JP7084056B1 - Method of pumping fluidized soil and its equipment, and method of pumping dehumidified water and its equipment - Google Patents

Method of pumping fluidized soil and its equipment, and method of pumping dehumidified water and its equipment Download PDF

Info

Publication number
JP7084056B1
JP7084056B1 JP2020218479A JP2020218479A JP7084056B1 JP 7084056 B1 JP7084056 B1 JP 7084056B1 JP 2020218479 A JP2020218479 A JP 2020218479A JP 2020218479 A JP2020218479 A JP 2020218479A JP 7084056 B1 JP7084056 B1 JP 7084056B1
Authority
JP
Japan
Prior art keywords
fluidized soil
pumping
suction
discharge
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020218479A
Other languages
Japanese (ja)
Other versions
JP2022103694A (en
Inventor
圭二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shintec Co Ltd
Original Assignee
Shintec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shintec Co Ltd filed Critical Shintec Co Ltd
Priority to JP2020218479A priority Critical patent/JP7084056B1/en
Application granted granted Critical
Publication of JP7084056B1 publication Critical patent/JP7084056B1/en
Publication of JP2022103694A publication Critical patent/JP2022103694A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】流動化処理土の製造プラントと充填現場が一定距離以上離間しており、長距離圧送や高低差圧送を必要とする場合であっても、効率よく、安定した流動化処理土の圧送を可能とする圧送方法及びその装置を提供することを目的としている。【解決手段】流動化処理土Sの貯留槽40や解泥水Mの貯留槽40aから流動化処理土Sや解泥水Mを吸入用逆止弁50を介して吸入分岐管20aからシリンダチューブ11内に吸入するとともに、シリンダチューブ11内に吸入した流動化処理土Sや解泥水Mを、吐出分岐管20bから吐出用逆止弁100を介して吐出管25に吐出する動作を交互に行うことによって、流動化処理土Sや解泥水を圧送する。【選択図】図1PROBLEM TO BE SOLVED: To efficiently and stably pump a fluidized soil even when a manufacturing plant of fluidized soil and a filling site are separated by a certain distance or more and long-distance pumping or high-low differential pumping is required. It is an object of the present invention to provide a pumping method and an apparatus thereof that enable the above. SOLUTION: From a storage tank 40 for fluidized soil S and a storage tank 40a for dehumidified water M, fluidized soil S and demineralized water M are sucked from a suction branch pipe 20a into a cylinder tube 11 via a check valve 50 for suction. By alternately discharging the fluidized soil S and the muddy water M sucked into the cylinder tube 11 from the discharge branch pipe 20b to the discharge pipe 25 via the discharge check valve 100. , Fluidized soil S and deflated muddy water are pumped. [Selection diagram] Fig. 1

Description

本発明は、地下空洞や空間に流動化処理土を充填して埋め戻す充填工法において、主として流動化処理土や、流動化処理土の原料である解泥水を、一定距離以上の長距離圧送や一定以上の高低差圧送等を行う場合の圧送方法及びその装置に関するものである。 The present invention is a filling method in which underground cavities and spaces are filled with fluidized soil and backfilled. The present invention relates to a pumping method and an apparatus for performing high-low differential pressure feeding over a certain level.

わが国には、石炭・亜炭鉱山廃坑,戦時中の地下壕,地下採石場跡及び廃棄された地下埋設物などの種々の地下空洞や空間(以下、これらをまとめて「地下空洞等」という)が至る所に放置されており、ときにこれらが突然崩落し、地表面や地上施設に陥没や沈下・傾斜等の災害をもたらしている。例えば、亜炭鉱山は明治から昭和にかけて各地で広く採掘が行われ、各種産業のエネルギー源として重用されてきたものの、エネルギー需要が石油燃料に切り替わっていく中で徐々に衰退し、閉山していった。その後には無数に掘られた廃坑が空洞としてそのまま地下に放置されている。 In Japan, there are various underground cavities and spaces such as abandoned coal and lignite mines, wartime underground pits, underground quarry sites and abandoned underground buried objects (hereinafter collectively referred to as "underground cavities, etc."). They are left unattended everywhere, and sometimes they suddenly collapse, causing disasters such as sinking, subsidence, and slopes on the ground surface and ground facilities. For example, the lignite mine was widely mined from the Meiji era to the Showa era and was heavily used as an energy source for various industries, but gradually declined and closed as energy demand switched to petroleum fuel. .. After that, countless abandoned mines were left underground as cavities.

中でも東海地方は美濃炭田や尾張炭田が日本の亜炭の40%以上を産出するなど、亜炭鉱業が盛んであったため、亜炭鉱山廃坑の空洞が多数残されており、前記した災害の原因ともなっている。そのため、例えば亜炭鉱業が盛んであった岐阜県可児郡御嵩町では、ボーリング調査を行い平成20年には全国で唯一「亜炭層(空洞)深度分布図」を公表して災害の防止に努めており、平成25年度には国で創設された「亜炭鉱予防対策事業のモデル地区」に選定され、公共施設や宅地等の地下空洞等の埋め戻しが開始されている。亜炭鉱山廃坑に代表される地下空洞等の埋め戻しは、その原因や地域に限定されることなく、優先されるべき防災上の課題となっている。 Especially in the Tokai region, the Mino and Owari coalfields produced more than 40% of Japan's lignite, and the lignite mining industry was thriving, leaving many cavities in the abandoned lignite mines, which is also the cause of the disaster mentioned above. .. Therefore, for example, in Mitake-cho, Kani-gun, Gifu Prefecture, where the lignite mining industry was flourishing, a boring survey was conducted and in 2008, the only "lignite layer (cavity) depth distribution map" was published in Japan to prevent disasters. In 2013, it was selected as a "model district for lignite prevention measures project" established in the country, and backfilling of underground cavities such as public facilities and residential land has started. Backfilling of underground cavities represented by abandoned lignite mines is a disaster prevention issue that should be prioritized, regardless of the cause or region.

埋め戻しのための充填材としては、原料土と水とセメントから組成され、流動性が高く自硬性がある資源循環型の埋め戻し材として、その有用性が高く評価されている流動化処理土が使用されている(特許文献1,2参照)。流動化処理土は、原料土に水を加えて解泥して所定の比重に調節するとともに、一定サイズ以上の礫を除去することによって解泥水を製造し、この解泥水に所定量のドライセメントやセメントミルクを添加して混練することにより製造している。原料土としては、掘削残土等の建設発生土や建設汚泥等が使用され、水は湿潤状態の原料土に含まれる含有水と、流動化処理土の配合に応じて新たに添加する追加水から供給される。 As a filler for backfilling, fluidized soil that is composed of raw material soil, water and cement and is highly evaluated for its usefulness as a resource-recycling type backfilling material with high fluidity and self-hardening property. Is used (see Patent Documents 1 and 2). The fluidized soil is prepared by adding water to the raw material soil to demud and adjusting the specific gravity to a predetermined value, and removing gravel of a certain size or larger to produce demud water, and a predetermined amount of dry cement is added to the demud water. It is manufactured by adding and kneading cement milk. As the raw material soil, construction-generated soil such as excavated soil and construction sludge are used, and the water is from the water contained in the wet raw material soil and the additional water newly added according to the composition of the fluidized soil. Will be supplied.

地下空洞等への流動化処理土の充填に際しては、流動化処理土の性状や、充填現場の状況,製造プラントから充填現場までの距離や高低差等の諸条件に応じて、製造プラントから充填現場まで圧送ポンプで圧送して充填したり(特許文献1参照)、製造プラントから充填現場までミキサー車やコンテナ車で輸送した後、サンドポンプ等を使用して充填している(特許文献3参照)。 When filling underground cavities with fluidized soil, fill from the manufacturing plant according to various conditions such as the properties of the fluidized soil, the condition of the filling site, the distance from the manufacturing plant to the filling site, and the height difference. It is filled by pumping it to the site with a pressure pump (see Patent Document 1), or it is transported from the manufacturing plant to the filling site by a mixer truck or a container car, and then filled using a sand pump or the like (see Patent Document 3). ).

特開2015-98699号公報JP-A-2015-98699 特開2013-64314号公報Japanese Unexamined Patent Publication No. 2013-64314 特開2013-108275号公報Japanese Unexamined Patent Publication No. 2013-108275

流動化処理土の製造プラントと充填現場が隣接や近接している場合には、その圧送の障害は少ないため、ミキサー車やコンテナ車を使用したバッチ式の輸送ではなく、スラリーポンプ,サンドポンプ,スクイズ式圧送ポンプやピストン式圧送ポンプ等の各種の圧送ポンプを使用して連続して圧送することが可能である。 When the production plant of fluidized soil and the filling site are adjacent or close to each other, there are few obstacles to pumping, so instead of batch transportation using a mixer car or container car, slurry pumps, sand pumps, etc. It is possible to continuously pump using various pumps such as a squeeze pump and a piston pump.

しかしながら、近時の流動化処理土の充填による地下空洞等の埋め戻し作業、特に現に埋め戻しが求められている亜炭鉱山廃坑の埋め戻し作業は、市街地や住宅地,道路,鉄道敷地や狭隘地等での作業が多く、地域住民の日常生活や交通を確保し、騒音防止や安全を担保した上で作業を進めることが前提として求められる。また、充填現場が地域全域となる広域施工となることも多い。 However, the backfilling work of underground cavities, etc. by filling the fluidized soil in recent years, especially the backfilling work of the abandoned mine of the sub-coal mine, which is actually required to be backfilled, is carried out in urban areas, residential areas, roads, railway sites and narrow areas. There are many tasks such as, etc., and it is required to proceed with the work after securing the daily life and traffic of the local residents, preventing noise and ensuring safety. In addition, it is often the case that the filling site is a wide area construction that covers the entire area.

そのため、地理的条件から流動化処理土の製造プラントを充填現場から離れた場所に設けたり、更には、製造プラントを解泥水を製造するための解泥プラントと、解泥水とセメントミルクを混練する混練プラントに分離して、別の場所に設けざるを得なかったりすることも多い。製造プラントや混練プラントから充填現場まで流動化処理土を連続して圧送したり、或いは解泥プラントから混練プラントまで解泥水を連続して圧送しようとすると、長距離圧送(例えば、水平距離換算で圧送距離800m~1200m程度の長距離圧送)することを余儀なくされたり、又現場によって高低差圧送も要求されることがある等、製造プラントと充填現場、或いは解泥プラントと混練プラントが一定距離以上離間していることに起因して、種々の制約が課されることとなる。また、亜炭鉱山廃坑の地下空洞等は、その容積も大きく、形状も複雑なため、作業効率を考慮すると一定以上の圧送量(例えば、20m/h~30m/h程度)を確保することが要求され、更に閉塞等によって圧送に障害が生じた場合において容易にメンテナンスを行えることが必要である。 Therefore, due to geographical conditions, a production plant for fluidized soil may be installed at a location away from the filling site, and the production plant may be kneaded with a dehumidification plant for producing dehumidified water and dehumidified water and cement milk. In many cases, it has to be separated into a kneading plant and installed in another place. When fluidized soil is continuously pumped from a manufacturing plant or kneading plant to a filling site, or when demolition water is continuously pumped from a demineralization plant to a kneading plant, long-distance pumping (for example, in terms of horizontal distance) is performed. Long-distance pumping with a pumping distance of about 800 m to 1200 m) is unavoidable, and high-low differential pumping may be required depending on the site. Due to the distance, various restrictions will be imposed. In addition, since the underground cavity of the abandoned lignite mine has a large volume and a complicated shape, it is necessary to secure a pumping amount of a certain level or more (for example, about 20 m 3 / h to 30 m 3 / h) in consideration of work efficiency. It is also necessary to be able to easily perform maintenance when the pumping failure occurs due to blockage or the like.

従来より、生コンクリートや各種泥状物の圧送に使用され、流動化処理土の圧送にも使用されているスクイズ式圧送ポンプやサンドポンプでは、長距離圧送や高低差圧送を行うことができず、中継地点を設けることが必要であり、スラリーポンプでは大型の電源設備を必要とし、実現性に欠けるため、いずれも前記した課題を解決することができない。その点、スクイズ式圧送ポンプと同様に生コンクリートや各種泥状物の圧送に使用され、流動化処理土の圧送にも使用されているピストン式圧送ポンプは、シリンダチューブ内でピストンを高圧の作動油で駆動することが可能であり、長距離圧送や高低差圧送に適した圧送能力を有している。 Conventionally, squeeze pumps and sand pumps, which have been used for pumping ready-mixed concrete and various mud-like materials and also used for pumping fluidized soil, cannot perform long-distance pumping or high-low differential pumping. Since it is necessary to provide a relay point, a large power supply facility is required for the slurry pump, and it is not feasible, none of them can solve the above-mentioned problems. In that respect, the piston-type pump, which is used for pumping ready-mixed concrete and various mud-like materials as well as the squeeze-type pump, and is also used for pumping fluidized soil, operates the piston at high pressure inside the cylinder tube. It can be driven by oil and has a pumping capacity suitable for long-distance pumping and high-low differential pumping.

ピストン式圧送ポンプは、ホッパに貯留した流動化処理土を、ホッパからシリンダチューブ内へ吸入し、その後シリンダチューブから圧送用配管へ圧送している。そのため、シリンダチューブへの吸入と、シリンダチューブからの吐出を切り換える必要があり、ピストン式圧送ポンプでは、ホッパとシリンダチューブの間に切換機構を介在させ、この切換機構によって、吸入から吐出への切換と、吐出から吸入への切換の双方を行っている。また、2基のピストン式圧送ポンプを並列させて使用する場合には、一方のシリンダチューブへの吸入時に、他方のシリンダチューブから吐出するように切換機構によって吸入と吐出の双方を制御している。 The piston-type pumping pump sucks the fluidized soil stored in the hopper into the cylinder tube from the hopper, and then pumps the fluidized soil from the cylinder tube to the pumping pipe. Therefore, it is necessary to switch between suction to the cylinder tube and discharge from the cylinder tube. In the piston type pressure feed pump, a switching mechanism is interposed between the hopper and the cylinder tube, and this switching mechanism switches from suction to discharge. And switching from discharge to suction is performed. When two piston type pressure feed pumps are used in parallel, both suction and discharge are controlled by a switching mechanism so that when suction is performed into one cylinder tube, the pump is discharged from the other cylinder tube. ..

流動化処理土や解泥水は、原材料として原料土を使用しているため、その土粒子、特に粒径が細かく、硬度が高い土粒子を含む場合には、これらの土粒子によって切換機構の摩耗が生じやすく、ホッパからの吸入と圧送用配管への吐出の切換に障害を生じてしまう。即ち、切換機構の摩耗に起因して、吸入時にシリンダチューブと圧送用配管が連通したり、吐出時にシリンダチューブとホッパが連通したり、或いは2基のシリンダチューブを並列させて使用している場合にはシリンダチューブ同士が連通してしまって、吸入や吐出を円滑に行うことができなくなってしまう。とりわけ、解泥水は流動化処理土に比べて、より水状に近いため土粒子の影響が大きく、摩耗が生じやすい。例えば、前記した御嵩町における亜炭鉱山廃坑の埋め戻し工事においては、原料土として陶磁器の原材料である粒径75μm以下のシルトや粘土が大半を占めており、粒径が細かく、硬度が高い土粒子のため、容易に切換機構に侵入してしまい、摩耗が激しくなる。そのため、ピストン式圧送ポンプは圧送力、とりわけ長距離圧送力は魅力であるものの、摩耗が生じる毎に頻繁な切換機構の交換やメンテナンスが必要となり、到底効率的な圧送作業を行うことができないため、そのままでは採用することができない。 Since the fluidized soil and deflated muddy water use raw soil as a raw material, if the soil particles, especially those with fine particle size and high hardness, are included, the switching mechanism is worn by these soil particles. Is likely to occur, which causes an obstacle in switching between suction from the hopper and discharge to the pumping pipe. That is, when the cylinder tube and the pumping pipe communicate with each other at the time of suction, the cylinder tube and the hopper communicate with each other at the time of discharging, or two cylinder tubes are used in parallel due to the wear of the switching mechanism. The cylinder tubes communicate with each other, making it impossible to smoothly inhale and discharge. In particular, the deflated muddy water is more water-like than the fluidized soil, so that the influence of soil particles is large and wear is likely to occur. For example, in the backfilling work of the abandoned lignite mine in Mitake Town, silt and clay with a particle size of 75 μm or less, which are the raw materials for ceramics, occupy most of the soil, and the soil particles have a fine particle size and high hardness. Therefore, it easily invades the switching mechanism and wears severely. Therefore, although the piston type pumping force is attractive for pumping force, especially long-distance pumping force, it is necessary to frequently replace and maintain the switching mechanism every time wear occurs, and it is not possible to perform efficient pumping work at all. , Cannot be adopted as it is.

よって、製造プラントや混練プラントから充填現場まで流動化処理土を連続して圧送したり、或いは解泥プラントから混練プラントまで解泥水を連続して圧送しようとする場合に、地理的条件等から、長距離圧送を必要とする場合や、一定以上の高低差圧送を必要とする場合、効率的に安定して圧送する手段は提供されていないのが現状である。そこで、本発明は長距離圧送や高低差圧送を必要とする場合であっても、原料土の粒径や硬度に起因した障害を取り除いて、効率よく、安定した流動化処理土や解泥水の圧送を可能とする圧送方法及びその装置を提供することを目的としている。 Therefore, when the fluidized soil is continuously pumped from the manufacturing plant or kneading plant to the filling site, or when the dehumidified water is continuously pumped from the demineralization plant to the kneading plant, due to geographical conditions, etc. At present, there is no means for efficiently and stably pumping when long-distance pumping is required or when high-low differential pumping above a certain level is required. Therefore, the present invention removes obstacles caused by the particle size and hardness of the raw material soil even when long-distance pumping or high-low differential pumping is required, and efficiently and stably fluidized soil and demudified water. It is an object of the present invention to provide a pumping method and an apparatus thereof capable of pumping.

本発明者は、前記した課題を解決するために、長距離圧送の能力を有するピストン式圧送ポンプを前提として、流動化処理土の長距離圧送の阻害事由となっている切換機構の摩耗や摩耗に起因した圧送障害の原因について、次の推論を立てた。
推論1:切換機構が、シリンダチューブの開口部を開閉する機構であること。
推論2:切換機構が、シリンダチューブ内におけるピストンの往復動作と直接連動して動作していること。
推論3:切換機構が、吸入と吐出の双方の切換を単独の部材で兼用して行っていること。即ち、流動化処理土のホッパからシリンダチューブ内への吸入の切換と、シリンダチューブから圧送用配管への吐出の切換の双方を単独の切換機構で同時に行っていること。
推論4:切換機構がピストン式圧送ポンプの部材として一体に組み込まれていること。
推論5:切換機構がホッパと圧送用配管の双方に連通可能であること。
In order to solve the above-mentioned problems, the present inventor presupposes a piston type pumping pump having a long-distance pumping ability, and wears or wears a switching mechanism which is an obstacle to long-distance pumping of fluidized soil. The following reasoning was made regarding the cause of the pumping failure caused by.
Inference 1: The switching mechanism is a mechanism that opens and closes the opening of the cylinder tube.
Reasoning 2: The switching mechanism operates in direct cooperation with the reciprocating motion of the piston in the cylinder tube.
Inference 3: The switching mechanism switches between suction and discharge as a single member. That is, both the switching of the suction of the fluidized soil from the hopper into the cylinder tube and the switching of the discharge from the cylinder tube to the pumping pipe shall be performed simultaneously by a single switching mechanism.
Inference 4: The switching mechanism is integrated as a member of the piston type pump.
Inference 5: The switching mechanism can communicate with both the hopper and the pumping pipe.

前記推論1~5に基づいて、圧送の障害はホッパからのシリンダチューブへの吸入と、シリンダチューブからの圧送用配管への吐出の切換を行う切換機構にあるため、この切換機構をピストン式圧送ポンプから分離して、ピストン式圧送ポンプの吸入時における圧送用配管とシリンダチューブとの遮断及び吐出時における貯留槽とシリンダチューブとの遮断に関与しないようにすることができれば、従来の切換機構に起因した摩耗等による圧送の障害を克服して、ピストン式圧送ポンプを使用した流動化処理土や解泥水の長距離圧送が可能となるとの着想を得て鋭意研究の結果、本発明に想到した。 Based on the above inferences 1 to 5, since the failure of pumping lies in the switching mechanism that switches between suction from the hopper to the cylinder tube and discharge from the cylinder tube to the pumping pipe, this switching mechanism is piston-type pumping. If it can be separated from the pump and not involved in the shutoff between the pressure feed pipe and the cylinder tube during suction of the piston type pressure feed pump and the shutoff between the storage tank and the cylinder tube during discharge, the conventional switching mechanism can be used. As a result of diligent research, we came up with the present invention based on the idea that it is possible to overcome the obstacles of pumping due to wear and the like and to pump fluidized soil and demuddy water over a long distance using a piston-type pump. ..

本願発明の課題を解決するために、請求項1により、シリンダチューブ内においてピストンが往復動作するピストン式圧送ポンプを使用する流動化処理土の圧送方法において、ピストン式圧送ポンプのシリンダチューブの開口側に二叉分岐管を連結して、一方の分岐管を吸入分岐管とし、吸入用逆止弁を介して流動化処理土の貯留槽に連結した吸入管連結するとともに、他方の分岐管を吐出分岐管とし、吐出用逆止弁を介して圧送用配管に連結した吐出管連結してなり、吸入用逆止弁はピストン式圧送ポンプ側への流動化処理土の流入を可能とするとともに、貯留槽側への流動化処理土の流出を遮断し、吐出用逆止弁は圧送用配管側への流動化処理土の流出を可能とするとともに、ピストン式圧送ポンプ側への流動化処理土の流入を遮断することによって、流動化処理土の貯留槽から流動化処理土を吸入用逆止弁を介して吸入分岐管からシリンダチューブ内に吸入するとともに、シリンダチューブ内に吸入した流動化処理土を、吐出分岐管から吐出用逆止弁を介して吐出管に吐出する動作を交互に行うことによって、流動化処理土を圧送する流動化処理土の圧送方法を基本として提供する。 In order to solve the problem of the present invention, according to claim 1, in a method of pumping fluidized soil using a piston-type pressure-feeding pump in which a piston reciprocates in a cylinder tube, the opening side of the cylinder tube of the piston-type pressure-feeding pump. A bifurcated branch pipe is connected to the piston, one branch pipe is used as a suction branch pipe, and the other branch pipe is connected to the suction pipe connected to the storage tank of the fluidized soil via a check valve for suction. The discharge branch pipe is connected to the discharge pipe connected to the pressure feed pipe via the discharge check valve, and the suction check valve enables the inflow of fluidized soil to the piston type pressure feed pump side. At the same time, the outflow of fluidized soil to the storage tank side is blocked, and the check valve for discharge enables the outflow of fluidized soil to the pumping pipe side and fluidization to the piston type pumping pump side. By blocking the inflow of the treated soil, the fluidized treated soil is sucked into the cylinder tube from the suction branch pipe via the check valve for suction from the storage tank of the fluidized treated soil, and the flow sucked into the cylinder tube. A method of pumping fluidized soil by pumping fluidized soil by alternately performing operations of discharging the chemical treated soil from the discharge branch pipe to the discharge pipe via a check valve for discharge is provided as a basis.

請求項2により、ピストン式圧送ポンプは、シリンダチューブ内におけるピストンが往復動作によって、流動化処理土のシリンダチューブへの吸入とシリンダチューブからの吐出を行うものの、吸入時における圧送用配管とシリンダチューブとの遮断及び吐出時における貯留槽とシリンダチューブとの遮断に関与しない方法を、請求項3により、ピストン式圧送ポンプとして、貯留槽又は圧送用配管の一方とシリンダチューブを連通させるとともに同時に他方と遮断し、又は一方と遮断するとともに同時に他方と連通させるための切換機構を具備しないピストン式圧送ポンプを使用する方法を提供する。 According to claim 2, in the piston type pressure feed pump, the piston in the cylinder tube reciprocates to suck the fluidized soil into the cylinder tube and discharge it from the cylinder tube, but the pressure feed pipe and the cylinder tube at the time of suction. According to claim 3, a method that is not involved in shutting off the storage tank and the cylinder tube at the time of shutting off and discharging is to make one of the storage tank or the pumping pipe and the cylinder tube communicate with each other as a piston type pumping pump and at the same time with the other. Provided is a method of using a piston type pressure feed pump which does not have a switching mechanism for shutting off or shutting off from one and communicating with the other at the same time.

そして、請求項4により、ピストン式圧送ポンプとして、流動化処理土を貯留するためのホッパを具備しないピストン式圧送ポンプを使用する方法を、請求項5により、流動化処理土を、その製造プラントから所定距離離間した充填現場まで圧送する方法を提供する。 Then, according to claim 4, a method of using a piston-type pressure-feeding pump as a piston-type pressure-feeding pump, which does not have a hopper for storing fluidized soil, is according to claim 5, and according to claim 5, a fluidized-treated soil is produced in a manufacturing plant thereof. Provided is a method of pumping to a filling site separated from the filling site by a predetermined distance.

また、請求項6により、流動化処理土を、流動化処理土の原材料としての解泥水とした解泥水の圧送方法を提供し、請求項7により、解泥水を、解泥水を製造する解泥プラントから所定距離離間した場所に設けられて、解泥水とセメントミルクを混練して流動化処理土を製造する混練プラントまで圧送する方法を提供する。 Further, according to claim 6, a method for pumping de-mud water using fluidized soil as a raw material for fluidized soil is provided, and according to claim 7, de-mud water is used to produce de-mud water. Provided is a method provided at a place separated from a plant by a predetermined distance and pumped to a kneading plant for kneading dehumidified water and cement milk to produce fluidized soil.

更に、請求項8により、シリンダチューブ内においてピストンが往復動作するピストン式圧送ポンプと、シリンダチューブの開口側に連結し、吸入分岐管と吐出分岐管を有する二叉分岐管と、吸入分岐管に連結した吸入用逆止弁と、吸入用逆止弁に吸入管を介して連結した流動化処理土の貯留槽と、吐出分岐管に連結した吐出用逆止弁と、吐出用逆止弁に吐出管を介して連結した圧送用配管からなり、吸入用逆止弁はシリンダチューブ側への流動化処理土の流入を可能とするとともに、貯留槽側への流動化処理土の流出を遮断し、吐出用逆止弁は圧送用配管側への流動化処理土の流出を可能とするとともに、シリンダチューブ側への流動化処理土の流入を遮断する流動化処理土の圧送装置を提供する。 Further, according to claim 8, a piston type pressure feed pump in which the piston reciprocates in the cylinder tube, a bifurcated branch pipe connected to the opening side of the cylinder tube and having a suction branch pipe and a discharge branch pipe, and a suction branch pipe. For the suction check valve connected, the fluidized soil storage tank connected to the suction check valve via the suction pipe, the discharge check valve connected to the discharge branch pipe, and the discharge check valve. It consists of a pressure feed pipe connected via a discharge pipe, and the suction check valve enables the inflow of fluidized soil to the cylinder tube side and blocks the outflow of fluidized soil to the storage tank side. The discharge check valve enables the outflow of the fluidized soil to the pumping pipe side, and provides a pumping device for the fluidized soil to block the inflow of the fluidized soil to the cylinder tube side.

そして、請求項9により、貯留槽から流動化処理土を吸入用逆止弁を介して吸入分岐管からシリンダチューブ内に吸入するとともに、シリンダチューブ内に吸入した流動化処理土を、吐出分岐管から吐出用逆止弁を介して吐出管に吐出する動作を交互に行うことによって、流動化処理土を圧送する構成を、請求項10により、ピストン式圧送ポンプは流動化処理土の、貯留槽からシリンダチューブへの吸入と、シリンダチューブから圧送用配管への吐出の切換機構を具備していない構成を、請求項11により、ピストン式圧送ポンプは、流動化処理土を貯留するためのホッパを具備していない構成を提供する。 Then, according to claim 9, the fluidized soil is sucked from the storage tank into the cylinder tube from the suction branch pipe via the check valve for suction, and the fluidized soil sucked into the cylinder tube is sucked into the discharge branch pipe. According to claim 10, the piston type pressure pump is a storage tank of the fluidized soil, which is configured to pump the fluidized soil by alternately performing the operation of discharging from the check valve for discharge to the discharge pipe. According to claim 11, the piston type pressure pump has a hopper for storing fluidized soil, which does not have a mechanism for switching between suction from the cylinder tube and discharge from the cylinder tube to the pressure feed pipe. Provide a configuration that is not provided.

更に、請求項12により、吸入用逆止弁又は吐出用逆止弁は、閉鎖した貫通孔を穿設した支持板と、貫通孔を開閉可能に支持板の一面に軸支した開閉弁と、支持板の一面の外周に連結した開側中空管と、支持板の他面の外周に連結した閉側中空管とからなる流動化処理土の圧送装置を提供する。 Further, according to claim 12, the check valve for suction or the check valve for discharge includes a support plate having a closed through hole, and an on-off valve whose through hole is pivotally supported on one surface of the support plate so as to be openable and closable. Provided is a pumping device for fluidized soil, which comprises an open-side hollow pipe connected to the outer periphery of one surface of a support plate and a closed-side hollow pipe connected to the outer periphery of the other surface of the support plate.

請求項13により、貫通孔の外周縁部に溝部を穿設し、閉時の開閉弁に当接するパッキンを溝部に埋設した構成を、請求項14により、開側中空管の開口縁部に環状の溝部を穿設し、支持板の一面に密接するパッキンを溝部に埋設した構成を、請求項15により、閉側中空管の開口縁部に環状の溝部を穿設し、支持板の他面に密接するパッキンを溝部に埋設した構成を提供する。 According to claim 13, a groove is formed in the outer peripheral edge of the through hole, and a packing that comes into contact with the on-off valve at the time of closing is embedded in the groove. According to claim 15, an annular groove is formed in the opening edge of the closed-side hollow pipe to form an annular groove and a packing that is in close contact with one surface of the support plate is embedded in the groove. Provided is a configuration in which a packing that is in close contact with the other surface is embedded in a groove.

また、請求項16により、開側中空管の支持板側の開口縁部に開側フランジを突設するとともに、閉側中空管の支持板側の開口縁部に閉側フランジを突設し、開側フランジを支持板の一面の外周縁に密接させるとともに、閉側フランジを支持板の他面の外周縁に密接させ、開側フランジと支持板と閉側フランジを一体不可分に連結した構成を、請求項17により、吸入用逆止弁の開側中空管を吸入分岐管に連結するとともに、閉側中空管を吸入管に連結した構成を、請求項18により、吐出用逆止弁の開側中空管を吐出管に連結するとともに、閉側中空管を吐出分岐管に連結した構成を提供する。 Further, according to claim 16, the open side flange is projected from the opening edge portion on the support plate side of the open side hollow pipe, and the closed side flange is projected from the opening edge portion on the support plate side of the closed side hollow pipe. Then, the open side flange was brought into close contact with the outer peripheral edge of one surface of the support plate, and the closed side flange was brought into close contact with the outer peripheral edge of the other surface of the support plate, and the open side flange, the support plate, and the closed side flange were integrally and inseparably connected. According to claim 17, the open-side hollow pipe of the check valve for suction is connected to the suction branch pipe, and the closed-side hollow pipe is connected to the suction pipe. Provided is a configuration in which the open side hollow pipe of the check valve is connected to the discharge pipe and the closed side hollow pipe is connected to the discharge branch pipe.

更に、請求項19により、前記した流動化処理土を、流動化処理土の原材料としての解泥水とした解泥水の圧送装置を提供する。 Further, according to claim 19, there is provided a pumping device for dehumidified water using the above-mentioned fluidized soil as a raw material for the fluidized soil.

上記構成の本発明によれば、ピストン式圧送ポンプから、ホッパ及びホッパからのシリンダチューブ内への吸入とシリンダチューブから圧送用配管への吐出を切り換える切換機構を取り除くとともに、シリンダチューブへの吸入時とシリンダチューブからの吐出時における流動化処理土や解泥水の流れの制御を、ピストン式圧送ポンプから切り離して、かつ、吸入時と吐出時において、それぞれ独立して専用の吸入用逆止弁と吐出用逆止弁によって別個に制御するようにした。即ち、吸入用逆止弁は貯留槽とシリンダチューブのみを連通又は遮断し、吐出用逆止弁は圧送用配管とシリンダチューブのみを連通又は遮断する。これにより、吸入用逆止弁及び吐出用逆止弁はそれぞれ一方向のみに流動化処理土や解泥水が流れるため、従来の単独の部材で吸入と吐出の双方向の流れを切り換える切換機構に比して、摩耗を少なく押さえることができ、貯留槽と圧送用配管が連通して圧送に支障を来すことはない。 According to the present invention having the above configuration, the switching mechanism for switching between the suction into the cylinder tube from the hopper and the hopper and the discharge from the cylinder tube to the pressure feeding pipe is removed from the piston type pressure feed pump, and at the time of suction to the cylinder tube. The control of the flow of fluidized soil and muddy water during discharge from the cylinder tube is separated from the piston type pressure feed pump, and a check valve for suction is used independently for suction and discharge. It is controlled separately by the check valve for discharge. That is, the suction check valve communicates or shuts off only the storage tank and the cylinder tube, and the discharge check valve communicates or shuts off only the pressure feed pipe and the cylinder tube. As a result, the check valve for suction and the check valve for discharge each allow fluidized soil and demudified water to flow in only one direction. In comparison, wear can be suppressed to a minimum, and the storage tank and the pumping pipe do not communicate with each other and interfere with pumping.

また、吸入用逆止弁が開いて貯留槽からシリンダチューブへの流動化処理土や解泥水の吸入時には、吐出用逆止弁は吸入時の圧力によって閉方向に付勢されるため、シリンダチューブと圧送用配管が連通することはない。同様に、吐出用逆止弁が開いてシリンダチューブから圧送用配管への流動化処理土や解泥水の吐出時には、吸入用逆止弁は吐出時の圧力によって閉方向に付勢されるため、シリンダチューブと貯留槽が連通することはない。また、2基のシリンダチューブを並列させて使用している場合にはシリンダチューブ同士が連通することもない。そのため、吸入や圧送が滞ることがなく、流動化処理土や解泥水をピストン式圧送ポンプを使用して効率よく、安定して圧送することが可能となる。 In addition, when the suction check valve opens and fluidized soil or muddy water is sucked from the storage tank to the cylinder tube, the discharge check valve is urged in the closing direction by the suction pressure, so that the cylinder tube And the pressure feeding pipe do not communicate with each other. Similarly, when the discharge check valve opens and the fluidized soil or demuddy water is discharged from the cylinder tube to the pumping pipe, the suction check valve is urged in the closing direction by the pressure at the time of discharge. There is no communication between the cylinder tube and the storage tank. Further, when two cylinder tubes are used in parallel, the cylinder tubes do not communicate with each other. Therefore, the suction and pumping are not delayed, and the fluidized soil and the muddy water can be pumped efficiently and stably by using the piston type pumping pump.

加えて、流動化処理土や解泥水が通過する支持板の貫通孔を開閉弁によって開閉操作する構成のため、摩耗の原因が少なく、又支持板の貫通孔の全周に亘って装備したパッキンの調節や交換によっても密閉性や密着性を高めることができ、液密性を長期間に亘って保つことができる。更に、吸入用逆止弁及び吐出用逆止弁における開側中空管及び閉側中空管の開口部の管径を、連結する吸入管,吸入分岐管,吐出管,吐出分岐管の開口部の管径と同一としているため、圧送現場において、煩雑なメンテナンス作業を伴うことなく、吸入用逆止弁や吐出用逆止弁を単位としてアッセンブリで交換することが可能となり、障害発生時の圧送作業への影響を最小限に抑えることが可能となる。 In addition, since the through hole of the support plate through which the fluidized soil and muddy water passes is opened and closed by the on-off valve, there is little cause of wear, and the packing equipped over the entire circumference of the through hole of the support plate. The airtightness and adhesion can be improved by adjusting or replacing the material, and the liquidtightness can be maintained for a long period of time. Further, the openings of the suction pipe, the suction branch pipe, the discharge pipe, and the discharge branch pipe that connect the diameters of the openings of the open side hollow pipe and the closed side hollow pipe in the check valve for suction and the check valve for discharge. Since the pipe diameter is the same as that of the part, it is possible to replace the check valve for suction and the check valve for discharge as a unit in the assembly at the pumping site without complicated maintenance work. It is possible to minimize the influence on the pumping work.

そのため、地理的条件から流動化処理土の製造プラントを充填現場から離れた場所に設けたり、更には、製造プラントを解泥水を製造するための解泥プラントと、解泥水とセメントミルクを混練する混練プラントに分離して、別の場所に設けた場合や一定差以上の高低差がある場合であっても、流動化処理土や、その原料としての解泥水を圧送することが可能となり、亜炭鉱山廃坑等の地下空洞等を流動化処理土を充填して埋め戻す充填工法を実施することが可能となる。 Therefore, due to geographical conditions, a production plant for fluidized soil may be installed at a location away from the filling site, and the production plant may be kneaded with a demineralization plant for producing dehumidified water and dehumidified water and cement milk. Even if it is separated into a kneading plant and installed in another place or if there is a height difference of a certain difference or more, it is possible to pump the fluidized soil and the de-mud water as its raw material, and lignite. It will be possible to implement a filling method in which underground cavities such as abandoned mines are filled with fluidized soil and backfilled.

本発明では、流動化処理土や解泥水を貯留するためのホッパを具備しないピストン式圧送ポンプを使用しており、シリンダチューブへの流動化処理土や解泥水の吸入を、流動化処理土や解泥水の貯留槽から直接行っている。そのため、貯留槽からホッパへの流動化処理土や解泥水の供給を行う必要がなく、流動化処理土や解泥水の吸入が途切れることがない。 In the present invention, a piston-type pressure pump that does not have a hopper for storing fluidized soil and deflated muddy water is used, and the fluidized soil and deflated muddy water are sucked into the cylinder tube. It is done directly from the demolition water storage tank. Therefore, it is not necessary to supply the fluidized soil and the muddy water from the storage tank to the hopper, and the suction of the fluidized soil and the muddy water is not interrupted.

本発明にかかる流動化処理土や解泥水の圧送方法及びその装置の要部平面図。FIG. 3 is a plan view of a main part of a method for pumping fluidized soil and deflated muddy water according to the present invention and an apparatus thereof. 本発明の第1実施形態を示す全体配置図。The whole layout drawing which shows the 1st Embodiment of this invention. 本発明の第2実施形態を示す全体配置図。The whole layout drawing which shows the 2nd Embodiment of this invention. 圧送工程の要部を示す工程説明図。The process explanatory drawing which shows the main part of the pumping process. 吸入用逆止弁及び吐出用逆止弁の設置状態を示す斜視図。The perspective view which shows the installation state of the check valve for suction and the check valve for discharge. 吸入用逆止弁及び吐出用逆止弁の設置手段を示す斜視図。The perspective view which shows the installation means of the check valve for suction and the check valve for discharge. 吸入用逆止弁及び吐出用逆止弁の第1実施形態の斜視図。The perspective view of the 1st Embodiment of the check valve for suction and the check valve for discharge. 図7の組付図。The assembly diagram of FIG. 図7の分解組付図。The disassembled assembly diagram of FIG. 7. 開閉弁の閉時における断面図。Sectional drawing when the on-off valve is closed. 開閉弁の開時における断面図。Sectional drawing when the on-off valve is opened. 吸入用逆止弁及び吐出用逆止弁の第2実施形態の斜視図。The perspective view of the 2nd Embodiment of the check valve for suction and the check valve for discharge. 図12の組付図。The assembly diagram of FIG. 図12の分解組付図。The disassembled assembly drawing of FIG. 開閉弁の閉時における断面図。Sectional drawing when the on-off valve is closed. 開閉弁の開時における断面図。Sectional drawing when the on-off valve is opened.

以下、図面に基づいて本発明の実施形態を説明する。図1は本発明にかかる流動化処理土Sや解泥水Mの圧送方法及びその装置の要部平面図、図2はその第1実施形態を示す全体配置図、図3はその第2実施形態を示す全体配置図、図4は圧送工程の要部を示す工程説明図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a plan view of a main part of a pumping method of fluidized soil S and defrosted water M according to the present invention and the apparatus thereof, FIG. 2 is an overall layout showing the first embodiment, and FIG. 3 is the second embodiment thereof. FIG. 4 is an overall layout diagram showing the above, and FIG. 4 is a process explanatory diagram showing a main part of the pumping process.

本発明では図2,図3に示すように、亜炭鉱山廃坑跡の地下空洞等35aに充填して埋め戻すための充填材として、流動化処理土Sを製造プラント30や混練プラント30bに設置した貯留槽40から一定距離以上離間したり、高低差を有する充填現場35まで圧送する。或いは、図3に示すように流動化処理土Sを製造するための原料としての解泥水Mを解泥プラント30aに設置した貯留槽40aから一定距離以上離間したり、高低差を有する混練プラント30bまで圧送する。 In the present invention, as shown in FIGS. 2 and 3, fluidized soil S is installed in the manufacturing plant 30 or the kneading plant 30b as a filler for filling and backfilling the underground cavity 35a of the abandoned lignite mine site. It is separated from the storage tank 40 by a certain distance or more, or pumped to a filling site 35 having a height difference. Alternatively, as shown in FIG. 3, the dehumidified water M as a raw material for producing the fluidized soil S is separated from the storage tank 40a installed in the demolition plant 30a by a certain distance or more, or the kneading plant 30b having a height difference. Pump up to.

先ず、完成した流動化処理土Sを充填現場35まで圧送する図2に示す実施形態について説明する。流動化処理土Sは、原料土1と水3とセメントミルク5を混練して製造する流動体であり、原料土1はダンプトラック7等で製造プラント30まで輸送されて所定の場所に蓄積される。原料土1としては、広く建設発生土や建設汚泥等の各種土質材料が使用可能であるが、前記した御嵩町における亜炭鉱山廃坑の充填工事に使用される原料土には、粒径75μm以下で硬度の高いシルトや粘土が多く含まれている。 First, the embodiment shown in FIG. 2 in which the completed fluidized soil S is pumped to the filling site 35 will be described. The fluidized soil S is a fluid produced by kneading raw soil 1, water 3, and cement milk 5, and the raw soil 1 is transported to a manufacturing plant 30 by a dump truck 7 or the like and accumulated in a predetermined place. Ru. As the raw material soil 1, various soil materials such as construction-generated soil and construction sludge can be widely used, but the raw material soil used for the filling work of the abandoned lignite mine in Mitake Town mentioned above has a particle size of 75 μm or less. It contains a lot of hard silt and clay.

製造プラント30では、製造する流動化処理土Sの仕様に基づいて、解泥槽31内に所定量の原料土1をバックホウ36等で供給するとともに所定量の水3を供給して解泥し、所定の含水比の解泥水Mを得る。そして、強制二軸ミキサや一軸連続ミキサ等の適宜のミキサ装置38に、スラリーポンプ39で解泥水Mを供給するとともに、セメントサイロ33から、セメントを所定含水比のセメントミルク5に調整して供給し、混練することによって流動化処理土Sを製造し、貯留槽40に貯留する。よって、流動化処理土Sに含まれる水分は、原料土1に含まれる水と、解泥に際して解泥槽31に追加される水3と、セメントミルク5に含まれる水の総量となる。なお、セメントミルク5に代えてドライセメントを使用することも可能であり、これらの流動化処理土Sの製造工程は従来より公知のものである。 In the manufacturing plant 30, based on the specifications of the fluidized soil S to be manufactured, a predetermined amount of raw material soil 1 is supplied into the mud removal tank 31 by a backhoe 36 or the like, and a predetermined amount of water 3 is supplied to remove the mud. , Obtain de-mud water M having a predetermined water content ratio. Then, the de-muddy water M is supplied to an appropriate mixer device 38 such as a forced biaxial mixer or a uniaxial continuous mixer by the slurry pump 39, and the cement is adjusted and supplied from the cement silo 33 to the cement milk 5 having a predetermined water content ratio. Then, the fluidized soil S is produced by kneading and stored in the storage tank 40. Therefore, the water content in the fluidized soil S is the total amount of water contained in the raw material soil 1, water 3 added to the mud removal tank 31 at the time of mud removal, and water contained in the cement milk 5. It is also possible to use dry cement instead of cement milk 5, and the manufacturing process of these fluidized soil S is conventionally known.

上記した工程で製造した流動化処理土Sを貯留した貯留槽40から、水平距離換算で圧送距離800m~1200m程度離間した充填現場35までピストン式圧送ポンプ10を使用して長距離圧送を行う場合を例として説明する。なお、800m以下の圧送距離であっても圧送可能であることはもとより、1200mの圧送距離も限界を示すものではない。ピストン式圧送ポンプ10は、シリンダチューブ11内において、ロッド12の伸縮動作に伴って、その先端に装備したピストンが往復動作することによって、シリンダチューブ11内への流動化処理土Sの吸入と、シリンダチューブ11からの吐出を行う構成であって、本発明では2基のシリンダチューブ11を装備しており、一方のシリンダチューブ11に流動化処理土Sを吸入しているときに、他方のシリンダチューブ11から流動化処理土Sを吐出することにより、連続した圧送を行う構成である。シリンダチューブ11の開口部は常時開口している。 When long-distance pumping is performed using the piston-type pumping pump 10 from the storage tank 40 that stores the fluidized soil S manufactured in the above step to the filling site 35 that is separated by a pumping distance of about 800 m to 1200 m in terms of horizontal distance. Will be described as an example. It should be noted that even if the pumping distance is 800 m or less, pumping is possible, and the pumping distance of 1200 m does not indicate a limit. In the cylinder tube 11, the piston type pressure feed pump 10 sucks the fluidized soil S into the cylinder tube 11 by reciprocating the piston equipped at the tip of the rod 12 as the rod 12 expands and contracts. It is configured to discharge from the cylinder tube 11, and in the present invention, it is equipped with two cylinder tubes 11, and when the fluidized soil S is sucked into one cylinder tube 11, the other cylinder By discharging the fluidized soil S from the tube 11, continuous pumping is performed. The opening of the cylinder tube 11 is always open.

本発明で使用するピストン式圧送ポンプ10は、流動化処理土Sを貯留するためのホッパを具備していない。また、貯留槽40又は圧送用配管15の一方とシリンダチューブ11を連通させるとともに同時に他方と遮断し、又は一方と遮断するとともに同時に他方と連通させるための切換機構を具備していない。即ち、貯留槽40からシリンダチューブ11内への吸入の切換と、シリンダチューブ11から圧送用配管15への吐出の切換の双方を行うための単一の切換機構を装備していない。よって、ピストン式圧送ポンプ10は、シリンダチューブ11内におけるピストンの往復動作によって、流動化処理土Sのシリンダチューブ11への吸入とシリンダチューブ11からの吐出を行うものの、シリンダチューブ11自体は、吸入時における圧送用配管15とシリンダチューブ11との遮断、及び吐出時における貯留槽40とシリンダチューブ11との遮断に関与しない。 The piston type pressure feed pump 10 used in the present invention is not provided with a hopper for storing the fluidized soil S. Further, it does not have a switching mechanism for communicating one of the storage tank 40 or the pumping pipe 15 with the cylinder tube 11 and simultaneously shutting off the other, or blocking one and communicating with the other at the same time. That is, it is not equipped with a single switching mechanism for switching both suction from the storage tank 40 into the cylinder tube 11 and discharge from the cylinder tube 11 to the pumping pipe 15. Therefore, although the piston type pressure feed pump 10 sucks the fluidized soil S into the cylinder tube 11 and discharges it from the cylinder tube 11 by the reciprocating motion of the piston in the cylinder tube 11, the cylinder tube 11 itself sucks. It does not participate in the shutoff between the pumping pipe 15 and the cylinder tube 11 at the time and the shutoff between the storage tank 40 and the cylinder tube 11 at the time of discharge.

ピストン式圧送ポンプ10は、2基のシリンダチューブ11のそれぞれの開口側に、先端が二叉に分岐した分岐管を有する二叉分岐管20の基端を直接連結して、一方の分岐管を吸入分岐管20aとし、吸入用逆止弁50を介して、貯留槽40に連結した吸入管45と連結している。この吸入用逆止弁50は、貯留槽40からピストン式圧送ポンプ10側への流動化処理土Sの流入を可能とするとともに、貯留槽40側への流動化処理土Sの流出を遮断している。そして、他方の分岐管を吐出分岐管20bとし、吐出用逆止弁100を介して圧送用配管15に連結した吐出管25と連結している。この吐出用逆止弁100は、シリンダチューブ11から圧送用配管15側への流動化処理土Sの流出を可能とするとともに、ピストン式圧送ポンプ10側への流動化処理土Sの流入を遮断している。 In the piston type pressure feed pump 10, one branch pipe is directly connected to the opening side of each of the two cylinder tubes 11 by directly connecting the base end of the bifurcated branch pipe 20 having a branch pipe whose tip is bifurcated. The suction branch pipe 20a is connected to the suction pipe 45 connected to the storage tank 40 via a check valve 50 for suction. The suction check valve 50 enables the inflow of the fluidized soil S from the storage tank 40 to the piston type pressure feed pump 10 side, and blocks the outflow of the fluidized soil S to the storage tank 40 side. ing. The other branch pipe is a discharge branch pipe 20b, which is connected to the discharge pipe 25 connected to the pressure feed pipe 15 via the discharge check valve 100. The discharge check valve 100 enables the outflow of the fluidized soil S from the cylinder tube 11 to the pumping pipe 15 side, and blocks the inflow of the fluidized soil S to the piston type pressure feed pump 10 side. is doing.

よって、一方のシリンダチューブ11内のロッド12の縮小動作によって、貯留槽40内の流動化処理土Sを、吸入管45,吸入用逆止弁50を介して二叉分岐管20の吸入分岐管20aを経てからシリンダチューブ11内に吸入する。このとき、一方のシリンダチューブ11からの吐出を遮断する吐出用逆止弁100は閉じられているとともに、吐出用逆止弁100は吸入時の圧力によって閉方向に付勢される。また、図1に示すように、2基の吐出用逆止弁100は吐出管25を介して連通しているため、他方のシリンダチューブ11内のロッド12の伸長動作によって、他方のシリンダチューブ11から二叉分岐管20の吐出分岐管20bを経て吐出される流動化処理土Sの圧力によっても閉方向に付勢されている。よって、吸入動作を行っている一方のシリンダチューブ11と圧送用配管15が連通することはなく、吸入不可となったり、吐出管25から流動化処理土Sが一方のシリンダチューブ11に逆流することはない。 Therefore, by the contraction operation of the rod 12 in one cylinder tube 11, the fluidized soil S in the storage tank 40 is sucked into the suction branch pipe of the bifurcated branch pipe 20 via the suction pipe 45 and the check valve 50 for suction. After passing through 20a, it is sucked into the cylinder tube 11. At this time, the discharge check valve 100 that shuts off the discharge from one of the cylinder tubes 11 is closed, and the discharge check valve 100 is urged in the closing direction by the pressure at the time of suction. Further, as shown in FIG. 1, since the two discharge check valves 100 communicate with each other via the discharge pipe 25, the extension operation of the rod 12 in the other cylinder tube 11 causes the other cylinder tube 11 to communicate with each other. It is also urged in the closing direction by the pressure of the fluidized soil S discharged from the bifurcated branch pipe 20 through the discharge branch pipe 20b. Therefore, one of the cylinder tubes 11 performing the suction operation and the pressure feeding pipe 15 do not communicate with each other, so that suction cannot be performed or the fluidized soil S flows back from the discharge pipe 25 to the one cylinder tube 11. There is no.

また、他方のシリンダチューブ11内のロッド12の伸長動作によって、シリンダチューブ11に吸入された流動化処理土Sを、二叉分岐管20の吐出分岐管20bから吐出用逆止弁100を介して、吐出管25から圧送用配管15に吐出する。このとき他方のシリンダチューブ11への吸入を遮断する吸入用逆止弁50は閉じられているとともに、吸入用逆止弁50は吐出時の圧力によって閉方向に付勢される。加えて、図1に示すように、2基の吸入用逆止弁50は吸入管45を介して連通しているため、一方のシリンダチューブ11内のロッド12の縮小動作によって、一方のシリンダチューブ11に二叉分岐管20の吸入分岐管20aを経て吸入される流動化処理土Sの圧力によっても閉方向に付勢されている。よって、吐出動作を行っている他方のシリンダチューブ11と貯留槽40が連通することはなく、圧送不可となったり、吸入管45から流動化処理土Sが貯留槽40に逆流することはない。 Further, the fluidized soil S sucked into the cylinder tube 11 by the extension operation of the rod 12 in the other cylinder tube 11 is discharged from the discharge branch pipe 20b of the bifurcated branch pipe 20 via the discharge check valve 100. , Discharge from the discharge pipe 25 to the pressure feeding pipe 15. At this time, the suction check valve 50 that shuts off suction to the other cylinder tube 11 is closed, and the suction check valve 50 is urged in the closing direction by the pressure at the time of discharge. In addition, as shown in FIG. 1, since the two suction check valves 50 communicate with each other via the suction pipe 45, the reduction operation of the rod 12 in the one cylinder tube 11 causes the one cylinder tube to operate. It is also urged in the closing direction by the pressure of the fluidized soil S sucked into 11 through the suction branch pipe 20a of the bifurcated branch pipe 20. Therefore, the other cylinder tube 11 performing the discharge operation and the storage tank 40 do not communicate with each other, so that pumping is not possible and the fluidized soil S does not flow back from the suction pipe 45 to the storage tank 40.

これらの流動化処理土Sを吸入する動作と、吐出する動作を交互に行うことによって、流動化処理土Sを所定経路によって敷設した圧送用配管15を経由して、製造プラント30から所定距離離間した充填現場35まで圧送する。 By alternately performing the operation of sucking the fluidized soil S and the operation of discharging the fluidized soil S, the fluidized soil S is separated from the manufacturing plant 30 by a predetermined distance via the pumping pipe 15 laid by a predetermined path. It is pumped to the filling site 35.

吸入用逆止弁50と吐出用逆止弁100は、流動化処理土Sを流入させ、又は遮断するために設置する方向(流入・流出を規制する方向)を異にするものの、構成自体は同一である。その第1実施形態の構成を図7~図11に基づいて説明する。図7は吸入用逆止弁50及び吐出用逆止弁100の第1実施形態の斜視図、図8は図7の組付図、図9は図7の分解組付図である。吸入用逆止弁50又は吐出用逆止弁100は、貫通孔63を穿設した支持板60と、貫通孔63を開閉可能に支持板60の一面に回動可能に軸支した開閉弁70と、支持板60の一面の外周に連結した開側中空管80と、支持板60の他面の外周に連結した閉側中空管90とから構成されている。 Although the suction check valve 50 and the discharge check valve 100 have different installation directions (directions that regulate inflow and outflow) for inflowing or shutting off the fluidized soil S, the configuration itself is the same. It is the same. The configuration of the first embodiment will be described with reference to FIGS. 7 to 11. 7 is a perspective view of the first embodiment of the check valve 50 for suction and the check valve 100 for discharge, FIG. 8 is an assembly diagram of FIG. 7, and FIG. 9 is an exploded assembly diagram of FIG. 7. The suction check valve 50 or the discharge check valve 100 includes a support plate 60 having a through hole 63 and an on-off valve 70 in which the through hole 63 is rotatably supported on one surface of the support plate 60. The open-side hollow tube 80 connected to the outer periphery of one surface of the support plate 60, and the closed-side hollow tube 90 connected to the outer periphery of the other surface of the support plate 60.

支持板60の貫通孔63の外周縁部に環状の溝部61を穿設し、閉時の開閉弁70に当接する環状のパッキン62を溝部61から僅かに突出するように埋設する(図10,図11参照)。そのため、開閉弁70の閉時において、開閉弁70はピストン式圧送ポンプ10の吸入・吐出動作による圧力によって支持板60に付勢されて密接するとともに、パッキン62によって液密性が保持される。また、開側中空管80の開口縁部に環状の溝部81を穿設し(図10,図11参照)、支持板60の一面に密接するパッキン82を溝部81に埋設するとともに、同様に閉側中空管90の開口縁部に環状の溝部91を穿設し、支持板60の他面に密接するパッキン92を溝部91に埋設する。 An annular groove 61 is formed in the outer peripheral edge of the through hole 63 of the support plate 60, and an annular packing 62 that abuts on the on-off valve 70 when closed is embedded so as to slightly protrude from the groove 61 (FIG. 10, FIG. See FIG. 11). Therefore, when the on-off valve 70 is closed, the on-off valve 70 is urged and brought into close contact with the support plate 60 by the pressure generated by the suction / discharge operation of the piston type pressure feed pump 10, and the liquidtightness is maintained by the packing 62. Further, an annular groove 81 is formed in the opening edge of the open side hollow pipe 80 (see FIGS. 10 and 11), and a packing 82 in close contact with one surface of the support plate 60 is embedded in the groove 81, and similarly. An annular groove 91 is formed in the opening edge of the closed-side hollow pipe 90, and a packing 92 in close contact with the other surface of the support plate 60 is embedded in the groove 91.

開側中空管80の支持板60側の開口縁部に開側フランジ83を突設するとともに、閉側中空管90の支持板60側の開口縁部に閉側フランジ93を突設し、開側フランジ83を支持板60の一面の外周縁に密接させるとともに、閉側フランジ93を支持板60の他面の外周縁に密接させ、開側フランジ83と支持板60と閉側フランジ93の外周をボルト84とナット94で締結し、三者を一体不可分に固定する。このとき、パッキン82によって開側中空管80と支持板60の液密性が保持されるとともに、パッキン92によって閉側中空管90と支持板60との液密性が保持される。 The open side flange 83 is projected from the opening edge of the open side hollow tube 80 on the support plate 60 side, and the closed side flange 93 is projected from the open edge of the closed side hollow tube 90 on the support plate 60 side. The open side flange 83 is brought into close contact with the outer peripheral edge of one surface of the support plate 60, and the closed side flange 93 is brought into close contact with the outer peripheral edge of the other surface of the support plate 60. The outer periphery of the is fastened with a bolt 84 and a nut 94, and the three parties are integrally fixed inseparably. At this time, the packing 82 maintains the liquidtightness of the open side hollow tube 80 and the support plate 60, and the packing 92 maintains the liquidtightness of the closed side hollow tube 90 and the support plate 60.

図9に示すように、支持板60の溝部61に隣接して穿設した挿通孔64に、先端部にピン孔65aを穿設した固定ブロック65を挿通して閉側中空管90と一体としてボルト66で固定する。一方、開閉弁70の開側中空管80側の面に、垂直方向に2つのピン孔75a,75bを穿設した開閉ブロック75を固着し、開閉弁70を固定ブロック65のピン孔65aと開閉ブロック75のピン孔75a,75bが鉛直方向に直列するように位置合わせを行い、固定ブロック65と開閉ブロック75の両側から、左右一対の回動ブロック73で挟持する。回動ブロック73は、固定ブロック65に穿設したピン孔65aに対応するピン孔73aと、開閉ブロック75に穿設したピン孔75a,75bに対応するピン孔73b,73cとが垂直方向に穿設されており、ピン孔73aとピン孔65aに連結ピン74aを挿通して、ピン孔73bとピン孔75aに連結ピン74bを挿通して、ピン孔73cとピン孔75bに連結ピン74cを挿通して、それぞれ固定する。これにより、固定ブロック65と開閉ブロック75を回動ブロック73で一体に固定する。 As shown in FIG. 9, a fixing block 65 having a pin hole 65a formed at the tip thereof is inserted into an insertion hole 64 formed adjacent to the groove portion 61 of the support plate 60 and integrated with the closed-side hollow pipe 90. It is fixed with bolts 66. On the other hand, an on-off block 75 having two pin holes 75a and 75b bored in the vertical direction is fixed to the surface of the on-off valve 70 on the open-side hollow tube 80 side, and the on-off valve 70 is attached to the pin hole 65a of the fixing block 65. The pin holes 75a and 75b of the opening / closing block 75 are aligned in series in the vertical direction, and are sandwiched by a pair of left and right rotating blocks 73 from both sides of the fixing block 65 and the opening / closing block 75. In the rotating block 73, the pin holes 73a corresponding to the pin holes 65a drilled in the fixed block 65 and the pin holes 73b, 73c corresponding to the pin holes 75a, 75b drilled in the opening / closing block 75 are bored in the vertical direction. The connecting pin 74a is inserted into the pin hole 73a and the pin hole 65a, the connecting pin 74b is inserted into the pin hole 73b and the pin hole 75a, and the connecting pin 74c is inserted into the pin hole 73c and the pin hole 75b. And fix each. As a result, the fixing block 65 and the opening / closing block 75 are integrally fixed by the rotating block 73.

よって、開閉弁70は支持板60に固定ブロック65を軸として回動自在に軸支されており、開側中空管80方向に向けて開き、又閉側中空管90方向に向けて閉じることとなり、逆方向には回動しない。なお、図10,図11に示す85は開閉弁70の開口位置を規制するためのストッパである。 Therefore, the on-off valve 70 is rotatably supported on the support plate 60 with the fixed block 65 as an axis, opens toward the open side hollow pipe 80, and closes toward the closed side hollow pipe 90. Therefore, it does not rotate in the opposite direction. Reference numeral 85 shown in FIGS. 10 and 11 is a stopper for regulating the opening position of the on-off valve 70.

開閉弁70の回動時において、連結ピン74aは開閉弁70を回動させる回動軸として作用する。左右一対の回動ブロック73は同一構成であり、又固定ブロック65のピン孔65a,開閉ブロック75のピン孔75a,75b及び回動ブロック73のピン孔73a,73b,73cは同一の構成としてあるため、開閉弁70の開閉時に回動する固定ブロック65と回動ブロック73を連結する回動ブロック73及び連結ピン74aが摩耗した際には、回動ブロック73を上下逆転させて使用し、連結ピン74aを他の連結ピン74b,74cと交換して使用することも可能である。これにより、流動化処理土Sの吸入と吐出の切換の度に回動する回動ブロック73のメンテナンスを容易に行うことができる。 When the on-off valve 70 is rotated, the connecting pin 74a acts as a rotation shaft for rotating the on-off valve 70. The pair of left and right rotating blocks 73 have the same configuration, and the pin holes 65a of the fixed block 65, the pin holes 75a, 75b of the opening / closing block 75, and the pin holes 73a, 73b, 73c of the rotating block 73 have the same configuration. Therefore, when the rotating block 73 and the connecting pin 74a that connect the fixed block 65 that rotates when the on-off valve 70 is opened and closed and the connecting pin 74a are worn, the rotating block 73 is used by turning it upside down and connecting. It is also possible to replace the pin 74a with other connecting pins 74b and 74c. As a result, maintenance of the rotating block 73, which rotates each time the suction and discharge of the fluidized soil S is switched, can be easily performed.

吸入用逆止弁50及び吐出用逆止弁100における開側中空管80及び閉側中空管90の開口部の管径はともに、吸入管45,吸入分岐管20a,吐出管25,吐出分岐管20bの開口部の管径と同一としている。図5,図6に示すように、吸入用逆止弁50の開側中空管80を、吸入分岐管20aに連結具55を用いて連結するとともに、閉側中空管90を同様に連結具55を用いて吸入管45に連結する。また、吐出用逆止弁100の開側中空管80を、吐出管25に連結するとともに、閉側中空管90を吐出分岐管20bに連結する。このように、吸入用逆止弁50及び吐出用逆止弁100は同一の構成であり、設置する方向を異にするものである。 In the check valve 50 for suction and the check valve 100 for discharge, the pipe diameters of the openings of the open side hollow pipe 80 and the closed side hollow pipe 90 are both the suction pipe 45, the suction branch pipe 20a, the discharge pipe 25, and the discharge pipe. It is the same as the pipe diameter of the opening of the branch pipe 20b. As shown in FIGS. 5 and 6, the open side hollow pipe 80 of the suction check valve 50 is connected to the suction branch pipe 20a by using the connecting tool 55, and the closed side hollow pipe 90 is similarly connected. It is connected to the suction pipe 45 using the tool 55. Further, the open side hollow pipe 80 of the discharge check valve 100 is connected to the discharge pipe 25, and the closed side hollow pipe 90 is connected to the discharge branch pipe 20b. As described above, the suction check valve 50 and the discharge check valve 100 have the same configuration and are installed in different directions.

よって、シリンダチューブ11内のロッド12の縮小動作によって、貯留槽40内の流動化処理土Sは、吸入管45,吸入用逆止弁50を通過して、吸入分岐管20aからシリンダチューブ11内に吸入可能であるが、圧送用配管15や吐出管25内の流動化処理土Sは、吐出用逆止弁100に遮断され、更に吐出用逆止弁100は吸入時の圧力によって閉方向に付勢されるため、より強固に遮断されることとなり、シリンダチューブ11に流入することはない。 Therefore, due to the contraction operation of the rod 12 in the cylinder tube 11, the fluidized soil S in the storage tank 40 passes through the suction pipe 45 and the check valve 50 for suction, and enters the cylinder tube 11 from the suction branch pipe 20a. However, the fluidized soil S in the pressure feed pipe 15 and the discharge pipe 25 is shut off by the discharge check valve 100, and the discharge check valve 100 is closed in the closing direction due to the pressure at the time of suction. Since it is urged, it is blocked more firmly and does not flow into the cylinder tube 11.

一方、シリンダチューブ11内のロッド12の伸長動作によって、シリンダチューブ11に吸入された流動化処理土Sは、吐出分岐管20b,吐出用逆止弁100を通過して、吐出管25から圧送用配管15に圧送されるが、シリンダチューブ11内や吸入分岐管20a内の流動化処理土Sは、吸入用逆止弁50に遮断され、更に吸入用逆止弁50は吐出時の圧力によって閉方向に付勢されるため、より強固に遮断されることとなり、貯留槽40に圧送されることはない。 On the other hand, the fluidized soil S sucked into the cylinder tube 11 by the extension operation of the rod 12 in the cylinder tube 11 passes through the discharge branch pipe 20b and the discharge check valve 100 and is pumped from the discharge pipe 25. Although it is pumped to the pipe 15, the fluidized soil S in the cylinder tube 11 and the suction branch pipe 20a is shut off by the suction check valve 50, and the suction check valve 50 is closed by the pressure at the time of discharge. Since it is urged in the direction, it is blocked more firmly and is not pumped to the storage tank 40.

上記した構成のピストン式圧送ポンプ10を使用して、製造プラント30又は適宜の場所に設置した貯留槽40内に貯留した流動化処理土Sを、亜炭鉱山廃坑の地下空洞等35aの充填現場35まで、ピストンの往復動作によって圧送して充填する。図2に示す例では、水平距離換算で圧送距離1200m以上の長距離圧送を30m/h程度の圧送量で行うことができた。なお、図1において、圧送経路の所定の位置に設置した緩衝装置95は、圧送時の圧力を蓄圧してウォーター現象の騒音や衝撃を緩和するための装置である。貯留槽40は製造プラント30に設置することが好ましいが、設置場所に限定はない。製造プラント30に適当な場所が確保できない場合は、近接地に設置してもよく、その場合は製造プラント30から貯留槽40まで適宜の手段で圧送すればよい。 Using the piston-type pump 10 having the above configuration, the fluidized soil S stored in the manufacturing plant 30 or the storage tank 40 installed at an appropriate location is filled into the filling site 35a of the underground cavity of the abandoned lignite mine 35a. Until, it is pumped and filled by the reciprocating motion of the piston. In the example shown in FIG. 2, long-distance pumping with a pumping distance of 1200 m or more in terms of horizontal distance could be performed with a pumping amount of about 30 m 3 / h. In FIG. 1, the shock absorber 95 installed at a predetermined position in the pumping path is a device for accumulating the pressure at the time of pumping to mitigate the noise and impact of the water phenomenon. The storage tank 40 is preferably installed in the manufacturing plant 30, but the installation location is not limited. If an appropriate place cannot be secured in the manufacturing plant 30, it may be installed in a nearby place, and in that case, it may be pumped from the manufacturing plant 30 to the storage tank 40 by an appropriate means.

次に流動化処理土Sに代えて、解泥水Mを圧送する本発明の第2実施形態について図3に基づいて説明する。亜炭鉱山廃坑の地下空洞等35aに流動化処理土Sを充填して埋め戻す充填工法においては、充填現場35から離れた場所であったとしても、製造プラント30を同一の場所に確保することができないことも多々ある。その場合、図3に示すように、製造プラント30を解泥水Mを製造するための解泥プラント30aと、解泥水Mとセメントミルク5を混練する混練プラント30bを分離して、設置可能な別の場所に設けざるを得ない。 Next, a second embodiment of the present invention in which the deflated muddy water M is pumped in place of the fluidized soil S will be described with reference to FIG. In the filling method in which the fluidized soil S is filled in the underground cavity 35a of the abandoned lignite mine and backfilled, the manufacturing plant 30 can be secured in the same place even if it is located away from the filling site 35. There are many things you can't do. In that case, as shown in FIG. 3, the demolition plant 30a for producing the demineralization water M and the kneading plant 30b for kneading the demineralization water M and the cement milk 5 can be separately installed in the production plant 30. There is no choice but to install it in the place of.

そのため、流動化処理土Sを製造するためには、先ず解泥プラント30aで原料土1と水3を解泥槽31に供給してバックホウ36等で解泥して解泥水Mを製造し、この解泥水Mをスラリーポンプ39で貯留槽40aに貯留する。そして、貯留槽40a内の解泥水Mを別の場所に設けた混練プラント30bに設置した解泥水槽37までピストン式圧送ポンプ10を使用して圧送して貯留する。この解泥水槽37に貯留した解泥水Mを、図2に示す第1実施形態と同様にスラリーポンプ42でミキサ装置38に解泥水Mを供給するとともに、セメントサイロ33から、セメントを所定含水比のセメントミルク5に調整して供給し、混練することによって流動化処理土Sを製造し、貯留槽40に貯留する。そして、第1実施形態と同様に、貯留槽40に貯留した流動化処理土Sをピストン式圧送ポンプ10を使用して充填現場35まで圧送して地下空洞等35aに充填する。 Therefore, in order to produce the fluidized soil S, first, the raw material soil 1 and water 3 are supplied to the demolition tank 31 at the demolition plant 30a and demudged with a slurry 36 or the like to produce dehumidified water M. The demud water M is stored in the storage tank 40a by the slurry pump 39. Then, the de-mud water M in the storage tank 40a is pumped and stored by using the piston type pressure pump 10 to the de-mud water tank 37 installed in the kneading plant 30b provided at another location. The muddy water M stored in the muddy water tank 37 is supplied to the mixer device 38 by the slurry pump 42 in the same manner as in the first embodiment shown in FIG. 2, and the cement is added from the cement silo 33 to a predetermined water content ratio. The cement milk 5 of the above is adjusted and supplied, and the fluidized soil S is produced by kneading and stored in the storage tank 40. Then, as in the first embodiment, the fluidized soil S stored in the storage tank 40 is pumped to the filling site 35 using the piston type pressure feeding pump 10 to fill the underground cavity or the like 35a.

第2実施形態においては、第1実施形態の流動化処理土Sに代えて解泥水Mを圧送するが、使用するピストン式圧送ポンプ10を使用した圧送方法及びその装置は第1実施形態と同様であるので、その説明を省略する。従来のピストン式圧送ポンプを使用した流動化処理土Sの長距離圧送が困難であった原因は、偏に流動化処理土Sに含まれている土粒子、特に粒径が細かく、硬度が高い土粒子による切換機構の摩耗によって、ホッパからの吸入と圧送用配管への吐出の切換に障害を生じてしまうことにある。この土粒子は原料土1によって供給され、解泥水Mに含まれているため、解泥水Mも従来のピストン式圧送ポンプでは長距離圧送が困難であった。むしろ、流動化処理土Sの圧送を困難としていたのは解泥水Mにあるといえる。 In the second embodiment, the dehumidified water M is pumped in place of the fluidized soil S of the first embodiment, but the pumping method using the piston type pump 10 and its apparatus are the same as those of the first embodiment. Therefore, the description thereof will be omitted. The reason why it was difficult to pump the fluidized soil S over a long distance using a conventional piston-type pumping pump is that the soil particles contained in the fluidized soil S are unevenly fine in particle size and high in hardness. Wear of the switching mechanism due to soil particles may cause an obstacle in switching between suction from the hopper and discharge to the pumping pipe. Since these soil particles are supplied by the raw material soil 1 and are contained in the demolition water M, it is difficult for the demolition water M to be pumped over a long distance with the conventional piston type pumping pump. Rather, it can be said that it was the deflated muddy water M that made it difficult to pump the fluidized soil S.

そのため本発明は、流動化処理土Sの圧送とともに、その前段階である流動化処理土Sの原料としての解泥水Mの長距離圧送にもそのまま使用することが可能である。このように、解泥水Mを製造する解泥プラント30aと流動化処理土Sを混練する混練プラント30bの場所を分離することによって、両者の設置場所や設置面積等の設置条件を緩和することができる。 Therefore, the present invention can be used as it is for the long-distance pumping of the deflated muddy water M as the raw material of the fluidized soil S, which is the previous stage, as well as the pumping of the fluidized soil S. In this way, by separating the locations of the demolition plant 30a for producing the demineralization water M and the kneading plant 30b for kneading the fluidized soil S, it is possible to relax the installation conditions such as the installation location and the installation area of both. can.

次に、吸入用逆止弁50と吐出用逆止弁100の第2実施形態を図12~図16に基づいて説明する。図7~図11に示す第1実施形態と同一の構成については、同一の符号を付してその説明を省略する。吸入用逆止弁50と吐出用逆止弁100の第2実施形態は、第1実施形態と、支持板60への開閉弁70の装着構造及び支持板60と開閉弁70の液密性を確保するためのパッキンの装着構造を異にする。閉時において支持板60と当接する開閉弁70の一面に環状の溝部71を穿設し、溝部71に座金76を介して環状のパッキン72を埋設し、開閉弁70の一面より突出させている。更に、開閉弁70の他面の円周状に適数のパッキン調整ピン77を貫通させて螺合している。よって、パッキン調整ピン77を締め込むことにより、パッキン72の開閉弁70からの突出量を調節することができる。 Next, a second embodiment of the suction check valve 50 and the discharge check valve 100 will be described with reference to FIGS. 12 to 16. The same configurations as those of the first embodiment shown in FIGS. 7 to 11 are designated by the same reference numerals, and the description thereof will be omitted. The second embodiment of the suction check valve 50 and the discharge check valve 100 has the same structure as the first embodiment, the mounting structure of the on-off valve 70 on the support plate 60, and the liquidtightness of the support plate 60 and the on-off valve 70. The mounting structure of the packing for securing is different. An annular groove 71 is formed on one surface of the on-off valve 70 that comes into contact with the support plate 60 when the support plate 60 is closed, and an annular packing 72 is embedded in the groove 71 via a washer 76 so as to protrude from one surface of the on-off valve 70. .. Further, an appropriate number of packing adjusting pins 77 are passed through the circumference of the other surface of the on-off valve 70 and screwed. Therefore, by tightening the packing adjusting pin 77, the amount of protrusion of the packing 72 from the on-off valve 70 can be adjusted.

支持板60には貫通孔63に隣接して、先端にピン孔67aを穿設した固定ブロック67を突設し、開閉弁70には外周部にピン孔68aを穿設した左右一対のブラケット68を突設し、このブラケット68で固定ブロック67を挟持し、ピン孔67a,68aに連結ピン69を挿通することによって、開閉弁70を支持板60の固定ブロック67に軸支する。これにより、開閉弁70は支持板60の貫通孔63を開閉可能である。 A pair of left and right brackets 68 having a pin hole 67a formed at the tip of the support plate 60 projecting from the support plate 60 adjacent to the through hole 63 and a pin hole 68a formed on the outer peripheral portion of the on-off valve 70. The on-off valve 70 is pivotally supported by the fixing block 67 of the support plate 60 by sandwiching the fixing block 67 with the bracket 68 and inserting the connecting pin 69 into the pin holes 67a and 68a. As a result, the on-off valve 70 can open and close the through hole 63 of the support plate 60.

上記構成の本発明によれば、ピストン式圧送ポンプから、ホッパ及びホッパからのシリンダチューブ内への吸入とシリンダチューブから圧送用配管への吐出を切り換える切換機構を取り除くとともに、シリンダチューブへの吸入時とシリンダチューブからの吐出時における流動化処理土や解泥水の流れの制御を、ピストン式圧送ポンプから切り離して、かつ、吸入時と吐出時において、それぞれ独立して専用の吸入用逆止弁と吐出用逆止弁によって別個に制御するようにした。即ち、吸入用逆止弁は貯留槽とシリンダチューブのみを連通又は遮断し、吐出用逆止弁は圧送用配管とシリンダチューブのみを連通又は遮断する。これにより、吸入用逆止弁及び吐出用逆止弁はそれぞれ一方向のみに流動化処理土や解泥水が流れるため、従来の単独の部材で吸入と吐出の双方向の流れを切り換える切換機構に比して、摩耗を少なく押さえることができ、貯留槽と圧送用配管が連通して圧送に支障を来すことはない。 According to the present invention having the above configuration, the switching mechanism for switching between the suction into the cylinder tube from the hopper and the hopper and the discharge from the cylinder tube to the pressure feeding pipe is removed from the piston type pressure feed pump, and at the time of suction to the cylinder tube. The control of the flow of fluidized soil and muddy water during discharge from the cylinder tube is separated from the piston type pressure feed pump, and a check valve for suction is used independently for suction and discharge. It is controlled separately by the check valve for discharge. That is, the suction check valve communicates or shuts off only the storage tank and the cylinder tube, and the discharge check valve communicates or shuts off only the pressure feed pipe and the cylinder tube. As a result, the check valve for suction and the check valve for discharge each allow fluidized soil and demudified water to flow in only one direction. In comparison, wear can be suppressed to a minimum, and the storage tank and the pumping pipe do not communicate with each other and interfere with pumping.

また、吸入用逆止弁が開いて貯留槽からシリンダチューブへの流動化処理土や解泥水の吸入時には、吐出用逆止弁は吸入時の圧力によって閉方向に付勢されるため、シリンダチューブと圧送用配管が連通することはない。同様に、吐出用逆止弁が開いてシリンダチューブから圧送用配管への流動化処理土や解泥水の吐出時には、吸入用逆止弁は吐出時の圧力によって閉方向に付勢されるため、シリンダチューブと貯留槽が連通することはない。また、2基のシリンダチューブを並列させて使用している場合にはシリンダチューブ同士が連通することもない。そのため、吸入や圧送が滞ることがなく、流動化処理土や解泥水をピストン式圧送ポンプを使用して効率よく、安定して圧送することが可能となる。 In addition, when the suction check valve opens and fluidized soil or muddy water is sucked from the storage tank to the cylinder tube, the discharge check valve is urged in the closing direction by the suction pressure, so that the cylinder tube And the pressure feeding pipe do not communicate with each other. Similarly, when the discharge check valve opens and the fluidized soil or demuddy water is discharged from the cylinder tube to the pumping pipe, the suction check valve is urged in the closing direction by the pressure at the time of discharge. There is no communication between the cylinder tube and the storage tank. Further, when two cylinder tubes are used in parallel, the cylinder tubes do not communicate with each other. Therefore, the suction and pumping are not delayed, and the fluidized soil and the muddy water can be pumped efficiently and stably by using the piston type pumping pump.

加えて、流動化処理土や解泥水が通過する支持板の貫通孔を開閉弁によって開閉操作する構成のため、摩耗の原因が少なく、又支持板の貫通孔の全周に亘って装備したパッキンの調節や交換によっても密閉性や密着性を高めることができ、液密性を長期間に亘って保つことができる。更に、吸入用逆止弁及び吐出用逆止弁における開側中空管及び閉側中空管の開口部の管径を、連結する吸入管,吸入分岐管,吐出管,吐出分岐管の開口部の管径と同一としているため、圧送現場において、煩雑なメンテナンス作業を伴うことなく、吸入用逆止弁や吐出用逆止弁を単位としてアッセンブリで交換することが可能となり、障害発生時の圧送作業への影響を最小限に抑えることが可能となる。 In addition, since the through hole of the support plate through which the fluidized soil and muddy water passes is opened and closed by the on-off valve, there is little cause of wear, and the packing equipped over the entire circumference of the through hole of the support plate. The airtightness and adhesion can be improved by adjusting or replacing the material, and the liquidtightness can be maintained for a long period of time. Further, the openings of the suction pipe, the suction branch pipe, the discharge pipe, and the discharge branch pipe that connect the diameters of the openings of the open side hollow pipe and the closed side hollow pipe in the check valve for suction and the check valve for discharge. Since the pipe diameter is the same as that of the part, it is possible to replace the check valve for suction and the check valve for discharge as a unit in the assembly at the pumping site without complicated maintenance work. It is possible to minimize the influence on the pumping work.

そのため、地理的条件から流動化処理土の製造プラントを充填現場から離れた場所に設けたり、更には、製造プラントを解泥水を製造するための解泥プラントと、解泥水とセメントミルクを混練する混練プラントに分離して、別の場所に設けた場合や一定差以上の高低差がある場合であっても、流動化処理土や、その原料としての解泥水を圧送することが可能となり、亜炭鉱山廃坑等の地下空洞等を流動化処理土を充填して埋め戻す充填工法を実施することが可能となる。 Therefore, due to geographical conditions, a production plant for fluidized soil may be installed at a location away from the filling site, and the production plant may be kneaded with a demineralization plant for producing dehumidified water and dehumidified water and cement milk. Even if it is separated into a kneading plant and installed in another place or if there is a height difference of a certain difference or more, it is possible to pump the fluidized soil and the de-mud water as its raw material, and lignite. It will be possible to implement a filling method in which underground cavities such as abandoned mines are filled with fluidized soil and backfilled.

S…流動化処理土
M…解泥水
1…原料土
3…水
5…セメントミルク
7…ダンプトラック
10…ピストン式圧送ポンプ
11…シリンダチューブ
12…ロッド
15…圧送用配管
20…二叉分岐管
20a…吸入分岐管
20b…吐出分岐管
25…吐出管
30…製造プラント
30a…解泥プラント
30b…混練プラント
31…解泥槽
33…セメントサイロ
35…充填現場
35a…地下空洞等
36…バックホウ
37…解泥水槽
38…ミキサ装置
39,42…スラリーポンプ
40,40a…貯留槽
45…吸入管
50…吸入用逆止弁
55…連結具
60…支持板
61…溝部
62…パッキン
63…貫通孔
64…挿通孔
65…固定ブロック
65a…ピン孔
66…ボルト
67…固定ブロック
67a…ピン孔
68…ブラケット
68a…ピン孔
69…連結ピン
70…開閉弁
71…溝部
72…パッキン
73…回動ブロック
73a,73b,73c…ピン孔
74a,74b,74c…連結ピン
75…開閉ブロック
75a,75b…ピン孔
76…座金
77…パッキン調節ピン
80…開側中空管
81…溝部
82…パッキン
83…開側フランジ
84…ボルト
85…ストッパ
90…閉側中空管
91…溝部
92…パッキン
93…閉側フランジ
94…ナット
95…緩衝装置
100…吐出用逆止弁
S ... Fluidized soil M ... Demolition water 1 ... Raw material soil 3 ... Water 5 ... Cement milk 7 ... Dump truck 10 ... Piston type pump 11 ... Cylinder tube 12 ... Rod 15 ... Pumping pipe 20 ... Bifurcated branch pipe 20a ... Suction branch pipe 20b ... Discharge branch pipe 25 ... Discharge pipe 30 ... Manufacturing plant 30a ... Dehumidification plant 30b ... Kneading plant 31 ... Demolition tank 33 ... Cement silo 35 ... Filling site 35a ... Underground cavity 36 ... Back flange 37 ... Solution Muddy water tank 38 ... Mixer device 39, 42 ... Slurry pump 40, 40a ... Storage tank 45 ... Suction pipe 50 ... Check valve for suction 55 ... Connector 60 ... Support plate 61 ... Groove 62 ... Packing 63 ... Through hole 64 ... Insertion Hole 65 ... Fixed block 65a ... Pin hole 66 ... Bolt 67 ... Fixed block 67a ... Pin hole 68 ... Bracket 68a ... Pin hole 69 ... Connecting pin 70 ... Open / close valve 71 ... Groove 72 ... Packing 73 ... Rotating block 73a, 73b, 73c ... Pin hole 74a, 74b, 74c ... Connecting pin 75 ... Open / close block 75a, 75b ... Pin hole 76 ... Seat 77 ... Packing adjustment pin 80 ... Open side hollow pipe 81 ... Groove 82 ... Packing 83 ... Open side flange 84 ... Bolt 85 ... Stopper 90 ... Closed side hollow pipe 91 ... Groove 92 ... Packing 93 ... Closed side flange 94 ... Nut
95 ... Shock absorber 100 ... Check valve for discharge

Claims (19)

シリンダチューブ内においてピストンが往復動作するピストン式圧送ポンプを使用する流動化処理土の圧送方法において、
ピストン式圧送ポンプのシリンダチューブの開口側に二叉分岐管を連結して、一方の分岐管を吸入分岐管とし、吸入用逆止弁を介して流動化処理土の貯留槽に連結した吸入管連結するとともに、他方の分岐管を吐出分岐管とし、吐出用逆止弁を介して圧送用配管に連結した吐出管連結してなり、
吸入用逆止弁はピストン式圧送ポンプ側への流動化処理土の流入を可能とするとともに、貯留槽側への流動化処理土の流出を遮断し、吐出用逆止弁は圧送用配管側への流動化処理土の流出を可能とするとともに、ピストン式圧送ポンプ側への流動化処理土の流入を遮断することによって、
流動化処理土の貯留槽から流動化処理土を吸入用逆止弁を介して吸入分岐管からシリンダチューブ内に吸入するとともに、シリンダチューブ内に吸入した流動化処理土を、吐出分岐管から吐出用逆止弁を介して吐出管に吐出する動作を交互に行うことによって、流動化処理土を圧送することを特徴とする流動化処理土の圧送方法。
In the pumping method of fluidized soil using a piston-type pressure pump in which the piston reciprocates in the cylinder tube.
A bifurcated branch pipe is connected to the opening side of the cylinder tube of the piston type pump, one branch pipe is used as a suction branch pipe, and the suction pipe is connected to the fluidized soil storage tank via a check valve for suction. The other branch pipe is used as a discharge branch pipe, and is connected to the discharge pipe connected to the pumping pipe via a check valve for discharge.
The check valve for suction enables the inflow of fluidized soil to the piston type pressure feed pump side and blocks the outflow of fluidized soil to the storage tank side, and the check valve for discharge is on the pressure feed piping side. By enabling the outflow of fluidized soil to the piston type pump and blocking the inflow of fluidized soil to the piston type pump.
The fluidized soil is sucked into the cylinder tube from the suction branch pipe through the check valve for suction from the fluidized soil storage tank, and the fluidized soil sucked into the cylinder tube is discharged from the discharge branch pipe. A method for pumping fluidized soil, which comprises pumping fluidized soil by alternately performing operations of discharging to a discharge pipe via a check valve.
ピストン式圧送ポンプは、シリンダチューブ内におけるピストンが往復動作によって、流動化処理土のシリンダチューブへの吸入とシリンダチューブからの吐出を行うものの、吸入時における圧送用配管とシリンダチューブとの遮断及び吐出時における貯留槽とシリンダチューブとの遮断に関与しない請求項1記載の流動化処理土の圧送方法。 In the piston type pressure feed pump, the piston in the cylinder tube reciprocates to suck the fluidized soil into the cylinder tube and discharge it from the cylinder tube, but the pressure feed pipe and the cylinder tube are shut off and discharged during suction. The method for pumping fluidized soil according to claim 1, which is not involved in shutting off the storage tank and the cylinder tube at the time. ピストン式圧送ポンプとして、貯留槽又は圧送用配管の一方とシリンダチューブを連通させるとともに同時に他方と遮断し、又は一方と遮断するとともに同時に他方と連通させるための切換機構を具備しないピストン式圧送ポンプを使用する請求項1又は2記載の流動化処理土の圧送方法。 As a piston-type pump, a piston-type pump that does not have a switching mechanism for communicating one of the storage tank or the pumping pipe with the cylinder tube and simultaneously shutting off the other, or shutting off one and communicating with the other at the same time. The method for pumping fluidized soil according to claim 1 or 2 to be used. ピストン式圧送ポンプとして、流動化処理土を貯留するためのホッパを具備しないピストン式圧送ポンプを使用する請求項1,2又は3記載の流動化処理土の圧送方法。 The method for pumping fluidized soil according to claim 1, 2, or 3, wherein as the piston-type pumping pump, a piston-type pumping pump that does not include a hopper for storing fluidized soil is used. 流動化処理土を、その製造プラントから所定距離離間した充填現場まで圧送する請求項1,2,3又は4記載の流動化処理土の圧送方法。 The method for pumping fluidized soil according to claim 1, 2, 3 or 4, wherein the fluidized soil is pumped to a filling site separated from the manufacturing plant by a predetermined distance. 請求項1~請求項4記載のいずれかの流動化処理土の圧送方法において、
流動化処理土を、流動化処理土の原材料としての解泥水としたことを特徴とする解泥水の圧送方法。
In the pumping method of fluidized soil according to any one of claims 1 to 4.
A method for pumping dehumidified water, characterized in that the fluidized soil is dehumidified water as a raw material for the fluidized soil.
解泥水を、解泥水を製造する解泥プラントから所定距離離間した場所に設けられて、解泥水とセメントミルクを混練して流動化処理土を製造する混練プラントまで圧送する請求項6記載の解泥水の圧送方法。 The solution according to claim 6, wherein the de-mud water is provided at a predetermined distance from the de-sewage plant that produces the de-mud water, and the de-mud water and cement milk are kneaded and pumped to a kneading plant that produces fluidized soil. How to pump muddy water. シリンダチューブ内においてピストンが往復動作するピストン式圧送ポンプと、
シリンダチューブの開口側に連結し、吸入分岐管と吐出分岐管を有する二叉分岐管と、
吸入分岐管に連結した吸入用逆止弁と、
吸入用逆止弁に吸入管を介して連結した流動化処理土の貯留槽と、
吐出分岐管に連結した吐出用逆止弁と、
吐出用逆止弁に吐出管を介して連結した圧送用配管からなり、
吸入用逆止弁はシリンダチューブ側への流動化処理土の流入を可能とするとともに、貯留槽側への流動化処理土の流出を遮断し、吐出用逆止弁は圧送用配管側への流動化処理土の流出を可能とするとともに、シリンダチューブ側への流動化処理土の流入を遮断することを特徴とする流動化処理土の圧送装置。
A piston type pressure feed pump in which the piston reciprocates in the cylinder tube,
A bifurcated branch pipe connected to the opening side of the cylinder tube and having a suction branch pipe and a discharge branch pipe,
A check valve for suction connected to the suction branch pipe,
A storage tank for fluidized soil connected to a check valve for suction via a suction pipe,
A check valve for discharge connected to the discharge branch pipe,
It consists of a pressure feed pipe connected to the check valve for discharge via a discharge pipe.
The check valve for suction allows the inflow of fluidized soil to the cylinder tube side, blocks the outflow of the fluidized soil to the storage tank side, and the check valve for discharge to the pumping pipe side. A pumping device for fluidized soil, which enables the outflow of fluidized soil and blocks the inflow of fluidized soil to the cylinder tube side.
貯留槽から流動化処理土を吸入用逆止弁を介して吸入分岐管からシリンダチューブ内に吸入するとともに、シリンダチューブ内に吸入した流動化処理土を、吐出分岐管から吐出用逆止弁を介して吐出管に吐出する動作を交互に行うことによって、流動化処理土を圧送する請求項8記載の流動化処理土の圧送装置。 The fluidized soil is sucked from the storage tank into the cylinder tube from the suction branch pipe via the check valve for suction, and the fluidized soil sucked into the cylinder tube is sucked into the cylinder tube through the check valve for discharge from the discharge branch pipe. The pumping device for fluidized soil according to claim 8, wherein the fluidized soil is pumped by alternately performing operations of discharging the fluidized soil through the discharge pipe. ピストン式圧送ポンプは流動化処理土の、貯留槽からシリンダチューブへの吸入と、シリンダチューブから圧送用配管への吐出の切換機構を具備していない請求項8又は9記載の流動化処理土の圧送装置。 The fluidized soil according to claim 8 or 9, wherein the piston type pump does not have a mechanism for switching between suction of the fluidized soil from the storage tank to the cylinder tube and discharge from the cylinder tube to the pumping pipe. Pumping device. ピストン式圧送ポンプは、流動化処理土を貯留するためのホッパを具備していない請求項8,9又は10記載の流動化処理土の圧送装置。 The pumping device for fluidized soil according to claim 8, 9 or 10, wherein the piston type pump does not include a hopper for storing the fluidized soil. 吸入用逆止弁又は吐出用逆止弁は、
閉鎖した貫通孔を穿設した支持板と、貫通孔を開閉可能に支持板の一面に軸支した開閉弁と、支持板の一面の外周に連結した開側中空管と、支持板の他面の外周に連結した閉側中空管とからなる請求項8,9,10又は11記載の流動化処理土の圧送装置。
Check valves for suction or check valves for discharge are
A support plate with a closed through hole, an on-off valve that pivotally supports the through hole on one side of the support plate, an open-side hollow pipe connected to the outer periphery of one side of the support plate, and other support plates. The pumping device for fluidized soil according to claim 8, 9, 10 or 11, comprising a closed-side hollow pipe connected to the outer periphery of the surface.
貫通孔の外周縁部に溝部を穿設し、閉時の開閉弁に当接するパッキンを溝部に埋設した請求項12記載の流動化処理土の圧送装置。 The pumping device for fluidized soil according to claim 12, wherein a groove is formed in the outer peripheral edge of the through hole, and a packing that comes into contact with the on-off valve at the time of closing is embedded in the groove. 開側中空管の開口縁部に環状の溝部を穿設し、支持板の一面に密接するパッキンを溝部に埋設した請求項12又は13記載の流動化処理土の圧送装置。 The pumping device for fluidized soil according to claim 12 or 13, wherein an annular groove is formed in the opening edge of the open-side hollow pipe, and a packing in close contact with one surface of the support plate is embedded in the groove. 閉側中空管の開口縁部に環状の溝部を穿設し、支持板の他面に密接するパッキンを溝部に埋設した請求項12,13又は14記載の流動化処理土の圧送装置。 The pumping device for fluidized soil according to claim 12, 13 or 14, wherein an annular groove is formed in the opening edge of the closed-side hollow pipe and a packing in close contact with the other surface of the support plate is embedded in the groove. 開側中空管の支持板側の開口縁部に開側フランジを突設するとともに、閉側中空管の支持板側の開口縁部に閉側フランジを突設し、開側フランジを支持板の一面の外周縁に密接させるとともに、閉側フランジを支持板の他面の外周縁に密接させ、開側フランジと支持板と閉側フランジを一体不可分に連結した請求項12,13,14又は15記載の流動化処理土の圧送装置。 The open side flange is projected from the opening edge on the support plate side of the open side hollow pipe, and the closed side flange is projected from the open edge on the support plate side of the closed side hollow pipe to support the open side flange. 12. Or the pumping device for fluidized soil according to 15. 吸入用逆止弁の開側中空管を吸入分岐管に連結するとともに、閉側中空管を吸入管に連結した請求項12,13,14,15又は16記載の流動化処理土の圧送装置。 The pumping of fluidized soil according to claim 12, 13, 14, 15 or 16, wherein the open side hollow pipe of the check valve for suction is connected to the suction branch pipe and the closed side hollow pipe is connected to the suction pipe. Device. 吐出用逆止弁の開側中空管を吐出管に連結するとともに、閉側中空管を吐出分岐管に連結した請求項12,13,14,15,16又は17記載の流動化処理土の圧送装置。 The fluidized soil according to claim 12, 13, 14, 15, 16 or 17, wherein the open-side hollow pipe of the check valve for discharge is connected to the discharge pipe and the closed-side hollow pipe is connected to the discharge branch pipe. Pumping device. 請求項8~請求項18記載のいずれかの流動化処理土の圧送装置において、
流動化処理土を、流動化処理土の原材料としての解泥水としたことを特徴とする解泥水の圧送装置。
In the pumping device for fluidized soil according to any one of claims 8 to 18.
A pumping device for dehumidified water, characterized in that the fluidized soil is dehumidified water as a raw material for the fluidized soil.
JP2020218479A 2020-12-28 2020-12-28 Method of pumping fluidized soil and its equipment, and method of pumping dehumidified water and its equipment Active JP7084056B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020218479A JP7084056B1 (en) 2020-12-28 2020-12-28 Method of pumping fluidized soil and its equipment, and method of pumping dehumidified water and its equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020218479A JP7084056B1 (en) 2020-12-28 2020-12-28 Method of pumping fluidized soil and its equipment, and method of pumping dehumidified water and its equipment

Publications (2)

Publication Number Publication Date
JP7084056B1 true JP7084056B1 (en) 2022-06-14
JP2022103694A JP2022103694A (en) 2022-07-08

Family

ID=82016040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020218479A Active JP7084056B1 (en) 2020-12-28 2020-12-28 Method of pumping fluidized soil and its equipment, and method of pumping dehumidified water and its equipment

Country Status (1)

Country Link
JP (1) JP7084056B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487906A (en) * 1977-12-23 1979-07-12 Yuusuke Hirakawa Freshly mixed concrete
JPH03279117A (en) * 1990-03-27 1991-12-10 Mitsubishi Heavy Ind Ltd Force feed device for slurry
JPH08226380A (en) * 1995-02-20 1996-09-03 Ishigaki Mech Ind Co Controlling method for valve of force-feed pump in device for force-feeding cake and the like
US5993181A (en) * 1995-02-07 1999-11-30 Gerhard Hudelmaier Process and device for feeding concrete or other thick materials
JP2002155855A (en) * 2000-11-21 2002-05-31 Fudo Constr Co Ltd Force feed device for fluidized soil
JP2008063759A (en) * 2006-09-05 2008-03-21 Ryudoka Shori Koho Sogo Kanri:Kk Manufacturing method for liquefied soil
WO2012019280A1 (en) * 2010-08-09 2012-02-16 Gea Houle Inc. Hybrid check valve for piston pump, piston pump provided with such a hybrid check valve, kit for assembling the same, and methods of assembling and operating associated thereto
JP2018025071A (en) * 2016-08-12 2018-02-15 大成建設株式会社 Preparation of fluidized soil, and pressure-feeding method and pressure-feeding system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487906A (en) * 1977-12-23 1979-07-12 Yuusuke Hirakawa Freshly mixed concrete
JPH03279117A (en) * 1990-03-27 1991-12-10 Mitsubishi Heavy Ind Ltd Force feed device for slurry
US5993181A (en) * 1995-02-07 1999-11-30 Gerhard Hudelmaier Process and device for feeding concrete or other thick materials
JPH08226380A (en) * 1995-02-20 1996-09-03 Ishigaki Mech Ind Co Controlling method for valve of force-feed pump in device for force-feeding cake and the like
JP2002155855A (en) * 2000-11-21 2002-05-31 Fudo Constr Co Ltd Force feed device for fluidized soil
JP2008063759A (en) * 2006-09-05 2008-03-21 Ryudoka Shori Koho Sogo Kanri:Kk Manufacturing method for liquefied soil
WO2012019280A1 (en) * 2010-08-09 2012-02-16 Gea Houle Inc. Hybrid check valve for piston pump, piston pump provided with such a hybrid check valve, kit for assembling the same, and methods of assembling and operating associated thereto
JP2018025071A (en) * 2016-08-12 2018-02-15 大成建設株式会社 Preparation of fluidized soil, and pressure-feeding method and pressure-feeding system

Also Published As

Publication number Publication date
JP2022103694A (en) 2022-07-08

Similar Documents

Publication Publication Date Title
CN104653191B (en) A kind of method of earth pressure shield tunneling machine high efficient driving in rich water round gravel stratum
CN202337983U (en) Ejector, drill combination structure and combination drilling tools
Zhou et al. Management and mitigation of sinkholes on karst lands: an overview of practical applications
CN102230384A (en) Earth pressure balance/ muddy water pressurization continuously-switching shield construction method
US10094091B1 (en) Sediment suction sink and method for sediment control in rivers, streams, and channels
Tyulenev et al. A method of effective quarry water purifying using artificial filtering arrays
JP2005320851A (en) Spray nozzle mounting structure for multifunctional injection apparatus
Mosavat Examination of excavation chamber pressure behavior on a 17.5 m diameter earth pressure balance tunnel boring machine
JP7084056B1 (en) Method of pumping fluidized soil and its equipment, and method of pumping dehumidified water and its equipment
Gowan et al. Co-disposal techniques that may mitigate risks associated with storage and management of potentially acid generating wastes
JPH0633447A (en) Ground improvement method
US20100303558A1 (en) collecting device and a method of using sme
CN112962525A (en) Dredged soil filling and diking structure and filling bag diking method thereof
JP2007009576A (en) Excavated earth and sand exhausting device and shield device
KR100559766B1 (en) light weight soil manufacture equipment and light weight soil use was carried out road and its construction method for civil engineering structure
Rengshausen et al. TBM and spoil treatment selection process–case history Crossrail C310 Thames Tunnel: Slurry TBM versus EPB TBM
JP7187057B2 (en) Buffering method and device for water hammer
Dixon-Hardy et al. Methods for the disposal and storage of mine tailings
KR101585079B1 (en) Filling apparatus of flowable fills for a structural backfills
Walker State-of-the-art techniques for backfilling abandoned mine voids
USH1584H (en) Mine tailings replacement
JP4275295B2 (en) Shield drilling system and shield drilling method
KR101198609B1 (en) A dredger with drum excavator
KR20160033348A (en) A system of Return Filter for Construction Equipment
Sutmoller et al. Using Foam as a Transportation Medium for Backfilling Underground Voids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220526

R150 Certificate of patent or registration of utility model

Ref document number: 7084056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150