JP2007002437A - Transportation system of dredged sediment - Google Patents
Transportation system of dredged sediment Download PDFInfo
- Publication number
- JP2007002437A JP2007002437A JP2005180885A JP2005180885A JP2007002437A JP 2007002437 A JP2007002437 A JP 2007002437A JP 2005180885 A JP2005180885 A JP 2005180885A JP 2005180885 A JP2005180885 A JP 2005180885A JP 2007002437 A JP2007002437 A JP 2007002437A
- Authority
- JP
- Japan
- Prior art keywords
- water
- pipeline
- return
- downstream
- dredged
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/08—Machine or engine aggregates in dams or the like; Conduits therefor, e.g. diffusors
- F03B13/086—Plants characterised by the use of siphons; their regulation
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/88—Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/88—Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
- E02F3/8833—Floating installations
- E02F3/885—Floating installations self propelled, e.g. ship
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/88—Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
- E02F3/90—Component parts, e.g. arrangement or adaptation of pumps
- E02F3/905—Manipulating or supporting suction pipes or ladders; Mechanical supports or floaters therefor; pipe joints for suction pipes
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F7/00—Equipment for conveying or separating excavated material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2210/00—Working fluid
- F05B2210/10—Kind or type
- F05B2210/13—Kind or type mixed, e.g. two-phase fluid
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
本発明は、海から離れた高所に在って河川の水が流れ込むダム等の大容量貯水池の浚渫土砂を、該貯水池から海又はその近くの河川まで輸送するための浚渫土砂の輸送システムに関する。 The present invention relates to a dredged sand transport system for transporting dredged sand from a large-capacity reservoir such as a dam where river water flows from a high place away from the sea from the reservoir to the sea or a nearby river. .
尚、本明細書において「浚渫土砂」とは、ダム等の大容量貯水池の底部の堆積土砂を吸引又は浚渫したときに生じる土砂、泥土、ヘドロ等、又はそれらの混合物を含む。また、本発明において「大容量貯水池」とは、ダムの他、河川上流側からの土砂の堆積による有効深度の低下が問題となる種々の大容量貯水池(例えば湖、遊水池等)が含まれ、人工物及び自然物の如何を問わない。 In addition, in this specification, "sedimental sand" includes sediment, mud, sludge, etc., or a mixture thereof generated when sucking or dredging sediment deposited at the bottom of a large-capacity reservoir such as a dam. In the present invention, the term “large capacity reservoir” includes various dams (for example, lakes, recreational ponds, etc.) in which a decrease in effective depth due to sediment accumulation from the upstream side of the river is a problem. Regardless of whether it is an artifact or a natural object.
水力発電や灌漑等に利用される既存のダムが抱える今日的な重要課題として、その上流側から流れてきた土砂が長年に亘りダムの水底に多量に堆積し、その有効深度を浅くしてしまうことによりダムの発電能力が低下したり或いは貯水量が減少する、ということが挙げられている。 As an important current issue for existing dams used for hydropower generation and irrigation, a large amount of sediment flowing from the upstream side accumulates on the bottom of the dam for many years, reducing its effective depth. As a result, the power generation capacity of the dam is reduced or the amount of stored water is reduced.
そこで、このような問題に対処するために、例えば、ダム水底の堆積土砂を浚渫してダム外に運び出すことが既に試みられており、またその浚渫に当たり、ダムの水底の堆積土砂をサイフォン管で吸い上げ、ダム周辺の回収場所まで輸送するようにした技術が既に提案されている(下記の特許文献1を参照)
しかしながら、山中に設けられ道路事情が余り良くないダムの近辺から、ダンプ車両等で多量の浚渫土砂を外部に搬出する作業には多大の手間とエネルギ(従ってコスト)を要するものであり、特にこの問題は、ダムの堆積土砂を、これが本来(ダムが無ければ)流れるべき海までダンプ輸送しようとする場合には顕著となり、更に交通渋滞等の原因ともなる。 However, it takes a lot of labor and energy (and hence cost) to carry a large amount of dredged sand out of the vicinity of a dam provided in the mountains where road conditions are not so good. The problem becomes conspicuous when dumping the sediment of the dam to the sea where it should flow (if there is no dam), and also causes traffic congestion.
なお、このような問題を回避しつつダムの浚渫土砂を海まで運ぶために、例えばその浚渫土砂をダムの直下流の河川に直接放出することも考えられるが、その場合には、下流河川の水質汚濁を生じ、河川の生態系にも影響を及ぼす虞れがある。 In order to transport the dam sediment to the sea while avoiding such problems, for example, it may be possible to release the dredged sediment directly to the river immediately downstream of the dam. It may cause water pollution and affect the river ecosystem.
そこでダムと海又はその近くの河川との間をパイプラインで接続して、ダムの水底に堆積する多量の土砂を海又はその近くの河川まで重力を利用して(従って少ないエネルギとコストで)パイプライン輸送することが考えられるが、その輸送の際にパイプライン内を流れる流動体のエネルギを一部でも回収することができれば、システム全体のエネルギ効率を高める上で更に有利となり、特にその回収エネルギを、輸送システムにおいて使用される種々の補助的な電動機器の動力として利用可能となれば、省エネ効果が大となる。また、このようなパイプラインを用いた重力輸送システムでは、多量の土砂をパイプライン内でスムーズに流動させるために、ダムから多量の水を土砂と一緒に海又はその近くまで流す必要があるが、土砂を海又はその近くまで輸送した後において、この多量の水をそのまま無駄に海や川に捨てたのでは、水資源の節約を図る上で好ましいものではない。 Therefore, a pipeline is connected between the dam and the sea or the nearby river, and a large amount of sediment deposited on the bottom of the dam is used to the sea or the nearby river using gravity (thus with less energy and cost). Although it is conceivable to transport by pipeline, if it is possible to recover even a part of the energy of the fluid flowing in the pipeline at the time of transport, it will be more advantageous in improving the energy efficiency of the entire system, especially the recovery. If the energy can be used as power for various auxiliary electric devices used in the transportation system, the energy saving effect is increased. In addition, in such a gravity transport system using a pipeline, it is necessary to flow a large amount of water from the dam along with the sediment to the sea or near it in order to smoothly flow a large amount of sediment in the pipeline. After transporting earth and sand to or near the sea, it is not preferable in terms of saving water resources to discard this large amount of water as it is in the sea or river.
本発明は、上記に鑑み提案されたものであって、ダム等の大容量貯水池の水底に堆積する多量の土砂を少ないエネルギとコストで、しかも自然環境に極力影響が出ないよう配慮しながら、能率よく海又はその近くの河川までパイプライン輸送できるようにし、更にそのパイプライン輸送中の流動体のエネルギを一部回収可能として省エネを図り、更にまたパイプラインを流下する流動体中の水の一部を、エネルギを無駄に消費することなく大容量貯水池や他の貯水池に戻せるようにした、新規な浚渫土砂の輸送システムを提供することを目的とする。 The present invention has been proposed in view of the above, and a large amount of sediment deposited on the bottom of a large-capacity reservoir such as a dam with less energy and cost, while considering that the natural environment is not affected as much as possible, Efficiently enables pipeline transportation to the sea or nearby rivers, and further saves energy by making it possible to recover part of the energy of the fluid during the pipeline transportation. In addition, the water in the fluid flowing down the pipeline It is an object of the present invention to provide a new dredged sand transport system that can return a part to a large-capacity reservoir or another reservoir without wasting energy.
上記目的を達成するために、請求項1の発明は、海から離れた高所に在って河川の水が流れ込む大容量貯水池の浚渫土砂を該貯水池から海又はその近くの河川まで輸送する輸送路を備え、この輸送路が、大容量貯水池の浚渫土砂をサイフォン作用で水と共に吸い出すサイフォン管と、このサイフォン管の下流端に連なり、同管で吸い出された浚渫土砂及び水を含む流動体を海又はその近くの河川まで重力を利用して自然流下させる自然流下経路とを少なくとも含む浚渫土砂の輸送システムであって、前記自然流下経路は、相互に縦列配置される複数条のパイプラインと、その相隣なるパイプライン間に介在していて、上流側のパイプラインから流下してきた流動体を一時的に貯留し下流側のパイプラインに放流可能な中継枡と、最下流のパイプラインの下流端に連ねて設けられ、該パイプラインを流下してきた流動体より水を分離して海又はその近くの河川に放流可能であると共に、残余の浚渫土砂を一時的に貯留してその少なくとも一部を回収可能とした水/土砂分離処理手段とを有しており、前記輸送路には、そこを流れる前記流動体の流動エネルギを電気エネルギに変換し得る動力変換手段が設けられることを特徴とする。 In order to achieve the above object, the invention of claim 1 is a transport for transporting dredged sand of a large-capacity reservoir in a high place away from the sea into which river water flows from the reservoir to the sea or a nearby river. A siphon pipe that sucks dredged sand from a large-capacity reservoir together with water by a siphon action, and a fluid containing dredged sand and water sucked out by the pipe. A dredged soil transport system including at least a natural flow path that naturally flows down to the sea or a river near the sea, wherein the natural flow path includes a plurality of pipelines arranged in tandem with each other. A relay rod that is interposed between the adjacent pipelines and can temporarily store the fluid flowing down from the upstream pipeline and release it to the downstream pipeline; It is connected to the downstream end of the line and can separate water from the fluid flowing down the pipeline and release it to the sea or nearby rivers, and temporarily store the remaining dredged sand. A water / sediment separation processing means capable of recovering at least a part, and a power conversion means capable of converting the flow energy of the fluid flowing therethrough into electric energy is provided in the transport path. It is characterized by.
また請求項2の発明は、請求項1の上記構成に加えて、前記動力変換手段には、それが変換した電気エネルギを少なくとも用いて駆動され前記輸送システム中で使用される電動機器が接続されることを特徴とする。 According to a second aspect of the present invention, in addition to the above configuration of the first aspect, the power conversion means is connected to an electric device that is driven using at least the electric energy converted by the power conversion unit and used in the transportation system. It is characterized by that.
また請求項3の発明は、請求項1又は2の上記構成に加えて、前記水/土砂分離処理手段と前記大容量貯水池又は所定の戻し水用貯水池との間には、その間を接続する還流路が前記自然流下経路から独立して設けられ、この還流路には、前記水/土砂分離処理手段で流動体より分離された水を前記大容量貯水池又は戻し水用貯水池まで汲み上げるべく、前記動力変換手段で変換された電気エネルギで駆動される少なくとも1つの汲み上げ用電動ポンプが設けられることを特徴としており、また請求項4の発明は、請求項3の上記構成に加えて、前記還流路が、互いに縦列配置されて前記水/土砂分離処理手段と前記大容量貯水池又は戻し水用貯水池との間を接続する複数の戻り配管と、その相隣なる戻り配管間に介在していて、下流側の戻り配管から上昇流動してきた戻し水を一時的に貯留可能な複数の戻り用中継槽とを備え、前記複数の戻り配管には、個々の戻り配管の上流端から下流端まで戻り水を上昇流動させるべく、その各々の戻り配管毎に前記汲み上げ用電動ポンプが設けられることを特徴とする。
In addition to the above-described configuration of the first or second aspect, the invention of
また請求項5の発明は、請求項1〜4の何れかの構成に加えて、前記サイフォン管及び自然流下経路の少なくとも一方には、その流路を開度調節可能に開閉する少なくとも1つの開閉弁が設けられることを特徴とする。 According to a fifth aspect of the present invention, in addition to the structure of any one of the first to fourth aspects, at least one of the siphon tube and the natural flow path is opened and closed so that the flow path can be opened and closed. A valve is provided.
また請求項6の発明は、請求項1〜5の何れかの構成に加えて、前記水/土砂分離処理手段が、前記最下流のパイプラインを経て流下してきた流動体を受容して該流動体中の浚渫土砂を沈殿させる複数の沈殿槽が、その各々の沈殿槽内の流動体中の上澄み水を順次下流の沈殿槽にオーバフローさせ得るように配列して構成され、その最下流の沈殿槽からオーバフローした上澄み水を海又はその近くの河川に放流するようにしたことを特徴としている。 According to a sixth aspect of the present invention, in addition to the structure of any of the first to fifth aspects, the water / sediment separation processing means receives the fluid flowing down through the most downstream pipeline and supplies the fluid. A plurality of sedimentation tanks for precipitating dredged sand in the body are arranged so that the supernatant water in the fluid in each sedimentation tank can be sequentially overflowed to the downstream sedimentation tank, and the most downstream sedimentation It is characterized in that the supernatant water overflowing from the tank is discharged into the sea or a river near it.
さらに請求項7の発明は、請求項1〜6の何れかの構成に加えて、各中継枡が、上流側のパイプラインが接続される入口部と、下流側のパイプラインが接続される出口部とを備えており、それら入口部及び出口部にそれぞれ開閉弁が設けられることを特徴とする。
In addition to the structure of any one of claims 1 to 6, the invention of
さらに請求項8の発明は、請求項1〜7の何れかの構成に加えて、少なくとも1つの中継枡を迂回して、その入口部よりも上流側のパイプラインとその出口部よりも下流側のパイプラインとの間を接続するバイパス路を備え、そのバイパス路には、これを随時に遮断し得る開閉弁が設けられることを特徴とする。
Further, the invention of
さらに請求項9の発明は、請求項1〜8の何れかの構成に加えて、前記サイフォン管内、少なくとも1つの中継枡内または少なくとも1部の前記パイプライン内に無数の微細気泡を供給するためのマイクロバブル供給手段を備えることをことを特徴とする。 Furthermore, in addition to the structure of any one of claims 1 to 8, the invention of claim 9 is for supplying countless fine bubbles in the siphon tube, in at least one relay rod, or in at least a part of the pipeline. The microbubble supply means is provided.
以上のように本発明によれば、海から離れた高所に在る大容量貯水池の浚渫土砂を、サイフォン管のサイフォン作用で水と共に吸い出し、次いで自然流下通路を経由して海又はその近くの河川まで自然流下させるようにしたので、重力を利用して大容量貯水池の浚渫土砂を海又はその近くの河川まで無理なく且つ緩やかに輸送することができ、その輸送のためのエネルギ節減とコスト低減を図ることができ、また途中の河川水域を浚渫土砂で汚濁したり生態系に影響を与える心配がなく、更にダンプ車両による輸送の場合のように交通渋滞等の不具合を招く虞れもない。また上記自然流下経路が、相互に縦列配置される複数条のパイプラインと、その相隣なるパイプライン間に介在していて、上流側のパイプラインから流下してきた流動体を一時的に貯留し下流側に放流可能な中継枡とを有するので、個々のパイプラインの内圧を軽減できてその耐久性を高めることができ、またパイプラインに対するメンテナンスも、中継枡で区切られたパイプライン単位で行えるため、そのメンテナンス作業が比較的容易となる。また最下流のパイプラインの下流端に連ねて配設される水/土砂分離処理手段によって、自然流下経路を経て流下してきた流動体より比較的清浄な水だけを海又はその近くの河川に放流可能であり、しかもその水/土砂分離処理手段に残余の浚渫土砂を一時的に貯留してその少なくとも一部を回収できることから、浚渫土砂の全部が海又はその近くの河川にそのまま放出される場合と比べて、海又はその近くの河川の水質汚濁や生態系への影響を極力抑えることができる。その上、輸送路には、そこを流れる流動体の流動エネルギを電気エネルギに変換し得る動力変換手段が設けられるので、重力を利用して大容量貯水池の浚渫土砂を海又はその近くの河川まで自然流下させる過程で、その流動エネルギを電気エネルギに変換して、これを効率よく利用することができる。 As described above, according to the present invention, dredged sand of a large-capacity reservoir located at a high place away from the sea is sucked out together with water by the siphon action of the siphon tube, and then is passed through the natural flow passage or near the sea. Since it was allowed to flow down naturally to the river, dredged sand in the large-capacity reservoir can be transported to the sea or nearby rivers without any difficulty using gravity, saving energy and reducing costs for the transport. In addition, there is no fear of polluting the river water area on the way with dredged soil or affecting the ecosystem, and there is no possibility of causing problems such as traffic congestion as in the case of transportation by dump truck. The natural flow path is interposed between a plurality of pipelines arranged in tandem with each other and adjacent pipelines, and temporarily stores the fluid flowing down from the upstream pipeline. Since it has a relay rod that can be discharged downstream, the internal pressure of each pipeline can be reduced and its durability can be increased, and maintenance on the pipeline can also be performed in units of pipelines separated by relay rods. Therefore, the maintenance work becomes relatively easy. In addition, water / sediment separation processing means arranged in line with the downstream end of the most downstream pipeline releases only relatively clean water from the fluid flowing down through the natural flow path to the sea or a river near it. When all the dredged sand is released directly into the sea or nearby river because it is possible to temporarily store the remaining dredged sand in the water / sediment separation processing means and collect at least part of it. Compared with, the water pollution of the sea or the river near it and the influence on the ecosystem can be suppressed as much as possible. In addition, since the transportation path is provided with power conversion means that can convert the flow energy of the fluid flowing through it into electrical energy, the dredged sand of the large-capacity reservoir can be transferred to the sea or a river near it by using gravity. In the process of flowing down naturally, the flow energy can be converted into electric energy and used efficiently.
また特に請求項2の発明によれば、前記動力変換手段が変換した電気エネルギが、輸送システム中で使用される電動機器(例えばサイフォン管内にサイフォン作用開始のための呼び水を供給する電動ポンプ、サイフォン管のサイフォン作用を助勢する電動ポンプ、パイプライン等の内部に無数の微細気泡を供給するための電動式のマイクロバブル供給手段、他の大容量貯水池からその近くの中継枡まで浚渫土砂を吸引圧送し得る電動ポンプ等)の動力として有効利用できて、システム全体のエネルギ節減が図られる。しかも動力変換手段と上記電動機器とを比較的近くに配置可能であることから、その間の電気配線を簡素化してコスト節減が図られる。 In particular, according to the invention of claim 2, the electric energy converted by the power conversion means is used in an electric device (for example, an electric pump or siphon for supplying priming water for starting siphon action in a siphon pipe) An electric pump that assists the siphoning of the pipe, an electric microbubble supply means for supplying countless fine bubbles inside the pipeline, etc., and sucking and sending dredged sand from other large-capacity reservoirs to nearby relay dredgers Can be effectively used as power of an electric pump or the like that can reduce the energy of the entire system. In addition, since the power conversion means and the electric device can be disposed relatively close to each other, the electric wiring between them can be simplified to reduce the cost.
また特に請求項3の発明によれば、水/土砂分離処理手段と大容量貯水池又は所定の戻し水用貯水池との間には、その間を接続する還流路が自然流下経路から独立して設けられ、この還流路には、水/土砂分離処理手段で流動体より分離された水を大容量貯水池又は戻し水用貯水池まで戻し水として汲み上げるべく、前記動力変換手段で変換された電気エネルギで駆動される少なくとも1つの汲み上げ用電動ポンプが設けられるので、水/土砂分離処理手段で流動体より分離された水の一部を、ただ海や河川に捨てるのではなく、大容量貯水池又は戻し水用貯水池までエネルギ節減を図りつつ強制的に戻すことができ、従って、この戻し水を灌漑等に有効利用できて水資源の節約に寄与することができる。
In particular, according to the invention of
また特に請求項4の発明によれば、前記還流路が、互いに縦列配置されて水/土砂分離処理手段と大容量貯水池又は戻し水用貯水池との間を接続する複数の戻り配管と、その相隣なる戻り配管間に介在していて、下流側の戻り配管から上昇流動してきた戻し水を一時的に貯留可能な複数の戻り用中継槽とを備え、複数の戻り配管には、個々の戻り配管の上流端から下流端まで戻り水を上昇流動させるべく、その各々の戻り配管毎に前記汲み上げ用電動ポンプが設けられるので、水/土砂分離処理手段と、これから水を戻すべき大容量貯水池又は戻し水用貯水池との間の高低差が大きくても、比較的小容量の汲み上げ用電動ポンプで無理なく戻し水を圧送可能であり、電動ポンプのコスト節減と耐久性向上が図られる。
In particular, according to the invention of
また特に請求項5の発明によれば、前記輸送路を構成するサイフォン管及び自然流下経路の少なくとも一方には、その流路を開度調節可能に開閉する少なくとも1つの開閉弁が設けられるので、該開閉弁の開度調節により、一連の輸送システムの起動や停止、運転に当たり、ウォータハンマー現象、流速のオーバースピード、キャビテーション等の不都合を回避しながらシステムの適切な制御が可能となり、システム各部の耐久性向上が図られる。
In particular, according to the invention of
また特に請求項6の発明によれば、前記水/土砂分離処理手段は、最下流のパイプラインを経て流下してきた流動体を受容して該流動体中の浚渫土砂を沈殿させる複数の沈殿槽が、その各々の沈殿槽内の流動体中の上澄み水を順次下流の沈殿槽にオーバフローさせ得るように配列して構成され、その最下流の沈殿槽からオーバフローした上澄み水を海又はその近くの河川に放流するようにしたので、その放流水の清浄度を高めることができて、海又はその近くの河川の水質汚濁や生態系への影響が一層効果的に抑えられる。
In particular, according to the invention of
また特に請求項7の発明によれば、各中継枡が、上流側のパイプラインが接続される入口部と、下流側のパイプラインが接続される出口部とを備えており、それら入口部及び出口部にそれぞれ開閉弁が設けられるので、それら開閉弁の適宜開閉により、前述のパイプラインのメンテナンス作業を一層能率よく的確に行うことが可能となり、また個々のパイプラインを流れる流動体の流速調整や緊急時等の流動停止も比較的容易となる。
In particular, according to the invention of
さらに請求項8の発明によれば、少なくとも1つの中継枡を迂回して、その入口部よりも上流側のパイプラインとその出口部よりも下流側のパイプラインとの間を接続するバイパス路を備え、そのバイパス路には、これを随時に遮断し得る開閉弁が設けられるので、一部の中継枡が土砂で埋まる等して使用不能となった場合等には、その中継枡の入口及び出口を塞ぐと共に、対応するバイパス路の開閉弁を開くことにより、上流からの流動体を該使用不能の中継枡をバイパスして下流側に流すことができ、従って、システムの運転を引き続き支障なく行うことができる。
Further, according to the invention of
また特に請求項9の発明によれば、サイフォン管内、少なくとも1つの中継枡内または少なくとも1部のパイプライン内に無数の微細気泡を供給するための電動式のマイクロバブル供給手段を備えるので、その無数の微細気泡の流動体中への混入分散効果により、流動体と、サイフォン管又はパイプライン内面との間の摩擦抵抗を効果的に低減できる上、流動体の密度を軽減できるようになって、流動体をスムーズに流動させることが可能となる。また上記流動体中の好気性微生物と微細気泡の酸素とを十分に接触させることができて、その微生物を活性化させることができるため、海又は河口近くに達した流動体の臭気・濁度が向上し、溶存酸素量も増えて、環境対策上、有利である。 In particular, according to the invention of claim 9, since it is equipped with electric microbubble supply means for supplying countless fine bubbles into the siphon tube, at least one relay rod, or at least a part of the pipeline, The effect of mixing and dispersing innumerable fine bubbles in the fluid can effectively reduce the frictional resistance between the fluid and the siphon tube or the inner surface of the pipeline, and can also reduce the density of the fluid. The fluid can flow smoothly. Also, since the aerobic microorganisms in the fluid can be sufficiently brought into contact with oxygen in the microbubbles and the microorganisms can be activated, the odor and turbidity of the fluid reaching the sea or near the estuary And the amount of dissolved oxygen increases, which is advantageous for environmental measures.
以下、本発明の実施の形態を、添付図面に例示した本発明の実施例に基づいて以下に具体的に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below based on examples of the present invention illustrated in the accompanying drawings.
添付図面において、図1〜図8は、本発明の第1実施例を示すものであって、図1は、浚渫土砂輸送システムの概要を示す全体概略縦断面図、図2は図1の2矢視部拡大図、図3は図1の3矢視部拡大図、図4は図3の4−4線拡大断面図、図5は、水/土砂分離処理手段の要部縦断面図(図1の5矢視部拡大図)、図6は図5の6矢視平面図である。また図7は、本発明の第2実施例を示す要部拡大縦断面図である。
In the accompanying drawings, FIGS. 1 to 8 show a first embodiment of the present invention. FIG. 1 is an overall schematic longitudinal sectional view showing an outline of a dredged sand transport system, and FIG. 3 is an enlarged view taken along the
先ず、第1実施例について説明する。図1において、浚渫土砂輸送システムは、海Oから離れた高所に在って河川Rの水が流れ込む大容量貯水池としてのダムDで行われた浚渫作業により生じた浚渫土砂1を、該ダムDから海O又はその近くの河川Rまで重力を利用して輸送するために用いられる。 First, the first embodiment will be described. In FIG. 1, the dredged sediment transport system includes dredged sediment 1 generated by dredging work performed in a dam D as a large-capacity reservoir in a high place away from the sea O and into which water of the river R flows. It is used to transport from D to the sea O or the river R nearby by using gravity.
この輸送システムは、ダムDの浚渫土砂1をサイフォン作用で水と共に吸い出すサイフォン管Sと、このサイフォン管Sの下流端に連なり、同管Sで吸い出された浚渫土砂1及び水を含む流動体を海O又はその近くの河川Rまで重力を利用して自然流下させる自然流下経路Pと、この自然流下経路Pを経て流下してきた前記流動体より水を分離して海O又はその近くの河川Rに放流可能であると共に残余の浚渫土砂1を一時的に貯留してその少なくとも一部を回収可能な水/土砂分離処理手段SEとを備える。 This transport system includes a siphon pipe S that sucks dredged sand 1 of a dam D together with water by a siphon action, and a fluid that contains dredged sand 1 and water sucked in the pipe S, connected to the downstream end of the siphon pipe S. The natural flow path P that naturally flows down to the sea O or a nearby river R using gravity, and water from the fluid that has flowed through the natural flow path P to separate the water and the river near the sea O Water / sediment separation processing means SE that can be discharged into R and can temporarily store the remaining dredged sand 1 and collect at least a part thereof.
前記サイフォン管Sは、図示例ではダムDの貯留水面上を任意に移動可能な浚渫作業船Bに設けられて吸込口Ueが水中で昇降可能な可動吸込管Uと、この可動吸込管Uの下流端に一端が連なり且つその他端がダムDの直下流側で且つダムDよりも低位置に設けた中継枡Pm0までダムDの堰を越えて下方に長く延びる搬送管Aとを備えており、前記可動吸込管U及び搬送管Aが互いに協働してサイフォン管Sを構成する。 In the illustrated example, the siphon pipe S is provided on a dredger work ship B that can be arbitrarily moved on the reservoir water surface of the dam D, and a movable suction pipe U in which the suction port Ue can be raised and lowered in water, and the movable suction pipe U The other end is connected to the downstream end, and the other end is provided on the downstream side of the dam D and at a position lower than the dam D. The movable suction pipe U and the transport pipe A cooperate with each other to form a siphon pipe S.
而して可動吸込管Uの吸込口UeをダムDの水底の堆積土砂1又はその近傍に臨ませ、浚渫作業船Bに設置されてサイフォン管Sに接続した給水ポンプRyに呼び水機能を発揮させてサイフォン管Sのサイフォン作用を開始させる。これにより、サイフォン管Sは、その吸込口Ueよりダム水底の堆積土砂1を水と共に吸い上げ、その管内を通して中継枡Pm0まで徐々に且つ連続的に流動させることができる。 Thus, the suction port Ue of the movable suction pipe U faces the sediment 1 or the vicinity of the bottom of the dam D, and the water supply pump Ry installed on the dredger ship B and connected to the siphon pipe S exhibits the priming function. The siphon action of the siphon tube S is started. As a result, the siphon pipe S can suck up the sediment 1 from the bottom of the dam together with the water from the suction port Ue, and can gradually and continuously flow through the pipe to the relay rod Pm0.
またサイフォン管Sの途中には、その管を随時に遮断して前記サイフォン作用を一時的に中断し得る開閉弁V1と、そのサイフォン管S内に空気を混入させて該管Sのサイフォン作用による吸込力の調整を行なうための混気手段(図示せず)とが設けられる。また浚渫作業船Bには、可動吸込管Uの吸込口Ueを任意の高さに昇降駆動し得る駆動手段2が設けられており、また該作業船Bを自力走行させるための推進手段(図示せず)も設けられる。 Further, in the middle of the siphon tube S, the on-off valve V1 which can be interrupted at any time to temporarily interrupt the siphon operation, and air is mixed into the siphon tube S to cause the siphon operation of the tube S Air mixing means (not shown) for adjusting the suction force is provided. Further, the dredger work ship B is provided with drive means 2 capable of moving the suction port Ue of the movable suction pipe U up and down to an arbitrary height, and propulsion means for causing the work ship B to travel on its own (see FIG. (Not shown) is also provided.
前記中継枡Pm0は、ダムDの直下流側に在ってサイフォン管Sからサイフォン作用で自然流下してきた浚渫土砂1及び水を含む流動体を一時的に貯留し下流側に徐々に放流可能としたものであって、その構造は、後述する自然流下経路Pにおいて設けられる中継枡Pmと基本的に同じである。即ち、容量の大きい水槽状に形成された枡ユニットケース3が地面に定置されており、その枡ユニットケース3の内部は、隔壁3mにより2室に区画され、その一方の室が中継枡Pm0となり、また他方の室が後述する戻り水用中継槽Kmとなる。
The relay dredging Pm0 is located immediately downstream of the dam D, and temporarily stores the fluid containing dredged sand 1 and water that has flowed down naturally from the siphon pipe S by the siphon action and can be gradually discharged downstream. The structure is basically the same as the relay rod Pm provided in the natural flow path P described later. That is, the
前記中継枡Pm0の、比較的高位置に開口した入口部3iには、サイフォン管S(図示例では搬送管A)の下流端が接続され、またその中継枡Pm0の比較的低位置に開口した出口部3oには、自然流下経路Pにおいて最上流に位置するパイプラインPpの上流端が接続される。またその中継枡Pm0の入口部3i及び出口部3oには、その各々を個別に開閉可能とすべく開閉弁Vi,Veがそれぞれ設けられる。
The downstream end of the siphon pipe S (the conveying pipe A in the illustrated example) is connected to the
前記自然流下経路Pは、相互に縦列配置される複数条のパイプラインPp…と、その相隣なるパイプラインPp,Pp間に介在していて、上流側のパイプラインPpから流下してきた浚渫土砂1及び水を含む流動体を一時的に貯留し下流側のパイプラインPpに徐々に放流可能な中継枡Pmとを備える。その中継枡Pmは、前記自然流下経路Pの全長と、その自然流下経路Pの上,下流端間の高低差等を踏まえて、各パイプラインPpにおける流動体のスムーズな自然流下を確保すべく適当な距離をおいて且つ適当な高低差を以って複数設置されるが、下流側の中継枡Pmになるほど、低位置に置かれることは勿論である。また各パイプラインPpは、基本的には下り傾斜又は水平に配置されるが、途中の地形等によっては一部が上り傾斜であってもよい。 The natural flow path P is interposed between a plurality of pipelines Pp, which are arranged in tandem with each other, and the adjacent pipelines Pp, Pp, and the dredged sand that has flowed down from the upstream pipeline Pp. 1 and a relay rod Pm that temporarily stores a fluid containing water and can be gradually discharged to the downstream pipeline Pp. The relay rod Pm should ensure smooth natural flow of the fluid in each pipeline Pp based on the total length of the natural flow path P and the height difference between the upper and downstream ends of the natural flow path P. A plurality of them are installed at an appropriate distance and with an appropriate height difference, but needless to say, the downstream relay rod Pm is placed at a lower position. Each pipeline Pp is basically arranged in a downward slope or horizontally, but a part of the pipeline Pp may be an upward slope depending on the terrain on the way.
相隣なる2つの中継枡Pm間を接続する1条のパイプラインPpは、相互に縦列配置される多数条のパイプライン要素4…を直列に接続して構成されており、その少なくとも一部のパイプライン要素4は、パイプラインPpの長さ方向に互いに間隔をおいて地面に立設固定したコンクリート製の支持枠5に支持される。
One pipeline Pp connecting two adjacent relay rods Pm is configured by connecting a plurality of
また各々の中継枡Pmは、前記したサイフォン管S下流端の前記中継枡Pm0と基本的に同じ構造であって、枡ユニットケース3内部の、隔壁3mにより区画された2室の一方が中継枡Pmとなり、他方が後述する戻り水用中継槽Kmとなる。前記中継枡Pmの入口部3iには上流側のパイプラインPpの下流端が接続され、またその出口部3eには下流側のパイプラインPpの上流端が接続される。そして、それら入口部3i及び出口部3eには開閉弁Vi,Veが各々設けられる。
Each relay rod Pm has basically the same structure as the above-described relay rod Pm0 at the downstream end of the siphon tube S, and one of the two chambers partitioned by the
パイプラインPpには各中継枡Pmを迂回するバイパス路Pbが接続される。即ち、そのバイパス路Pbは、各中継枡Pmの入口部3iよりも上流側のパイプラインPpとその出口部3eよりも下流側のパイプラインPpとの間を接続するように配設され、そのバイパス路Pbの途中には、該バイパス路Pbを随時に遮断し得る開閉弁Vbが設けられる。従って、浚渫土砂の輸送時に中継枡Pmが万一、土砂で埋まる等して使用不能となった場合等には、その中継枡Pmの入口3i及び出口3eを開閉弁Vi,Veで閉じると共に、対応するバイパス路Pbの開閉弁Vbを開くことにより、上流からの流動体を、使用不能の中継枡Pmをバイパスして下流側に流すことができるため、輸送システムの運転を引き続き支障なく行うことができ、その間に使用不能状態の中継枡Pmの復旧作業を並行して行うことが可能である。
A bypass path Pb that bypasses each relay rod Pm is connected to the pipeline Pp. That is, the bypass Pb is disposed so as to connect between the pipeline Pp upstream of the
少なくとも一部の中継枡(図示例では上流端の中継枡Pm0)及び中流の少なくとも一部のパイプラインPpには、パイプラインPpの内部に直径が100μm以下の非常に小さな無数の微細気泡(空気)を供給するためのマイクロバブル供給手段Mが付設される。このマイクロバブル供給手段Mは、中継枡Pm0内またはパイプラインPp内より水を吸い込んで加圧するポンプ6と、そのポンプ6で加圧された水の中に微細気泡を十分に分散、混合させた混相流を発生させる混相流発生装置7と、その混相流発生装置7で発生した混相流を下流側のパイプラインPpに合流させて、そのパイプラインPpを流れる前記流動体に微細気泡を混合させる配管8とを備える。尚、このような微細気泡を水中に大量に混合させる混相流発生装置は、従来公知であって既に工業的にも量産されている(例えば特開2000-447号公報、特開平7-265057号公報等を参照)。
At least some of the relay rods (upstream end relay rod Pm0 in the illustrated example) and at least some of the middle-stream pipelines Pp have a very small number of very small bubbles (air) having a diameter of 100 μm or less inside the pipeline Pp. ) Is provided. The microbubble supply means M sufficiently disperses and mixes fine bubbles in the
上記微細気泡は、いわゆる「マイクロバブル」と呼ばれるものであって、単にマクロサイズの気泡が小さくなったというだけではなく、そのサイズ効果により様々な物理化学特性を発揮する。例えば、この微細気泡は水中で恰も静止している如く非常に緩やかに上昇し、また水中で気泡相互が優れた均一性、分散性を発揮し、更に水中への気体吸収効率が高く、酸素溶存量を迅速に上昇させることができる等の特徴がある。そして、このような無数の微細気泡を、パイプラインPp中の浚渫土砂と水を含む流動体中に混合、分散させると、その流動体とパイプラインPp内面との間の摩擦抵抗を効果的に低減できてパイプラインPpの耐久性が向上し、その上、流動体の密度を軽減できるようになって、比較的小さな高低差であっても流動体をスムーズに流下させることが可能となる。また上記流動体中の好気性微生物と微細気泡の酸素とを十分に接触させることができて、その微生物を活性化させることができるため、海Oの近くまで到達したときの流動体の臭気・濁度が向上し、溶存酸素量も増えることから、海Oへ放流される水の水質も良好となり、環境対策上、有利である。 The fine bubbles are so-called “micro bubbles”, and not only the macro-sized bubbles are reduced, but also exhibit various physicochemical properties due to the size effect. For example, these fine bubbles rise very slowly as if the soot remains still in water, and the bubbles exhibit excellent uniformity and dispersibility in water. Furthermore, the gas absorption efficiency in water is high and oxygen is dissolved. There is a feature that the amount can be increased quickly. And, when such countless fine bubbles are mixed and dispersed in a fluid containing dredged sand and water in the pipeline Pp, the frictional resistance between the fluid and the inner surface of the pipeline Pp is effectively increased. This makes it possible to reduce the durability of the pipeline Pp, and furthermore, the density of the fluid can be reduced, so that the fluid can flow smoothly even with a relatively small height difference. Moreover, since the aerobic microorganisms in the fluid can be sufficiently brought into contact with oxygen in the fine bubbles and the microorganisms can be activated, the odor of the fluid when reaching near the sea O Since the turbidity is improved and the amount of dissolved oxygen is increased, the quality of water discharged into the sea O is improved, which is advantageous for environmental measures.
上記マイクロバブル供給手段Mは、これを浚渫作業船B上や、他の中継枡Pmに付設してもよく、これにより、サイフォン管S内や他の中継枡Pm近傍のパイプラインPp内を流れる浚渫土砂1及び水を含む流動体にも上記微細気泡を分散、混合させることができるようになる。 The microbubble supply means M may be attached to the dredger work boat B or to another relay rod Pm, thereby flowing in the siphon pipe S or the pipeline Pp in the vicinity of the other relay rod Pm. The fine bubbles can be dispersed and mixed in the fluid containing the dredged soil 1 and water.
サイフォン管Sに介装される前記開閉弁V1は、その開度を任意に微調節可能に構成されるものであり、その開度調節により、一連の輸送システムの起動や停止、運転に当たり、ウォータハンマー現象、流速のオーバースピード、キャビテーション等の不都合を回避しながらシステムの適切な制御が可能となり、システム各部の耐久性向上が図られる。尚、この開閉弁V1と同様の構造・機能を有する複数の開閉弁V2〜VnがパイプラインPpの適所に相互に間隔をおいて介装されており、そのうち最下流端にある開閉弁Vnだけを図5,図6に示し、他の開閉弁の図示は省略する。 The opening / closing valve V1 interposed in the siphon pipe S is configured so that the opening degree thereof can be arbitrarily finely adjusted. Appropriate control of the system is possible while avoiding inconveniences such as hammer phenomenon, flow speed overspeed, and cavitation, and the durability of each part of the system can be improved. A plurality of on-off valves V2 to Vn having the same structure and function as the on-off valve V1 are interposed at appropriate positions in the pipeline Pp, with only the on-off valve Vn at the most downstream end among them. Are shown in FIGS. 5 and 6, and other on-off valves are not shown.
次に図5,図6を併せて参照して、前記水/土砂分離処理手段SEの構造を説明する。この水/土砂分離処理手段SEは、自然流下経路Pの最下流のパイプラインPpの下流端に連ねて配設されるものであり、図示例では、河口Reの河川敷10に配設される。
Next, the structure of the water / sediment separation means SE will be described with reference to FIGS. This water / sediment separation processing means SE is arranged continuously to the downstream end of the most downstream pipeline Pp of the natural flow path P, and in the illustrated example, is arranged at the
この水/土砂分離処理手段SEは、前記自然流下経路Pを経て流下してきた浚渫土砂1及び水を含む流動体を受容して該流動体中の浚渫土砂1を沈殿させる複数の沈殿槽A1〜A3が、その各々の沈殿槽A1〜A3内の流動体中の上澄み水を順次下流の沈殿槽にオーバフローさせ得るように配列して構成され、その最下流の沈殿槽A3からオーバフローした上澄み水を海Oを直接放流するようにしている。 The water / sediment separation treatment means SE receives the dredged sand 1 flowing down via the natural flow path P and a fluid containing water and precipitates dredged sand 1 in the fluid. A3 is arranged so that the supernatant water in the fluid in each of the settling tanks A1 to A3 can be sequentially overflowed to the downstream settling tank, and the supernatant water overflowed from the most downstream settling tank A3 The ocean O is discharged directly.
前記複数の沈殿槽A1〜A3は、その各々の上面が開放された比較的浅い水槽状に構成されていて、河口Re近くの河川敷10にその上流側から下流側に順次、直列状態で配設される。沈殿槽A1〜A3の各海側に設けられる堰11〜13は、下流側のもの程、低くなるように形成され、各沈殿槽A1〜A3には、下流側のものほど粒径の細かい浚渫土砂が沈殿するようになる。
The plurality of settling tanks A1 to A3 are configured in a relatively shallow water tank shape with their upper surfaces opened, and are arranged in series in the
前記輸送路Lの適所、例えばサイフォン管Sの途中、パイプラインPpにおける少なくとも一部の中継枡Pmの直上流部、パイプラインPpにおける水/土砂分離処理手段SEの直上流部には、そこを流れる前記流動体の流動エネルギを電気エネルギに変換可能な動力変換手段としての水力発電装置Gが設けられる。その各水力発電装置Gは、図示例ではサイフォン管S内またはパイプラインPp内に回転自在に設けられて、そこを流れる流動体の流動エネルギを回転エネルギに変換する羽根車Gaと、サイフォン管SまたはパイプラインPpの外側に配設された発電機Gbと、その発電機Gbに羽根車Gaの回転運動を伝達する伝動機構Gcとを備えており、羽根車Gaの回転エネルギが発電機Gbで電気エネルギに変換される。 In the middle of the transport path L, for example, in the middle of the siphon pipe S, at the upstream part of at least a part of the relay rod Pm in the pipeline Pp, the upstream part of the water / sediment separation means SE in the pipeline Pp A hydroelectric generator G is provided as power conversion means capable of converting the flow energy of the flowing fluid into electric energy. In the illustrated example, each of the hydroelectric generators G is rotatably provided in the siphon tube S or the pipeline Pp, and the impeller Ga that converts the flow energy of the fluid flowing therethrough into rotational energy, and the siphon tube S. Or the generator Gb arrange | positioned on the outer side of the pipeline Pp, and the transmission mechanism Gc which transmits the rotational motion of the impeller Ga to the generator Gb are provided, and the rotational energy of the impeller Ga is generated by the generator Gb. Converted into electrical energy.
その水力発電装置Gは、これが発電した電気エネルギを最寄りの電動機器に供給すべく該電動機器に接続される。例えば、図2に示されるサイフォン管Sに設けられた水力発電装置Gは、浚渫作業船B内の電動機器(サイフォン管Sにサイフォン作用を開始させるための呼び水用給水ポンプRy、可動吸込管Uを昇降駆動するための図示しない昇降用電動モータ、サイフォン管Sのサイフォン作用を助勢するための図示しない電動ポンプ等)や、ダムD直下の中継枡Pm0に付設されるマイクロバブル供給手段Mの電動ポンプ6等、ダムD直下の中継槽Km内に設けられる汲み上げ用電動ポンプKx等に接続されて、これら電動機器を駆動する。また図3に示されるパイプラインPpに設けられた水力発電装置Gは、その近くの中継槽Km内に設けられる汲み上げ用電動ポンプKxや、その近くのパイプラインPpに付設されるマイクロバブル供給手段Mの電動ポンプ6等に接続されて、これら電動機器を駆動する。
The hydroelectric generator G is connected to the electric device so as to supply the electric energy generated by the hydroelectric device G to the nearest electric device. For example, the hydroelectric generator G provided in the siphon pipe S shown in FIG. 2 is an electric device in the dredger B (the priming water feed pump Ry for starting the siphon action on the siphon pipe S, the movable suction pipe U). Electric motor for raising / lowering the electric motor, an electric pump (not shown) for assisting the siphon action of the siphon tube S), and the electric power of the microbubble supply means M attached to the relay rod Pm0 directly below the dam D. The
また、前記水/土砂分離処理手段SEとダムDとの間には、その間を接続する還流路Kが前記自然流下経路Pから独立して設けられる。この還流路Kには、水/土砂分離処理手段SEで流動体より分離された水をダムDまで汲み上げるべく、前記動力変換手段としての水力発電装置Gで変換された電気エネルギで駆動される少なくとも1つの汲み上げ用電動ポンプKxが設けられる。 Further, a reflux path K that connects between the water / sediment separation means SE and the dam D is provided independently of the natural flow path P. In this reflux path K, in order to pump up the water separated from the fluid by the water / sediment separation processing means SE to the dam D, at least driven by the electric energy converted by the hydroelectric generator G as the power conversion means. One pumping pump Kx for pumping is provided.
前記還流路Kは、パイプラインPpに略沿うように互いに縦列配置されて水/土砂分離処理手段SEとダムDとの間を接続する複数の戻り配管Kpと、その相隣なる戻り配管Kp間に介在していて、下流側の戻り配管Kpから上昇流動してきた戻し水を一時的に貯留可能な複数の戻り用中継槽Kmとを備えており、前記複数の戻り配管Kpには、個々の戻り配管Kpの上流端から下流端まで戻り水を上昇流動させるべく、その各々の戻り配管Kp毎に前記汲み上げ用電動ポンプKxが設けられる。 The recirculation path K is arranged in tandem so as to substantially follow the pipeline Pp, and a plurality of return pipes Kp connecting the water / sediment separation processing means SE and the dam D, and the return pipes Kp adjacent to each other. And a plurality of return relay tanks Km that can temporarily store the return water that has flowed upward from the downstream return pipes Kp. In order to cause the return water to flow upward from the upstream end to the downstream end of the return pipe Kp, the pumping electric pump Kx is provided for each return pipe Kp.
而して、最上流の(従って最も低位置にある)戻り配管Kpの上流端は、水/土砂分離処理手段SEにおいて最も清浄な水を分離可能な最下流の沈殿槽A3内に開口しており、その開口部には、該最下流の沈殿槽A3内の水を吸い込んで該戻り配管Kp内を強制的に上昇流動させる汲み上げ用電動ポンプKxが設けられる。また、中間の戻り配管Kpの上流端は、対応する戻り用中継槽Km内に開口しており、その開口部には、該中継槽Km内の水を吸い込んで更に上側の戻り配管Kp内を強制的に上昇流動させて上側の中継槽Km内(又はダムD内)に向かわせる汲み上げ用電動ポンプKxが設けられる。そして最下流の(従って最も高位置にある)戻り配管Kpの下流端は、ダムD内に開口している。 Thus, the upstream end of the most upstream (and therefore the lowest) return pipe Kp opens into the most downstream settling tank A3 where the cleanest water can be separated in the water / sediment separation treatment means SE. The opening is provided with a pumping electric pump Kx for sucking water in the most downstream settling tank A3 and forcibly ascending and flowing in the return pipe Kp. Further, the upstream end of the intermediate return pipe Kp opens into the corresponding return relay tank Km, and the water in the relay tank Km is sucked into the opening to further pass through the upper return pipe Kp. An electric pump for pumping Kx that is forced to flow upward and moves toward the upper relay tank Km (or the dam D) is provided. The downstream end of the return pipe Kp which is the most downstream (and therefore at the highest position) opens into the dam D.
各中継槽Kmは、前述のように輸送路Lに介設される各中継枡Pm0,Pmにそれぞれ隔壁3mを挟んで隣接して共通の枡ユニットケース3内に設けられており、これにより、中継設備の小型、簡素化が図られる。
As described above, each relay tank Km is provided in the common
次に本実施例の作用を説明する。ダムDの水底の浚渫に当たっては、浚渫作業船BをダムDの周辺で組立てダムDの水面に浮かせる。次いでその浚渫作業船Bより可動吸込管Uの先部側を下降させ、その先端の吸込口Ueを水底の土砂堆積層に臨ませる。この状態で、サイフォン管Sに接続した図示しない吸水ポンプによる呼び水作用により、サイフォン管Sのサイフォン作用を開始させる。 Next, the operation of this embodiment will be described. When hitting the bottom of the dam D, the dredger B is assembled around the dam D and floated on the surface of the dam D. Next, the tip of the movable suction pipe U is lowered from the dredger work ship B, and the suction port Ue at the tip of the movable suction pipe U faces the sediment layer on the bottom of the water. In this state, the siphon action of the siphon pipe S is started by a priming action by a water pump (not shown) connected to the siphon pipe S.
そのサイフォン作用が一旦開始されると、吸水ポンプを停止させてもサイフォン作用は引き続き継続され、そのサイフォン作用により、ダムDの水底の堆積土砂1を水と共に吸い上げてダムDの直下流の中継枡Pm0内に徐々に且つ連続的に排出する。このような浚渫作業の進捗に伴い、浚渫作業船Bの位置を少しずつ移動させていき、かくして、少ないエネルギとコストでダムDの水底の堆積土砂1をその水底の略全域に亘って能率よく浚渫可能となる。 Once the siphoning action is started, the siphoning action continues even if the water absorption pump is stopped. By the siphoning action, the sediment 1 on the bottom of the dam D is sucked up with the water, and the relay dredging just downstream of the dam D Discharge gradually and continuously into Pm0. As the dredging work progresses, the position of the dredging work boat B is moved little by little, and thus the sediment 1 on the bottom of the dam D is efficiently spread over substantially the entire bottom of the water bottom with less energy and cost. It becomes possible.
サイフォン管Sを経て最初の中継枡Pm0内に流下してきた浚渫土砂1及び水を含む流動体は、中継枡Pm0内で浚渫土砂1の一部が沈殿、堆積し、その残余の浚渫土砂1と水を含む流動体は、出口部3eより本発明の自然流下経路P(最上流のパイプラインPp)に放流され、その自然流下経路Pを重力により徐々に且つ連続的に自然流下する。
The fluid containing dredged sand 1 and water that has flowed into the first relay dredger Pm0 through the siphon pipe S partially precipitates and accumulates in the dredged sand Pm0, and the remaining dredged sand 1 and The fluid containing water is discharged from the
そして、浚渫土砂1及び水を含む流動体が前記自然流下経路Pを自然流下する間において、上流側のパイプラインPpを流下して次の中継枡Pm内に達した流動体は、その中継枡Pm0内で浚渫土砂1の一部が沈殿、堆積し、その残余の浚渫土砂1と水を含む流動体は、出口部3eより下流側のパイプラインPpに放流され、そのパイプラインPp内を重力により自然流下する。この場合において、各々の中継枡Pm0,Pmの入口側の開閉弁Viの開度調節により、中継枡Pm0,Pm内への流動体の流入量調整が可能であり、また同中継枡Pm0,Pmの出口側の開閉弁Veの開度調節により、下流側のパイプラインPpへの流動体の流出量調整が可能である。尚、輸送路Lの各所に設けられた前記開閉弁V1〜Vnの開度調節によっても、輸送路L内を流れる前記流動体の流速調整が可能である。
While the fluid containing dredged soil 1 and water naturally flows down the natural flow path P, the fluid that has flowed down the upstream pipeline Pp and reached the next relay rod Pm A part of dredged sand 1 precipitates and accumulates in Pm0, and the remaining fluid containing dredged sand 1 and water is discharged into the pipeline Pp on the downstream side from the
而して浚渫土砂1及び水を含む流動体は、各中継枡Pmにおいて上記の過程を繰り返して下流側に徐々に移動し、遂には河口Re近くの河川敷10にある水/土砂分離処理手段SEに達する。この水/土砂分離処理手段SEにおいては、河川敷10に川の流れ方向に沿って直列配置された複数の沈殿槽A1〜A3で、前記流動体が順次受容されて該流動体中の浚渫土砂1を順次沈殿させ、その各々の沈殿槽A1〜A3内の流動体中の上澄み水は順次下流の沈殿槽にオーバフローし、最後は最下流の沈殿槽A3からオーバフローした上澄み水が海Oに直接放流される。この場合、各沈殿槽A1〜A3には、下流側のものほど粒径の細かい浚渫土砂が沈殿、堆積するようになるので、その各沈殿槽A1〜A3に貯め置いた浚渫土砂1を外部より難なく採取することができて、それを、その粒径サイズに応じて建設資材、農業用資材その他の用途に有効に利用できる。このように浚渫土砂1の一部又は全部を各沈殿槽A1〜A3に集めて回収することにより、海Oには浚渫土砂1の殆どない又は全然ない比較的奇麗な水だけを放流できるため、水域の汚染防止に効果的である。
Thus, the fluid containing dredged soil 1 and water gradually moves downstream by repeating the above process in each relay dredger Pm, and finally the water / sediment separating means SE in the
ところで浚渫土砂1の途中回収は、必要に応じて、水/土砂分離処理手段SEよりも上流側の少なくとも一部の中継枡Pm0,Pm…においても行うことが可能である。 By the way, it is possible to collect the dredged sand 1 in the middle of at least some of the relay dredgers Pm0, Pm... Upstream from the water / sediment separating means SE.
即ち、その各中継枡Pm0,Pm内に沈殿、堆積した浚渫土砂1は、その一部を上面開放の各中継枡Pm0,Pmより容易に採取、回収できて、それを建設用資材、農業用資材その他の用途に再利用できるため、その各中継枡Pm0,Pmより下流側のパイプラインPpには浚渫土砂1の含有量を減らした比較的奇麗な、浚渫土砂及び水を含む流動体を放流可能となり、従って、最下流での前記水/土砂分離処理手段SEによる浚渫土砂1の分離回収効果とも相俟って、海Oに放流する水の浄化を十分に行うことができ、放流水域の汚染防止に一層効果的となる。このように少なくとも1つの中継枡Pm0,Pm内に沈殿、堆積した浚渫土砂1の少なくとも一部を回収して、下流側のパイプラインPpに流れないようにすれば、中継枡Pm0,Pmの近隣の地域で浚渫土砂1を建設資材、農業用資材等として再利用する場合に好都合であり、またその再利用分だけ浚渫土砂1の海側への流動分を減少させることができる。 That is, the sediment 1 deposited and accumulated in each of the relay rods Pm0, Pm can be easily collected and collected from each of the relay rods Pm0, Pm with the upper surface open, and it can be collected for construction materials and agriculture. Since it can be reused for materials and other purposes, the pipeline Pp downstream of each relay dredging Pm0, Pm is released with a relatively clean fluid containing dredged sand and water with a reduced content of dredged sand 1. Therefore, in combination with the separation and recovery effect of dredged soil 1 by the water / sediment separation means SE at the most downstream, the water discharged to the sea O can be sufficiently purified, More effective in preventing pollution. If at least a part of the dredged sediment 1 deposited and deposited in at least one relay rod Pm0, Pm is collected so as not to flow into the downstream pipeline Pp, the vicinity of the relay rod Pm0, Pm This is convenient when the dredged soil 1 is reused as construction material, agricultural material, etc., and the flow of dredged soil 1 to the sea side can be reduced by the amount of reuse.
また本実施例では、輸送路Lに、そこを流れる流動体の流動エネルギを電気エネルギに変換する動力変換手段としての水力発電装置Gが設けられており、重力を利用してダムDの浚渫土砂を海O又はその近くの河川Rまで自然流下させる過程で、その流動エネルギを電気エネルギに変換して、これを、輸送システム中で使用される前述のような各種の電動機器の動力として効率よく利用することができ、しかもその水力発電装置Gと輸送システム中の上記電動機器とを比較的近くに配置可能であることから、その間の電気配線を簡素化してコスト節減を図ることができる。 In this embodiment, a hydroelectric generator G is provided in the transport path L as power conversion means for converting the flow energy of the fluid flowing therethrough into electric energy, and the dredged sand of the dam D using gravity. In the process of naturally flowing down to the sea O or the river R near it, the flow energy is converted into electric energy, and this is efficiently used as power for various electric devices as described above used in the transportation system. In addition, since the hydroelectric generator G and the electric device in the transportation system can be arranged relatively close to each other, the electric wiring between them can be simplified to reduce costs.
また特に水/土砂分離処理手段SEとダムDとの間には、その間を接続する還流路Kが自然流下経路Pから独立して設けられ、この還流路Kには、水/土砂分離処理手段SEで流動体より分離された水をダムDまで戻し水として汲み上げる汲み上げ用電動ポンプKxが設けられるので、水/土砂分離処理手段SEで流動体より分離された水の一部を、ただ海や河川に捨てるのではなく、ダムDまでエネルギ節減を図りつつ強制的に戻すことができる。 Further, in particular, between the water / sediment separation processing means SE and the dam D, a reflux path K connecting between them is provided independently from the natural flow path P. The reflux path K includes a water / sediment separation processing means. Since an electric pump Kx for pumping water separated from the fluid at SE back to the dam D is provided, a part of the water separated from the fluid by the water / sediment separation treatment means SE is simply passed to the sea or Rather than throwing it away into the river, it can be forcibly returned to the dam D while saving energy.
しかもこの還流路Kは、互いに縦列配置されて水/土砂分離処理手段SEとダムDとの間を接続する複数の戻り配管Kpと、その相隣なる戻り配管Kp間に介在していて、下流側の戻り配管Kpから上昇流動してきた戻し水を一時的に貯留可能な複数の戻り用中継槽Kmとを備えていて、個々の戻り配管Kp毎に前記汲み上げ用電動ポンプKxが設けられる。そのため、水/土砂分離処理手段SEと、これから水を戻すべきダムDとの間の高低差や距離が大きくても、単一の汲み上げ用電動ポンプKxで水/土砂分離処理手段SEからダムDまで水を一気に汲み上げる必要はなく、即ち、個々の汲み上げ用電動ポンプKxで、水/土砂分離処理手段SEから直ぐ上側の中継槽Kmまで、或いは中継槽Kmから直ぐ上側の中継槽Kmまで、或いはダムD直下の中継槽KmからダムDまでの比較的短く且つ高低差が小さい区間で水を汲み上げるだけで足りる。これにより、比較的小容量の汲み上げ用電動ポンプKxを使用しても、ダムDまで無理なく戻し水を圧送可能であり、電動ポンプKxのコスト節減と耐久性向上が図られる。 Moreover, the reflux path K is disposed between the plurality of return pipes Kp that are arranged in tandem and connect the water / sediment separation means SE and the dam D, and the return pipes Kp adjacent to each other. And a plurality of return relay tanks Km capable of temporarily storing the return water flowing upward from the return pipe Kp on the side, and the electric pump Kx for pumping is provided for each return pipe Kp. Therefore, even if there is a large difference in height or distance between the water / sediment separation processing means SE and the dam D from which water is to be returned, a single electric pump Kx for pumping water / sediment separation processing means SE to the dam D It is not necessary to pump water at once, that is, with individual electric pumps Kx, from the water / sediment separation means SE to the upper relay tank Km, from the relay tank Km to the upper relay tank Km, or It is only necessary to pump water in a relatively short section from the relay tank Km directly below the dam D to the dam D with a small difference in height. As a result, even if the electric pump Kx for pumping having a relatively small capacity is used, the return water can be pumped to the dam D without difficulty, thereby reducing the cost and improving the durability of the electric pump Kx.
以上、本実施例によれば、海Oから離れた高所に在るダムDの浚渫土砂1を、サイフォン管Sのサイフォン作用で水と共に吸い出し、次いで自然流下通路Pを経由して海Oまで自然流下させるので、重力を利用してダムDの浚渫土砂を海Oまで無理なく且つ緩やかに輸送することができ、その輸送のためのエネルギ節減とコスト低減を図ることができ、また途中の河川水域を浚渫土砂で汚濁したり生態系に影響を与える心配がなく、更にダンプ車両による輸送の場合のように交通渋滞、空気汚染、振動騒音等の不具合を招く虞れもない。また上記自然流下経路Pは、相互に縦列配置した複数条のパイプラインPpの相隣なるもの同士を中継枡Pmで接続して構成されるので、中継枡の無い場合と比べてパイプラインPpの内圧を十分に軽減できてその耐久性が高められ、またパイプラインPpに対するメンテナンスも、中継枡Pmで区切られたパイプラインPp単位で行えるため、そのメンテナンス作業が比較的容易となる。 As described above, according to the present embodiment, the dredged sand 1 of the dam D located at a high place away from the sea O is sucked together with water by the siphon action of the siphon pipe S, and then to the sea O via the natural flow path P. Since it is allowed to flow down naturally, the dredged soil of dam D can be transported to the sea O without any difficulty using gravity, and energy saving and cost reduction for the transportation can be achieved. There is no worry of polluting the water area with dredged soil or affecting the ecosystem, and there is no risk of inconveniences such as traffic congestion, air pollution, and vibration noise as in the case of transportation by dump truck. Further, the natural flow path P is configured by connecting adjacent ones of a plurality of pipelines Pp arranged in tandem with a relay rod Pm, so that the pipeline Pp is compared with the case where there is no relay rod. Since the internal pressure can be sufficiently reduced and the durability thereof is increased, and maintenance of the pipeline Pp can be performed in units of the pipeline Pp divided by the relay rod Pm, the maintenance work becomes relatively easy.
また上記自然流下経路Pの下流端に連なる水/土砂分離処理手段SEは、これを構成する複数の沈殿槽A1〜A3が各々上面を開放した状態で、河口Re近くの河川敷10にその上流側から下流側に順次、直列状態で配設されるため、その河川敷10の広いスペースを利用して、比較的大きな沈殿槽A1〜A3を何段にも配置でき、それだけ水の清浄化機能を高めることができる。また洪水等で河口Reの河川敷10が水没した場合には、その川の濁流で各沈殿槽A1〜A3内の堆積土砂は海Oに押し流されるが、濁流と一緒に流されることから水域汚濁の心配はない。
In addition, the water / sediment separation processing means SE connected to the downstream end of the natural flow path P is located upstream of the
また水/土砂分離処理手段SEで流動体より分離された水の一部は、ただ海や河川に捨てられるのではなく、汲み上げ用電動ポンプKxにより汲み上げて還流路Kを経てダムDまで戻され、その際に汲み上げ用電動ポンプKxの動力として、水力発電装置Gで上記流動体の流動エネルギを電気エネルギに変換したものが無駄なく利用される。そのため、ダムDから海に向かう浚渫土砂の流動排出に大量に利用された水の一部を、エネルギ節減を図りつつ再びダムDに戻すことができ、この戻し水を灌漑や利水等に有効利用できて水資源の節約が図られる。 In addition, a part of the water separated from the fluid by the water / sediment separation processing means SE is not just discarded to the sea or river, but is pumped up by the electric pump Kx for pumping and returned to the dam D through the return path K. In this case, as the power of the electric pump for pumping Kx, the fluid generated by converting the fluid energy of the fluid into electrical energy by the hydroelectric generator G is used without waste. Therefore, a part of the water used for the flow discharge of dredged sand from the dam D to the sea can be returned to the dam D while saving energy, and this return water can be used effectively for irrigation and water use. This will save water resources.
また図7には、本発明の第2実施例の要部が示される。この実施例では、少なくとも一部の中継枡Pm内に、その近隣にある他の大容量貯水池としてのダムD′よりサイフォン管S′で吸い出した水及び浚渫土砂を含む流動体を供給している。そのために、上記ダムD′の直下流近くにある枡ユニットケース3における中継枡Pmには、上記ダムD′の浚渫土砂1′をサイフォン管S′を経て流入させる第2の入口部3i′が増設され、またその第2の入口部3i′にも開閉弁Vi′が設けられる。この第2実施例のその他の構造は、第1実施例と基本的に同じであり、各構成要素には、第1実施例中の対応するものの参照符号を付すに留め、説明は省略する。
FIG. 7 shows a main part of the second embodiment of the present invention. In this embodiment, a fluid containing water and dredged soil that has been sucked out by a siphon pipe S ′ from a dam D ′ as another large-capacity reservoir in the vicinity thereof is supplied into at least some of the relay dredging Pm. . For this purpose, a
而して、この第2実施例では、先の第1実施例と同等の作用効果を達成できる上、他のダムD′からの浚渫土砂1及び水を含む流動体を中継枡Pmに受け入れることができる。そして、その両方のダムD、D′からの浚渫土砂1,1′を中継枡Pmにおいて容易に合流させ、その下流側のパイプラインPpを利用して共に海O側に自然流下させることができる。尚、この第2実施例では、図示を簡略化するために、サイフォン管S′の構造を簡略的に示したが、この第2実施例の他のダムD′においても、ダムDでの浚渫に用いた浚渫作業船Bを用いて、ダムDにおける浚渫と同様の大掛かりな浚渫作業を行うようにしてもよい。また第2実施例において、上記他のダムD′の浚渫作業に当たっては、サイフォン管S′を用いないで、吸上ポンプRxで強制的に吸い上げた水及び浚渫土砂1′を中継枡Pm内に供給するようにしてもよく、この場合、その吸上ポンプRxの動力として、前記した水力発電装置Gで変換された電気エネルギを利用するようにしてもよい。 Thus, in the second embodiment, the same effect as that of the first embodiment can be achieved and the fluid containing dredged sand 1 and water from the other dam D 'is received in the relay rod Pm. Can do. And the dredged sands 1 and 1 'from both dams D and D' can be easily merged at the relay dredger Pm, and both can naturally flow down to the sea O side using the downstream pipeline Pp. . In the second embodiment, the structure of the siphon tube S ′ is shown in a simplified manner for simplification of illustration. However, the other dams D ′ in the second embodiment also have the same structure as that of the dam D. A large dredging work similar to the dredging in the dam D may be performed using the dredging work boat B used in the above. Further, in the second embodiment, when dredging the other dam D ′, the water and dredged soil 1 ′ forcibly sucked up by the suction pump Rx without using the siphon pipe S ′ are put into the relay dredger Pm. In this case, the electric energy converted by the hydroelectric generator G may be used as the power of the suction pump Rx.
このように少なくとも一部の中継枡Pm内に、その近隣にある他の大容量貯水池D′より吸い出した水及び浚渫土砂を含む流動体を供給するようにすれば、複数の大容量貯水池D,D′からの浚渫土砂を中継枡Pmにおいて容易に合流させ、その下流側のパイプラインPpを利用して海側に自然流下させることができる。 In this way, if at least a part of the relay dredging Pm is supplied with a fluid containing water and dredged sand from the other large-capacity reservoirs D ′ nearby, a plurality of large-capacity reservoirs D, The dredged sand from D ′ can be easily merged at the relay dredger Pm, and can be naturally flowed down to the sea side using the pipeline Pp on the downstream side.
以上、本発明の実施例を詳述したが、本発明は前記実施例に限定されるものでなく、種々の設計変更を行うことができる。 As mentioned above, although the Example of this invention was explained in full detail, this invention is not limited to the said Example, A various design change can be performed.
例えば、前記実施例では、水/土砂分離処理手段SEが最下流の沈殿槽A3からオーバフローした上澄み水を海Oに直接放流するようにしたものを示したが、本発明では、その上澄み水を海Oの近くの河川R、例えば河口Reに放流するようにしてもよい。 For example, in the above-described embodiment, the water / sediment separation processing means SE has shown that the supernatant water overflowed from the most downstream settling tank A3 is directly discharged into the sea O. In the present invention, the supernatant water is used. You may make it discharge | release to the river R near the sea O, for example, the river mouth Re.
また、前記実施例では、水/土砂分離処理手段SEを河口Re近くの河川敷10に設けたものを示したが、本発明では必ずしも河川敷に設ける必要はなく、少なくとも海O又はその近くの河川Rに直接放流できる場所であればよい。
In the above embodiment, the water / sediment separation means SE is provided in the
また、前記実施例では、マイクロバブル供給手段Mがサイフォン管S内またはパイプラインPp内にマイクロバブルを混入しているが、本発明では、中継枡Pm0,Pm内にマイクロバブルを混入してもよい。 Moreover, in the said Example, although the microbubble supply means M has mixed the microbubble in the siphon pipe S or the pipeline Pp, in this invention, even if it mixes a microbubble in the relay poles Pm0 and Pm. Good.
また、前記実施例では、サイフォン管S内にダム水底の堆積土砂を浚渫土砂として直接吸い込むようにしたものを示したが、本発明では、ダム水底の堆積土砂が比較的固くサイフォン管Sの吸込作用だけでは堆積土砂の吸い出しができない場合には、図示しない電動ポンプで加圧された水の噴射で堆積土砂を掘削しつつ、その掘削した土砂を浚渫土砂としてサイフォン管Sに吸い込むようにしてもよい。尚、この場合の電動ポンプの動力として、水力発電装置Gで変換された電気エネルギを利用可能である。 Further, in the above-described embodiment, the dam bottom sediment was sucked directly into the siphon tube S as dredged soil. However, in the present invention, the dam bottom sediment is relatively hard and the siphon tube S is sucked. If the sediment cannot be sucked out only by the action, the sedimented sediment is excavated by jetting water pressurized by an electric pump (not shown), and the excavated sediment is sucked into the siphon pipe S as dredged soil. Good. In this case, the electric energy converted by the hydroelectric generator G can be used as the power of the electric pump.
また、前記実施例では、前記開閉弁V1〜Vn,Vb,Vi,Veを手動で開閉操作するようにしたものを示したが、本発明では、これら開閉弁を遠隔操作で開閉操作するようにしてもよい。 In the embodiment, the on-off valves V1 to Vn, Vb, Vi, Ve are manually opened / closed. However, in the present invention, these on-off valves are opened / closed by remote operation. May be.
また、前記実施例では、輸送路Lにおける中継枡Pm0,Pmと、還流路Kにおける中継槽Kmとを共通の枡ユニットケース3内に隔壁3mを挟んで隣接配置したものを示したが、これら中継枡Pm0,Pmと、中継槽Kmとを別個独立のケースに別々に設けてもよく、また相互に離れた場所に設置するようにしてもよい。
In the above-described embodiment, the relay rods Pm0 and Pm in the transport path L and the relay tank Km in the return channel K are arranged adjacent to each other with the
また、前記実施例では、還流路Kの下流端がダムDに開口していて、戻し水をダムD内に戻すようにしたものを示したが、本発明では、還流路Kの下流端を、ダムDと海Oとの中間に位置する他の戻し水用貯水池(例えば人口池、天然池、湖等)に開口して、そこに汲み上げ用電動ポンプKxで戻し水を汲み上げるようにしてもよい。この場合、その戻し水用貯水池内の水を灌漑等に利用可能である。 Moreover, in the said Example, although the downstream end of the reflux path K opened to the dam D, and what returned return water in the dam D was shown, in this invention, the downstream end of the reflux path K is shown. It is possible to open another return water reservoir (for example, artificial pond, natural pond, lake, etc.) located between the dam D and the sea O and pump the return water there by using an electric pump for pumping Kx. Good. In this case, the water in the return water reservoir can be used for irrigation.
また、前記実施例では、動力変換手段としての水力発電装置Gが変換した電気エネルギを、本発明の浚渫土砂輸送システム内に設けた種々の電動機器の動力として利用できるようにしたものを示したが、本発明(請求項1)では、上記電気エネルギを外部に取出可能として、浚渫土砂輸送システム外にある種々の電気機器の電源として利用できるようにしてもよい。 Moreover, in the said Example, what made the electric energy converted by the hydroelectric power generation apparatus G as a power conversion means used as a motive power of the various electric equipment provided in the dredged soil transportation system of this invention was shown. However, in the present invention (Claim 1), the electric energy may be taken out to the outside, and may be used as a power source for various electric devices outside the dredged sand transport system.
また、前記実施例では、作業員が水/土砂分離処理手段SEや中継槽Km内の貯溜水面の状態を直接監視して、その状態に応じて汲み上げ用電動ポンプKxの運転制御を行うようにしているが、本発明では、水/土砂分離処理手段SE内や中継槽Km内に水位センサを設置して、その水位センサの検出信号(即ち水位変化)に応じて汲み上げ用電動ポンプKxの運転制御を遠隔制御し、或いは自動制御するようにしてもよい。さらに上記水位センサの他、浚渫土砂輸送システム内における輸送路L及び還流路Kの各所に流動状態(流速、流量等)を監視する種々のセンサ類を設けると共に、同システム内の少なくとも一部のバルブ、少なくとも一部の電動機器の作動状態をモニターするモニター手段を設け、それらセンサ類及びモニター手段からの検出信号に基づいて、少なくとも一部のバルブ及び少なくとも一部の電動機器の作動を、コンピュータ等を利用して集中的且つ自動的に制御できるようにしてもよい。 In the above embodiment, the worker directly monitors the state of the stored water surface in the water / sediment separation means SE and the relay tank Km, and controls the operation of the pumping electric pump Kx according to the state. However, in the present invention, a water level sensor is installed in the water / sediment separation processing means SE or the relay tank Km, and the pumping pump Kx is operated in accordance with the detection signal (that is, the water level change) of the water level sensor. The control may be remotely controlled or automatically controlled. Further, in addition to the water level sensor, various sensors for monitoring the flow state (flow velocity, flow rate, etc.) are provided at various points in the transport path L and the return path K in the dredged sand transport system, and at least a part of the system Monitor means for monitoring the operating state of the valves and at least some of the electric devices are provided, and the operation of at least some of the valves and at least some of the electric devices is performed based on detection signals from the sensors and the monitoring means. Etc. may be used for centralized and automatic control.
A1〜A3・・沈殿槽
D・・・・ダム(大容量貯水池)
K・・・・還流路
Km・・・中継槽
Kp・・・戻り配管
Kx・・・汲み上げ用電動ポンプ(電動機器)
M・・・・マイクロバブル供給手段(電動機器)
O・・・・海
P・・・・自然流下経路
Pb・・・バイパス路
Pp・・・パイプライン
Pm・・・中継枡
R・・・・河川
Re・・・河口
Rx・・・吸上ポンプ(電動機器)
Ry・・・呼び水用給水ポンプ(電動機器)
S・・・・サイフォン管
SE・・・水/土砂分離処理手段
Vb,Vi,Ve,V1〜Vn・・開閉弁
1・・・・浚渫土砂
3i・・・入口部
3e・・・出口部
A1 ~ A3 ・ ・ Settling tank D ・ ・ ・ Dam (large capacity reservoir)
K ··· Recirculation channel Km · Relay tank Kp · · · Return piping Kx · ·
M ··· Microbubble supply means (electric equipment)
O ... Sea P ... Natural flow path Pb ... Bypass path Pp ... Pipeline Pm ... Relay R ... River Re ... River mouth Rx ... Suction pump (Electric equipment)
Ry ... priming water supply pump (electric equipment)
S ··· Siphon tube SE ··· Water / sediment separation means Vb, Vi, Ve, V1 to Vn ··· Open / close valve 1 ··· Dredged
Claims (9)
この輸送路(L)が、大容量貯水池(D)の浚渫土砂(1)をサイフォン作用で水と共に吸い出すサイフォン管(S)と、
このサイフォン管(S)の下流端に連なり、同管(S)で吸い出された浚渫土砂(1)及び水を含む流動体を海(O)又はその近くの河川(R)まで重力を利用して自然流下させる自然流下経路(P)とを少なくとも含む浚渫土砂の輸送システムであって、
前記自然流下経路(P)は、相互に縦列配置される複数条のパイプライン(Pp)と、その相隣なるパイプライン(Pp)間に介在していて、上流側のパイプライン(Pp)から流下してきた流動体を一時的に貯留し下流側のパイプライン(Pp)に放流可能な中継枡(Pm)と、最下流のパイプライン(Pp)の下流端に連ねて設けられ、該パイプライン(Pp)を流下してきた流動体より水を分離して海(O)又はその近くの河川(R)に放流可能であると共に、残余の浚渫土砂(1)を一時的に貯留してその少なくとも一部を回収可能とした水/土砂分離処理手段(SE)とを有しており、
前記輸送路(L)には、そこを流れる前記流動体の流動エネルギを電気エネルギに変換し得る動力変換手段(G)が設けられることを特徴とする、浚渫土砂の輸送システム。 The dredged sand (1) of the large-capacity reservoir (D) that is located at a high location away from the sea (O) flows from the reservoir (D) to the sea (O) or a river nearby ( Equipped with a transport route (L) for transporting to R),
This transport channel (L) is a siphon tube (S) that sucks dredged sand (1) of the large-capacity reservoir (D) together with water by siphoning,
Gravity is applied to fluids containing dredged soil (1) and water sucked out from the siphon tube (S) to the ocean (O) or nearby river (R). A dredged soil transport system including at least a natural flow path (P) for natural flow,
The natural flow path (P) is interposed between a plurality of pipelines (Pp) arranged in tandem with each other and adjacent pipelines (Pp) from the upstream pipeline (Pp). A relay rod (Pm) capable of temporarily storing the flowing fluid and discharging it to the downstream pipeline (Pp), and a downstream end of the most downstream pipeline (Pp) are provided to connect the pipeline. Water can be separated from the fluid flowing down (Pp) and released into the sea (O) or the river (R) nearby, and the remaining dredged sand (1) can be temporarily stored and at least And water / sediment separation means (SE) that can be partially recovered,
The transport system for dredged sand, characterized in that the transport path (L) is provided with power conversion means (G) capable of converting the flow energy of the fluid flowing therethrough into electrical energy.
この還流路(K)には、前記水/土砂分離処理手段(SE)で流動体より分離された水を前記大容量貯水池(D)又は戻し水用貯水池まで汲み上げるべく、前記動力変換手段(G)で変換された電気エネルギで駆動される少なくとも1つの汲み上げ用電動ポンプ(Kx)が設けられることを特徴とする請求項1又は2に記載の浚渫土砂の輸送システム。 Between the water / sediment separation processing means (SE) and the large-capacity reservoir (D) or a predetermined reservoir for return water, a return path (K) connecting between them is independent of the natural flow path (P). Provided,
In this reflux path (K), the power conversion means (G) is used to pump the water separated from the fluid by the water / sediment separation means (SE) to the large capacity reservoir (D) or the return water reservoir. 3. The dredged sand transport system according to claim 1, wherein at least one electric pump for pumping (Kx) driven by the electric energy converted in (1) is provided.
前記複数の戻り配管(Kp)には、個々の戻り配管(Kp)の上流端から下流端まで戻り水を上昇流動させるべく、その各々の戻り配管(Kp)毎に前記汲み上げ用電動ポンプ(Kx)が設けられることを特徴とする、請求項3に記載の浚渫土砂の輸送システム。 The return path (K) is arranged in tandem with each other and a plurality of return pipes (Kp) connecting the water / sediment separation means (SE) and the large-capacity reservoir (D) or the return water reservoir. A plurality of return relay tanks (Km) interposed between the adjacent return pipes (Kp) and capable of temporarily storing the return water flowing upward from the downstream return pipe (Kp). Prepared,
In each of the plurality of return pipes (Kp), in order to cause the return water to flow upward from the upstream end to the downstream end of each return pipe (Kp), the pumping pump (Kx) for each return pipe (Kp) is provided. The system for transporting dredged soil according to claim 3, wherein:
最下流の沈殿槽(A3)からオーバフローした上澄み水を海(O)又はその近くの河川(R)に放流するようにしたことを特徴とする、請求項1〜5の何れかに記載の浚渫土砂の輸送システム。 The water / sediment separation treatment means (SE) receives a fluid flowing down through the most downstream pipeline (Pp) and precipitates dredged sand (1) in the fluid. A1 to A3) are arranged so that the supernatant water in the fluid in each of the settling tanks (A1 to A3) can be sequentially overflowed to the downstream settling tank,
The dredge according to any one of claims 1 to 5, wherein the supernatant water overflowed from the most downstream settling tank (A3) is discharged into the sea (O) or a river (R) nearby. Sediment transport system.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005180885A JP2007002437A (en) | 2005-06-21 | 2005-06-21 | Transportation system of dredged sediment |
PCT/JP2006/303944 WO2006137193A1 (en) | 2005-06-21 | 2006-03-02 | System for transporting dredged earth and sand |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005180885A JP2007002437A (en) | 2005-06-21 | 2005-06-21 | Transportation system of dredged sediment |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007002437A true JP2007002437A (en) | 2007-01-11 |
Family
ID=37570230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005180885A Pending JP2007002437A (en) | 2005-06-21 | 2005-06-21 | Transportation system of dredged sediment |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2007002437A (en) |
WO (1) | WO2006137193A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008261090A (en) * | 2007-04-10 | 2008-10-30 | Damdre Corp | Dredging conveyance system and dredging conveyance method |
JP2008261091A (en) * | 2007-04-10 | 2008-10-30 | Damdre Corp | Dredging conveyance system and dredging conveyance method |
WO2014168304A1 (en) * | 2013-04-09 | 2014-10-16 | 한국해양과학기술원 | Dredged soil transporting system and method for controlling same |
EP3333327A1 (en) * | 2016-12-10 | 2018-06-13 | Imotec Holding B.V. | Autonomous dredging vehicle for dredging a dam reservoir |
CN108256194A (en) * | 2018-01-10 | 2018-07-06 | 黄河勘测规划设计有限公司 | A kind of design method and dam structure for restoring reservoir dam-break storage capacity |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106089550B (en) * | 2016-08-18 | 2018-07-10 | 解秀忠 | It is the hydro-generating Unit of multiaxis cassette connection in pipeline type water wheels |
CN109026501B (en) * | 2018-07-11 | 2020-05-22 | 国家电投集团广西长洲水电开发有限公司 | Hydroelectric power generation equipment with anti-blocking function |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5585796A (en) * | 1978-12-21 | 1980-06-28 | Shimizu Construction Co Ltd | Aggregate gathering facility |
JPH0518347A (en) * | 1991-07-11 | 1993-01-26 | Kiyohide Tanaka | Electric power generation method |
JPH08158397A (en) * | 1994-12-09 | 1996-06-18 | Tadao Tomiyama | Method and equipment for removing sludge, etc. |
JP2003001282A (en) * | 2001-06-22 | 2003-01-07 | Kitayama Haruichi | Waste water treating device |
-
2005
- 2005-06-21 JP JP2005180885A patent/JP2007002437A/en active Pending
-
2006
- 2006-03-02 WO PCT/JP2006/303944 patent/WO2006137193A1/en active Application Filing
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008261090A (en) * | 2007-04-10 | 2008-10-30 | Damdre Corp | Dredging conveyance system and dredging conveyance method |
JP2008261091A (en) * | 2007-04-10 | 2008-10-30 | Damdre Corp | Dredging conveyance system and dredging conveyance method |
WO2014168304A1 (en) * | 2013-04-09 | 2014-10-16 | 한국해양과학기술원 | Dredged soil transporting system and method for controlling same |
KR101514269B1 (en) | 2013-04-09 | 2015-04-22 | 한국해양과학기술원 | Dredged soils transport system and its control method thereof |
EP3333327A1 (en) * | 2016-12-10 | 2018-06-13 | Imotec Holding B.V. | Autonomous dredging vehicle for dredging a dam reservoir |
CN108256194A (en) * | 2018-01-10 | 2018-07-06 | 黄河勘测规划设计有限公司 | A kind of design method and dam structure for restoring reservoir dam-break storage capacity |
Also Published As
Publication number | Publication date |
---|---|
WO2006137193A1 (en) | 2006-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007002437A (en) | Transportation system of dredged sediment | |
CN205116250U (en) | Sediment removal device of reservoir among hydraulic engineering | |
JP3277489B2 (en) | Sediment discharge mechanism for water storage area and method for discharging sediment from water storage area | |
CN104712003B (en) | Small hydropower station dredging equipment | |
JP2014512469A (en) | Apparatus and method for taking out solid matter in water bottom | |
JP5305439B2 (en) | Suction pipe for transporting underwater sediment logistics, underwater sediment inflow device, and underwater sediment inflow method using the same | |
US4264105A (en) | Siphon dredge mining system | |
MXPA03005839A (en) | Method for hydraulic subsea dredging. | |
JP6084897B2 (en) | Floating suspended material recovery device and method | |
JP5893643B2 (en) | Underwater sediment suction and flow equipment and foreign matter trapping method | |
JP3999788B2 (en) | Long-distance transportation system for dredged soil and its transportation method | |
JP2003138598A (en) | Method and device for dredging by use of pipe having opening part in bent part | |
JP2007217991A (en) | Dredging device and dredging method | |
JP2017002534A (en) | System and method for recovering bottom mud | |
JP2006082005A (en) | Muddy water treatment system and muddy water treatment method therefor | |
JP4610292B2 (en) | Method and apparatus for transporting earth and sand in a reservoir | |
CN211549775U (en) | Tunnel construction is with crossing broken drainage device that takes of fault | |
JP4675061B2 (en) | Sediment flow transfer equipment | |
JPH08158397A (en) | Method and equipment for removing sludge, etc. | |
JP2005220598A (en) | Equipment for cleaning accumulated sediment on bottom of river | |
KR100560056B1 (en) | Vacuum inhalation apparatus for dredging | |
KR100625746B1 (en) | Suspended Material Auto-draw Chamber | |
JP4114512B2 (en) | Reservoir sand discharging method and sand discharging device | |
JP5100705B2 (en) | Sediment flow transfer equipment | |
CN111561002B (en) | Sediment discharging device for water conservancy construction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080326 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080730 |