JP2010144359A - Suction pipe for flow-transporting underwater sediment, flow-transport apparatus for underwater sediment, and method for flow-transporting underwater sediment using the same - Google Patents

Suction pipe for flow-transporting underwater sediment, flow-transport apparatus for underwater sediment, and method for flow-transporting underwater sediment using the same Download PDF

Info

Publication number
JP2010144359A
JP2010144359A JP2008320407A JP2008320407A JP2010144359A JP 2010144359 A JP2010144359 A JP 2010144359A JP 2008320407 A JP2008320407 A JP 2008320407A JP 2008320407 A JP2008320407 A JP 2008320407A JP 2010144359 A JP2010144359 A JP 2010144359A
Authority
JP
Japan
Prior art keywords
underwater
pipe
water
suction
suction pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008320407A
Other languages
Japanese (ja)
Other versions
JP5305439B2 (en
Inventor
Noriaki Hakoishi
憲昭 箱石
Toshiyuki Sakurai
寿之 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research and Development Agency Public Works Research Institute
Original Assignee
Public Works Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Public Works Research Institute filed Critical Public Works Research Institute
Priority to JP2008320407A priority Critical patent/JP5305439B2/en
Publication of JP2010144359A publication Critical patent/JP2010144359A/en
Application granted granted Critical
Publication of JP5305439B2 publication Critical patent/JP5305439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device flow-transporting an underwater sediment accumulated at the bottom of water, efficiently in bulk while being attainable in a simple structure without needing large-scale facilities and power, and to provide a suction pipe. <P>SOLUTION: The suction pipe 5 opened at both ends has one end formed as a water intake 2a and the other end formed as a connection end 51 on the discharge port side. An intermediate part between both ends is formed with a folded part 52, and a lower part of a pipe with the folded part is notched. A flexible sheet member that can follow the change of surface shape of the underwater sediment is bonded to the notched part. The sheet member is provided with a plurality of bottom face suction holes bored communicating with the inside of the pipe to suck the underwater sediment, and a side face part of the suction pipe 5 is provided with a side face suction hole bored communicating with the inside of the pipe to suck the underwater sediment. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は、閉鎖的な水域の水底に堆積した水中堆積物を水と一緒に吸引して下流域などの他の領域に流送するための水中堆積物流送用の吸引パイプ、及びその吸引パイプを備えた水中堆積物の流送装置、並びにその装置を用いた水中堆積物の流送方法に関するものである。   The present invention relates to a suction pipe for sending an underwater sediment stream for sucking an underwater sediment deposited on the bottom of a closed water area together with water and feeding it to other areas such as a downstream area, and the suction pipe The present invention relates to an underwater sediment feeding apparatus including the above-described apparatus, and an underwater sediment feeding method using the apparatus.

ダム、溜池、下水処理場などの貯水施設や、自然の河川、湖沼、池、又は運河などの閉鎖的な水域では、その水底に土砂などの堆積物が沈殿・堆積し、貯水機能の低下、船舶の運航などへの支障、水質・環境汚染などを引き起こすため、定期的に又は必要に応じて水底に溜まった堆積物を浚って除去する浚渫作業を行う必要がある。   In water storage facilities such as dams, ponds, sewage treatment plants, and closed water areas such as natural rivers, lakes, ponds, and canals, sediment such as sediment settles on the bottom of the water, reducing the water storage function, In order to cause hindrance to ship operations, water quality, environmental pollution, etc., it is necessary to perform dredging work to remove and remove sediment accumulated on the bottom of the water periodically or as necessary.

例えば、治水、利水、或いは発電を目的として河川を堰き止めたダムの貯水池では、上流域から河川により運ばれる土砂等がダムの底に堆積してゆき、ダムの有効貯水量が減少してしまうという問題が発生すると共に、下流域への土砂の供給が減り、下流域での河床低下や海岸浸食(砂浜痩せ)などの問題も発生する。   For example, in a dam reservoir where the river has been blocked for the purpose of flood control, water use, or power generation, earth and sand carried by the river from the upstream area will accumulate on the bottom of the dam, reducing the effective amount of water stored in the dam. In addition, the supply of earth and sand to the downstream area is reduced, and problems such as river bed deterioration and coastal erosion (sand beach thinning) occur in the downstream area.

このため、従来、台船などに設置されたクレーン等を用いて、バケットなどで堆積土砂等を浚って陸上に汲み上げ、トラックなどの陸上輸送手段で河川の当該ダムより下流域に移送して排出したり、他の場所に廃棄したりしていた。或いは、土砂交じりの泥土を吸引可能な浚渫ポンプで堆積土砂等を水と共に吸引して下流域に放出することも行われていた。しかし、これらの浚渫作業は、いずれも大掛かりな施設や動力が必要であり、交通の便の悪い山間部などでは、装置そのものを設置することが困難なことや、コストが掛かり過ぎるといった問題があった。   For this reason, conventionally, using a crane installed on a trolley or the like, the sediments and the like are crushed with a bucket or the like and pumped to the land, and transported to the downstream area from the river dam by land transportation means such as a truck. It was discharged or disposed of elsewhere. Alternatively, sedimentary sand and the like are sucked together with water by a dredging pump capable of sucking mud mixed with earth and sand and discharged to the downstream area. However, these dredging operations all require large-scale facilities and power, and there are problems such as difficult installation of the device itself and excessive costs in mountainous areas where transportation is not convenient. It was.

このような問題を解決するために、特許文献1には、水中の沈殿物、堆積物、又は集積物の中に、開口付きパイプを埋設し、上流端または上流部の開口部を水中に位置させることにより、上流端または上流部の水中にある開口から入った水が管路内を流れるに伴い生じる管路内の負圧により開口周囲の沈澱物、堆積物又は集積物を管内に吸引しながら出口へと送り出すようにする水中堆積物の流送方法、及びその装置等が開示されている。   In order to solve such a problem, Patent Document 1 discloses that a pipe with an opening is embedded in an underwater sediment, sediment, or accumulation, and the upstream end or the upstream opening is located in the water. As a result, the sediment, sediment or accumulation around the opening is sucked into the pipe by the negative pressure generated in the pipe as water entering from the opening in the upstream end or upstream water flows in the pipe. An underwater sediment inflow method, an apparatus thereof, and the like are disclosed.

しかし、特許文献1に記載の水中堆積物の流送装置は、あまり大掛かりな施設や動力を必要としない点でメリットがあるが、開口付きパイプを水中の堆積物に埋設する必要があり、既存のダム等に適用することが難しいという問題があった。   However, the underwater sediment flow feeding device described in Patent Document 1 is advantageous in that it does not require a very large facility or power, but it is necessary to embed an open pipe in the underwater sediment. There was a problem that it was difficult to apply to other dams.

また、本願の出願人らが出願した特許文献2には、側面部に開口部22を備えた可撓性の掃流管21を堆積した土砂Sの上に開口部22が塞がるように置き、この掃流管21の基端部21bに吸引管28を連結して先端開口21aから基端部21bに水流形成手段29で水流を形成して開口部22に面する堆積土砂Sを掃流しながら吸引輸送することで、この掃流管21の先端開口21aを中心に形成される堆積土砂Sの円錐状の窪みにその可撓性で追随させ、先端の大きな沈み込みと周囲の土砂の崩れ落ちにより、2次元形状の掃流管21で、円錐状の3次元的な広範囲に亘って排砂できるようにした水底堆積土砂の輸送方法及びその装置が開示されている(特許文献2の図1参照)。   Further, in Patent Document 2 filed by the applicants of the present application, the opening 22 is placed on the earth and sand S on which the flexible scavenging pipe 21 having the opening 22 on the side surface is deposited, A suction pipe 28 is connected to the base end portion 21b of the sweep pipe 21, and a water flow is formed from the front end opening 21a to the base end portion 21b by the water flow forming means 29 to sweep the sediments S facing the opening 22 while sweeping the sediment. By sucking and transporting, the conical depression of the sediment earth S formed around the tip opening 21a of the scavenging tube 21 is allowed to follow with its flexibility, and due to the large sinking of the tip and collapse of the surrounding earth and sand. There is disclosed a method and apparatus for transporting bottom sediments that can be drained over a three-dimensional conical shape with a two-dimensional shaped scavenging tube 21 (see FIG. 1 of Patent Document 2). ).

しかし、特許文献2に記載の水底堆積土砂の輸送方法及びその装置では、水位差を利用して経済的に堆積土砂の移送を行うことができるものの、(1)土砂吸引の進行につれ、堆積土砂等にすり鉢状の窪みが形成され、この窪みの斜面から土砂等が崩落して水の取り入れ口である先端開口21aが埋まってしまい、先端開口21aが閉塞して水流及び堆積土砂等の輸送がストップしてしまう。(2)シート状部材34が大きいので、土砂吸引の進行につれ、シート状部材34に浮き上がりや折れ曲がり、皺などが発生し、シート状部材34と堆積土砂Sとの間に空間ができ、その空間が水みちとなって、土砂等の吸引力が減少してしまう。(3)シート状部材の水中での展開が困難であるという問題点があった。   However, although the bottom sediment transport method and apparatus described in Patent Document 2 can economically transport sediment sediment using the difference in water level, (1) sediment sediment as the sediment suction progresses. A mortar-shaped depression is formed in the pit, etc., and earth and sand etc. collapse from the slope of this depression and the tip opening 21a, which is a water intake, is buried, and the tip opening 21a is closed to transport water flow and sedimentary earth and sand. I will stop. (2) Since the sheet-like member 34 is large, the sheet-like member 34 is lifted, bent, wrinkled, etc. as the earth and sand suction progresses, and a space is formed between the sheet-like member 34 and the accumulated earth and sand S. Becomes a water path, and the suction power of earth and sand is reduced. (3) There is a problem that it is difficult to expand the sheet-like member in water.

特開2002−294677号公報Japanese Patent Application Laid-Open No. 2002-294677 特開2006−214092号公報JP 2006-214092 A

そこで、この発明は、前記従来の問題点を解決し、大掛かりな施設や動力を必要とせず、単純な構造により実現可能であり、設置が容易なうえ経済的で壊れ難く、且つ、天候に左右されずに安定的に効率よく大量に、水底に堆積した水中堆積物を他の領域に流送することができる水中堆積物の流送方法、及びその装置、並びにその吸引パイプを提供することを目的とする。   Therefore, the present invention solves the above-mentioned conventional problems, does not require large-scale facilities and power, can be realized with a simple structure, is easy to install, is economical and difficult to break, and depends on the weather. To provide a method for feeding underwater sediment, a device for the same, and a suction pipe capable of feeding underwater sediment deposited on the bottom of the water to other areas stably and efficiently in large quantities. Objective.

前記課題を解決するために、請求項1に記載の水中堆積物流送用の吸引パイプの発明は、閉鎖的な水域の水底に堆積した水中堆積物を水と一緒に吸引して他の領域に流送するための水中堆積物流送用の吸引パイプであって、両端が開口した可撓性を有する管材から形成され、一端が、水の取り入れ口である取水口に、他端が、吐出口側の接続端となっており、それら両端の中間部には、前記管材を折り返して固定した折返し部が形成され、該折返し部のある管材の下部は切り欠かれ、この切り欠かれた部分には、水中堆積物の表面形状の変化に追随可能な柔軟性を有するシート部材が接着されており、このシート部材には前記水中堆積物吸引用の底面吸引孔が管材内と連通して複数穿設されていると共に、前記シート部材より上方であって折返し部の先端部分にあたる前記管材の側面部分には、水中堆積物吸引用の側面吸引孔が管材内と連通して穿設されていることを特徴とする。   In order to solve the above-mentioned problems, the invention of the suction pipe for transporting underwater sedimentary flow according to claim 1 is characterized in that the underwater sediment deposited on the bottom of the closed water area is sucked together with water to other areas. It is a suction pipe for transporting underwater sediments for flow, which is formed from a flexible tube with both ends open, one end being a water intake port that is a water intake port, and the other end being a discharge port A folded portion is formed by folding and fixing the pipe material at an intermediate portion between both ends, and a lower portion of the tubular material with the folded portion is cut out, and this cut portion is A sheet member having flexibility capable of following the change in the surface shape of the underwater deposit is bonded, and a plurality of bottom suction holes for sucking the underwater deposit communicate with the inside of the pipe member. And is folded above the sheet member. The then tip portion corresponding side portion of the tube material, the side suction hole for water deposits suction, characterized in that it is bored in communication with the tubing.

請求項2に記載の水中堆積物流送用の吸引パイプの発明は、請求項1に記載の吸引パイプにおいて、シート部材の外縁部には、その縁沿いに水中堆積物の表面形状の変化に追随可能な可撓性を有する錘が配設されていることを特徴とする。   The suction pipe for transporting underwater sediment according to claim 2 is the suction pipe according to claim 1, wherein the outer edge of the sheet member follows the change in the surface shape of the underwater sediment along the edge. It is characterized in that a weight having possible flexibility is provided.

請求項3に記載の水中堆積物流送用の吸引パイプの発明は、請求項1又は2に記載の吸引パイプにおいて、シート部材の折返し部の先端部分からの張出し長さは、管材の管径の1/3以下となっていることを特徴とする。   The suction pipe for transporting a submerged sediment according to claim 3 is the suction pipe according to claim 1 or 2, wherein the overhang length from the tip of the folded portion of the sheet member is the tube diameter of the pipe material. It is characterized by being 1/3 or less.

請求項4に記載の水中堆積物流送用の吸引パイプの発明は、請求項1ないし3のいずれかに記載の吸引パイプにおいて、シート部材の折返し部の側面部分からの張出し長さは、管材の直径の2倍程度に、シート部材の管材に沿った方向の長さは、管材の直径の10倍程度に設定されていることを特徴とする。   The suction pipe for transporting an underwater sediment according to claim 4 is the suction pipe according to any one of claims 1 to 3, wherein the overhang length from the side surface portion of the folded portion of the sheet member is the pipe length. The length in the direction along the tube material of the sheet member is set to about 10 times the diameter of the tube material about twice the diameter.

請求項5に記載の水中堆積物流送用の吸引パイプの発明は、請求項1ないし4のいずれかに記載の吸引パイプにおいて、取水口と側面吸引孔との間隔は、水中堆積物の厚さを予め把握し、その厚さと水中堆積物の水中安息角とから吸引終了時に水中堆積物に形成されるすり鉢状の窪みの最大形状を割り出して、その斜面長さを算出し、前記間隔が該斜面長さより長くなるよう設定されていることを特徴とする。   The suction pipe for transporting underwater sediment according to claim 5 is the suction pipe according to any one of claims 1 to 4, wherein the distance between the water intake and the side suction hole is the thickness of the underwater sediment. From the thickness and the angle of repose of the underwater sediment, the maximum shape of the mortar-shaped depression formed in the underwater sediment at the end of suction is calculated, and the slope length is calculated. It is set to be longer than the slope length.

請求項6に記載の水中堆積物流送用の吸引パイプの発明は、請求項1ないし5のいずれかに記載の吸引パイプにおいて、取水口には、屈曲したエルボー管が接続され、該エルボー管の開口端は、上向きに設置されていることを特徴とする。   The suction pipe for transporting underwater sediments according to claim 6 is the suction pipe according to any one of claims 1 to 5, wherein a bent elbow pipe is connected to the intake port. The open end is installed upward.

請求項7に記載の水中堆積物の流送装置の発明は、閉鎖的な水域の水底に堆積した水中堆積物を水と一緒に吸引して他の領域に流送する水中堆積物の流送装置であって、請求項1ないし6のいずれかに記載の吸引パイプと、該吸引パイプの管内に水中堆積物を吸引するための水流を発生させる水流発生手段と、を有することを特徴とする。   The invention of the apparatus for feeding underwater sediments according to claim 7 is characterized in that the underwater deposits are sucked together with the water and deposited to other areas by sucking the underwater sediments deposited on the bottom of the closed water area. It is an apparatus, Comprising: It has the suction pipe in any one of Claim 1 thru | or 6, and the water flow generation means to generate | occur | produce the water flow for attracting | sucking a submerged deposit in the pipe | tube of this suction pipe, It is characterized by the above-mentioned. .

請求項8に記載の水中堆積物の流送方法の発明は、請求項7に記載の水中堆積物流送装置を用い、閉鎖的な水域の水底に堆積した水中堆積物を水と一緒に吸引して他の領域に流送する水中堆積物の流送方法であって、請求項1ないし6のいずれかに記載の吸引パイプを水中堆積物の上に設置し、前記水流発生手段で前記吸引パイプの管内に水流を発生させ、その水流で前記吸引パイプの管内を負圧にすることにより前記側面吸引孔及び底面吸引孔から水と一緒に水中堆積物を吸引し、その負圧で前記吸引パイプの先端を水中堆積物に潜行させて、当該先端を中心に水中堆積物にすり鉢状の窪みを形成しながら水中堆積物を浚渫することを特徴とする。   The invention of the method for transporting underwater sediments according to claim 8 uses the underwater sediment distribution transport device according to claim 7 to suck the underwater sediments deposited on the bottom of a closed water area together with water. A method for feeding an underwater deposit to be sent to another region, wherein the suction pipe according to any one of claims 1 to 6 is installed on the underwater deposit, and the suction pipe is used by the water flow generating means. A water flow is generated in the pipe and the suction pipe is negatively pressured by the water flow, thereby sucking underwater deposits together with water from the side suction hole and the bottom suction hole, and the suction pipe with the negative pressure. The tip of the water is submerged in the underwater deposit, and the underwater deposit is dredged while forming a mortar-shaped depression around the underwater deposit.

請求項1に記載の発明によれば、前記のように、両端が開口した可撓性を有する管材から形成され、一端が、水の取り入れ口である取水口に、他端が、吐出口側の接続端となっており、それら両端の中間部には、前記管材を折り返して固定した折返し部が形成され、該折返し部のある管材の下部は切り欠かれ、この切り欠かれた部分には、水中堆積物の表面形状の変化に追随可能な柔軟性を有するシート部材が接着されており、このシート部材には前記水中堆積物吸引用の底面吸引孔が管材内と連通して複数穿設されていると共に、前記シート部材より上方であって折返し部の先端部分にあたる前記管材の側面部分には、水中堆積物吸引用の側面吸引孔が管材内と連通して穿設されているので、つまり、堆積物の吸引孔以外に取水口を設けたので、水中堆積物の吸引の進行につれ、すり鉢状の窪みが形成され、この窪みの斜面から堆積物が崩落して、吸引パイプの先端に位置する側面吸引孔から一度に高濃度の堆積物を吸引して詰まってしまったような場合でも、取水口から常に水を取水可能なため、吸引パイプの管内の水流がストップしてしまうようなことがない。そのため、すり鉢状の窪みの中心部分が水底に到達するまで継続して堆積物を吸引可能である。よって、大掛かりな施設や動力を必要とせず、単純な構造により実現可能であり、設置が容易なうえ経済的で壊れ難く、且つ、天候に左右されずに安定的に効率良く大量に水中堆積物を流送することができる。
また、水中堆積物に形成されて進行してゆく、すり鉢状の窪みの表面形状がなだらかな形状でなくなっても、その表面形状の変化に追随可能なシート部材で覆って、その覆った範囲の水中堆積物を吸引パイプの管内に発生する負圧で底面吸引孔から効率良く吸引することができる。
According to the first aspect of the present invention, as described above, the pipe is formed of a flexible tube having both ends opened, one end being a water intake port that is a water intake port, and the other end being a discharge port side. In the middle part of both ends, a folded part is formed by folding and fixing the pipe material, and the lower part of the pipe material with the folded part is notched, and the notched part has A sheet member having flexibility capable of following a change in the surface shape of the underwater deposit is bonded, and a plurality of bottom surface suction holes for sucking the underwater deposit communicate with the inside of the pipe member. In addition, a side suction hole for sucking underwater deposits is formed in the side part of the pipe member above the sheet member and corresponding to the tip part of the folded portion so as to communicate with the inside of the pipe member. In other words, a water intake was provided in addition to the sediment suction hole. As the underwater sediment suction progresses, a mortar-shaped depression is formed, and the deposit collapses from the slope of this depression, and a high-concentration deposit is removed at once from the side suction hole located at the tip of the suction pipe. Even in the case of clogging due to suction, water can always be taken from the intake port, so that the water flow in the pipe of the suction pipe does not stop. Therefore, the sediment can be sucked continuously until the central portion of the mortar-shaped depression reaches the water bottom. Therefore, it does not require large-scale facilities and power, can be realized with a simple structure, is easy to install, is economical and difficult to break, and is stable and efficient in large quantities underwater. Can be streamed.
In addition, even if the surface shape of the mortar-shaped depression that is formed in the underwater deposits is not smooth, it is covered with a sheet member that can follow the change of the surface shape, and the range of the covered range Underwater deposits can be efficiently sucked from the bottom suction hole by the negative pressure generated in the pipe of the suction pipe.

請求項2に記載の発明によれば、請求項1に記載の水中堆積物流送用の吸引パイプにおいて、シート部材の外縁部には、その縁沿いに水中堆積物の表面形状の変化に追随可能な可撓性を有する錘が配設されているので、前記効果に加え、閉鎖的な水域を流れる水流や、吸引の際に発生する水流によりシート部材が捲れ上がったり、皺などが発生したりすることがなく、シート部材と堆積物との間に空間ができ、そこが水みちとなって吸引力が低下してしまうおそれが少なくなる。そのうえ、シート部材の水中での展開も、錘の重力により何ら労力を掛けることなく自然に展開することができる。   According to the second aspect of the present invention, in the suction pipe for transporting the underwater sediment according to the first aspect, the outer edge of the sheet member can follow the change in the surface shape of the underwater sediment along the edge. In addition to the above-described effects, the flexible weight is arranged, so that the sheet member may be swollen or wrinkled due to a water flow flowing in a closed water area or a water flow generated during suction. In this case, a space is formed between the sheet member and the deposit, and the possibility that the suction force decreases due to the water becomes small. Moreover, the deployment of the sheet member in water can be naturally deployed without any effort due to the gravity of the weight.

請求項3に記載の発明によれば、請求項1又は2に記載の水中堆積物流送用の吸引パイプにおいて、シート部材の折返し部の先端部分からの張出し長さは、管材の管径の1/3以下となっているので、前記効果に加え、シート部材の折返し部の先端部分からの張出し部分が、側面吸引孔の吸引力で捲れ上がって側面吸引孔を塞いでしまうおそれがない。   According to a third aspect of the present invention, in the suction pipe for transporting an underwater sedimentary flow according to the first or second aspect, the overhang length from the front end portion of the folded portion of the sheet member is 1 of the tube diameter of the pipe material. Therefore, in addition to the above effects, there is no possibility that the protruding portion from the tip end portion of the folded portion of the sheet member will be rolled up by the suction force of the side suction hole and block the side suction hole.

請求項4に記載の発明によれば、請求項1ないし3のいずれかに記載の水中堆積物流送用の吸引パイプにおいて、シート部材の折返し部の側面部分からの張出し長さは、管材の直径の2倍程度に、シート部材の管材に沿った方向の長さは、管材の直径の10倍程度に設定されているので、つまり、シート部材が水中堆積物の表面形状の変化に追随して吸引力を維持し続けることができると共に、吸引パイプが堆積物に潜り込むのを妨げない最適な大きさとなっているので、前記効果に加え、更に効率良く水中堆積物を流送(移送又は廃棄)することができる。   According to a fourth aspect of the present invention, in the suction pipe for transporting a submerged sediment according to any one of the first to third aspects, the overhang length from the side surface portion of the folded portion of the sheet member is the diameter of the pipe material. The length of the sheet member in the direction along the tube material is set to about 10 times the diameter of the tube material, that is, the sheet member follows the change in the surface shape of the underwater deposit. In addition to the above effects, the underwater sediment can be more efficiently transported (transferred or discarded) because the suction pipe can keep maintaining the suction force and has an optimal size that does not prevent the suction pipe from entering the sediment. can do.

請求項5に記載の発明によれば、請求項1ないし4のいずれかに記載の水中堆積物流送用の吸引パイプにおいて、取水口と側面吸引孔との間隔は、水中堆積物の厚さを予め把握し、その厚さと水中堆積物の水中安息角とから吸引終了時に水中堆積物に形成されるすり鉢状の窪みの最大形状を割り出して、その斜面長さを算出し、前記間隔が該斜面長さより長くなるよう設定されているので、つまり、吸引パイプの取水口は、常に崩落のおそれがある「すり鉢状」の窪みより外に設置されていることとなるので、前記効果に加え、崩落土砂等が取水口に詰まって吸引パイプの管内の水流がストップしてしまうおそれが更に減少する。   According to the invention described in claim 5, in the suction pipe for transporting underwater deposits according to any one of claims 1 to 4, the distance between the water intake and the side suction hole is the thickness of the underwater deposit. The maximum shape of the mortar-shaped depression formed in the underwater sediment at the end of suction is calculated from the thickness and the angle of repose of the underwater sediment in advance, and the slope length is calculated. Since it is set to be longer than the length, that is, the intake pipe of the suction pipe is always installed outside the mortar-shaped depression that may collapse, so in addition to the above effects, the collapse The possibility of earth and sand clogging the water intake and the water flow in the pipe of the suction pipe is further reduced.

請求項6に記載の発明によれば、請求項1ないし5のいずれかに記載の水中堆積物流送用の吸引パイプにおいて、取水口には、屈曲したエルボー管が接続され、該エルボー管の開口端は、上向きに設置されているので、前記効果に加え、崩落土砂等が取水口に詰まって吸引パイプの管内の水流がストップしてしまうおそれがより一層少なくなる。   According to a sixth aspect of the present invention, in the suction pipe for transporting an underwater sedimentary flow according to any one of the first to fifth aspects, a bent elbow pipe is connected to the water intake, and the opening of the elbow pipe Since the end is installed upward, in addition to the above-described effect, the possibility that clogged earth and sand will clog the intake port and the water flow in the pipe of the suction pipe is further reduced.

請求項7に記載の発明によれば、閉鎖的な水域の水底に堆積した水中堆積物を水と一緒に吸引して他の領域に流送する水中堆積物の流送装置であって、請求項1ないし6のいずれかに記載の吸引パイプと、該吸引パイプの管内に水中堆積物を吸引するための水流を発生させる水流発生手段と、を有するので、大掛かりな施設や動力を必要とせず、単純な構造により実現可能であり、設置が容易なうえ経済的で壊れ難く、且つ、天候に左右されずに安定的に効率良く大量に水中堆積物を流送(移送又は廃棄)することができる。   According to the seventh aspect of the present invention, there is provided a device for feeding an underwater sediment, wherein the underwater sediment deposited on the bottom of a closed water area is sucked together with the water and is sent to another region. Since it has the suction pipe according to any one of Items 1 to 6 and a water flow generating means for generating a water flow for sucking underwater deposits in the pipe of the suction pipe, no large facility or power is required. It can be realized by a simple structure, is easy to install, is economical, is not easily broken, and can stably and efficiently flow (transfer or discard) a large amount of underwater sediments regardless of the weather. it can.

請求項8に記載の発明によれば、請求項7に記載の水中堆積物流送装置を用い、閉鎖的な水域の水底に堆積した水中堆積物を水と一緒に吸引して他の領域に流送する水中堆積物の流送方法であって、請求項1ないし6のいずれかに記載の吸引パイプを水中堆積物の上に設置し、前記水流発生手段で前記吸引パイプの管内に水流を発生させ、その水流で前記吸引パイプの管内を負圧にすることにより前記側面吸引孔及び底面吸引孔から水と一緒に水中堆積物を吸引し、その負圧で前記吸引パイプの先端を水中堆積物に潜行させて、当該先端を中心に水中堆積物にすり鉢状の窪みを形成しながら水中堆積物を浚渫するので、大掛かりな施設や動力を必要とせず、単純な構造により実現可能であり、設置が容易なうえ経済的で壊れ難く、且つ、天候に左右されずに安定的に効率良く大量に水中堆積物を流送(移送又は廃棄)することができる。   According to the eighth aspect of the present invention, the underwater sediment distribution transport device according to the seventh aspect is used, and the underwater sediment deposited on the bottom of the closed water area is sucked together with the water to flow to other areas. A method for feeding underwater sediment to be sent, wherein the suction pipe according to any one of claims 1 to 6 is installed on the underwater sediment, and a water flow is generated in the pipe of the suction pipe by the water flow generating means. Then, the water pipe sucks the underwater deposit together with water from the side suction hole and the bottom suction hole by making the inside of the suction pipe negative pressure by the water flow, and the tip of the suction pipe is submerged in the negative pressure by the negative pressure. The underwater sediment is dredged while forming a mortar-shaped depression in the underwater sediment centering on the tip, so that it can be realized with a simple structure without requiring large facilities and power. Easy, economical, hard to break, and weather The left and right are stably and efficiently mass-water sediments without can be Nagareoku (transport or disposal).

この発明の一実施の形態を、図面を参照して説明する。   An embodiment of the present invention will be described with reference to the drawings.

(水中堆積物の流送装置)
先ず、本発明に係る水中堆積物の流送装置の実施の形態について図1〜3を用いて説明する。図1〜3は、本発明に係る水中堆積物の流送装置の一実施の形態である流送装置の概略構成と、その浚渫作業の進行状況を鉛直断面で示す説明図であり、図1は、吸引開始前を、図2は、吸引作業中を、図3は、吸引終了時を示し、各図の(A)は、鉛直断面図、(B)は、平面図をそれぞれ示している。
(Underwater sediment flow device)
First, an embodiment of an underwater sediment inflow device according to the present invention will be described with reference to FIGS. 1 to 3 are explanatory diagrams showing a schematic configuration of a feeding device which is an embodiment of the feeding device for underwater sediments according to the present invention and a progress state of the dredging work in a vertical section. 2 shows the state before the start of suction, FIG. 2 shows the state during the suction operation, FIG. 3 shows the end of the suction, (A) in each figure shows a vertical sectional view, and (B) shows a plan view. .

図中の符号Aは、閉鎖的な水域の一例として挙げるダム貯水池であり、符号Dは、そのダムを、符号Sは、水中堆積物を示し、符号1は、本発明に係る水中堆積物の流送装置の一実施の形態として例示する流送装置である。この流送装置1は、ダム貯水池Aから堆積物Sを水と一緒に吸引して下流域Bへ放出(排出)するための堆積物Sの移送経路である流送管2と、この流送管2の内部に水流を発生させる水流発生手段3と、流送管2から放出する水(水と堆積物の混合物を意味する。以下同じ)の流量を制御する流量制御手段4とから主に構成され、ダム貯水池Aの底に堆積した水中堆積物Sを水と一緒に吸引して浚渫し、下流域Bに放出する機能を有した装置である。   Reference symbol A in the figure is a dam reservoir as an example of a closed water area, reference symbol D indicates the dam, reference symbol S indicates an underwater sediment, reference symbol 1 indicates an underwater sediment according to the present invention. It is a flow apparatus illustrated as one embodiment of a flow apparatus. The inflow apparatus 1 includes an inflow pipe 2 which is a transfer path of the deposit S for sucking the deposit S from the dam reservoir A together with water and discharging (discharging) it to the downstream area B, and the inflow pipe 2. Mainly from water flow generating means 3 for generating a water flow inside the pipe 2 and flow rate control means 4 for controlling the flow rate of water discharged from the flow pipe 2 (meaning a mixture of water and sediment; the same applies hereinafter). This is an apparatus having a function of sucking and sucking the underwater sediment S deposited on the bottom of the dam reservoir A together with water and discharging it to the downstream area B.

流送管2は、ダム貯水池A側の端部が取水口2aに、下流域B側の端部が吐出口2bとなっており、ダム貯水池Aから下流域Bに亘ってダムDを貫通し、ダムDの貫通部分が一番高くなるよう配管され、その取水口2a側(吸引側)の先端(図中のダム貯水池A側の端)部分が、本発明に係る後述の吸引パイプ5となっている。この流送管2の管材としては、高密度ポリエチレン管、塩化ビニル管などの樹脂製管や、鋼管、鋳鉄管、ステンレス管などの金属製管などが使用できるが、後述の水流発生手段3で発生させた水流による負圧を維持できるだけの水密性、気密性、及び耐圧性を有している管材であればよい。
なお、流送管2は、必ずしもダムDを貫通する必要はなく、ダムDの上端の上方に迂回するように配管されていても構わないが、サイホン現象を利用する場合には、取水口2aより所定の水頭圧が得られる分だけ上方に迂回して下流域B側へ配管される必要がある。
The end of the dam reservoir A side is the intake port 2a and the end of the downstream region B side is the discharge port 2b. The flow pipe 2 penetrates the dam D from the dam reservoir A to the downstream region B. The dam D penetrating portion is the highest, and the tip of the intake port 2a (suction side) (the end of the dam reservoir A side in the figure) is connected to a suction pipe 5 to be described later according to the present invention. It has become. As the pipe material of the flow pipe 2, resin pipes such as high density polyethylene pipes and vinyl chloride pipes, and metal pipes such as steel pipes, cast iron pipes and stainless steel pipes can be used. Any pipe material having water tightness, air tightness, and pressure resistance that can maintain the negative pressure due to the generated water flow may be used.
The flow pipe 2 does not necessarily pass through the dam D, and may be piped so as to bypass the upper end of the dam D. However, when the siphon phenomenon is used, the water intake port 2a is used. It is necessary to make a detour upward by the amount that allows a predetermined water head pressure to be obtained, and to be piped to the downstream region B side.

水流発生手段3は、流送管2の途中に一般的な流体ポンプ30を備え、この流体ポンプ30でダム貯水池Aから水と堆積物Sを吸引してサイホン現象を誘引する初期水流を発生させ、一旦水流が流れ出した後は流体ポンプ30を停止して、流送管2の頂部を超えた水流が落下する水頭圧でダム貯水池Aから水を吸引し、水流が持続するようになっている。勿論、サイホン現象を利用するのではなく、流体ポンプ30の動力だけで水流を発生させてもよく、また、流体ポンプ30を設けず、流送管2の取水口2aが吐出口2bより高く、且つ、流送管2を直線的に配管して、取水口2aと吐出口2bとの水位差(高低差)を利用して水流が発生するようにしても構わない。即ち、水流発生手段3は、流送管2の管内に水流を発生させることができる構成であればよい。但し、流体ポンプ30を稼動するには動力(電力や軽油等を用いた発動機など)が必要であり、ランニングコストが嵩むため、本実施の形態のように、サイホン現象を利用することが望ましい。また、水位差を利用する場合には、取水口2aと吐出口2bとの高低差を所定の吸引力が得られる分だけ付けるのが困難な場合も想定される。   The water flow generating means 3 is provided with a general fluid pump 30 in the middle of the flow pipe 2, and generates an initial water flow that attracts water and sediment S from the dam reservoir A and induces a siphon phenomenon. Once the water flow has started, the fluid pump 30 is stopped, and water is sucked from the dam reservoir A by the head pressure at which the water flow over the top of the flow pipe 2 falls, so that the water flow is maintained. . Of course, instead of using the siphon phenomenon, the water flow may be generated only by the power of the fluid pump 30. Also, the fluid pump 30 is not provided, and the intake port 2a of the flow pipe 2 is higher than the discharge port 2b. In addition, the flow pipe 2 may be provided in a straight line, and a water flow may be generated by utilizing a water level difference (level difference) between the water intake port 2a and the discharge port 2b. In other words, the water flow generation means 3 may be configured to generate a water flow in the pipe of the flow pipe 2. However, power (such as a motor using electric power or light oil) is necessary to operate the fluid pump 30, and the running cost increases. Therefore, it is desirable to use the siphon phenomenon as in the present embodiment. . Moreover, when utilizing a water level difference, the case where it is difficult to attach the height difference of the water intake port 2a and the discharge port 2b only to the extent that a predetermined suction force can be obtained is assumed.

流量制御手段4は、吐出口2b付近に吐出ゲート40を有し、この吐出ゲート40を開閉することで流送管2の管内の有効開口面積を調整可能に構成されており、この吐出ゲート40の開閉を制御することで、吸引パイプ5からの堆積物Sの吸引量も調節することができ、完全に吐出ゲート40を閉じることで、吸引パイプ5からの堆積物Sの吸引も止めることができる。また、この吐出ゲート40は、吐出口2b付近(即ち、頂部から十分な距離を置いた下方)に設置されているので、この吐出ゲート40を再び開くだけで、流送管2の頂部から吐出ゲート40までに溜まっていた水が落下して、その水頭圧で吸引パイプ5からの堆積物Sの再吸引が可能である。つまり、吐出ゲート40を閉鎖して吐出ゲート40から流送管2の頂部まで一旦水を溜めることができれば、前記流体ポンプ30を作動させなくても、吸引パイプ5からの吸引をいつでも再開することができる。
なお、吐出ゲート40は、勿論、バルブなどの調整弁であってもよく、流送管2の管内の有効開口面積を調整可能な機構であればよい。
The flow rate control means 4 has a discharge gate 40 in the vicinity of the discharge port 2b, and is configured to be able to adjust the effective opening area in the pipe of the flow pipe 2 by opening and closing the discharge gate 40. By controlling the opening and closing, the suction amount of the deposit S from the suction pipe 5 can also be adjusted, and the suction of the deposit S from the suction pipe 5 can also be stopped by completely closing the discharge gate 40. it can. Further, since the discharge gate 40 is installed in the vicinity of the discharge port 2b (that is, below a sufficient distance from the top), the discharge gate 40 is discharged from the top of the flow pipe 2 only by reopening the discharge gate 40. The water accumulated up to the gate 40 falls, and the sediment S from the suction pipe 5 can be re-sucked by the water head pressure. That is, once the discharge gate 40 is closed and water can be accumulated from the discharge gate 40 to the top of the flow pipe 2, the suction from the suction pipe 5 can be resumed at any time without operating the fluid pump 30. Can do.
The discharge gate 40 may of course be an adjustment valve such as a valve, and may be any mechanism that can adjust the effective opening area in the pipe of the flow pipe 2.

(吸引パイプ)
次に、本発明に係る吸引パイプの一実施の形態について図4〜図9を用いて説明する。
図4は、実施の形態に係る吸引パイプの平面図、図5は、図4の吸引パイプの側面図、図6は、図4の吸引パイプの折返し部を主に示す拡大平面図、図7は、図6の折返し部の底面図、図8は、図4の折返し部のX−X線切断端面図、図9は、図4の折返し部の先端部分の側面図である。
(Suction pipe)
Next, an embodiment of a suction pipe according to the present invention will be described with reference to FIGS.
4 is a plan view of the suction pipe according to the embodiment, FIG. 5 is a side view of the suction pipe of FIG. 4, FIG. 6 is an enlarged plan view mainly showing a folded portion of the suction pipe of FIG. FIG. 8 is a bottom view of the folded portion of FIG. 6, FIG. 8 is an end view taken along line XX of the folded portion of FIG. 4, and FIG. 9 is a side view of the tip portion of the folded portion of FIG.

図示する吸引パイプ5は、両端が開口した可撓性を有する管材を主材とする管本体50から主に構成され、一方の開口端が、取水口2aに、他方の開口端が、水流発生手段3や吐出口2bに続く接続端51となっている。また、取水口2aと接続端51との略中央に位置する中間部には、管本体50の管材を平面視でU字状又は馬蹄形状に折り返して固定した折返し部52が形成され、この折返し部52の底面に沿ってシート部材53が接着されている。
なお、折返し部52の管材の折返しは、平面視で楕円形や円形であってもよく、取水口2aと連通した管材が折返し固定されていればよい。
The suction pipe 5 shown in the figure is mainly composed of a pipe main body 50 whose main material is a flexible pipe material having both ends opened. One open end is at the water intake port 2a and the other open end is a water flow. It is a connection end 51 following the means 3 and the discharge port 2b. Further, a folded portion 52 is formed at the intermediate portion located substantially at the center between the water intake port 2a and the connection end 51, and the folded portion 52 is formed by folding and fixing the tube material of the tube main body 50 in a U shape or a horseshoe shape in plan view. A sheet member 53 is bonded along the bottom surface of the portion 52.
In addition, the folding of the pipe material of the folding part 52 may be oval or circular in a plan view, and the pipe material communicating with the water intake port 2a may be folded and fixed.

管本体50は、本実施の形態では、硬質高密度ポリエチレンの螺旋状の線材と、この線材間を繋ぐ軟質高密度ポリエチレンの膜とからなる蛇腹状のフレキシブル管から構成されているが、水流発生手段3で発生させた水流による負圧を維持できるだけの水密性、気密性、及び耐圧性と、浚渫作業の進行につれて変化する水中堆積物Sの後述の「すり鉢状」の窪みの深さや表面形状の変化(図1〜図3参照)に追随可能な可撓性を有している管材から構成されていればよい。なお、本実施の形態に係る管本体50の管径dは、500mm〜1000mm程度のものを想定しているが、流送装置1を設置するダム貯水池A(閉鎖的な水域)の規模や、浚渫作業の期間などを考慮して適宜選択可能であることは云うまでもない。   In the present embodiment, the pipe body 50 is composed of a bellows-like flexible pipe made of a hard high-density polyethylene helical wire and a soft high-density polyethylene film that connects the wires. The watertightness, airtightness, and pressure resistance that can maintain the negative pressure due to the water flow generated by the means 3, and the depth and surface shape of the “mortar-shaped” depression of the underwater sediment S that changes as the dredging operation progresses What is necessary is just to be comprised from the pipe material which has the flexibility which can follow the change (refer FIGS. 1-3). In addition, although the pipe diameter d of the pipe main body 50 which concerns on this Embodiment assumes the thing of about 500 mm-1000 mm, the scale of the dam reservoir A (closed water area) which installs the feeding apparatus 1, Needless to say, it can be selected as appropriate in consideration of the period of dredging work.

折返し部52は、図5,8に示すように、管本体50の下部を切り欠いて、そこにシート部材53が接着され、管本体50の底面部分が平らに成形された吸引面52aとなっており、この吸引面52aには、図7に示すように、水中堆積物Sの吸引用の複数の底面吸引孔54が管本体50内と連通して穿設されている。また、図9に示すように、折返し部52の先端52bには、水中堆積物Sの吸引用の側面吸引孔55がシート部材53の上方に管本体50内と連通して穿設されている。本実施の形態では、底面吸引孔54は、図7,8に示すように、1/2d(管本体50の管径dの1/2倍)の大きさのものが5個設けられ、側面吸引孔55は、図9に示すように、1/3dの大きさのものが1個設けられている。なお、本実施の形態では、吸引面52aは、シート部材53から形成されているが、管本体50の管径dに応じて、管本体50と同材などの所定の強度や剛性を有した材料からなる底板を設けて補強し、その底板の外部からシート部材を接着してもよい。また、シート部材53と管本体50との接着も、熱溶着や、超音波溶着などの他の固着方法であっても構わない。   As shown in FIGS. 5 and 8, the folded portion 52 is cut out at the lower portion of the tube body 50, the sheet member 53 is bonded thereto, and the bottom surface portion of the tube body 50 becomes a suction surface 52 a formed flat. As shown in FIG. 7, a plurality of bottom surface suction holes 54 for sucking the underwater deposit S are formed in the suction surface 52 a so as to communicate with the inside of the pipe body 50. Further, as shown in FIG. 9, a side suction hole 55 for sucking the underwater deposit S is formed at the tip 52 b of the folded portion 52 so as to communicate with the inside of the pipe body 50 above the sheet member 53. . In the present embodiment, as shown in FIGS. 7 and 8, five bottom suction holes 54 having a size of 1 / 2d (1/2 times the tube diameter d of the tube body 50) are provided. As shown in FIG. 9, one suction hole 55 having a size of 1 / 3d is provided. In the present embodiment, the suction surface 52a is formed from the sheet member 53. However, the suction surface 52a has predetermined strength and rigidity such as the same material as the tube main body 50 according to the tube diameter d of the tube main body 50. A bottom plate made of a material may be provided for reinforcement, and the sheet member may be bonded from the outside of the bottom plate. Further, the bonding between the sheet member 53 and the tube main body 50 may be another fixing method such as heat welding or ultrasonic welding.

シート部材53は、所定の柔軟性と不透水性を有するビニールシートなどの樹脂シートからなり、図4,5,6に示すように、全長L1が10d(管本体50の管径dの10倍)、折返し部52の先端52bからの張出し長さL2が、1/3d、図4,6に示すように、折返し部52の側面部分からの張出し長さL3が2d程度の大きさに設定されている。ここで、所定の柔軟性とは、浚渫作業の進行につれて変化する水中堆積物Sのすり鉢状の窪みの表面形状(図1〜図3参照)に追随可能であればよい。また、シート部材53の大きさは、模型実験等から管径dに対する堆積物Sの吸引量が最も多くなるように試行錯誤して設定されたものであり、シート部材53が水中堆積物Sの表面形状の変化に追随して吸引力を維持し続けることができると共に、吸引パイプ5が堆積物Sに潜行する(潜り込む)のを妨げない最適な大きさとなっている。
そして、折返し部52の先端52bからの張出し長さL2を1/3d以下とすることにより、シート部材53の折返し部52の先端部分52bからの張出し部分が、側面吸引孔55の吸引力で捲れ上がって側面吸引孔55を塞いでしまうおそれがなくなる。
The sheet member 53 is made of a resin sheet such as a vinyl sheet having a predetermined flexibility and water impermeability, and has a total length L1 of 10d (10 times the tube diameter d of the tube body 50) as shown in FIGS. ), The overhang length L2 from the tip 52b of the folded portion 52 is 1 / 3d, and the overhang length L3 from the side surface portion of the folded portion 52 is set to a size of about 2d as shown in FIGS. ing. Here, the predetermined flexibility is only required to be able to follow the surface shape (see FIGS. 1 to 3) of the mortar-shaped depression of the underwater sediment S that changes as the dredging operation proceeds. Further, the size of the sheet member 53 is set by trial and error so that the suction amount of the deposit S with respect to the pipe diameter d is maximized from a model experiment or the like. The suction force can be maintained following the change in the surface shape, and the suction pipe 5 has an optimum size that does not prevent the suction pipe 5 from submerging (submitting) in the deposit S.
Then, by setting the overhanging length L2 from the leading end 52b of the folded portion 52 to 1 / 3d or less, the overhanging portion from the leading end portion 52b of the folded portion 52 of the sheet member 53 is rolled by the suction force of the side suction hole 55. There is no possibility that the side suction hole 55 will be closed.

このシート部材53の外縁部は、樹脂シートがその縁沿いに袋状に折り返して固着されており、その袋状部分53aにチェーン材からなる錘56が内包されている。このため、ダム貯水池A(閉鎖的な水域)内を流れる水流や、吸引の際に吸引パイプ5の周りに発生する水流によりシート部材53が捲れ上がったり、皺などが発生したりすることがない。また、シート部材53は、水中堆積物Sの表面形状の変化に追随可能な柔軟性を有しているので、シート部材53と堆積物Sとの間に空間ができ、そこが水みちとなって吸引力が低下してしまうおそれが少なくなる。そのうえ、シート部材53の水中での展開も、錘56の重力により何ら労力を掛けることなく自然に展開することができる。
勿論、この錘56は、チェーン材に限られるものではなく、例えば、シート部材53の縁の周りに小さな所定間隔を空けて取り付けられたトビトビの錘などでもよく、水中堆積物Sの表面形状の変化に追随可能な可撓性を有し、シート部材53の縁を押えて底面吸引孔54の吸引力を密封できる錘であればよい。
The outer edge portion of the sheet member 53 has a resin sheet folded back and fixed along the edge in a bag shape, and a weight 56 made of a chain material is included in the bag-like portion 53a. For this reason, the sheet member 53 is not swollen or wrinkled due to the water flow flowing in the dam reservoir A (closed water area) or the water flow generated around the suction pipe 5 at the time of suction. Further, since the sheet member 53 has flexibility that can follow the change in the surface shape of the underwater deposit S, a space is formed between the sheet member 53 and the deposit S, which becomes a water channel. This reduces the possibility that the suction force will decrease. Moreover, the deployment of the sheet member 53 in water can also be naturally deployed without any effort due to the gravity of the weight 56.
Of course, the weight 56 is not limited to the chain material, and may be, for example, a weight of a kite that is attached around the edge of the sheet member 53 with a small predetermined interval. Any weight may be used as long as it is flexible enough to follow the change and can seal the suction force of the bottom suction hole 54 by pressing the edge of the sheet member 53.

また、図4、5の破線で示すように、取水口2aの先に、屈曲したエルボー管57を接続し、図示しない台座などを取り付けて、このエルボー管57の開口端2a’が上向きになるよう設置して、その開口端を取水口2a’とすることが好ましく、そうすることにより、堆積部Sに取水口2aが埋没して、一度に高濃度の土砂等を吸引し、吸引パイプ5の管内が詰まって水流がストップしてしまうおそれが少なくなる。   4 and 5, a bent elbow pipe 57 is connected to the tip of the water intake port 2a, a pedestal (not shown) is attached, and the open end 2a 'of the elbow pipe 57 faces upward. It is preferable that the opening end is set as a water inlet 2a ′, and by doing so, the water inlet 2a is buried in the accumulation part S, and high-concentration earth and sand are sucked at a time, and the suction pipe 5 There is less risk that the pipe will be clogged and the water flow will stop.

更に、取水口2a(2a’)と側面吸引孔55(即ち、吸引パイプ5の先端52b)との間隔D1は、図4に示すように、本実施の形態では、40d(管本体50の管径dの40倍)以上に設定されている。そのように設定することで、吸引パイプ5の取水口2a(2a’)は、土砂等(堆積物)の崩落のおそれがあるすり鉢状の窪みより常に外に設置されていることとなり、崩落土砂等が詰まって吸引パイプ5の管内の水流がストップしてしまうおそれが更に減少するからである。この間隔D1の設定値は、以下の手順で設定している。先ず、水中堆積物Sの厚さT1を、レーダー等で直接測定したり、土砂堆積の年平均の厚さなどから予測したりするなどして何らかの方法で予め把握しておく。そして、堆積物Sの水中安息角θは、堆積物Sの組成などからある程度予測がつくので、図3に示すように、これらの厚さT1と水中安息角θとから吸引終了時に堆積物Sに形成されるすり鉢状の窪みの最大形状を割り出す。次に、そのすり鉢状の窪みの最大形状の斜面長さD2を算出する。そして、取水口2a(2a’)と側面吸引孔55との間隔D1が斜面長さD2より長くなるよう設定する。   Furthermore, as shown in FIG. 4, the distance D1 between the water intake 2a (2a ′) and the side suction hole 55 (that is, the tip 52b of the suction pipe 5) is 40d (pipe of the pipe body 50). 40 times the diameter d) or more. By setting in such a manner, the intake port 2a (2a ') of the suction pipe 5 is always installed outside the mortar-shaped depression where there is a risk of collapse of earth and sand (sediment). This is because the possibility that the water flow in the pipe of the suction pipe 5 stops due to clogging or the like is further reduced. The set value of the interval D1 is set according to the following procedure. First, the thickness T1 of the underwater sediment S is grasped in advance by some method, for example, by directly measuring the thickness T1 with a radar or by predicting it based on the annual average thickness of sediment deposition. The underwater angle of repose θ of the deposit S can be predicted to some extent from the composition of the deposit S and the like, as shown in FIG. 3, the deposit S at the end of suction from the thickness T1 and the underwater angle of repose θ. Determine the maximum shape of the mortar-shaped depression formed in the. Next, the slope length D2 of the maximum shape of the mortar-shaped depression is calculated. The distance D1 between the water intake 2a (2a ') and the side suction hole 55 is set to be longer than the slope length D2.

(水中堆積物の流送装置の動作及び水中堆積物の流送方法)
次に、流送装置1の動作及び水中堆積物の流送方法について、図1〜図3を用いて説明する。図1に示すように、先ず、流送管2の先端部分である吸引パイプ5をダム貯水池Aの底に溜まった水中堆積物Sの上に設置する。そして、水流発生手段3で吸引パイプ5(流送管2)の管内に水流を発生させる。水流が発生すると吸引パイプ5(流送管2)の管内は、周りと比べて負圧となるため、底面吸引孔54が穿設されている折返し部52の吸引面52aが堆積物Sに吸い付けられ、底面吸引孔54が堆積物Sに密着し、堆積物Sの吸引を開始する。このとき、取水口2aからは、水流のもととなる清水(堆積物Sを含まないダム貯水池Aの水)を取水しており、吐出口2bからは、堆積物Sと水との混合物を下流域Bへ排出している。
(Operation of underwater sediment feeding device and underwater sediment feeding method)
Next, the operation of the flow feeding device 1 and the method of feeding the underwater sediment will be described with reference to FIGS. As shown in FIG. 1, first, the suction pipe 5, which is the tip portion of the flow pipe 2, is installed on the underwater sediment S collected at the bottom of the dam reservoir A. Then, a water flow is generated in the pipe of the suction pipe 5 (flow pipe 2) by the water flow generating means 3. When a water flow occurs, the suction pipe 5 (flow pipe 2) has a negative pressure in the pipe compared to the surroundings, so that the suction surface 52a of the folded portion 52 in which the bottom suction hole 54 is formed is sucked into the deposit S. The bottom suction hole 54 is attached to the deposit S and suction of the deposit S is started. At this time, fresh water (water of the dam reservoir A not including the deposit S) is taken from the intake port 2a, and a mixture of the deposit S and water is discharged from the discharge port 2b. Discharged to downstream area B.

次に、ある程度堆積物Sの浚渫が進行すると、図2に示すように、吸引パイプ5の先端52bが堆積物Sに潜行してゆき、側面吸引孔55からも堆積物Sの吸引が始まる。すると、堆積物Sの表面には、吸引パイプ5の先端52bを中心に堆積物Sが浚渫された残痕である窪みSaが形成されてゆき、その斜面上部からの土砂等の崩落と、底面吸引孔54及び側面吸引孔55からの土砂等の吸引を繰り返し、徐々にこの窪みSaがすり鉢状に大きく成長してゆく。   Next, when the soot of the deposit S progresses to some extent, as shown in FIG. 2, the tip 52 b of the suction pipe 5 goes under the deposit S, and the suction of the deposit S also starts from the side suction holes 55. Then, on the surface of the deposit S, a recess Sa that is a residue of the deposit S is formed around the tip 52b of the suction pipe 5, and collapse of earth and sand from the upper surface of the slope, Suction of earth and sand from the suction holes 54 and the side suction holes 55 is repeated, and the depression Sa gradually grows in a mortar shape.

最終的には、図3に示すように、吸引パイプ5の先端52bがダム貯水池Aの底に達し、底面吸引孔54からの堆積物Sの吸引がストップし、最後に、堆積物Sに埋没・潜行していた側面吸引孔55が堆積物Sから姿を現し、完全に堆積物Sの吸引が終了する。なお、前述のように、この流送装置1は、流量制御手段4の吐出ゲート40を開閉するだけで、堆積物Sの吸引を何時でも停止することができるだけでなく、いつでも再開することができる。このため、台船などを出航させる必要がなく、ダム貯水池A(閉鎖的な水域)の天候や、波浪などの気象状況に影響されず何時でも安全、且つ、極めて容易に堆積物Sを下流域Bへ移送することができる。   Finally, as shown in FIG. 3, the tip 52 b of the suction pipe 5 reaches the bottom of the dam reservoir A, the suction of the deposit S from the bottom suction hole 54 is stopped, and finally it is buried in the deposit S. The submerged side suction hole 55 appears from the deposit S, and the suction of the deposit S is completely completed. As described above, the flow feeding device 1 can not only stop the suction of the deposit S at any time but can restart it at any time only by opening and closing the discharge gate 40 of the flow rate control means 4. . For this reason, there is no need to leave a trolley or the like, and the sediment S can be moved to the downstream area safely and extremely easily without being affected by the weather of the dam reservoir A (closed water area) or weather conditions such as waves. B can be transferred.

以上のように、本実施の形態に係る流送装置1によれば、水中堆積物Sの吸引の進行につれ、水中堆積物Sにすり鉢状の窪みが形成され、この窪みの斜面から堆積物Sが崩落して、吸引パイプ5の先端52bに位置する側面吸引孔55から一度に高濃度の堆積物Sを吸引して詰まってしまったような場合でも、取水口2a(2a’)から常に清水(堆積物Sを含まないダム貯水池Aの水)を取水可能なため、吸引パイプの管内の水流がストップしてしまうようなことがない。このため、大掛かりな施設や動力を必要とせず継続して堆積物Sの浚渫作業を継続することができ、結果的に、安定して効率良く、大量に移送等が可能である。また、単純な構造により実現しているので経済的で壊れ難く、そのうえ、吸引パイプ5を運搬して堆積物Sの上に設置するだけなので、極めて容易に設置することができる。このため、天候に左右されずに作業が可能であり、安全である。   As described above, according to the flow feeding device 1 according to the present embodiment, a mortar-shaped depression is formed in the underwater deposit S as the underwater deposit S is sucked, and the deposit S is formed from the slope of the depression. Even if the high-concentration sediment S is sucked and clogged at a time from the side suction hole 55 located at the tip 52b of the suction pipe 5, the fresh water always flows from the water intake 2a (2a '). Since the water of the dam reservoir A that does not include the deposit S can be taken, the water flow in the pipe of the suction pipe does not stop. For this reason, the dredging operation of the deposit S can be continued without requiring a large facility or power, and as a result, a large amount can be transferred stably and efficiently. Moreover, since it is realized by a simple structure, it is economical and difficult to break. Moreover, since the suction pipe 5 is transported and installed on the deposit S, it can be installed very easily. For this reason, work is possible regardless of the weather, and it is safe.

この発明の実施の形態を、閉鎖的な水域としてダムの貯水池を例に挙げて説明したが、本発明の適用範囲は、ダム貯水池に限られるものではなく、ダム、溜池、下水処理場などの貯水施設や、自然の河川、湖沼、池、又は運河など浚渫作業が必要な閉鎖的な水域には適用することができるものである。また、堆積物を下流域に流送・放出する場合で説明したが、流送とは、他の領域(他の水域や他の場所)に移送することだけでなく、廃棄する場合も含むものである。なお、実施の形態を説明するのに使用した、流送管(吸引パイプ以外の部分)の構成や、水流発生手段、流量制御手段などは、あくまでも好ましい一例を示すものであり、他の公知技術と置換可能である。その場合であっても、前記効果を奏することは明らかである。勿論、図面で示した各構成の形状や寸法等も、好ましい一例を示すものであり、その実施に際しては特許請求の範囲に記載した範囲内で、任意に設計変更・修正ができることは云うまでもない。   Although the embodiment of the present invention has been described by taking a dam reservoir as an example of a closed water area, the scope of the present invention is not limited to a dam reservoir, but a dam, a reservoir, a sewage treatment plant, It can be applied to water storage facilities and closed waters that require dredging work such as natural rivers, lakes, ponds, or canals. Moreover, although the case where the sediment was transported / released to the downstream area was described, the transport includes not only the transfer to other areas (other water areas and other places) but also the case of disposal. . The configuration of the flow pipe (portion other than the suction pipe), the water flow generation means, the flow rate control means, etc. used to describe the embodiments are merely preferred examples, and other known techniques. Can be substituted. Even in such a case, it is clear that the above-described effect is achieved. Of course, the shapes, dimensions, and the like of the respective components shown in the drawings show a preferable example, and it is needless to say that design changes and modifications can be arbitrarily made within the scope described in the claims. Absent.

この発明の実施の形態に係る水中堆積物の流送装置の概略構成と、水中堆積物及び流送装置の作業開始前の状況を鉛直断面で表す説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which represents the schematic structure of the submerged sediment inflow apparatus which concerns on embodiment of this invention, and the condition before the work start of a submerged sediment and the inflow apparatus with a vertical cross section. 同上の作業中の状況を表す説明図である。It is explanatory drawing showing the condition in work same as the above. 同上の作業終了時の状況を表す説明図である。It is explanatory drawing showing the condition at the time of completion | finish of work same as the above. 実施の形態に係る吸引パイプの平面図である。It is a top view of the suction pipe concerning an embodiment. 同上の吸引パイプの側面図である。It is a side view of a suction pipe same as the above. 図4の吸引パイプの折返し部を主に示す拡大平面図である。It is an enlarged plan view which mainly shows the folding | turning part of the suction pipe of FIG. 同上の折返し部の底面図である。It is a bottom view of the folding | turning part same as the above. 図4の折返し部のX−X線切断鉛直端面図、X-X-ray cut vertical end view of the folded portion of FIG. 同上の折返し部の先端部分の側面図である。It is a side view of the front-end | tip part of a folding | turning part same as the above.

符号の説明Explanation of symbols

1 流送装置
2 流送管
2a,2a’ 取水口
2b 吐出口
3 水流発生手段
30 流体ポンプ
4 流量制御手段
40 吐出ゲート
5 吸引パイプ
50 管本体
51 接続端
52 折返し部
52a 吸引面(折返し部の底面)
53 シート部材
54 底面吸引孔
55 側面吸引孔
56 錘
57 エルボー管
S 水中堆積物
D ダム
A ダム貯水池(閉鎖的な水域)
B 下流域(他の領域)
DESCRIPTION OF SYMBOLS 1 Flow feeder 2 Flow pipe 2a, 2a 'Water intake port 2b Discharge port 3 Water flow generation means 30 Fluid pump 4 Flow rate control means 40 Discharge gate 5 Suction pipe 50 Pipe body 51 Connection end 52 Folding part 52a Bottom)
53 Sheet member 54 Bottom suction hole 55 Side suction hole 56 Weight 57 Elbow pipe S Underwater sediment D Dam A Dam reservoir (closed water area)
B Downstream area (other areas)

Claims (8)

閉鎖的な水域の水底に堆積した水中堆積物を水と一緒に吸引して他の領域に流送するための水中堆積物流送用の吸引パイプであって、
両端が開口した可撓性を有する管材から形成され、一端が、水の取り入れ口である取水口に、他端が、吐出口側の接続端となっており、
それら両端の中間部には、前記管材を折り返して固定した折返し部が形成され、該折返し部のある管材の下部は切り欠かれ、この切り欠かれた部分には、水中堆積物の表面形状の変化に追随可能な柔軟性を有するシート部材が接着されており、このシート部材には前記水中堆積物吸引用の底面吸引孔が管材内と連通して複数穿設されていると共に、
前記シート部材より上方であって折返し部の先端部分にあたる前記管材の側面部分には、水中堆積物吸引用の側面吸引孔が管材内と連通して穿設されていることを特徴とする水中堆積物流送用の吸引パイプ。
A suction pipe for transporting an underwater sediment stream for sucking together with water the underwater sediment deposited on the bottom of a closed body of water and flowing it to another area,
Formed from a flexible tube with both ends open, one end is a water intake that is a water intake, and the other is a connection end on the discharge port side,
At the middle part of both ends, a folded part is formed by folding and fixing the pipe material, and the lower part of the pipe material with the folded part is cut out, and this cut out part has a surface shape of the underwater sediment. A sheet member having flexibility capable of following the change is bonded, and a plurality of bottom surface suction holes for sucking the underwater deposits are formed in the sheet member so as to communicate with the inside of the pipe member,
An underwater deposition characterized in that a side suction hole for sucking underwater deposits is formed in a side surface portion of the pipe material, which is above the sheet member and corresponds to a tip portion of the folded portion, in communication with the inside of the pipe material. Suction pipe for logistics.
前記シート部材の外縁部には、その縁沿いに水中堆積物の表面形状の変化に追随可能な可撓性を有する錘が配設されていることを特徴とする請求項1に記載の水中堆積物流送用の吸引パイプ。   2. The underwater deposition according to claim 1, wherein a flexible weight capable of following a change in a surface shape of the underwater deposit is disposed along an edge of the outer edge portion of the sheet member. Suction pipe for logistics. 前記シート部材の前記折返し部の先端部分からの張出し長さは、前記管材の管径の1/3以下となっていることを特徴とする請求項1又は2に記載の水中堆積物流送用の吸引パイプ。   The overhanging length of the sheet member from the distal end portion of the folded portion is 1/3 or less of the tube diameter of the pipe material. Suction pipe. 前記シート部材の前記折返し部の側面部分からの張出し長さは、前記管材の直径の2倍程度に、前記シート部材の前記管材に沿った方向の長さは、前記管材の直径の10倍程度に設定されていることを特徴とする請求項1ないし3のいずれかに記載の水中堆積物流送用の吸引パイプ。   The overhang length of the sheet member from the side surface portion of the folded portion is about twice the diameter of the tube material, and the length of the sheet member in the direction along the tube material is about 10 times the diameter of the tube material. The suction pipe for transporting an underwater sedimentary stream according to any one of claims 1 to 3, wherein the suction pipe is set to be. 前記取水口と前記側面吸引孔との間隔は、前記水中堆積物の厚さを予め把握し、その厚さと水中堆積物の水中安息角とから吸引終了時に水中堆積物に形成されるすり鉢状の窪みの最大形状を割り出して、その斜面長さを算出し、前記間隔が該斜面長さより長くなるよう設定されていることを特徴とする請求項1ないし4のいずれかに記載の水中堆積物流送用の吸引パイプ。   The distance between the intake port and the side suction hole is obtained by grasping the thickness of the underwater deposit in advance, and from the thickness and the angle of repose of the underwater deposit, a mortar-like shape formed in the underwater deposit at the end of the suction. 5. The underwater sediment distribution transport according to claim 1, wherein the maximum shape of the depression is determined, the slope length thereof is calculated, and the interval is set to be longer than the slope length. Suction pipe. 前記取水口には、屈曲したエルボー管が接続され、該エルボー管の開口端は、上向きに設置されていることを特徴とする請求項1ないし5のいずれかに記載の水中堆積物流送用の吸引パイプ。   A bent elbow pipe is connected to the intake port, and an open end of the elbow pipe is installed upward. Suction pipe. 閉鎖的な水域の水底に堆積した水中堆積物を水と一緒に吸引して他の領域に流送する水中堆積物の流送装置であって、
請求項1ないし6のいずれかに記載の吸引パイプと、該吸引パイプの管内に水中堆積物を吸引するための水流を発生させる水流発生手段と、を有することを特徴とする水中堆積物の流送装置。
An underwater sediment feeding device that sucks the underwater sediment deposited on the bottom of a closed body of water together with water and sends it to other areas,
An underwater sediment flow comprising: the suction pipe according to any one of claims 1 to 6; and water flow generating means for generating a water flow for sucking the underwater sediment into a pipe of the suction pipe. Feeding device.
請求項7に記載の水中堆積物流送装置を用い、閉鎖的な水域の水底に堆積した水中堆積物を水と一緒に吸引して他の領域に流送する水中堆積物の流送方法であって、
請求項1ないし6のいずれかに記載の吸引パイプを水中堆積物の上に設置し、前記水流発生手段で前記吸引パイプの管内に水流を発生させ、その水流で前記吸引パイプの管内を負圧にすることにより前記側面吸引孔及び底面吸引孔から水と一緒に水中堆積物を吸引し、その負圧で前記吸引パイプの先端を水中堆積物に潜行させて、当該先端を中心に水中堆積物にすり鉢状の窪みを形成しながら水中堆積物を浚渫することを特徴とする水中堆積物の流送方法。
A method for feeding underwater sediments, wherein the underwater sediment logistics apparatus according to claim 7 is used to suck the underwater sediments deposited on the bottom of a closed water area together with water and feed them to other areas. And
The suction pipe according to any one of claims 1 to 6 is installed on an underwater deposit, a water flow is generated in the pipe of the suction pipe by the water flow generation means, and the negative pressure is generated in the pipe of the suction pipe by the water flow. The underwater deposit is sucked together with water from the side suction hole and the bottom suction hole, and the tip of the suction pipe is submerged in the underwater deposit by the negative pressure, and the underwater deposit is centered on the tip. A method for inflowing underwater sediments, wherein the underwater sediments are dredged while forming a mortar-shaped depression.
JP2008320407A 2008-12-17 2008-12-17 Suction pipe for transporting underwater sediment logistics, underwater sediment inflow device, and underwater sediment inflow method using the same Active JP5305439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008320407A JP5305439B2 (en) 2008-12-17 2008-12-17 Suction pipe for transporting underwater sediment logistics, underwater sediment inflow device, and underwater sediment inflow method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008320407A JP5305439B2 (en) 2008-12-17 2008-12-17 Suction pipe for transporting underwater sediment logistics, underwater sediment inflow device, and underwater sediment inflow method using the same

Publications (2)

Publication Number Publication Date
JP2010144359A true JP2010144359A (en) 2010-07-01
JP5305439B2 JP5305439B2 (en) 2013-10-02

Family

ID=42565064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008320407A Active JP5305439B2 (en) 2008-12-17 2008-12-17 Suction pipe for transporting underwater sediment logistics, underwater sediment inflow device, and underwater sediment inflow method using the same

Country Status (1)

Country Link
JP (1) JP5305439B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197580A (en) * 2011-03-18 2012-10-18 Public Works Research Institute Suction pipe for underwater deposit transportation, transportation device of underwater deposit and transportation method of underwater deposit using the same
JP2012229528A (en) * 2011-04-25 2012-11-22 Penta Ocean Construction Co Ltd Fixed type dredging device and dredging method by buried type perforated pipe
JP2013127162A (en) * 2011-12-19 2013-06-27 Torao Inoue Device for lifting and discharging deep part water of dam lake
JP2015098671A (en) * 2013-11-18 2015-05-28 日立造船株式会社 Sediment discharge facility for dam reservoir
JP2021080746A (en) * 2019-11-20 2021-05-27 一般財団法人ダム技術センター Dam spillway

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105464042B (en) * 2015-12-02 2017-04-05 黄河勘测规划设计有限公司 Multi-functional protection against erosion sediment trapping bank

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138598A (en) * 2001-11-01 2003-05-14 Tom Jacobsen Method and device for dredging by use of pipe having opening part in bent part
JP2004270256A (en) * 2003-03-07 2004-09-30 Ishikawajima Harima Heavy Ind Co Ltd Sand removal method and sand removal device of reservoir
JP2006214092A (en) * 2005-02-01 2006-08-17 Public Works Research Institute Method and equipment for transporting sediment accumulated on bottom of water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138598A (en) * 2001-11-01 2003-05-14 Tom Jacobsen Method and device for dredging by use of pipe having opening part in bent part
JP2004270256A (en) * 2003-03-07 2004-09-30 Ishikawajima Harima Heavy Ind Co Ltd Sand removal method and sand removal device of reservoir
JP2006214092A (en) * 2005-02-01 2006-08-17 Public Works Research Institute Method and equipment for transporting sediment accumulated on bottom of water

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197580A (en) * 2011-03-18 2012-10-18 Public Works Research Institute Suction pipe for underwater deposit transportation, transportation device of underwater deposit and transportation method of underwater deposit using the same
JP2012229528A (en) * 2011-04-25 2012-11-22 Penta Ocean Construction Co Ltd Fixed type dredging device and dredging method by buried type perforated pipe
JP2013127162A (en) * 2011-12-19 2013-06-27 Torao Inoue Device for lifting and discharging deep part water of dam lake
JP2015098671A (en) * 2013-11-18 2015-05-28 日立造船株式会社 Sediment discharge facility for dam reservoir
JP2021080746A (en) * 2019-11-20 2021-05-27 一般財団法人ダム技術センター Dam spillway
JP7382596B2 (en) 2019-11-20 2023-11-17 一般財団法人ダム技術センター dam spillway system

Also Published As

Publication number Publication date
JP5305439B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5305439B2 (en) Suction pipe for transporting underwater sediment logistics, underwater sediment inflow device, and underwater sediment inflow method using the same
JP4412700B2 (en) How to remove sediment from sand traps
WO1998020208A1 (en) Dredging method and dredging apparatus
JP4663145B2 (en) Underwater sediment flow method using hydrostatic pressure, pipe with opening and underwater sediment flow facility
JP2007002437A (en) Transportation system of dredged sediment
CN102995686A (en) Pool dredging system
JP4195214B2 (en) A dredge apparatus using a pipe having an opening at a bent portion
JP2008115610A (en) Dredging apparatus
JP2004092077A (en) Method and system for dredging work in large-capacity reservoir
JP2007063934A (en) Sediment transportation system
JP5599069B2 (en) Suction pipe for transporting submerged sediment, submerged sediment transport device, and submerged sediment transport method using the same
JP2006200132A (en) Dredging device
JP4411418B2 (en) Transportation method and apparatus for bottom sediment
JP5703110B2 (en) Fixed dredging equipment and construction method with buried perforated pipe
JP4610292B2 (en) Method and apparatus for transporting earth and sand in a reservoir
JP3723852B2 (en) Bottom sediment removal apparatus and bottom sediment removal method
JP4675061B2 (en) Sediment flow transfer equipment
JP5208056B2 (en) Equipment for transporting and discharging sediments in liquids
JP5100705B2 (en) Sediment flow transfer equipment
JP2005220598A (en) Equipment for cleaning accumulated sediment on bottom of river
JP4114512B2 (en) Reservoir sand discharging method and sand discharging device
JPH11324008A (en) Removing method for sediment in dam
JP3999788B2 (en) Long-distance transportation system for dredged soil and its transportation method
JP2004300704A (en) Construction method and apparatus for removing sediment from bottom of water
JP2004003210A (en) Dredge pump and dredging system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5305439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250