JP5338517B2 - Nondestructive single crystal substrate stress measurement method, measurement device, and measurement program - Google Patents
Nondestructive single crystal substrate stress measurement method, measurement device, and measurement program Download PDFInfo
- Publication number
- JP5338517B2 JP5338517B2 JP2009151791A JP2009151791A JP5338517B2 JP 5338517 B2 JP5338517 B2 JP 5338517B2 JP 2009151791 A JP2009151791 A JP 2009151791A JP 2009151791 A JP2009151791 A JP 2009151791A JP 5338517 B2 JP5338517 B2 JP 5338517B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- crystal substrate
- measurement
- stress
- ray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
Description
本発明は半導体チップの反り応力を測定する方法と装置およびプログラムに関し、特にパッケージ内に実装された半導体チップの反り応力を、パッケージを破壊することなくX線を用いて測定する方法と装置およびプログラムとに関する。 The present invention relates to a method, apparatus, and program for measuring warpage stress of a semiconductor chip, and more particularly, to a method, apparatus, and program for measuring warpage stress of a semiconductor chip mounted in a package using X-rays without destroying the package. And about.
近年、電子部品の小型化、高機能化、高性能化といった要求に対し、さまざまなLSIチップの実装技術が開発されている。このような、いわゆる先端実装技術を実現するための要素技術には、LSIチップに加わる機械的応力が大きくなると懸念される技術が多い。このため、実装されたLSIチップへの応力や歪を非破壊で測定する技術の重要度が増している。 In recent years, various LSI chip mounting techniques have been developed in response to demands for downsizing, high functionality, and high performance of electronic components. Many of the elemental technologies for realizing such a so-called advanced mounting technology are concerned about the increase in mechanical stress applied to the LSI chip. For this reason, the importance of the technique which measures the stress and distortion to the mounted LSI chip nondestructively is increasing.
実装された半導体チップの応力や反りの評価は、従来、ラマン分光法や歪ゲージ法を用いて行われてきた。しかし、ラマン分光法はパッケージの断面において測定を行う破壊検査であり、断面作成の際に応力が緩和するため、測定結果が実際の半導体チップの応力を反映しない場合があるという懸念がある。また、歪ゲージ法は非破壊検査であるが、この方法で測定される歪はパッケージ表面の歪であり、半導体チップに加わる歪は、推定でしか求められない。非破壊かつ直接、半導体チップの反り応力を測定する方法が求められている。 Conventionally, evaluation of stress and warpage of a mounted semiconductor chip has been performed using a Raman spectroscopy method or a strain gauge method. However, Raman spectroscopy is a destructive inspection in which measurement is performed on the cross section of the package, and stress is relaxed when the cross section is created. Therefore, there is a concern that the measurement result may not reflect the stress of the actual semiconductor chip. Further, although the strain gauge method is a nondestructive inspection, the strain measured by this method is a strain on the package surface, and the strain applied to the semiconductor chip can be obtained only by estimation. There is a need for a method for measuring the warping stress of a semiconductor chip directly and non-destructively.
そこでパッケージされた半導体チップの反りをX線回折を用いて非破壊かつ直接測定する方法が特許文献1に記載されている。特許文献1に記載された方法では、まずパッケージ材料越しに半導体チップからの回折X線を取得し、ロッキング曲線の試料位置依存性を測定する。次に、その結果得られた回折ピーク位置の試料位置依存性から半導体チップの形状すなわち反りをもとめる。
Therefore,
しかしながら、特許文献1においては回折X線を得るための実験上の手続きについては詳細な記述があるものの、半導体チップの反り応力は求められていない。反り応力のデバイス特性への影響を予測したり、測定結果を応力シミュレーションの結果と比較したりする場合には、回折測定から反り応力を解析する方法が必要である。
However, in
本発明は上記の問題を考慮してなされたものであり、パッケージされた半導体チップの反りをX線回折を用いて非破壊かつ直接測定する方法において、妥当性を備えた解析方法を提供し、かつこの妥当な解析方法を含んだ一連の調整作業や解析作業の一部ないし全部を自動化するプログラムやこれを実現する装置を提供しようとするものである。 The present invention has been made in consideration of the above problems, and provides an analysis method with validity in a method of directly measuring the warpage of a packaged semiconductor chip using X-ray diffraction, In addition, it is an object of the present invention to provide a program for automating a part or all of a series of adjustment work and analysis work including the appropriate analysis method and an apparatus for realizing the program.
上記課題を解決するために、請求項1に記載の非破壊単結晶基板応力測定法は、単結晶基板をパッケージ材料で封止した部品にX線を照射するステップと、前記単結晶基板からの回折X線を前記パッケージ材料越しに検出する検出ステップと、前記検出ステップの結果を用いて前記単結晶基板の応力を求める解析ステップとからなる非破壊単結晶基板応力測定法であって、前記検出ステップは、前記回折X線のロッキング曲線を測定するステップと前記部品を移動する移動ステップとを測定位置が前記単結晶基板の一端部から反対側の端部に達するまで繰り返し行うステップであり、前記解析ステップは、前記検出ステップにより得られたロッキング曲線から回折ピーク角度を求めるステップと、隣り合う2つの測定点のピーク角度の差をΔωBと表し、前記移動ステップにおける移動距離をΔxと表したとき、前記単結晶基板のヤング率Eと前記単結晶基板の厚さtとを用いて、前記単結晶基板の位置xにおける反り応力σ(x)を
In order to solve the above-described problem, the nondestructive single crystal substrate stress measurement method according to
この発明によれば、単結晶基板をパッケージ材料で封止した部品にX線を照射し、前記単結晶基板からの回折X線を前記パッケージ材料越しに検出し、前記回折X線のロッキング曲線を前記単結晶基板の一端部から反対側の端部に達するまで繰り返し行うことにより求め、前記求めたロッキング曲線から回折ピーク角度を求め、隣り合う2つの測定点のピーク角度の差をΔωBと表し、前記移動ステップにおける移動距離をΔxと表したとき、前記単結晶基板のヤング率Eと前記単結晶基板の厚さtとを用いて、前記単結晶基板の位置xにおける反り応力σ(x)を According to the present invention, X-rays are irradiated to a component in which a single crystal substrate is sealed with a package material, diffracted X-rays from the single crystal substrate are detected through the package material, and a rocking curve of the diffracted X-rays is obtained. Obtained by repeatedly performing from one end of the single crystal substrate to the opposite end, obtaining a diffraction peak angle from the obtained rocking curve, and expressing the difference in peak angle between two adjacent measurement points as ΔωB, When the moving distance in the moving step is expressed as Δx, the warping stress σ (x) at the position x of the single crystal substrate is calculated using the Young's modulus E of the single crystal substrate and the thickness t of the single crystal substrate.
従って、製品内の半導体チップの反り応力を非破壊、簡便に測定することが可能となる。 Therefore, it is possible to easily measure the warping stress of the semiconductor chip in the product in a nondestructive manner.
請求項2に記載の非破壊単結晶基板反り応力測定装置は、単結晶基板をパッケージ材料で封止した部品にX線を照射する手段と、前記単結晶基板からの回折X線を前記パッケージ材料越しに検出する検出手段と、前記検出手段により得られた結果を用いて前記単結晶基板の反りを求める解析手段とからなる非破壊単結晶基板反り測定装置であって、前記検出手段は、前記回折X線のロッキング曲線を測定するステップと前記部品を移動する移動ステップとを測定位置が前記単結晶基板の一端部から反対側の端部に達するまで繰り返し行うことができる手段であり、前記解析手段は、前記検出手段により得られたロッキング曲線から回折ピーク角度を求める手段と、隣り合う2つの測定点のピーク角度の差をΔωBと表し、前記移動ステップにおける移動距離をΔxと表したとき、前記単結晶基板のヤング率Eと前記単結晶基板の厚さtとを用いて、前記単結晶基板の位置xにおける反り応力σ(x)を
3. The nondestructive single crystal substrate warpage stress measuring apparatus according to
請求項3に記載の非破壊単結晶基板反り測定プログラムは、請求項2に記載の非破壊単結晶基板反り応力測定装置に含まれるコンピュータを、前記X線を照射する手段、前記検出手段、前記解析手段、として機能させる。
The non-destructive single crystal substrate warpage measurement program according to
請求項4に記載の非破壊単結晶基板反り測定プログラムは、請求項2に記載の非破壊単結晶基板反り応力測定装置に含まれるコンピュータを、前記X線を照射する手段、前記検出手段、前記解析手段、前記回折ピーク角度の試料位置依存性から求めた、隣り合う2つの測定点のピーク角度の差をΔωB(x)と表し、前記移動ステップにおける移動距離をΔxと表したとき、前記単結晶基板のヤング率Eと前記単結晶基板の厚さtとを用いて、前記単結晶基板の位置xにおける反り応力σ(x)を
The non-destructive single crystal substrate warpage measurement program according to
以上のように、本発明によれば、単結晶基板をパッケージ材料で封止した部品にX線を照射し、前記単結晶基板からの回折X線を前記パッケージ材料越しに検出し、前記検出結果を用いて前記単結晶基板の応力を求めるため、製品内の半導体チップの反り応力を非破壊、簡便に測定することが可能となる。 As described above, according to the present invention, X-rays are irradiated to a component in which a single crystal substrate is sealed with a package material, and diffracted X-rays from the single crystal substrate are detected through the package material. Since the stress of the single crystal substrate is obtained using the above, the warping stress of the semiconductor chip in the product can be measured easily and nondestructively.
以下、図面を参照して本願の最良の実施形態について添付図面を参照して詳細に説明する。 DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, exemplary embodiments of the invention will be described in detail with reference to the accompanying drawings.
まず、回折X線を用いて半導体チップの反りを測定する方法の原理について説明する。図1は反り測定法の基本となるX線回折法で用いる手段とその構成、及びX線光線図の概略を示したものである。図1は説明のために簡略化されており、実際の測定における手段とその構成、及びX線光線図と完全には一致しない場合もある。 First, the principle of a method for measuring the warpage of a semiconductor chip using diffracted X-rays will be described. FIG. 1 shows the means used in the X-ray diffraction method, which is the basis of the warpage measurement method, its configuration, and an outline of the X-ray ray diagram. FIG. 1 is simplified for the sake of explanation, and may not completely match the actual measurement means and configuration, and the X-ray ray diagram.
適切なX線源4で発生した入射X線5はSiチップ10の照射領域11(領域A)に入射する。X線検出器6を固定したまま、試料ステージ7の(波数ベクトル8の方向から計った)回転角ωを変化させると、ブラッグ条件が満たされるとき、すなわち領域Aの表面に対する入射X線5の入射角αがある特定の値αBをとるとき、領域AにおいてX線の結晶回折が生じX線検出器6で回折X線9が検出される。ここで、回折X線が検出されるときのωをωBと表す。さらに、領域AにおけるωBの値をωB(A)と表すことにする。
単結晶基板が反っていない場合、ωをωB(A)にしたまま、試料ステージ7をx軸方向へ移動させ、図2に示すように、Siチップ10上の他の照射領域12(領域B)にX線を照射しても、回折X線は検出されるままである。これはチップ表面に対する入射X線5の入射角αが領域Aと領域BとでαBのまま同じためである。
When the single crystal substrate is not warped, the sample stage 7 is moved in the x-axis direction with ω kept at ω B (A), and as shown in FIG. 2, another irradiation region 12 (region) on the
これに対して、図3から図5に示すように、Siチップ13が上に凸に反っている場合を考える。まず図3に注目して、照射領域14(領域C)にX線を照射したときのωBをωB(C)とする。このとき、回折X線9が検出されているのでαはαBである。次にωをωB(C)に設定したまま、試料ステージをx軸に平行にx軸の正の方向へ移動し、照射領域15(領域D)にX線を照射する(図4)。領域Dでは反りによりαがαBからずれるため、回折X線は検出されない。領域Dにおいて回折X線を検出するためには、αがαBとなるようにωの値を変化させればよい(図5)。すなわち、測定点が移動することによって生じるαの変化を打ち消す方向にωの値を調整すればよい。定量的には、領域Cの表面と領域Dの表面とのなす角をΔθ≧0とするとき、
On the other hand, consider the case where the
とすれば、領域DにおけるαがαBとなり、回折X線が検出される。以上の説明から、反りにより回折X線が検出される際のωが変化することが理解される。
Then, α in the region D becomes α B , and diffracted X-rays are detected. From the above description, it is understood that ω when diffracted X-rays are detected due to warping.
さらに、式(1)を変形すると、式(2)を得る。 Further, when equation (1) is modified, equation (2) is obtained.
式(2)は、領域Dと領域CとでωBを測定すれば、その変化から領域Cと領域Dの表面のなす角、すなわち反りによる表面の角度変化が求められることを示している。
Equation (2) shows that if ω B is measured in the region D and the region C, the angle between the surfaces of the region C and the region D, that is, the change in the surface angle due to the warpage can be obtained from the change.
以上では、単結晶基板が上に凸に反っている場合について説明したが、下に凸に反っている場合も同様の原理で反りによる表面のなす角の変化が測定可能である。 Although the case where the single crystal substrate is warped upward has been described above, the change in the angle formed by the warp can be measured by the same principle even when the single crystal substrate is warped downward.
次に上記の方法を用いて実際に行った測定について述べる。 Next, the measurement actually performed using the above method will be described.
測定に用いた試料は図6に示したものである。また、測定に用いたX線回折装置の概略を図7に示した。入射X線5および回折X線9と試料との関係を試料近傍について示したのが図8である。この図では、説明のためにモールド樹脂やプリント基板等を省略し、Siチップ19のみを示した。入射X線17のビーム形状はスリットによりSW1×SW2=2mm×0.2mmの長方形に規定されているが、Siチップ19上でのX線の照射領域20はおよそW1×W2=2mm×0.26mmの領域となる。これは、入射X線がSiチップ表面に対して斜めに入射するためである。
The sample used for the measurement is shown in FIG. An outline of the X-ray diffractometer used for the measurement is shown in FIG. FIG. 8 shows the relationship between the
以下測定の手順を示す。 The measurement procedure is shown below.
まず、図7に示したような測定系において、パッケージを試料ステージ7上に(半導体チップの中央がX線照射位置に重なるように)配置する。その後、半割り調整によるX線光学系の軸調整を行う。半割り調整は一般的な薄膜試料のX線回折測定の場合にも行われる調整であるので説明を省略する。次に回折X線を取得するために2θ軸(入射X線の波数ベクトルの方向から測った検出器の方位角)とω軸(入射X線の波数ベクトルの方向から測った試料ステージの回転角)とを調整する。 First, in the measurement system as shown in FIG. 7, the package is placed on the sample stage 7 (so that the center of the semiconductor chip overlaps the X-ray irradiation position). Thereafter, the axis of the X-ray optical system is adjusted by halving adjustment. The halving adjustment is an adjustment performed also in the case of X-ray diffraction measurement of a general thin film sample, and thus description thereof is omitted. Next, to obtain diffracted X-rays, the 2θ axis (detector azimuth angle measured from the direction of the wave vector of incident X-rays) and the ω axis (sample stage rotation angle measured from the direction of the wave vector of incident X-rays). ) And adjust.
本実施例においてはSi(0 0 1)基板から作成した半導体チップの反りをMo Kα1 特性X線(エネルギー:17.48keV、波長: 7.0926×10−2nm)を用いてSi(0 0 12)反射のロッキング曲線を観測するので、Bragg角θBはSi(0 0 12)の面間隔d、X線の波長λを用いて、式(3)より、θB=51.59°と求められるので、まず、2θ=2θB=103.18°、ω=51.59°に設定する。 In this embodiment, warpage of a semiconductor chip formed from a Si (0 0 1) substrate is converted into Si (0 0) using Mo Kα1 characteristic X-rays (energy: 17.48 keV, wavelength: 7.0926 × 10 −2 nm). 12) Since the rocking curve of the reflection is observed, the Bragg angle θ B is expressed as θ B = 51.59 ° from the equation (3) using the interplanar spacing d of Si (0 0 12) and the X-ray wavelength λ. Since it is obtained, first, 2θ = 2θ B = 103.18 ° and ω = 51.59 ° are set.
そして2θ−ωスキャンを行い回折ピークを探す。このスキャンを行っても回折ピークが得られない場合は、次のいずれかの操作により回折ピークを見出す。イ)2θを2θBに固定し、ωをθB付近でスキャン。ロ)ωをθBに固定し、2θを2θB付近でスキャン。ハ)χ(x軸周りの試料ステージの回転角)をプラス(あるいはマイナス)0.5°に設定し、上記の2θ−ωスキャンか、イ)あるいはロ)の操作で回折ピークを探す。上記のいずれかの操作により回折ピークが見出される。
A 2θ-ω scan is then performed to find a diffraction peak. If a diffraction peak is not obtained by performing this scan, the diffraction peak is found by any of the following operations. B ) Fix 2θ at 2θ B and scan ω around θ B. B) ω is fixed at θ B , and 2θ is scanned around 2θ B. C) χ (rotation angle of the sample stage around the x axis) is set to plus (or minus) 0.5 °, and a diffraction peak is searched for by the above-mentioned 2θ-ω scan, a) or b). A diffraction peak is found by any of the above operations.
上記の操作により回折ピークが見出されたら、回折強度が最大となるように、調整を行う。回折ピークが見出されたときの2θ、ω、χの条件をそれぞれ2θ0、ω0、χ0であらわす。 When a diffraction peak is found by the above operation, adjustment is performed so that the diffraction intensity becomes maximum. The conditions of 2θ, ω, and χ when a diffraction peak is found are expressed as 2θ 0 , ω 0 , and χ 0 , respectively.
まず、イ)2θ、ωを2θ0、ω0に固定し、χをχ0の周辺でスキャンし、回折強度が最大となる点を探しχをその点χ1に移動する。ロ)ω、χをω0、χ1に固定し、2θを2θ0周辺で走査する。回折強度が最大となる点を探し2θをその点2θ1へ移動する。ハ)2θ、χを2θ1、χ1に固定し、ωをω0周辺で走査する。回折強度が最大となる点を探しωをその点ω1へ移動する。以降、各走査で得られる回折強度の最大値が変化しなくなるまで、イ)〜ハ)の走査を繰りかえす。以降の調整、測定においては2θの値は固定する。 First, a) 2θ and ω are fixed to 2θ 0 and ω 0 , and χ is scanned around χ 0 to find a point where the diffraction intensity is maximum, and χ is moved to the point χ 1 . B) ω and χ are fixed to ω 0 and χ 1 , and 2θ is scanned around 2θ 0 . A point where the diffraction intensity is maximized is searched, and 2θ is moved to the point 2θ 1 . C) 2θ and χ are fixed to 2θ 1 and χ 1 , and ω is scanned around ω 0 . A point where the diffraction intensity is maximum is searched and ω is moved to the point ω 1 . Thereafter, the scans a) to c) are repeated until the maximum value of the diffraction intensity obtained in each scan does not change. In the subsequent adjustment and measurement, the value of 2θ is fixed.
次に回折X線を手がかりに次のようにチップ端部を決定する。すなわち、確実にSiチップに入射X線が照射されている位置から始めて、「試料ステージをx軸方向に一定距離移動する」、「ロッキング曲線を測定する」の操作を繰り返し、ロッキング曲線に回折X線が現れなくなった位置の直前の位置をチップ端部と判定する。このようにして2つのチップ端部を探し出す。 Next, the end of the chip is determined as follows using the diffracted X-rays as a clue. That is, starting from the position where the incident X-rays are reliably irradiated to the Si chip, the operations of “moving the sample stage by a certain distance in the x-axis direction” and “measuring the rocking curve” are repeated, and the diffraction X The position immediately before the position where the line no longer appears is determined as the chip end. In this way, the two chip ends are searched.
次に上記の方法で決定した2つのチップ端部でロッキング曲線を測定する。2点での回折ピーク角度が含まれるように以下の測定におけるロッキング曲線の始点ωsと終点ωeを決定しておく。 Next, the rocking curves are measured at the two chip ends determined by the above method. The starting point ωs and the ending point ωe of the rocking curve in the following measurement are determined so that the diffraction peak angles at the two points are included.
続いて一方のチップ端部にX線が照射されるように試料位置を調整する(図9左上)。そして、ロッキング曲線24をω=ωsからω=ωeの区間で取得しピーク角度ωBを求め、ωの値を初期値ωsに戻す(図9右上)。その後、試料ステージを一定距離たとえば0.1mmだけx軸方向に平行移動し(図9左下)、再びその位置でロッキング曲線24をω=ωsからω=ωeの区間で取得しピーク角度ωBを求め、ωの値を初期値ωsに戻す(図9右下)。このように「ロッキング曲線をω=ωsからω=ωeの区間で取得し、ピーク角度ωBを求め、ωの値を初期値ωsに戻す。」、「試料ステージをx軸方向に沿って移動させる。」といったステップを測定位置が出発点とは逆の半導体チップ端部に達するまで繰り返す。
Subsequently, the sample position is adjusted so that X-rays are irradiated to one chip end (upper left in FIG. 9). Then, a acquired peak angle omega B at intervals of omega = .omega.e rocking
なお、上記の手続きにおいては、取得したロッキング曲線を測定点と対応付けて記録しておき、各測定点でのロッキング曲線でのピーク角度の特定を測定終了後に一括して行ってもよい。 In the above procedure, the acquired rocking curve may be recorded in association with the measurement point, and the peak angle at the rocking curve at each measurement point may be specified collectively after the measurement is completed.
このようにしてピーク角度ωBの試料位置依存性が求められれば、以下のようにチップ応力を求めることができる。 If the sample position dependency of the peak angle ωB is obtained in this way, the chip stress can be obtained as follows.
まず、チップ断面の一部を示した図10を用いて、応力なしの状態(左側)から応力が外から加えられた場合(右側)を考える。Siチップ27および28の中央は応力が0(中立層)であると仮定する。すると、応力が加えられた場合においては、中央から上半分が引っ張り応力、中央から下半分が圧縮応力を受けると考えられる。そうすると、反ることによって生じるチップ表面の歪は、tをチップ厚さとするとき、式(4)により算出されるので、これにチップのヤング率Eをかけることでチップ表面の表面接線方向への反り応力σが得られる(式(5))。 First, the case where stress is applied from the outside (right side) from the state without stress (left side) will be considered using FIG. 10 showing a part of the chip cross section. The center of the Si chips 27 and 28 is assumed to have a stress of 0 (neutral layer). Then, when stress is applied, it is considered that the upper half from the center receives tensile stress and the lower half from the center receives compressive stress. Then, the distortion of the chip surface caused by warping is calculated by the equation (4), where t is the chip thickness. By multiplying this by the Young's modulus E of the chip, the distortion in the surface tangential direction of the chip surface is calculated. Warpage stress σ is obtained (formula (5)).
一方、曲率半径RはωB(x)と次のような関係にある。図11に示すように、Siチップ29上の2点(30および31)の表面法線(32および33)がなす角をΔθ、2点間の距離をΔxとすると、曲率1/Rは、式(6)によって与えられる。
On the other hand, the radius of curvature R has the following relationship with ωB (x). As shown in FIG. 11, when the angle formed by the surface normals (32 and 33) of two points (30 and 31) on the
一方、Δθの絶対値は各点でのロッキング曲線におけるピーク角度の差ΔωBの絶対値に等しいので、式(7)を得る。
On the other hand, since the absolute value of Δθ is equal to the absolute value of the peak angle difference Δω B in the rocking curve at each point, Equation (7) is obtained.
式(5)と式(7)とを用いると反り応力式(8)が得られる。
Using equations (5) and (7) yields the warpage stress equation (8).
なお、ΔωBの符号は測定系や測定位置の順序付けの方法によって変わりうるため、適宜正しい応力の符号が得られる様に修正されるべきである。ここでは、図2に示したような測定系を想定した。以上のように、各測定点でのωBと測定点間の距離Δxを用いてチップ表面の反り応力を求めることができる。
Since the sign of [Delta] [omega B is to be varied by the ordering of the method of the measurement system and measurement position, it should be modified so as to code appropriately correct stress is obtained. Here, a measurement system as shown in FIG. 2 was assumed. As described above, the warping stress on the chip surface can be obtained using ω B at each measurement point and the distance Δx between the measurement points.
以上説明したように、非破壊単結晶基板応力測定法は、単結晶基板をパッケージ材料で封止した部品にX線を照射するステップと、前記単結晶基板からの回折X線を前記パッケージ材料越しに検出する検出ステップと、前記検出ステップの結果を用いて前記単結晶基板の応力を求める解析ステップとからなる非破壊単結晶基板応力測定法であって、前記検出ステップは、前記回折X線のロッキング曲線を測定するステップと前記部品を移動する移動ステップとを測定位置が前記単結晶基板の一端部から反対側の端部に達するまで繰り返し行うステップであり、前記解析ステップは、前記検出ステップにより得られたロッキング曲線から回折ピーク角度を求めるステップと、隣り合う2つの測定点のピーク角度の差をΔωBと表し、前記移動ステップにおける移動距離をΔxと表したとき、前記単結晶基板のヤング率Eと前記単結晶基板の厚さtとを用いて、前記単結晶基板の位置xにおける反り応力σ(x)を、式(8)により算出する。 As described above, the nondestructive single crystal substrate stress measurement method includes the steps of irradiating a component having a single crystal substrate sealed with a package material with X-rays, and diffracting X-rays from the single crystal substrate through the package material. A non-destructive single crystal substrate stress measurement method comprising: a detection step for detecting a single crystal substrate using a result of the detection step; and an analysis step for obtaining a stress of the single crystal substrate using the result of the detection step. The step of measuring the rocking curve and the moving step of moving the component are repeated until the measurement position reaches the opposite end from the one end of the single crystal substrate, and the analyzing step is performed by the detecting step. The difference between the peak angle of the diffraction peak angle from the obtained rocking curve and the peak angle between two adjacent measurement points is expressed as ΔωB, and the moving step is The warping stress σ (x) at the position x of the single crystal substrate using the Young's modulus E of the single crystal substrate and the thickness t of the single crystal substrate It calculates by Formula (8).
従って、製品内の半導体チップの反り応力を非破壊、簡便に測定することが可能となる。 Therefore, it is possible to easily measure the warping stress of the semiconductor chip in the product in a nondestructive manner.
1 プリント基板
2、10、13、19、27、28、29 Siチップ
3 モールド樹脂
4 X線源
5、17 入射X線
6 X線検出器
7、23 試料ステージ
8 入射X線の波数ベクトル
9、18 回折X線
10 樹脂基板
11、12、14、15、20 照射領域
24、25 ロッキング曲線
30、31 ロッキング曲線の測定点
32、33 各測定点におけチップ表面法線
DESCRIPTION OF
Claims (4)
前記検出ステップの結果を用いて前記単結晶基板の応力を求める解析ステップとからなる非破壊単結晶基板応力測定法であって、
前記検出ステップは、前記回折X線のロッキング曲線を測定するステップと前記部品を移動する移動ステップとを測定位置が前記単結晶基板の一端部から反対側の端部に達するまで繰り返し行うステップであり、
前記解析ステップは、前記検出ステップにより得られたロッキング曲線から回折ピーク角度を求めるステップと、隣り合う2つの測定点のピーク角度の差をΔωBと表し、前記移動ステップにおける移動距離をΔxと表したとき、前記単結晶基板のヤング率Eと前記単結晶基板の厚さtとを用いて、前記単結晶基板の位置xにおける反り応力σ(x)を
A non-destructive single crystal substrate stress measurement method comprising an analysis step of obtaining a stress of the single crystal substrate using a result of the detection step,
The detecting step is a step of repeatedly performing a step of measuring the rocking curve of the diffracted X-ray and a moving step of moving the component until the measurement position reaches the opposite end from one end of the single crystal substrate. ,
In the analyzing step, the difference between the peak angle of two adjacent measurement points is expressed as Δω B and the moving distance in the moving step is expressed as Δx, and the step of obtaining the diffraction peak angle from the rocking curve obtained in the detecting step. Then, using the Young's modulus E of the single crystal substrate and the thickness t of the single crystal substrate, the warping stress σ (x) at the position x of the single crystal substrate is
前記X線を照射する手段、
前記検出手段、
前記解析手段、
として機能させることを特徴とする非破壊単結晶基板反り測定プログラム。 A computer included in the nondestructive single crystal substrate warpage stress measuring device according to claim 2,
Means for irradiating the X-ray;
The detection means;
The analysis means;
Non-destructive single crystal substrate warpage measurement program characterized by functioning as
前記X線を照射する手段、
前記検出手段、
前記解析手段、
前記回折ピーク角度の試料位置依存性から求めた、隣り合う2つの測定点のピーク角度の差をΔωB(x)と表し、前記移動ステップにおける移動距離をΔxと表したとき、前記単結晶基板のヤング率Eと前記単結晶基板の厚さtとを用いて、前記単結晶基板の位置xにおける反り応力σ(x)を
として機能させることを特徴とする非破壊単結晶基板反り応力測定プログラム。 A computer included in the nondestructive single crystal substrate warpage stress measuring device according to claim 2,
Means for irradiating the X-ray;
The detection means;
The analysis means;
When the difference in peak angle between two adjacent measurement points obtained from the sample position dependency of the diffraction peak angle is expressed as Δω B (x) and the moving distance in the moving step is expressed as Δx, the single crystal substrate Using the Young's modulus E and the thickness t of the single crystal substrate, the warping stress σ (x) at the position x of the single crystal substrate is
Non-destructive single crystal substrate warpage stress measurement program characterized by functioning as
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009151791A JP5338517B2 (en) | 2009-06-26 | 2009-06-26 | Nondestructive single crystal substrate stress measurement method, measurement device, and measurement program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009151791A JP5338517B2 (en) | 2009-06-26 | 2009-06-26 | Nondestructive single crystal substrate stress measurement method, measurement device, and measurement program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011007645A JP2011007645A (en) | 2011-01-13 |
JP5338517B2 true JP5338517B2 (en) | 2013-11-13 |
Family
ID=43564488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009151791A Expired - Fee Related JP5338517B2 (en) | 2009-06-26 | 2009-06-26 | Nondestructive single crystal substrate stress measurement method, measurement device, and measurement program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5338517B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6821263B2 (en) * | 2017-05-26 | 2021-01-27 | 株式会社ディスコ | Method and device for measuring the curvature of the chip |
CN110596160B (en) * | 2019-09-19 | 2020-12-25 | 西安交通大学 | Monochromatic X-ray single crystal/oriented crystal stress measuring system and measuring method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04285806A (en) * | 1991-03-14 | 1992-10-09 | Nec Corp | Measuring method for curvature of silicon single-crystal substrate |
JPH0961150A (en) * | 1995-08-25 | 1997-03-07 | Nippon Telegr & Teleph Corp <Ntt> | Flatness and stress measuring apparatus |
JP2003207398A (en) * | 2002-01-10 | 2003-07-25 | Kobe Steel Ltd | Method for predicting stress distribution and device for simulating stress distribution |
JP3914925B2 (en) * | 2004-01-28 | 2007-05-16 | 株式会社リガク | Film thickness measuring method and apparatus |
JP4841458B2 (en) * | 2007-02-22 | 2011-12-21 | 富士通株式会社 | Crystal sample shape evaluation method, shape evaluation apparatus, and program |
-
2009
- 2009-06-26 JP JP2009151791A patent/JP5338517B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011007645A (en) | 2011-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI447842B (en) | Apparatus, device and method for determining alignment errors | |
KR101275532B1 (en) | Apparatus and method for analysis of a sample having a surface layer | |
US11674793B2 (en) | Residual thermal strain measurement method, residual thermal strain measurement device, and program therefor | |
US10113861B2 (en) | Optical system and methods for the determination of stress in a substrate | |
JP4898266B2 (en) | Method for measuring thin film Poisson's ratio | |
US20060256916A1 (en) | Combined ultra-fast x-ray and optical system for thin film measurements | |
US9080944B2 (en) | Method and apparatus for surface mapping using in-plane grazing incidence diffraction | |
JP5338517B2 (en) | Nondestructive single crystal substrate stress measurement method, measurement device, and measurement program | |
JP2007285923A5 (en) | ||
JP5145854B2 (en) | Sample analyzer, sample analysis method, and sample analysis program | |
Dai et al. | Characterization for Young’s modulus of TBCs using soft lithography gratings and moiré interferometry | |
JP4995006B2 (en) | Method for measuring Young's modulus, stress and strain of film to be measured | |
JP5359165B2 (en) | Nondestructive warpage measuring method and measuring apparatus for single crystal substrate | |
JP5321815B2 (en) | Nondestructive single crystal substrate warpage measuring method and measuring device | |
Macherauch et al. | A modified diffractometer for x-ray stress measurements | |
WO2019087355A1 (en) | Method for testing semiconductor device, and method for manufacturing semiconductor device | |
US7724872B2 (en) | Inspection method for thin film stack | |
Toda et al. | Nondestructive warpage measurements of LSI chips in a stacked system in package by using high-energy X-ray diffraction | |
JP3017634B2 (en) | X-ray stress measurement apparatus and X-ray stress measurement method | |
JP2010014432A (en) | Film thickness measuring method | |
Verma et al. | Real-time warpage measurement of electronic components with variable sensitivity | |
McNally et al. | Mapping of mechanical, thermomechanical and wire-bond strain fields in packaged Si integrated circuits using synchrotron white beam X-ray topography | |
JP2011215092A (en) | Method and instrument for measuring warpage on single crystal substrate | |
Raghothamachar et al. | A Novel X-ray Diffraction–based Technique for Complete Stress State Mapping of Packaged Silicon Dies | |
Xin et al. | Metrology of Silicon Wafers through Synchrotron Section Topography and X-ray Diffraction Imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120509 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130531 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130709 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130722 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |