂を輸送管内を経由して空気圧により圧送するスラリ状土砂の空気圧式輸送システムに関する。   TECHNICAL FIELD The present invention relates to a pneumatic transportation system for slurry-like earth and sand, in which slurry-like earth and sand containing water is pumped by air pressure through a transportation pipe.

尚、本発明において、スラリ状土砂とは、水を含み粘性を有して輸送管内を流動可能なスラリ状の種々の土砂をいい、例えば水底の浚渫で生じた浚渫土砂や泥土(例えば汚泥)を含むことは勿論、それらに各種の処理剤(例えば固化剤)を添加、混合してスラリ状としたものも含む。   In the present invention, the slurry-like earth and sand refers to various slurry-like earth and sand that contain water and have viscosity and can flow in the transport pipe. For example, dredged sand and mud (for example, sludge) generated at the bottom of the water bottom. Of course, various treatment agents (for example, solidifying agents) are added to them and mixed to form a slurry.

従来、スラリ状土砂を輸送管内に強制的に供給し得る土砂供給装置と、その土砂供給装置により輸送管内に供給されたスラリ状土砂を下流側に圧送するための圧縮空気を輸送管の上流端又はその近傍でスラリ状土砂中に混入し得る圧縮空気混入装置とを備えた土砂搬送機を用いたスラリ状土砂用の空気圧式輸送システムは、既に知られている。   Conventionally, a sediment supply device capable of forcibly supplying slurry-like earth and sand into a transport pipe, and an upstream end of the transport pipe with compressed air for pressure-feeding the slurry-like earth and sand supplied into the transport pipe by the earth and sand supply device Alternatively, a pneumatic transportation system for slurry-like sediment using a sediment transporter equipped with a compressed air mixing device capable of being mixed in the slurry-like sediment in the vicinity thereof is already known.

このシステムにおいて、輸送管の内部でスラリ状土砂に圧縮空気を連続的に混入させると、輸送管底部をスラグ状に流動するスラリ状土砂(以下、これを単にスラグ流またはスラグ状液相部という)が波打ち、圧力変動を繰り返すうちに、そのスラグ流の一部が輸送管の天井面に達してプラグ状となり、このようなプラグ状の液相部と圧縮空気よりなる気相部とが輸送管長手方向に交互に並んで流動する所謂プラグ流を生じることが知られている。そして、このプラグ流の発生により、スラリ状土砂と輸送管内面との間の見掛け上の摩擦力を低減して比較的小さなエネルギでスラリ状土砂を効率よく大量輸送することができる。   In this system, when compressed air is continuously mixed into the slurry-like soil inside the transport pipe, the slurry-like sand that flows in the slag shape at the bottom of the transport pipe (hereinafter referred to simply as slag flow or slag-like liquid phase part). ) Undulates and repeats pressure fluctuations, part of the slag flow reaches the ceiling surface of the transport pipe and forms a plug, and the plug-like liquid phase and the gas phase composed of compressed air are transported. It is known to produce a so-called plug flow that flows alternately in the longitudinal direction of the tube. By generating this plug flow, the apparent frictional force between the slurry-like soil and the inner surface of the transport pipe can be reduced, and the slurry-like soil can be efficiently mass transported with relatively small energy.

ところで上記空気圧式輸送システムを用いて土砂の長距離輸送を行うに当たり、中継設備を設けないで輸送管自体を長く延ばした場合には、例えば図8に例示したように、輸送管内で発生したプラグ流が、気相部の圧力変動等に起因したプラグ状液相部の崩壊と、崩壊後の合体によるプラグ状液相部の再形成とを繰り返すことにより、輸送管の下流端に近づくにつれてプラグ状液相部が徐々に成長、肥大化し、これを圧送するために各気相部の圧力も増大して土砂搬送機に加わる背圧が大きくなる。そのため、土砂搬送機の元圧(即ち輸送管上流端部での管内圧力)を上記背圧増大に対応して大きくする必要があって、土砂搬送機の設備コストや運転コストが嵩み、また土砂搬送機各部や輸送管の耐久性が低下する等の問題がある。   By the way, when carrying out long-distance transportation of earth and sand using the pneumatic transportation system, when the transportation pipe itself is extended for a long time without providing a relay facility, for example, as illustrated in FIG. 8, a plug generated in the transportation pipe As the flow approaches the downstream end of the transport pipe by repeatedly collapsing the plug-like liquid phase due to pressure fluctuations in the gas phase and re-forming the plug-like liquid phase due to coalescence after the collapse, As the liquid phase part gradually grows and enlarges, the pressure in each gas phase part increases to pump this, and the back pressure applied to the earth and sand transport machine increases. For this reason, it is necessary to increase the original pressure of the earth and sand transporter (that is, the pipe internal pressure at the upstream end of the transport pipe) in response to the increase in the back pressure. There is a problem that durability of each part of the earth and sand transport machine and the transport pipe is lowered.

本発明は、前述の諸事情に鑑みてなされたもので、従来の上記問題を簡単な構造で一挙に解決できるようにした、新規有用なスラリ状土砂の空気圧式輸送システムを提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a new and useful pneumatic pneumatic transportation system for slurry-like earth and sand that can solve the above-described conventional problems at once with a simple structure. And

上記目的を達成するために請求項1の発明は、水を含み粘性を有するスラリ状土砂を輸送管内を経由して空気圧により圧送するスラリ状土砂の空気圧式輸送システムであって、スラリ状土砂を輸送管内に強制的に供給し得る土砂供給装置と、その土砂供給装置により輸送管内に供給されたスラリ状土砂を輸送管の下流側に圧送するための圧縮空気を輸送管の上流端又はその近傍でスラリ状土砂中に混入し得る圧縮空気混入装置とを備え、輸送管内では前記圧縮空気の混入に伴い、スラリ状土砂よりなるプラグ状液相部と圧縮空気よりなる気相部とが輸送管長手方向に交互に並んで下流方向へ流動するプラグ流が生じるようにしたものにおいて、輸送管の途中には、逆流防止用の逆止弁と、その逆止弁の弁体下流側が直接臨む膨張室とを設けると共に、その板状弁体の上端部を膨脹室の上部壁に、該板状弁体が開き位置と閉じ位置間を開閉揺動し得るようにピボット連結し、前記膨脹室の周壁下部には、輸送管の下流側に向けて補助圧縮空気を噴出させる噴口を有する補助圧縮空気投入部を、該噴口が前記板状弁体の開閉作動領域の直下に位置するように設け、前記膨脹室の底面は、その直上流に連なる前記輸送管の底面より一段下がっていると共に、その段部に前記補助圧縮空気投入部が、前記噴口を前記輸送管下流側に指向させるようにして設けられることを特徴とする。 In order to achieve the above object, the invention according to claim 1 is a pneumatic transport system for slurry-like earth and sand that is viscous and contains water-containing slurry-like earth and sand via a transport pipe, wherein the slurry-like earth and sand is Sediment supply device that can be forcibly supplied into the transport pipe, and compressed air for pumping the slurry-like sediment supplied to the transport pipe by the sediment supply equipment to the downstream side of the transport pipe or the vicinity thereof In the transport pipe, the plug-like liquid phase part made of slurry-like sand and the gas phase part made of compressed air are transported along the length of the transport pipe. A plug flow that flows alternately in the hand direction and flows in the downstream direction is generated. In the middle of the transport pipe, a check valve for preventing a back flow and an expansion that the downstream side of the check valve directly faces the check valve A room In both cases, the upper end of the plate-like valve body is pivotally connected to the upper wall of the expansion chamber so that the plate-like valve body can be opened and closed between the open position and the closed position. An auxiliary compressed air input portion having an injection port for discharging auxiliary compressed air toward the downstream side of the transport pipe is provided so that the injection port is located immediately below the opening / closing operation region of the plate-shaped valve body , The bottom surface is lowered by one step from the bottom surface of the transport pipe connected immediately upstream thereof, and the auxiliary compressed air input portion is provided at the step portion so that the injection port is directed downstream of the transport pipe. It shall be the feature.

さらに請求項の発明は、請求項1の発明の上記構成に加えて、前記補助圧縮空気投入部が、スラリ状土砂の流れ方向に互いに間隔をおいて配置された、前記噴口を含む複数の噴口を有していることを特徴とする。 Furthermore, in addition to the above-described configuration of the invention of claim 1, the invention of claim 2 includes a plurality of the injection holes, wherein the auxiliary compressed air input portions include the nozzle holes arranged at intervals in the flow direction of the slurry-like earth and sand. It has a nozzle hole.

以上のように本発明によれば、輸送管の途中に、逆流防止用の逆止弁と、その逆止弁の弁体下流側が直接臨む膨張室とを設けると共に、その板状弁体の上端部を膨脹室の上部壁に、該板状弁体が開き位置と閉じ位置間を開閉揺動し得るようにピボット連結し、その膨脹室の周壁下部には、輸送管の下流側に向けて補助圧縮空気を噴出させる噴口を有する補助圧縮空気投入部を、該噴口が板状弁体の開閉作動領域の直下に位置するように設けたので、輸送管内で下流端に近づくにつれて肥大化しようとするプラグ状液相部の崩壊を促進し、より小さいプラグ状液相部に効率よく再生できる。これにより、長距離輸送のために輸送管を長く延ばしても、輸送管内のプラグ流における個々のプラグ状液相部を輸送管の下流端寄りにおいても極力小さくでき、その結果、土砂搬送機に加わる背圧が小さくなり、土砂搬送機の元圧を低減できるから、設備コストや運転コストの節減が図られ、しかも装置各部や輸送管の耐久性向上に寄与することができる。また高価な中継設備が不要となり、最小限のエネルギで土砂の長距離搬送を効率よく行うことができる。さらに輸送管の途中に補助圧縮空気を投入することによる曝気効果により、スラリ状土砂中の好気性微生物の活性化を図り、土砂浄化に寄与することができる。   As described above, according to the present invention, a check valve for preventing backflow and an expansion chamber directly facing the valve body downstream side of the check valve are provided in the middle of the transport pipe, and the upper end of the plate-like valve body is provided. The upper part of the expansion chamber is pivotally connected to the upper wall of the expansion chamber so that the plate-like valve body can swing between the open position and the closed position, and the lower part of the peripheral wall of the expansion chamber faces the downstream side of the transport pipe Since the auxiliary compressed air input portion having the nozzle hole for jetting the auxiliary compressed air is provided so that the nozzle hole is located immediately below the opening / closing operation region of the plate-like valve body, it tends to enlarge as it approaches the downstream end in the transport pipe. The collapse of the plug-like liquid phase part is promoted, and a smaller plug-like liquid phase part can be efficiently regenerated. As a result, even if the transport pipe is extended for a long distance transport, the individual plug-like liquid phase part in the plug flow in the transport pipe can be made as small as possible near the downstream end of the transport pipe. Since the applied back pressure is reduced and the original pressure of the earth and sand transport machine can be reduced, the equipment cost and the operating cost can be reduced, and the durability of each part of the apparatus and the transport pipe can be improved. Moreover, expensive relay equipment is not required, and long-distance transport of earth and sand can be efficiently performed with minimum energy. Furthermore, aerobic microorganisms in the slurry-like soil can be activated by the aeration effect by introducing auxiliary compressed air in the middle of the transport pipe, which can contribute to soil purification.

また、膨脹室に逆止弁の板状弁体を臨ませると共に、その板状弁体の上端部を膨脹室の上部壁に開閉揺動可能にピボット連結したことで、膨脹室を利用して逆止弁を容易に設置することができる。   In addition, the plate-shaped valve body of the check valve faces the expansion chamber, and the upper end of the plate-shaped valve body is pivotally connected to the upper wall of the expansion chamber so that it can be opened and closed. A check valve can be easily installed.

更に膨脹室の底面は、その直上流に連なる輸送管の底面より一段下がっており、その段部に、輸送管下流側に前記噴口を指向させて補助圧縮空気投入部を設けたので、膨脹室底部を這うように流れるスラリ状土砂(スラグ流)を補助圧縮空気により十分に攪拌でき、そのスラリ状土砂が膨脹室底部に沈殿、滞留するのを効果的に防止することができる。 Further the bottom surface of the bulging脹室is lowered one step than the bottom surface of the transport tube connecting to the immediately upstream, to the stepped portion, is provided with the auxiliary compressed air input unit of the nozzle hole is directed to the transport tube downstream expansion Slurry earth and sand (slag flow) flowing over the bottom of the chamber can be sufficiently stirred with auxiliary compressed air, and the slurry and earth can be effectively prevented from settling and staying at the bottom of the expansion chamber.

また特に請求項の発明によれば、補助圧縮空気投入部が、スラリ状土砂の流れ方向に互いに間隔をおいて配置された、前記噴口を含む複数の噴口を有しているので、その補助圧縮空気投入部が逆止弁直下の輸送管内の異なる二ヶ所から補助圧縮空気を各々投入してスラリ状土砂に効率よく混合させることができ、これにより、プラグ状液相部の崩壊を促進し、より小さいプラグ状液相部に効率よく再生させることができる。 According to the invention of claim 2 in particular, the auxiliary compressed air input portion has a plurality of injection holes including the injection holes arranged at intervals in the flow direction of the slurry-like earth and sand. Auxiliary compressed air can be introduced from two different locations in the transport pipe directly under the check valve so that the compressed air input part can be mixed efficiently with the slurry-like soil, thereby promoting the collapse of the plug-like liquid phase part. Thus, it can be efficiently regenerated into a smaller plug-like liquid phase part.

本発明の実施の形態を、添付図面に例示した本発明の実施例に基づいて以下に具体的に説明する。   Embodiments of the present invention will be specifically described below based on the embodiments of the present invention illustrated in the accompanying drawings.

添付図面において、図1〜図7は、本発明の一実施例を示すものであって、図1は、空気圧式輸送システムの全体縦断面図、図2は、土砂搬送機を示す一部破断拡大縦断面図(図1の2部矢視拡大図)、図3は、図2の3−3線拡大断面図、図4は、プラグ流再生促進手段の縦断面図(図1の4部矢視拡大縦断図)、図5は、図4の5−5線断面図、図6は、プラグ流再生促進手段(逆止弁前後)でのプラグ流の流動状態を概略的に示す縦断面図であって、(A)は液相部の流動状態を、また(B)は気相部の流動状態を示す。また図7は、前記実施例における輸送管全域に亘るプラグ流の流動状態を概略的に示す縦断面図である。   1 to 7 show an embodiment of the present invention, FIG. 1 is an overall longitudinal sectional view of a pneumatic transportation system, and FIG. 2 is a partially broken view showing a sediment transporter. FIG. 3 is an enlarged sectional view taken along line 3-3 in FIG. 2, and FIG. 4 is a longitudinal sectional view of plug flow regeneration promoting means (four parts in FIG. 1). 5 is a cross-sectional view taken along line 5-5 of FIG. 4, and FIG. 6 is a vertical cross-sectional view schematically showing the flow state of the plug flow in the plug flow regeneration promoting means (before and after the check valve). It is a figure, (A) shows the fluid state of a liquid phase part, and (B) shows the fluid state of a gas phase part. FIG. 7 is a longitudinal sectional view schematically showing the flow state of the plug flow over the entire transport pipe in the embodiment.

先ず、図1〜図3において、浚渫土砂のための空気圧式輸送システムは、他の浚渫作業地で発生した水を含むスラリ状土砂としての浚渫土砂20を内部に貯留して水上輸送可能なバージ船Bと、そのバージ船Bが横付け可能な揚泥作業船Aと、その揚泥作業船Aから土砂処分地としての埋め立て地Uまで延びる輸送管Pとを備え、その輸送管Pを経由して揚泥作業船Aから埋め立て地Uまで浚渫土砂20が空気圧を利用して大量輸送される。輸送管Pは、その水上部分においては、フロートfで浮遊状態に支持される。   First, in FIG. 1 to FIG. 3, the pneumatic transportation system for dredged sand is a barge that can store dredged sand 20 as slurry-like sand containing water generated in other dredging work sites and transport it over the water. A ship B, a mud working ship A to which the barge B can be placed, and a transport pipe P extending from the mud work ship A to a landfill U as a sediment disposal site, are connected via the transport pipe P. Then, the dredged sand 20 is transported in large quantities from the mud working boat A to the landfill U using air pressure. The transport pipe P is supported in a floating state by the float f in the water portion.

揚泥作業船Aには、バージ船B内に貯留される浚渫土砂20を掻き出すバックホー1と、このバックホー1により掻き出された浚渫土砂20が投入されるホッパ2と、そのホッパ2の下部に連設されて該ホッパ2内の浚渫土砂20を輸送管P内に定量ずつ押込み供給し得る土砂供給装置SSとが搭載され、この装置SSのケーシングHの上部に設けられて上向きに開口する吸入口Hiが、ホッパ2内の底部に直接連通する。そのケーシングHの底部には吐出口Hoが下向きに開口しており、この吐出口Hoには、中間部が横向きに屈曲した土砂排出管4を介して輸送管Pの上流端Puが接続される。   The pumping work boat A includes a backhoe 1 that scrapes dredged sand 20 stored in the barge B, a hopper 2 into which dredged sand 20 scraped by the backhoe 1 is placed, and a lower portion of the hopper 2. A suction unit that is provided in series and is provided with an earth and sand supply device SS that can push and supply the dredged soil 20 in the hopper 2 into the transport pipe P by a fixed amount, and is provided at the upper part of the casing H of the device SS and opens upward. The mouth Hi communicates directly with the bottom of the hopper 2. A discharge port Ho is opened downward at the bottom of the casing H, and the upstream end Pu of the transport pipe P is connected to the discharge port Ho via a sediment discharge pipe 4 whose middle part is bent sideways. .

前記土砂供給装置SSとしては、ホッパ2内の浚渫土砂20を輸送管P内に定量ずつ押込み供給し得るものであれば構造形式を問わず適宜、選択可能であるが、本実施例では、ケーシングHに一体に形成される筒状のロータケース部内に、モータMで回転駆動される円柱状のロータRが収納されたロータリー式土砂供給装置が使用される。そのロータRの外周部には複数の移送室Raが周方向に等間隔おきに凹設されており、その各移送室Raは、ロータRの回転に伴い、ケーシングHの吸入口Hiに周期的に連通し且つそこからホッパ2内底部にかけて堆積する浚渫土砂20を一定量ずつ受容して下方の吐出口側に強制移送するようにして、土砂供給作用を行う。   The earth and sand supply device SS can be appropriately selected regardless of the structure type as long as the earth and sand 20 in the hopper 2 can be pushed and fed into the transport pipe P by a fixed amount. A rotary earth and sand supply device in which a cylindrical rotor R that is rotationally driven by a motor M is housed in a cylindrical rotor case portion formed integrally with H is used. A plurality of transfer chambers Ra are recessed at equal intervals in the circumferential direction on the outer peripheral portion of the rotor R, and each transfer chamber Ra is periodically connected to the suction port Hi of the casing H as the rotor R rotates. The dredged sand 20 is received from the bottom of the hopper 2 to the bottom of the hopper 2 by a certain amount and is forcibly transferred to the lower discharge port side to perform the sand supply operation.

前記土砂排出管4内には、土砂供給装置SSにより輸送管P内に供給された浚渫土砂20を下流側に圧送するための圧縮空気をその浚渫土砂中に連続的に混入し得る圧縮空気混入装置SAが接続される。この圧縮空気混入装置SAは、輸送管P近くの適所(図示例では揚泥作業船A上)に設置されたコンプレッサCと、このコンプレッサCの吐出側に開閉弁6v付きのエア配管6を経て連通するノズル管7とを備えており、このノズル管7は、土砂排出管4の管壁を液密に貫通してその管内に開口し、その噴口N,N′が輸送管P内を指向している。   In the earth and sand discharge pipe 4, compressed air can be continuously mixed into the earth and sand with compressed air for pumping the earth and sand 20 supplied into the transport pipe P by the earth and sand supply device SS to the downstream side. The device SA is connected. This compressed air mixing device SA passes through a compressor C installed at an appropriate location near the transport pipe P (on the mud working vessel A in the illustrated example), and an air pipe 6 with an on-off valve 6v on the discharge side of the compressor C. The nozzle pipe 7 communicates with the earth and sand discharge pipe 4 through the pipe wall in a liquid-tight manner and opens into the pipe, and the nozzles N and N ′ are directed in the transport pipe P. doing.

前記ノズル管7の噴口N,N′は、図示例では前後に2つ設けられ、その一方(下側)の噴口N′は下流側に延長されて輸送管Pの上流端近傍に臨んでいる。そして、このノズル管7の噴口N,N′からは土砂排出管4内の異なる二ヶ所から圧縮空気を各々投入することができる。   In the illustrated example, two nozzle holes N and N ′ are provided at the front and rear of the nozzle pipe 7, and one (lower) nozzle hole N ′ extends downstream and faces the upstream end of the transport pipe P. . Compressed air can be supplied from two different locations in the sediment discharge pipe 4 from the nozzle holes N and N ′ of the nozzle pipe 7.

而して前記土砂供給装置SSと圧縮空気混入装置SAとにより、浚渫土砂20及び圧縮空気を輸送管Pの上流端部に供給する土砂搬送機Sが構成される。このような土砂搬送機Sを用いた空気圧式輸送システムにおいては、ホッパ2内に浚渫土砂を十分投入した状態でモーターM及びコンプレッサCを運転すると、輸送管Pの上流端部に土砂供給装置SSから浚渫土砂が定量ずつ供給されると同時に、ノズル管7より圧縮空気が勢いよく噴出して浚渫土砂中に混入され、このとき、輸送管P内では、図8に示すように浚渫土砂よりなるプラグ状液相部8と圧縮空気よりなる気相部9とが輸送管長手方向に交互に並んで下流方向へ流動(この流動は、プラグ状液相部8を挟む前後の気相部9,9相互の差圧が、輸送管Pよりプラグ状液相部8に作用する摩擦抵抗を含む流動抵抗に打ち勝つことで生じる)するプラグ流PLが生じ、それが浚渫土砂と輸送管P内面との間の見掛け上の摩擦力を低減するので、比較的小さなエネルギで浚渫土砂を効率よく大量輸送可能となる。尚、前記気相部9においても、輸送管Pの底部にはスラグ状の液相部が多少は流動する。   Thus, the earth and sand supply device SS and the compressed air mixing device SA constitute the earth and sand transporter S that supplies the dredged sand 20 and the compressed air to the upstream end of the transport pipe P. In such a pneumatic transportation system using the earth and sand transporter S, when the motor M and the compressor C are operated in a state in which dredged earth and sand are sufficiently put into the hopper 2, the earth and sand supply device SS is provided at the upstream end of the transportation pipe P. At the same time, a fixed amount of dredged soil is supplied from the nozzle pipe 7 and compressed air is ejected vigorously from the nozzle pipe 7 and mixed into the dredged sand. At this time, the transport pipe P is composed of dredged sand as shown in FIG. The plug-like liquid phase part 8 and the gas phase part 9 made of compressed air are alternately arranged in the longitudinal direction of the transport pipe and flow in the downstream direction (this flow is the gas phase part 9 before and after sandwiching the plug-like liquid phase part 8, 9 a plug flow PL is generated in which the mutual differential pressure overcomes the flow resistance including the frictional resistance acting on the plug-like liquid phase portion 8 from the transport pipe P, which is generated between the dredged sand and the inner surface of the transport pipe P. Reduce the apparent frictional force between Since, the efficient mass transport permit dredged material with a relatively small energy. In the gas phase portion 9 as well, a slag-like liquid phase portion flows slightly to the bottom of the transport pipe P.

ところで本実施例の如く輸送管Pを長く延ばした場合には、前述のように輸送管P内で発生したプラグ流PLのプラグ状液相部8が輸送管の下流端に近づくにつれて徐々に成長、肥大化し(図8)、これを圧送するために各気相部9の圧力も増大して土砂搬送機Sに加わる背圧(即ち輸送管P上流端部での管内圧力)が大きくなり、これが前記した種々の問題を惹起する。そこで本実施例では、輸送管Pの下流端に近づくにつれて肥大化しようとするプラグ状液相部8を崩壊させ、それよりも小さいプラグ状液相部8に効率よく再生させるためのプラグ流再生手段Xが少なくとも1組、設けられる。次に図4,5を併せて参照してその一例を説明する。   By the way, when the transport pipe P is elongated as in this embodiment, the plug-like liquid phase portion 8 of the plug flow PL generated in the transport pipe P as described above gradually grows as it approaches the downstream end of the transport pipe. , Enlarged (FIG. 8), the pressure of each gas phase portion 9 increases to pump this, and the back pressure applied to the earth and sand transport machine S (that is, the pressure inside the pipe at the upstream end of the transport pipe P) increases. This causes various problems as described above. Therefore, in this embodiment, the plug-like liquid phase portion 8 that is to be enlarged as it approaches the downstream end of the transport pipe P is collapsed, and the plug flow regeneration is performed to efficiently regenerate the smaller plug-like liquid phase portion 8. At least one set of means X is provided. Next, an example will be described with reference to FIGS.

即ち、プラグ流再生手段Xは、輸送管Pの途中に設けられた逆流防止用の逆止弁Vと、その各々の逆止弁Vの直下流の輸送管P内に補助圧縮空気を投入する補助圧縮空気投入部としての補助圧縮空気用ノズル管15とより構成される。そのノズル管15は、輸送管P近くの適所(図示例では揚泥作業船A上)に設置されたコンプレッサC′の吐出側に開閉弁6v′付きのエア配管6′を経て接続される。その逆止弁Vの配設位置は、輸送管Pの上流端から下流側に相当量離間していてプラグ状液相部8の肥大化が土砂搬送機Sへの背圧に及ぼす影響が大となる部位に設定され、輸送管Pが長い場合には、浚渫土砂の流動方向に相互に間隔をおいて複数の逆止弁Vが配設される。またこの逆止弁Vの配設位置は、土砂搬送機Sへの背圧の影響が大きい、輸送管Pの上り配管部分の手前側にも設定可能である。   That is, the plug flow regeneration means X feeds auxiliary compressed air into a check valve V for preventing a reverse flow provided in the middle of the transport pipe P and the transport pipe P immediately downstream of each check valve V. An auxiliary compressed air nozzle tube 15 serving as an auxiliary compressed air charging unit is included. The nozzle pipe 15 is connected to the discharge side of the compressor C ′ installed at an appropriate position near the transport pipe P (on the mud working vessel A in the illustrated example) via an air pipe 6 ′ with an on-off valve 6 v ′. The check valve V is disposed at a considerable distance from the upstream end of the transport pipe P to the downstream side, and the enlargement of the plug-like liquid phase portion 8 greatly affects the back pressure to the sediment transporter S. When the transport pipe P is long, a plurality of check valves V are arranged at intervals in the flow direction of dredged sand. Also, the check valve V can be disposed at the front side of the upstream pipe portion of the transport pipe P where the influence of the back pressure on the earth and sand transporter S is large.

また輸送管Pには、逆止弁Vの直下流において、輸送管Pよりも流路断面積が大きい膨脹室10が、該膨張室10に逆止弁Vの弁体13下流側を直接臨ませるようにして設けられ、その膨脹室10は、輸送管Pの途中に膨脹室形成管Paを一体的に介装することで形成される。この膨脹室形成管Paの上流側半部は、流路断面積が大きい矩形断面に形成され、またその下流側半部は下流側に向かうにつれて徐々に絞られて下流側の輸送管Pに滑らかに接続される。   An expansion chamber 10 having a flow passage cross-sectional area larger than that of the transport pipe P immediately downstream of the check valve V directly faces the transport pipe P on the downstream side of the valve body 13 of the check valve V. The expansion chamber 10 is formed by integrally installing an expansion chamber forming tube Pa in the middle of the transport tube P. The upstream half of the expansion chamber forming pipe Pa is formed in a rectangular cross section having a large flow path cross-sectional area, and the downstream half is gradually narrowed toward the downstream side and smoothly into the downstream transport pipe P. Connected to.

輸送管Pの、膨脹室10より上流側部分の下流端は、斜め上向きの平面で切断され、その切断面が逆止弁Vの弁座面11となり、その切断部開口が弁孔12となる。逆止弁Vは、矩形平板状の弁体13を膨脹室10に臨ませたリーフ弁より構成され、その弁体13の、弁座面11と反対側の外面には、補強リブと重錘を兼ねる補強片16が固設される。   The downstream end of the upstream portion of the transport pipe P from the expansion chamber 10 is cut by a diagonally upward plane, the cut surface becomes the valve seat surface 11 of the check valve V, and the cut portion opening becomes the valve hole 12. . The check valve V is composed of a leaf valve having a rectangular flat valve element 13 facing the expansion chamber 10. A reinforcing rib and a weight are provided on the outer surface of the valve element 13 opposite to the valve seat surface 11. Reinforcing piece 16 also serving as is fixed.

その弁体13は、それの上端部が膨脹室形成管Paの上部にピボット軸14を介して連結され、そのピボット軸14の軸線回りに弁体13が、前記弁座面12に当接して輸送管Pの途中を遮断する閉じ位置と、同弁座面12より離間して輸送管Pの途中を導通させる開き位置との間を開閉揺動可能である。   The upper end of the valve body 13 is connected to the upper part of the expansion chamber forming pipe Pa via a pivot shaft 14, and the valve body 13 abuts against the valve seat surface 12 around the axis of the pivot shaft 14. It can be opened and closed between a closed position where the middle of the transport pipe P is blocked and an open position where the middle of the transport pipe P is separated from the valve seat surface 12.

上記のような弁体13の配置、特にピボット軸14の位置や弁座面11の上向き傾斜により、閉じ位置にある弁体13には、その自重で緩やかな閉弁力が作用するので、弁体13は、通常は閉弁状態に保持される。また弁体13は、その前後に下流側に向かう差圧が発生すると、その差圧に応じてスムーズに開弁揺動する。一方、弁体13の前後に上流側に向かう差圧が発生すると、弁体13が直ちに閉じ方向に閉弁揺動し、その閉弁位置で保持される。   Due to the arrangement of the valve body 13 as described above, in particular, the position of the pivot shaft 14 and the upward inclination of the valve seat surface 11, the valve body 13 in the closed position is subjected to a gentle valve closing force by its own weight. The body 13 is normally held in a closed state. Further, when a differential pressure toward the downstream side is generated before and after the valve body 13, the valve body 13 swings smoothly in response to the differential pressure. On the other hand, when a differential pressure toward the upstream side of the valve body 13 is generated, the valve body 13 immediately swings in the closing direction and is held at the closed position.

前記ピボット軸14は、その中間部が弁体13の上端部に固着され、またその両端部が膨脹室形成管Paの両側壁を液密に且つ相対回動可能に貫通、支持される。そのピボット軸14の外端には重錘Wが一体的に連結されており、これにより、弁体13はどの開度に在っても自重の影響を受けずに前記差圧に応じて軽快に開閉揺動することができる。   The pivot shaft 14 has an intermediate portion fixed to the upper end portion of the valve body 13, and both end portions penetrating and supported on both side walls of the expansion chamber forming pipe Pa in a liquid-tight and relatively rotatable manner. A weight W is integrally connected to the outer end of the pivot shaft 14, so that the valve body 13 can be lightened according to the differential pressure without being affected by its own weight at any opening degree. Can swing open and close.

膨脹室10の周壁下部、即ち底面は、その直上流に連なる輸送管Pの底面より一段下がっており、その段部に、輸送管P下流側を指向して下流側に補助圧縮空気を噴出し得る前記ノズル管15を液密に貫通支持させている。ノズル管15の噴口n,n′は、図示例では前後に2つ設けられており、その一方(上側)の噴口nは、図4〜図6に示されるように逆止弁Vの弁体13の開閉作動領域の直下に配置され、またその他方(下側)の噴口n′は下流側に延長されているので、ノズル管15からは膨脹室10の異なる二ヶ所から補助圧縮空気を各々投入できる。また膨脹室10の天井面は、その直上流に連なる輸送管Pの天井面より一段上がっており、その段部に沿うように弁体13のピボット軸14が膨脹室10を横切って延びている。   The lower part of the peripheral wall of the expansion chamber 10, that is, the bottom surface, is one step lower than the bottom surface of the transport pipe P connected immediately upstream thereof, and auxiliary compressed air is jetted to the downstream side facing the downstream side of the transport pipe P. The nozzle tube 15 to be obtained is liquid-tightly penetrated and supported. In the illustrated example, two nozzle holes n and n ′ are provided at the front and rear in the illustrated example, and one (upper) nozzle hole n is a valve body of the check valve V as shown in FIGS. 4 to 6. Since the other (lower) nozzle hole n 'is extended downstream, the auxiliary compressed air is supplied from two different locations of the expansion chamber 10 from the nozzle pipe 15, respectively. Can be thrown in. Further, the ceiling surface of the expansion chamber 10 is one step higher than the ceiling surface of the transport pipe P continuous immediately upstream thereof, and the pivot shaft 14 of the valve body 13 extends across the expansion chamber 10 along the step portion. .

次に前記実施例の作用を説明する。図示しない浚渫作業現場で採取された水を含む浚渫土砂20は、バージ船B内に貯留されて、最終処分地である埋め立て地Uの近くの水域まで水上輸送される。その水域では揚泥作業船Aが待機しており、その作業船Aから埋め立て地Uまでは輸送管Pが予め設備されている。   Next, the operation of the embodiment will be described. The dredged sand 20 including water collected at a dredging work site (not shown) is stored in the barge ship B and transported over the water to a water area near the landfill U which is the final disposal site. In the water area, a mud working boat A stands by, and a transport pipe P is installed in advance from the working boat A to the landfill U.

そこで揚泥作業船Aにバージ船Bを横付けした後、バックホー1によりバージ船B内の貯留土砂20を掻き出してホッパ2内に投入し、その投入量が規定量以上になると、モーターMおよびコンプレッサCの運転を開始する。これにより、ホッパ2内の浚渫土砂20が土砂供給装置SSにより土砂排出管4を通して定量ずつ輸送管P内に供給され、それと同時にコンプレッサCから圧縮空気がエア配管6及び土砂排出管4を通して輸送管Pの上流端近くの浚渫土砂20中に混入される。このとき、輸送管P内では、図7に示すように浚渫土砂よりなるプラグ状液相部8と圧縮空気よりなる気相部9とが輸送管長手方向に交互に並んで下流方向へ流動するプラグ流PLが生じる。一方、コンプレッサC′からの圧縮空気は、エア配管6′を経てノズル管15から各逆止弁Vの直下流側(膨脹室10)に噴射される。   Therefore, after laying the barge B on the pumping work ship A, the stored soil 20 in the barge B is scraped out and put into the hopper 2 by the backhoe 1, and when the input amount exceeds the specified amount, the motor M and the compressor Start operation of C. Thereby, the dredged sand 20 in the hopper 2 is supplied to the transport pipe P by the sediment supply device SS through the sediment discharge pipe 4 in a fixed amount, and at the same time, compressed air from the compressor C passes through the air pipe 6 and the sediment discharge pipe 4 to the transport pipe. It is mixed in dredged sand 20 near the upstream end of P. At this time, in the transport pipe P, as shown in FIG. 7, the plug-like liquid phase portion 8 made of dredged sand and the gas phase portion 9 made of compressed air flow alternately downstream in the longitudinal direction of the transport pipe. A plug flow PL is generated. On the other hand, the compressed air from the compressor C ′ is injected from the nozzle pipe 15 to the downstream side (expansion chamber 10) of each check valve V through the air pipe 6 ′.

そして、図示例のように輸送管Pが長く延ばされる場合には、もし仮にプラグ流再生手段Xが無ければ、図8に示すように輸送管P内で発生したプラグ流PLがプラグ状液相部8の崩壊と、崩壊後の合体による再形成とを繰り返すことにより、プラグ状液相部8が輸送管の下流端に近づくにつれて徐々に成長、肥大化しようとする。しかるに本実施例では、輸送管Pの途中に、プラグ流再生手段X、即ち逆流防止用の逆止弁Vと、その逆止弁Vの直下流の輸送管P内に補助圧縮空気を投入する補助圧縮空気投入部(ノズル管15)とを設けているため、図7に示すように、肥大化しようとするプラグ状液相部8をより小さいプラグ状液相部8に効率よく再生可能である。   Then, when the transport pipe P is extended as shown in the illustrated example, if there is no plug flow regeneration means X, the plug flow PL generated in the transport pipe P as shown in FIG. By repeating the collapse of the portion 8 and the re-formation by coalescence after the collapse, the plug-like liquid phase portion 8 tends to gradually grow and enlarge as it approaches the downstream end of the transport pipe. However, in this embodiment, auxiliary compressed air is introduced into the plug flow regeneration means X, that is, the check valve V for preventing the reverse flow, and the transfer pipe P immediately downstream of the check valve V in the middle of the transport pipe P. Since the auxiliary compressed air charging portion (nozzle tube 15) is provided, the plug-like liquid phase portion 8 to be enlarged can be efficiently regenerated into a smaller plug-like liquid phase portion 8 as shown in FIG. is there.

即ち、肥大化しつつあるプラグ状液相部8は、逆止弁Vに差し掛かると、これを開弁させながら通過し、その通過直後に流路断面積が大きい膨脹室10に流入することでプラグ状液相部8の崩壊が始まる。そして、プラグ状液相部8の一部が逆止弁Vを通過すると、通過直後のプラグ状液相部8と逆止弁Vとの間の空間が比較的小さいために、ノズル管15から膨脹室10内へ投入された補助圧縮空気により逆止弁Vの直下流の管内圧力が急増して逆止弁Vを一時的に閉じ、その増大した管内圧力でスラグ流を下流側に勢いよく押出す(図6(A)を参照)。尚、このときの背圧は逆止弁Vで受け止められるので上流側の土砂搬送機Sには波及しない。その後、逆止弁Vの直下流の管内圧力が低下すると、逆止弁Vが再び開弁して、プラグ状液相部8の残り部分の一部が逆止弁Vを通過し、その際に前記と同様の作用がなされる。   That is, when the plug-like liquid phase portion 8 that is being enlarged reaches the check valve V, the plug-like liquid phase portion 8 opens while opening the valve-like liquid phase portion 8, and immediately after the passage, flows into the expansion chamber 10 having a large flow path cross-sectional area. Collapse of the plug-like liquid phase portion 8 begins. When a part of the plug-like liquid phase portion 8 passes through the check valve V, the space between the plug-like liquid phase portion 8 and the check valve V immediately after passing is relatively small. The pressure in the pipe immediately downstream of the check valve V is suddenly increased by the auxiliary compressed air introduced into the expansion chamber 10 to temporarily close the check valve V, and the increased pressure in the pipe causes the slag flow to vigorously flow downstream. Extrude (see FIG. 6A). In addition, since the back pressure at this time is received by the check valve V, it does not spill over to the sediment transport machine S on the upstream side. Thereafter, when the pipe pressure immediately downstream of the check valve V decreases, the check valve V opens again, and a part of the remaining part of the plug-like liquid phase portion 8 passes through the check valve V. The same action as described above is performed.

このような逆止弁Vの開閉動作の繰り返しと補助圧縮空気投入によるスラグ流押出し作用とにより、逆止弁通過後のスラグ状液相部が十分攪拌され、乱流状態となって圧力変動を繰り返しながら輸送管P内を移動し、その過程で再びプラグ状液相部8が再生される。しかもその再生されたプラグ状液相部8は、逆止弁V通過直前のプラグ状液相部8と比べ小さくなっているため、前後の気相部9,9の差圧が比較的小さくても下流側に無理なく流動する(図7)。尚、この再生されたプラグ状液相部8が下流側で再び成長、肥大化しても、その下流側に配設したプラグ流再生手段Xにより、上記の同様の作用で、プラグ状液相部8の再生がなされる。   By repeating the opening / closing operation of the check valve V and the slag flow pushing action by adding auxiliary compressed air, the slag-like liquid phase portion after passing through the check valve is sufficiently agitated, resulting in a turbulent state and pressure fluctuation. While moving repeatedly in the transport pipe P, the plug-like liquid phase portion 8 is regenerated again in the process. Moreover, since the regenerated plug-like liquid phase portion 8 is smaller than the plug-like liquid phase portion 8 immediately before passing through the check valve V, the differential pressure between the front and rear gas phase portions 9 and 9 is relatively small. Also flows to the downstream side without difficulty (FIG. 7). Even if the regenerated plug-like liquid phase portion 8 grows and enlarges again on the downstream side, the plug-like liquid phase portion can be obtained by the same action as described above by the plug flow regenerating means X disposed on the downstream side. 8 is played back.

また図6(B)に示すように、プラグ流PLにおける気相部9が逆止弁Vに差し掛かったときは、その逆止弁前後での圧力変化は比較的小さいので、逆止弁Vは開弁状態に保たれたまま、気相部9の移動、即ち逆止弁通過が行われる。   Further, as shown in FIG. 6B, when the gas phase portion 9 in the plug flow PL reaches the check valve V, the pressure change before and after the check valve is relatively small. The gas phase section 9 is moved, that is, the check valve is passed while the valve is kept open.

かくして、輸送管Pの途中に、逆流防止用の逆止弁Vと、その逆止弁Vの直下流の輸送管P内に補助圧縮空気を投入する補助圧縮空気投入部(ノズル管15)とを設けたことにより、輸送管P内で下流端に近づくにつれて肥大化しようとするプラグ状液相部8をより小さいプラグ状液相部8に効率よく再生可能となる。従って、長距離輸送のために中継設備を設けずに輸送管Pを長く延ばした場合であっても、その輸送管P内のプラグ流における個々のプラグ状液相部8を輸送管Pの下流端近くにおいても極力小さくできるため、土砂搬送機S(即ち土砂供給装置SS、圧縮空気混入装置SA)に加わる背圧が小さくなり、これにより、土砂搬送機Sの元圧を低減できるから、設備コストや運転コストの節減が図られ、しかも土砂搬送機Sや輸送管Pの耐久性向上が図られる。その上、輸送管Pの途中に補助圧縮空気を投入することによる曝気効果により、スラリ状土砂中の好気性微生物が活性化するため、土砂の浄化効率が高められる。   Thus, in the middle of the transport pipe P, a check valve V for preventing backflow, and an auxiliary compressed air input section (nozzle pipe 15) for supplying auxiliary compressed air into the transport pipe P immediately downstream of the check valve V, As a result, the plug-like liquid phase portion 8 that is to be enlarged as it approaches the downstream end in the transport pipe P can be efficiently regenerated into a smaller plug-like liquid phase portion 8. Therefore, even when the transport pipe P is extended for a long distance without providing a relay facility, the individual plug-like liquid phase portions 8 in the plug flow in the transport pipe P are connected to the downstream of the transport pipe P. Since it can be made as small as possible near the end, the back pressure applied to the earth and sand transporter S (ie, the earth and sand supply device SS and the compressed air mixing device SA) is reduced, thereby reducing the original pressure of the earth and sand transporter S. Costs and operating costs can be reduced, and durability of the earth and sand transporter S and the transport pipe P can be improved. In addition, since the aerobic microorganisms in the slurry-like earth and sand are activated by the aeration effect by introducing auxiliary compressed air in the middle of the transport pipe P, the purification efficiency of the earth and sand is enhanced.

ところで本発明者は、本発明を適用した実機モデル1と従来例に対応する実機モデル2を使用して土砂搬送実験を行い、その各々のモデルについて輸送管Pの上流端部での管内圧力P0 と、逆止弁Vの所定距離下流側地点での管内圧力P1 を測定し、その結果、プラグ流PL流動に伴い各測定点で管内圧力に変動が見られた。この場合、輸送管Pの上流端部での管内圧力P0 は土砂搬送機Sの元圧に対応し、また逆止弁Vの所定距離下流側地点での管内圧力P1 の変動の振幅(圧力差)が土砂搬送能力に対応するものと考えられるが、実験の結果、土砂搬送機Sの元圧が殆ど同じであっても、実機モデル1の方が実機モデル2よりも上記振幅(圧力差)が高く、従って土砂搬送能力が高いことが確認された。 By the way, the present inventor conducted an earth and sand transport experiment using the actual machine model 1 to which the present invention was applied and the actual machine model 2 corresponding to the conventional example, and the pipe pressure P at the upstream end of the transport pipe P for each model. 0 and to measure the pipe pressure P 1 at a predetermined distance downstream point of the check valve V, as a result, variations in the pressure within the pipe was observed at each measurement point with the plug flow PL flow. In this case, the pipe pressure P 0 at the upstream end of the transport pipe P corresponds to the original pressure of the earth and sand transporter S, and the amplitude of fluctuation of the pipe pressure P 1 at a predetermined distance downstream of the check valve V ( It is considered that the pressure difference) corresponds to the sediment transport capacity. As a result of the experiment, even though the original pressure of the sediment transport machine S is almost the same, the actual machine model 1 has the above amplitude (pressure) than the actual machine model 2 It was confirmed that the difference was high and therefore the sediment transport capacity was high.

また図示例では、逆止弁Vの直下流に設けた膨脹室10の底面が、その直上流に連なる輸送管Pの底面より一段下がっており、その段部に、輸送管P下流側に開口を指向させて補助圧縮空気投入部(ノズル管15)が設けられるため、膨脹室10底部を這うように浚渫土砂20(スラグ流)を補助圧縮空気により十分に攪拌でき、その浚渫土砂が膨脹室底部に沈殿、滞留するのを効果的に防止できる。   Further, in the illustrated example, the bottom surface of the expansion chamber 10 provided immediately downstream of the check valve V is lowered by one step from the bottom surface of the transport pipe P connected immediately upstream thereof, and the step portion is opened to the downstream side of the transport pipe P. Since the auxiliary compressed air introduction part (nozzle tube 15) is provided so as to face the bottom of the expansion chamber 10, the dredged sand 20 (slag flow) can be sufficiently stirred by the auxiliary compressed air so that the dredged sand is expanded. It is possible to effectively prevent precipitation and stagnation at the bottom.

以上、本発明の実施例を詳述したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   As mentioned above, although the Example of this invention was explained in full detail, this invention can perform a various design change in the range which does not deviate from the summary.

例えば、前記実施例では、輸送管Pの大部分を水面上に浮遊させて土砂処分地としての埋め立て地Uまで敷設しているが、本発明では、輸送管Pの一部又は全部を地面に敷設するようにしてもよい。   For example, in the above-described embodiment, most of the transport pipe P is floated on the surface of the water and laid down to the landfill U as a sediment disposal site. In the present invention, a part or all of the transport pipe P is placed on the ground. You may make it lay.

また前記実施例では、輸送管Pを、揚泥作業船Aと、土砂処分地としての埋め立て地Uとの間のスラリ状土砂(浚渫土砂)の輸送に利用しているが、本発明では、スラリ状土砂の出発地と到着地は実施例に限定されず、適宜選択可能である。   Moreover, in the said Example, although the transport pipe P is utilized for the transport of the slurry-like earth and sand (sediment sand) between the mud working ship A and the landfill U as a earth and sand disposal site, in this invention, The starting place and the arrival place of the slurry-like earth and sand are not limited to the embodiment, and can be selected as appropriate.

また前記実施例では、圧縮空気混入装置SAからの圧縮空気を輸送管P上流端手前の土砂排出管4に噴射するようにしたものを示したが、本発明では、その圧縮空気を輸送管P内に直接噴射するようにしてもよい。   Moreover, in the said Example, although what compressed the compressed air from compressed air mixing apparatus SA to the earth-and-sand discharge pipe 4 before the transport pipe P upstream side was shown, in this invention, the compressed air is conveyed to the transport pipe P. You may make it inject directly.

また前記実施例では、ノズル管7の噴口N,N′およびノズル管15の噴口n,n′を前後方向に間隔をおいて各々複数(図示例では2個)ずつ配置したものを示したが、本発明(請求項1〜4)では、少なくとも一方のノズル管7,15の噴口を単一(例えば上流側の噴口N,nのみ)としてもよい。   In the above-described embodiment, the nozzles N and N ′ of the nozzle pipe 7 and the nozzles n and n ′ of the nozzle pipe 15 are arranged in plural (two in the illustrated example) at intervals in the front-rear direction. In the present invention (claims 1 to 4), at least one of the nozzle pipes 7 and 15 may have a single nozzle (for example, only the upstream nozzles N and n).

本発明の一実施例に係る浚渫土砂用の空気圧式輸送システムの全体縦断面図Overall longitudinal sectional view of pneumatic transportation system for dredged sand according to one embodiment of the present invention 土砂搬送機を示す一部破断拡大縦断面図(図1の2部矢視拡大図)Partially broken enlarged vertical sectional view showing the earth and sand transporting machine (enlarged view of arrow 2 in FIG. 1) 図2の3−3線拡大断面図3-3 enlarged sectional view of FIG. プラグ流再生手段の縦断面図(図1の4部矢視拡大縦断図)Longitudinal sectional view of plug flow regenerating means (Expanded longitudinal sectional view taken along arrow 4 in FIG. 1) 図4の5−5線断面図Sectional view along line 5-5 in FIG. プラグ流再生手段(逆止弁前後)でのプラグ流の流動状態を概略的に示す縦断面図であって、(A)は液相部の流動状態を、また(B)は気相部の流動状態を示すIt is a longitudinal cross-sectional view which shows roughly the flow state of the plug flow in the plug flow regeneration means (before and after the check valve), (A) shows the flow state of the liquid phase part, and (B) shows the gas phase part. Indicates flow state 前記実施例における輸送管全域に亘るプラグ流の流動状態を概略的に示す縦断面図The longitudinal cross-sectional view which shows roughly the flow state of the plug flow over the whole transport pipe in the said Example. 従来例における輸送管全域に亘るプラグ流の流動状態を概略的に示す図7対応図FIG. 7 correspondence diagram schematically showing the flow state of the plug flow over the entire transport pipe in the conventional example.

P・・・・輸送管
PL・・・プラグ流
SA・・・圧縮空気混入装置
SS・・・土砂供給装置
V・・・・逆止弁
n,n′・・噴口
8・・・・プラグ状液相部
9・・・・気相部
10・・・膨脹室
13・・・弁体
15・・・補助圧縮空気投入部としての補助圧縮空気投入用ノズル管
20・・・スラリ状土砂
P ... transport pipe PL ... plug flow SA ... compressed air mixing device SS ... earth and sand supply device V ... check valve n, n '... nozzle 8 ... plug shape Liquid phase portion 9 ··· Gas phase portion 10 · Expansion chamber 13 · Valve body 15 · Auxiliary compressed air charging nozzle tube 20 as auxiliary compressed air charging portion · · · Slurry earth and sand

Claims (2)

水を含み粘性を有するスラリ状土砂(20)を輸送管(P)内を経由して空気圧により圧送するスラリ状土砂の空気圧式輸送システムであって、
スラリ状土砂(20)を輸送管(P)内に強制的に供給し得る土砂供給装置(SS)と、その土砂供給装置(SS)により輸送管(P)内に供給されたスラリ状土砂(20)を輸送管(P)の下流側に圧送するための圧縮空気を輸送管(P)の上流端又はその近傍でスラリ状土砂(20)中に混入し得る圧縮空気混入装置(SA)とを備え、
輸送管(P)内では前記圧縮空気の混入に伴い、スラリ状土砂(20)よりなるプラグ状液相部(8)と圧縮空気よりなる気相部(9)とが輸送管(P)長手方向に交互に並んで下流方向へ流動するプラグ流(PL)が生じるようにしたものにおいて、
輸送管(P)の途中には、逆流防止用の逆止弁(V)と、その逆止弁(V)の弁体(13)下流側が直接臨む膨張室(10)とを設け、
輸送管(P)の途中には、逆流防止用の逆止弁(V)と、その逆止弁(V)の板状弁体(13)下流側が直接臨む膨張室(10)とを設けると共に、その板状弁体(13)の上端部を膨脹室(10)の上部壁に、該板状弁体(13)が開き位置と閉じ位置間を開閉揺動し得るようにピボット連結し、
前記膨脹室(10)の周壁下部には、輸送管(P)の下流側に向けて補助圧縮空気を噴出させる噴口(n)を有する補助圧縮空気投入部(15)を、該噴口(n)が前記板状弁体(13)の開閉作動領域の直下に位置するように設け
前記膨脹室(10)の底面は、その直上流に連なる前記輸送管(P)の底面より一段下がっていると共に、その段部に前記補助圧縮空気投入部(15)が、前記噴口(n)を前記輸送管(P)下流側に指向させるようにして設けられることを特徴とする、スラリ状土砂の空気圧式輸送システム。
A pneumatic transportation system for slurry-like earth and sand, in which slurry-like earth and sand (20) containing water and having viscosity are pumped by air pressure through the inside of a transportation pipe (P),
The earth and sand supply device (SS) capable of forcibly supplying the slurry-like earth and sand (20) into the transport pipe (P), and the slurry-like earth and sand (SS) supplied into the transport pipe (P) by the earth and sand supply apparatus (SS) ( 20) a compressed air mixing device (SA) capable of mixing compressed air for pressure-feeding the downstream side of the transport pipe (P) into the slurry-like soil (20) at or near the upstream end of the transport pipe (P); With
In the transport pipe (P), along with the mixing of the compressed air, the plug-like liquid phase portion (8) made of the slurry-like earth and sand (20) and the gas phase portion (9) made of the compressed air are in the longitudinal direction of the transport pipe (P). In such a configuration that a plug flow (PL) that flows alternately in the direction and flows in the downstream direction is generated,
In the middle of the transport pipe (P), there is provided a check valve (V) for preventing backflow and an expansion chamber (10) directly facing the downstream side of the valve body (13) of the check valve (V),
In the middle of the transport pipe (P), a check valve (V) for preventing a backflow and an expansion chamber (10) directly facing the downstream side of the plate valve body (13) of the check valve (V) are provided. The upper end of the plate-like valve body (13) is pivotally connected to the upper wall of the expansion chamber (10) so that the plate-like valve body (13) can swing between the open position and the closed position,
An auxiliary compressed air input part (15) having a nozzle (n) for jetting auxiliary compressed air toward the downstream side of the transport pipe (P) is provided at the lower peripheral wall of the expansion chamber (10). Is provided so as to be located immediately below the opening / closing operation region of the plate-shaped valve body (13) ,
The bottom surface of the expansion chamber (10) is lowered by one step from the bottom surface of the transport pipe (P) immediately upstream thereof, and the auxiliary compressed air input portion (15) is provided at the step portion of the injection port (n). the characterized in that it is provided so as to be directed to the transporting pipe (P) downstream, of the slurry-like sediment pneumatic transport systems.
前記補助圧縮空気投入部(15)は、スラリ状土砂(20)の流れ方向に互いに間隔をおいて配置された、前記噴口(n)を含む複数の噴口(n,n′)を有していることを特徴とする、請求項1に記載のスラリ状土砂の空気圧式輸送システム。 The auxiliary compressed air input part (15) has a plurality of injection holes (n, n ′) including the injection holes (n) arranged at intervals in the flow direction of the slurry-like earth and sand (20). The pneumatic transportation system for slurry-like earth and sand according to claim 1, wherein
JP2006163738A 2006-06-13 2006-06-13 Pneumatic transport system for slurry-like soil Active JP5342101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006163738A JP5342101B2 (en) 2006-06-13 2006-06-13 Pneumatic transport system for slurry-like soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006163738A JP5342101B2 (en) 2006-06-13 2006-06-13 Pneumatic transport system for slurry-like soil

Publications (2)

Publication Number Publication Date
JP2007332600A JP2007332600A (en) 2007-12-27
JP5342101B2 true JP5342101B2 (en) 2013-11-13

Family

ID=38932332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006163738A Active JP5342101B2 (en) 2006-06-13 2006-06-13 Pneumatic transport system for slurry-like soil

Country Status (1)

Country Link
JP (1) JP5342101B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101602172B1 (en) * 2014-01-29 2016-03-10 한국해양과학기술원 Dredged soils long distance transport system using magnetic field and tornado and its control method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257544A (en) * 1985-05-08 1986-11-15 Katsuyoshi Harada Sludge pressure feeder
JP2929585B2 (en) * 1993-04-16 1999-08-03 宇部興産株式会社 Sludge pumping device
JP2668514B2 (en) * 1994-12-05 1997-10-27 株式会社遠藤組 Pneumatic feeding device

Also Published As

Publication number Publication date
JP2007332600A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP4944541B2 (en) Grab bucket type earthing device and pneumatic transportation system for slurry
US10094091B1 (en) Sediment suction sink and method for sediment control in rivers, streams, and channels
JP4658880B2 (en) Dam sediment discharge system
JP5342101B2 (en) Pneumatic transport system for slurry-like soil
CN201202126Y (en) Environment-protective desilting head and environment-protective desilting system therewith
JP2010144359A (en) Suction pipe for flow-transporting underwater sediment, flow-transport apparatus for underwater sediment, and method for flow-transporting underwater sediment using the same
JP2007002437A (en) Transportation system of dredged sediment
JP2005155024A (en) Sediment discharge method and sediment discharge work ship
JP4610292B2 (en) Method and apparatus for transporting earth and sand in a reservoir
JP4332878B2 (en) Artificial tidal flat structure with subsidence repair function
JP3999788B2 (en) Long-distance transportation system for dredged soil and its transportation method
KR100957117B1 (en) Propulsion method using separate lubricant supply type underground propulsion pipe
JP2743222B2 (en) Mixing pressure feeder for earth and sand
CN210917656U (en) Underground water sump pollution discharge device utilizing high-pressure air
JP7084056B1 (en) Method of pumping fluidized soil and its equipment, and method of pumping dehumidified water and its equipment
JP7187057B2 (en) Buffering method and device for water hammer
JP3418567B2 (en) Clay layer propulsion method and apparatus
JP2779888B2 (en) Pulsed pneumatic method and equipment for earth and sand
JP5397859B2 (en) Excavator
CN205975611U (en) Stake of water conservancy picture peg
JPH09221975A (en) Pumping and drainage device
JP2001182096A (en) Method and device for force-feeding soil and sand over great distance
JP2006273506A (en) Gravel carrying out device and gravel carrying out method
JP2000345577A (en) Soil-sand improving and transport plant, and improved transport ship for dredged material using the plant
Ludwig Seawater Extraction and Supply and Concentrate Discharge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130809

R150 Certificate of patent or registration of utility model

Ref document number: 5342101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250