JP5359165B2 - Nondestructive warpage measuring method and measuring apparatus for single crystal substrate - Google Patents

Nondestructive warpage measuring method and measuring apparatus for single crystal substrate Download PDF

Info

Publication number
JP5359165B2
JP5359165B2 JP2008260226A JP2008260226A JP5359165B2 JP 5359165 B2 JP5359165 B2 JP 5359165B2 JP 2008260226 A JP2008260226 A JP 2008260226A JP 2008260226 A JP2008260226 A JP 2008260226A JP 5359165 B2 JP5359165 B2 JP 5359165B2
Authority
JP
Japan
Prior art keywords
crystal substrate
single crystal
ray
rays
warpage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008260226A
Other languages
Japanese (ja)
Other versions
JP2010091354A (en
Inventor
昭夫 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2008260226A priority Critical patent/JP5359165B2/en
Publication of JP2010091354A publication Critical patent/JP2010091354A/en
Application granted granted Critical
Publication of JP5359165B2 publication Critical patent/JP5359165B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To measure warpage of a single-crystal substrate in a component sealed with a package material by diffracted X-rays through the package material without destroying the component. <P>SOLUTION: When the Bragg condition is satisfied when the rotation angle &omega; of a sample stage 6 measured from a wave number vector 8 of incident X rays 4 is changed with an X-ray detector 1 fixed, that is, when the angle &alpha; formed by the surface of a radiation area of an Si chip in a sample 30 and the wave number vector 8 of the incident X rays 4 is a specific value, crystal diffraction of X-rays occurs and the X-ray detector 1 detects diffracted X rays 9. The sample 30 has a structure in which the Si chip is mounted on a printed board and these are sealed with a mold. The X-ray detector 1 detects the diffracted X rays 9 through the mold and can acquire a rocking curve. Warpage of the Si chip can be measured based on the rocking curve. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は単結晶基板の非破壊反り測定方法及び測定装置に係り、特に単結晶基板の反りを、部品を破壊することなく回折X線を用いて測定する単結晶基板の非破壊反り測定方法及び測定装置に関する。   The present invention relates to a non-destructive warpage measuring method and measuring apparatus for a single crystal substrate, and more particularly to a non-destructive warpage measuring method for a single crystal substrate for measuring the warpage of a single crystal substrate using diffracted X-rays without destroying parts. It relates to a measuring device.

一般に、結晶材料の物性量や性質の多くは、応力及びこれに伴って現れる格子歪によって変化する。また、結晶材料の応力や格子歪は、同じ材料であっても、その成長条件や加工条件、あるいはその結晶材料に接する他の材料が及ぼす応力などによって変化する。従って、結晶材料の応力や格子歪を評価し、その用途に応じて加工・成長条件を最適化することが、高性能かつ高信頼の材料・製品開発にとって不可欠である。   In general, many of the physical properties and properties of a crystal material vary depending on stress and lattice strain appearing accompanying the stress. In addition, even if the crystal material has the same stress and lattice strain, it varies depending on the growth conditions and processing conditions of the same material, or the stress exerted by other materials in contact with the crystal material. Therefore, it is indispensable for the development of high-performance and highly reliable materials and products to evaluate the stress and lattice strain of the crystal material and to optimize the processing and growth conditions according to the application.

特に、半導体結晶を用いてエレクトロニクス製品を製造する場合には、その単結晶を薄い板状のウェハに加工し、片面上にダイオード、トランジスタ、キャパシタ等の素子を形成する。これらの素子を形成するプロセスには、酸化、成膜、不純物導入、エッチング、熱処理等の工程が含まれるため、半導体ウェハ内には応力が発生し、巨視的な反りとなって現れる。この半導体ウェハの反りは、半導体結晶の物性量や性質を変化させるので、素子の性能及び信頼性に影響を与える。従って、半導体ウェハの反りを評価する必要がある。   In particular, when an electronic product is manufactured using a semiconductor crystal, the single crystal is processed into a thin plate-like wafer, and elements such as a diode, a transistor, and a capacitor are formed on one surface. Since the process for forming these elements includes steps such as oxidation, film formation, impurity introduction, etching, and heat treatment, stress is generated in the semiconductor wafer and appears as a macroscopic warpage. This warpage of the semiconductor wafer changes the physical properties and properties of the semiconductor crystal, thus affecting the performance and reliability of the device. Therefore, it is necessary to evaluate the warpage of the semiconductor wafer.

そこで、半導体ウェハに対応する単結晶基板の反りを測定する方法が特許文献1に記載されている。特許文献1記載の単結晶基板の反りの測定方法では、被測定試料であるシリコン単結晶の回折角度幅の百分の一以下のX線を単結晶基板に入射し、単結晶基板の反りによって入射条件の異なる回折X線を原子核乾板に記録する。そして、上記の測定方法では、記録した回折X線の強度分布から反りを測定する。   Therefore, Patent Document 1 describes a method for measuring warpage of a single crystal substrate corresponding to a semiconductor wafer. In the method for measuring warpage of a single crystal substrate described in Patent Document 1, X-rays having a diffraction angle width of one hundredth or less of a silicon single crystal as a sample to be measured are incident on the single crystal substrate, and the warpage of the single crystal substrate causes Diffraction X-rays with different incident conditions are recorded on the nuclear plate. And in said measuring method, curvature is measured from the intensity distribution of the recorded diffraction X ray.

特開平4−285806号公報JP-A-4-285806

ところで、近年の大規模半導体集積回路(LSI)のパッケージング技術においては、省スペース化の要求から、LSIの拡散工程を経た後に半導体ウェハを薄膜化しチップに分割した後、パッケージングを施すといった技術が検討されている。   By the way, in the recent large-scale semiconductor integrated circuit (LSI) packaging technology, due to the demand for space saving, the semiconductor wafer is thinned and divided into chips after the LSI diffusion process, and then packaging is performed. Is being considered.

例えば、同じ機能を持つ半導体チップ(主にメモリチップ)を積層し、パッケージングすることで、製品が持つ情報処理能力や情報蓄積能力を大幅な搭載スペースの拡大無く向上させる技術は、マルチ・チップ・パッケージング(Multi−Chip−Packaging:MCP)技術と呼ばれる。また、異なる種類の機能を持つ半導体チップを一つのパッケージ内に積層し、そのパッケージに新たな機能を持たせるという、システム・イン・パッケージ(System in Package:SiP)といった技術も知られている。   For example, by stacking and packaging semiconductor chips with the same function (mainly memory chips), the technology to improve the information processing capability and information storage capability of products without significantly increasing the mounting space is a multi-chip. -It is called a packaging (Multi-Chip-Packaging: MCP) technology. Also known is a system in package (SiP) technique in which semiconductor chips having different types of functions are stacked in one package and the package is given a new function.

このようなMCPやSiPに代表される実装技術では、半導体チップ(単結晶基板)は100μmあるいはそれ以下に薄膜化される。薄膜化された半導体チップは、パッケージング材料の応力の影響を受け易くなるため、パッケージング後の半導体チップの反り状態は、パッケージング材料や工程により変化する。従って、半導体製品の性能制御や信頼性向上のためには、パッケージング後の半導体チップの反りを測定する必要がある。特に、パッケージング後の積層された複数の半導体チップ(単結晶基板)のそれぞれについて、反りを測定できることが望ましい。   In such mounting technology represented by MCP and SiP, a semiconductor chip (single crystal substrate) is thinned to 100 μm or less. Since the thinned semiconductor chip is easily affected by the stress of the packaging material, the warped state of the semiconductor chip after packaging varies depending on the packaging material and the process. Therefore, it is necessary to measure the warpage of the semiconductor chip after packaging in order to control the performance of the semiconductor product and improve the reliability. In particular, it is desirable that warpage can be measured for each of a plurality of stacked semiconductor chips (single crystal substrates) after packaging.

しかるに、前述した特許文献1記載の単結晶基板の反りの測定方法は、シリコン単結晶の回折角度幅の百分の一以下のX線を単結晶基板に直接入射し、それにより得られる回折X線に基づいて単結晶基板の反りを測定する方法である。このため、特許文献1記載の単結晶基板の反りの測定方法では、パッケージ内の積層された複数の単結晶基板に対して、パッケージ越しにX線を照射し、パッケージ中から積層された複数の単結晶基板からの回折X線を検出して、単結晶基板個々の反りを検出することができない。   However, the above-described method for measuring the warpage of a single crystal substrate described in Patent Document 1 directly applies X-rays that are one-hundred or less of the diffraction angle width of a silicon single crystal to the single crystal substrate, and the resulting diffraction X This is a method of measuring warpage of a single crystal substrate based on a line. For this reason, in the method for measuring the warpage of a single crystal substrate described in Patent Document 1, X-rays are irradiated through the package to a plurality of stacked single crystal substrates in the package, and a plurality of stacked single crystal substrates are stacked from inside the package. It is impossible to detect the warpage of each single crystal substrate by detecting diffracted X-rays from the single crystal substrate.

なお、パッケージされた半導体チップの応力や反りの評価は、これまでにもラマン分光法や歪ゲージ法を用いて行われてきた。しかし、ラマン分光法は、パッケージの断面において測定を行う破壊検査であり、断面作成の際に応力が緩和するため、測定結果が実際の半導体チップの応力を反映しない場合があるという懸念がある。また、歪ゲージ法は非破壊検査であるが、この方法で測定される歪は、パッケージ表面の歪であり、半導体チップに加わる歪は推定でしか求められない。また、上記のMCPやSiPのように複数の半導体チップが積層されている場合には、個々の半導体チップの歪の推定の難易度が大幅に増す。   The evaluation of stress and warpage of a packaged semiconductor chip has heretofore been performed using Raman spectroscopy and strain gauge methods. However, Raman spectroscopy is a destructive inspection in which measurement is performed on the cross section of the package, and stress is relaxed when the cross section is created. Therefore, there is a concern that the measurement result may not reflect the actual stress of the semiconductor chip. Although the strain gauge method is a nondestructive inspection, the strain measured by this method is a strain on the package surface, and the strain applied to the semiconductor chip can be obtained only by estimation. In addition, when a plurality of semiconductor chips are stacked like the above MCP and SiP, the difficulty of estimating the strain of each semiconductor chip is greatly increased.

本発明は以上の点に鑑みなされたもので、パッケージ材料で封止した部品中の単結晶基板の反りを、部品を破壊することなくパッケージ材料越しに回折X線を用いて測定する単結晶基板の非破壊反り測定方法及び測定装置を提供することを目的とする。   The present invention has been made in view of the above points, and a single crystal substrate that measures the warpage of a single crystal substrate in a component sealed with a package material using a diffracted X-ray through the package material without destroying the component. An object of the present invention is to provide a nondestructive warpage measuring method and measuring apparatus.

上記の目的を達成するため、本発明の単結晶基板の非破壊反り測定方法は、一枚のプリント基板上に積層された複数の単結晶基板をプリント基板と共にパッケージ材料で封止した部品にX線を照射する照射ステップと、個々の単結晶基板からの回折X線をパッケージ材料越しに一つのロッキング曲線の中にピーク分離を行うことにより検出して、複数の単結晶基板のそれぞれの反りを非破壊で測定する検出・測定ステップとを含むことを特徴とする。 In order to achieve the above object, a non-destructive warpage measuring method for a single crystal substrate according to the present invention is applied to a component in which a plurality of single crystal substrates stacked on one printed circuit board are sealed together with a printed circuit board with a package material. an irradiation step of irradiating the line, is detected by performing the peak separation in a single rocking curve diffracted X-rays from each of the single-crystal substrate in the package material over each of the warp of the single crystal substrate several And a detection / measurement step for nondestructively measuring.

また、上記の目的を達成するため、本発明の単結晶基板の非破壊反り測定装置は、一枚のプリント基板上に積層された複数の単結晶基板をプリント基板と共にパッケージ材料で封止した部品にX線を照射する照射手段と、個々の単結晶基板からの回折X線をパッケージ材料越しに一つのロッキング曲線の中にピーク分離を行うことにより検出して、複数の単結晶基板のそれぞれの反りを非破壊で測定する検出・測定手段とを有することを特徴とする。 In order to achieve the above object, the non-destructive warpage measuring apparatus for a single crystal substrate according to the present invention is a component in which a plurality of single crystal substrates stacked on a single printed circuit board are sealed together with a package material together with a package material. irradiating means for irradiating X-rays on, it is detected by performing the peak separation in a single rocking curve diffracted X-ray in the packaging material over from the individual single-crystal substrate, each of the multiple single-crystal substrate And a detecting / measuring means for non-destructively measuring the warpage of the substrate.

本発明によれば、パッケージ材料により封止した単結晶基板の反りを、部品を破壊することなくパッケージ材料越しに回折X線を用いて測定することができ、その測定結果に基づいた実装材料やプロセスの最適化が可能となり、高性能及び高信頼の製品開発が促進させることができる。   According to the present invention, the warpage of the single crystal substrate sealed with the package material can be measured using the diffracted X-rays through the package material without destroying the components. Process optimization is possible, and high-performance and highly reliable product development can be promoted.

次に、本発明の実施形態について図面と共に詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図1〜図5は、本発明になる単結晶基板の非破壊反り測定方法の基本となるX線回折法で用いる手段と構成、及びX線光線図の概略を示す。図1〜図5は説明のために簡略化されており、実際の測定における手段とその構成、及びX線光線図と完全には一致しない場合もある。なお、図1〜図5において、同一構成部分には同一符号を付してある。   1 to 5 show an outline of means and configuration used in an X-ray diffraction method, which is the basis of a non-destructive warpage measuring method for a single crystal substrate according to the present invention, and an X-ray ray diagram. 1 to 5 are simplified for the sake of explanation, and may not completely coincide with the means and configuration of actual measurement and the X-ray ray diagram. 1 to 5, the same components are denoted by the same reference numerals.

図1において、適切なX線源2で発生したX線は入射スリット3を通過し、試料ステージ6上に固定された単結晶基板5の照射領域7(領域A)に入射する。X線検出器1を固定したまま、入射X線4の波数ベクトル8の方向から測定した試料ステージ6の回転角ωを変化させると、ブラッグ条件が満たされるとき、すなわち照射領域7(領域A)の表面と入射X線4の波数ベクトル8とのなす角αがある特定の値αをとるとき、X線の結晶回折が生じX線検出器1で回折X線9が検出される。ここで、回折X線9が検出されるときの回転角ωをωと表す。さらに、照射領域7(領域A)におけるωの値をω(A)とする。また、本明細書では回折X線強度のω依存性をロッキング曲線と呼ぶことにする。 In FIG. 1, X-rays generated by an appropriate X-ray source 2 pass through an incident slit 3 and enter an irradiation region 7 (region A) of a single crystal substrate 5 fixed on a sample stage 6. If the rotation angle ω of the sample stage 6 measured from the direction of the wave vector 8 of the incident X-ray 4 is changed while the X-ray detector 1 is fixed, the Bragg condition is satisfied, that is, the irradiation region 7 (region A). when taking a certain angle formed alpha between the surface and the wave vector 8 of the incident X-ray 4 specific value alpha B, diffracted X-rays 9 at the X-ray detector 1 occurs crystal diffraction of X-rays are detected. Here, representing the rotation angle omega of when the diffracted X-rays 9 are detected with omega B. Further, the value of omega B in the irradiation region 7 (region A) and omega B (A). In this specification, the ω dependence of the diffracted X-ray intensity is called a rocking curve.

単結晶基板5が反っていない場合、回転角ωをω(A)にしたまま、試料ステージ6をX軸方向へ移動させ、図2に示すように、単結晶基板5上の他の領域25(領域B)にX線を照射しても、回折X線9はX線検出器1により引き続き検出される。これは領域25の表面と入射X線4の波数ベクトル8とのなす角αが領域7と領域25とでαのまま同じためである。 When the single crystal substrate 5 is not warped, the sample stage 6 is moved in the X-axis direction while keeping the rotation angle ω B (A), and as shown in FIG. Even if X-rays are irradiated to 25 (region B), the diffracted X-rays 9 are continuously detected by the X-ray detector 1. This is because the angle α formed by the surface of the region 25 and the wave vector 8 of the incident X-ray 4 remains the same as α B in the region 7 and the region 25.

これに対して、図3から図5に示すように、単結晶基板5が上に凸に反っている場合を考える。まず、図3に示すように、照射領域26(領域C)にX線4を照射したときの回転角ωをω(C)とする。このとき、回折X線9がX線検出器1により検出されているので、照射領域26(領域C)の表面と入射X線4の波数ベクトル8とのなす角αはαである。 On the other hand, as shown in FIGS. 3 to 5, consider a case where the single crystal substrate 5 is warped upward. First, as shown in FIG. 3, the rotation angle ω B when the irradiation region 26 (region C) is irradiated with the X-ray 4 is defined as ω B (C). At this time, since the diffracted X-rays 9 are detected by the X-ray detector 1, the angle alpha between the wave vector 8 of the surface and the incident X-ray 4 irradiated region 26 (region C) is alpha B.

次に、図4に示すように、回転角ωをω(C)に設定したまま、試料ステージ6をX軸に平行にX軸の負の方向へ移動し、照射領域27(領域D)にX線4を照射する。このときは、照射領域27(領域D)では単結晶基板5の反りにより照射領域27(領域D)の表面と入射X線4の波数ベクトル8とのなす角αがαからずれるため、単結晶基板5からの回折X線はX線検出器1により検出されない。 Next, as shown in FIG. 4, with the rotation angle ω set to ω B (C), the sample stage 6 is moved in the negative direction of the X axis parallel to the X axis, and the irradiation region 27 (region D). Is irradiated with X-rays 4. In this case, since the angle between the wave vector 8 of the irradiation region 27 (region D) in the surface and the incident X-ray 4 irradiated region 27 by warpage of the single-crystal substrate 5 (region D) alpha deviates from alpha B, single Diffracted X-rays from the crystal substrate 5 are not detected by the X-ray detector 1.

照射領域27(領域D)にX線を照射したときに得られる回折X線9を検出するためには、図5に示すように、照射領域27(領域D)の表面と入射X線4の波数ベクトル8とのなす角αがαとなるように試料ステージ6の回転角ωの値を変化させればよい。すなわち、測定点が移動することによって生じるαの変化を打ち消す方向にωの値を調整すればよい。定量的には、照射領域26(領域C)の表面と照射領域27(領域D)の表面とのなす角をΔθ≧0とするとき、
ω=ωB(C)+Δθ
=ωB(D) (1)
とすれば、照射領域27(領域D)の表面と入射X線4の波数ベクトル8とのなす角αがαとなり、回折X線9がX線検出器1により検出される。以上の説明から、単結晶基板5の反りにより回折X線9が検出される際の回転角ωが変化することが理解される。
In order to detect the diffracted X-rays 9 obtained when the irradiation region 27 (region D) is irradiated with X-rays, the surface of the irradiation region 27 (region D) and the incident X-ray 4 are detected as shown in FIG. it may be changed to the value of the rotational angle ω of the sample stage 6 as the angle between the wave vector 8 alpha is alpha B. That is, the value of ω may be adjusted in a direction to cancel the change of α caused by the movement of the measurement point. Quantitatively, when the angle between the surface of the irradiation region 26 (region C) and the surface of the irradiation region 27 (region D) is Δθ ≧ 0,
ω = ω B (C) + Δθ
= Ω B (D) (1)
Then, the angle α formed by the surface of the irradiation region 27 (region D) and the wave vector 8 of the incident X-ray 4 becomes α B , and the diffracted X-ray 9 is detected by the X-ray detector 1. From the above description, it is understood that the rotation angle ω when the diffracted X-ray 9 is detected changes due to the warp of the single crystal substrate 5.

ここで、(1)式を変形すると、次式が得られる。   Here, when the equation (1) is modified, the following equation is obtained.

ωB(D)−ωB(C)=+Δθ (2)
これは照射領域27(領域D)と照射領域26(領域C)とでωを測定すれば、その変化から領域Cと領域Dの表面のなす角Δθ、すなわち反りによる表面の角度変化が求められることを示している。
ω B (D) −ω B (C) = + Δθ (2)
If ω B is measured in the irradiation region 27 (region D) and the irradiation region 26 (region C), the angle Δθ formed by the surfaces of the region C and the region D, that is, the change in the surface angle due to warpage is obtained from the change. It is shown that.

以上では、単結晶基板5が上に凸に反っている場合について説明したが、下に凸に反っている場合も同様の原理で反りによる表面のなす角の変化が測定可能である(説明は省略する)。ただし、下に凸に反っている場合の回転角ωと、領域Cと領域Dの表面のなす角Δθは、上記の(1)式及び(2)式とは異なり、それぞれ(3)式及び(4)式となる。   Although the case where the single crystal substrate 5 is warped upward has been described above, the change of the angle formed by the surface can be measured by the same principle even when the single crystal substrate 5 is warped downward (explained) (Omitted). However, the rotation angle ω when warped downward and the angle Δθ formed by the surfaces of the region C and the region D are different from the above equations (1) and (2), respectively. (4)

ω=ωB(C)−Δθ
=ωB(D) (3)
ωB(D)−ωB(C)=−Δθ (4)
従って、ωの位置変化の符号から反りの向き(上に凸あるいは下に凸)の判定が可能である。
ω = ω B (C) −Δθ
= Ω B (D) (3)
ω B (D) −ω B (C) = − Δθ (4)
Therefore, it is possible to determine the position of the codes of the change in the warp direction of the omega B (convex downward convex or above).

以上がX線回折を用いて単結晶基板の反りを測定する方法の原理の説明である。以下ではこれを用いて実際に反り判定を行った例について説明する。   The above is the description of the principle of the method of measuring the warpage of the single crystal substrate using X-ray diffraction. Below, the example which actually performed the curvature determination using this is demonstrated.

図6(A)、(B)は、単結晶基板の反りの測定に用いた試料の平面図、側面図を示す。図6(A)、(B)に示すように、試料100は、樹脂基板10上にSi(001)単結晶基板をもとに作られたSiチップ11が圧着されている構成である。この試料100は、実装プロセス途中の試料であり、樹脂基板10の表面は空気中に露出した状態である。   6A and 6B are a plan view and a side view of a sample used for measuring warpage of a single crystal substrate. As shown in FIGS. 6A and 6B, the sample 100 has a configuration in which a Si chip 11 made on the basis of a Si (001) single crystal substrate is pressure-bonded on a resin substrate 10. This sample 100 is a sample in the middle of the mounting process, and the surface of the resin substrate 10 is exposed to the air.

図7は、実験時のX線と試料100との関係を特に測定試料近傍について示した上面図を示す。実験に用いたX線回折装置の概略構成は図1と同じである。図7において、入射X線13は、Siチップ11に対して斜めに入射し、これにより回折X線14が得られる。入射X線13のスリット幅は0.5mm×0.1mmであるが、入射X線13はSiチップ11に対して斜めに入射するので、Siチップ11上でのX線の照射領域12はおよそW1×W2=0.5mm×0.2mmの領域となる(図7に白抜きで示した領域)。   FIG. 7 is a top view showing the relationship between the X-ray and the sample 100 during the experiment, particularly in the vicinity of the measurement sample. The schematic configuration of the X-ray diffractometer used in the experiment is the same as in FIG. In FIG. 7, incident X-rays 13 are incident on the Si chip 11 at an angle, whereby diffracted X-rays 14 are obtained. The slit width of the incident X-ray 13 is 0.5 mm × 0.1 mm. However, since the incident X-ray 13 is incident on the Si chip 11 at an angle, the X-ray irradiation region 12 on the Si chip 11 is approximately W1 × W2 = 0.5 mm × 0.2 mm region (region shown in white in FIG. 7).

次に、実際の測定の手順について、図8と共に説明する。まず、図8(A)に示すように、Siチップ11の端部の照射領域12にX線が照射されるように試料100をセットしてX線を照射し、同図(B)に示すようにロッキング曲線15を取得しωを求める。 Next, the actual measurement procedure will be described with reference to FIG. First, as shown in FIG. 8A, the sample 100 is set and irradiated with X-rays so that the irradiation region 12 at the end of the Si chip 11 is irradiated with X-rays. Thus, the rocking curve 15 is acquired to obtain ω B.

その後、図8(C)に示すように試料ステージを0.1mmだけX軸方向に平行移動し、移動後の照射領域12’に上記と同様にしてX線を照射して同図(D)に示すようにロッキング曲線16を取得しωを求める。このように「試料ステージをX軸方向に沿って0.1mm移動させる。」、「ロッキング曲線を取得しωを求める」といった2つのステップを、測定位置が測定出発点の試料端部とは逆の端部に達するまで繰り返す。 Thereafter, as shown in FIG. 8C, the sample stage is translated by 0.1 mm in the X-axis direction, and the irradiated region 12 ′ after the movement is irradiated with X-rays in the same manner as described above, and FIG. get the rocking curve 16 as shown in to determine the ω B. In this way, the two steps of “moving the sample stage by 0.1 mm along the X-axis direction” and “obtaining the rocking curve and obtaining ω B ” are the sample ends where the measurement position is the measurement starting point. Repeat until the opposite end is reached.

図9は、このようにして得られたωのSiチップ上の位置Xに対する依存性ω(X)を示す。図9において、Siチップ端部付近を除くとω(X)は位置Xについて増加関数であり、Siチップの大部分は上に凸に反っていると考えられる。 Figure 9 shows the dependence of omega B with respect to the position X on the Si chip thus obtained omega B (X). In FIG. 9, ω B (X) is an increasing function with respect to the position X except for the vicinity of the end of the Si chip, and it is considered that most of the Si chip is warped upward.

図10は、ωのSiチップ上の位置Xに対する依存性Δω(X)を示す。ここで、Δω(X)=ω(X)−ω(X=0)である。上述のように、ω(X)の変化は反りによる単結晶基板表面の角度変化に相当するので、Δω(X)はX=0の基板表面を基準に測定した位置Xにおける基板表面の角度を表している。 FIG. 10 shows the dependency Δω B (X) of ω B on the position X on the Si chip. Here, Δω B (X) = ω B (X) −ω B (X = 0). As described above, since the change in ω B (X) corresponds to the change in the angle of the single crystal substrate surface due to warping, Δω B (X) is the value of the substrate surface at the position X measured with reference to the substrate surface where X = 0. It represents an angle.

よって、図11に示すように、Siチップ断面の模式図を描き、基板表面を表す曲線をz=f(X)と表すとき、f(X)の傾きは丁度
tan(−Δω(X))=−tan(Δω(X))
に等しい。マイナスの符号がつくのは、Δω(X)は反りによる基板表面の角度変化そのものではなく、それを打ち消すようにして試料ステージの回転角ωを調整してから得られる量であるからである。
Therefore, as shown in FIG. 11, when a schematic diagram of the cross section of the Si chip is drawn and the curve representing the substrate surface is expressed as z = f (X), the slope of f (X) is just tan (−Δω B (X) ) =-Tan (Δω B (X))
be equivalent to. The reason why the minus sign is attached is that Δω B (X) is not the angle change itself of the substrate surface due to the warp but the amount obtained after adjusting the rotation angle ω of the sample stage so as to cancel it. .

以上から、測定値であるΔω(X)を用いて、試料断面図における基板表面を表す曲線f(X)すなわち各点Xにおける試料表面のz軸方向への変位量を得るための次式の微分方程式が得られる。 From the above, the following equation for obtaining the curve f (X) representing the substrate surface in the sample cross-sectional view, that is, the amount of displacement in the z-axis direction of the sample surface at each point X, using the measured value Δω B (X). The differential equation is obtained.

df/dX=−tan(Δω(X)) (5)
z=f(X)は、この微分方程式を積分する次式により得られる。
df / dX = −tan (Δω B (X)) (5)
z = f (X) is obtained by the following equation that integrates this differential equation.

Figure 0005359165
Figure 0005359165

従って、図11と(6)式とを用いて積分を行うことにより、f(X)すなわち、試料の断面図を得ることができる。図12は、このようにして得られた試料の断面図を示す。縦軸はz方向へのSiチップの変位量(displacement)に相当する変位量を示す。図12に示すように、試料は全体として上に凸であり、基板全体としての反り量(zの最大値と最小値の差)が約70μmであることが分かる。   Therefore, f (X), that is, a cross-sectional view of the sample can be obtained by performing integration using FIGS. 11 and (6). FIG. 12 shows a cross-sectional view of the sample thus obtained. The vertical axis represents the displacement corresponding to the displacement of the Si chip in the z direction. As shown in FIG. 12, the sample is convex upward as a whole, and the warpage amount (difference between the maximum value and the minimum value of z) of the entire substrate is about 70 μm.

Figure 0005359165
Figure 0005359165

表1は、反りの向きや反り量が異なる試料について上述の方法で反りを測定した結果と、一般に反り測定に用いられている表面粗さ計を用いて反りを測定した結果とを比較した表を示す。この表から分かるように、両者の測定結果の間には、絶対値で1.5μmから5μmの違いがあるが、反りの向き、試料間の反り量の大小関係は、2つの測定法の間で良く一致している。この結果から、X線回折によるチップ反り測定の結果が妥当であると判断される。   Table 1 is a table comparing the results of measuring warpage with the above-described method for samples having different warping directions and warpage amounts, and the results of measuring warpage using a surface roughness meter generally used for warpage measurement. Indicates. As can be seen from this table, there is a difference between the measurement results of 1.5 μm and 5 μm in absolute value, but the relationship between the direction of warpage and the amount of warpage between samples is between the two measurement methods. It agrees well. From this result, it is judged that the result of chip warpage measurement by X-ray diffraction is appropriate.

以上に示したのはパッケージ工程途中での測定結果であった。すなわち、半導体チップは露出しているので、表面粗さ計を用いる等の簡便な反り測定法があり、必ずしもX線回折を用いた反り測定は必要ではない。以下では、パッケージ工程を終え、パッケージ材料に封止した状態の半導体チップの反りを測定する本発明方法について説明する。   What was shown above was the measurement result during the packaging process. That is, since the semiconductor chip is exposed, there is a simple warpage measurement method such as using a surface roughness meter, and warpage measurement using X-ray diffraction is not necessarily required. Below, the method of this invention which measures the curvature of the semiconductor chip of the state which finished the package process and was sealed by the package material is demonstrated.

パッケージ材料に封止した状態の半導体チップの反りの測定は、表面粗さ計を用いる等の簡便な反り測定法では困難である。一方、X線回折を用いた反り測定では、パッケージ材料に封止した状態の半導体チップの反りの測定は、パッケージ材料越しにX線回折の測定を行わなくてはならない。一般に、強度IのX線が物質へ入射し、その物質中を進んだ時、X線は物質に吸収され、その強度は距離tに対し指数関数的に減衰する。距離tだけ物質中を進んだ後のX線強度I(t)は次式で表される。 Measurement of the warpage of a semiconductor chip sealed in a package material is difficult by a simple warpage measurement method such as using a surface roughness meter. On the other hand, in the warpage measurement using X-ray diffraction, the measurement of the warpage of the semiconductor chip sealed in the package material must be performed by measuring the X-ray diffraction through the package material. In general, when an X-ray having an intensity I 0 enters a material and travels through the material, the X-ray is absorbed by the material, and the intensity attenuates exponentially with respect to the distance t. The X-ray intensity I (t) after traveling through the material by the distance t is expressed by the following equation.

I()=Io・exp[−μmρt] (7)
ここで、ρは物質の密度、μmはX線の質量吸収係数である。μmは物質を構成する元素や入射X線のエネルギーに依存する。すなわち、原子番号Zが大きい元素ほどμmは大きい傾向にあり、入射X線のエネルギーEが高いほどμmは小さい。これらの依存性は、吸収端近傍を除いて、近似的に以下のように表される。
I (t) = Io · exp [-μ m ρt] (7)
Here, [rho is the mass absorption coefficient of density, mu m is X-ray materials. mu m is dependent on the energy of the elements and the incident X-rays that make up the substance. That is in the mu m is a greater tendency as elemental atomic number Z is high, the higher the energy E of the incident X-ray mu m is small. These dependencies are approximately expressed as follows except for the vicinity of the absorption edge.

μm=k(Z/E)3 (8)
ここで、kは比例係数である。よって、より高エネルギーのX線を用いることでパッケージ材料によるX線の吸収を小さくすることが可能であり、その結果パッケージ材料越しでのX線回折測定が可能となる。
μ m = k (Z / E ) 3 (8)
Here, k is a proportionality coefficient. Therefore, by using higher energy X-rays, the absorption of X-rays by the package material can be reduced, and as a result, X-ray diffraction measurement through the package material becomes possible.

図13(A)、(B)は、本発明になる単結晶基板の非破壊反り測定方法によりパッケージ材料越しに回折X線の取得を試みた試料の一例の平面図、断面図を模式的に示す。同図において、試料30は、プリント基板31上にSi(001)基板から作成したSiチップ32が搭載され、これをモールド(主成分:SiO)33で封止した構造である。 FIGS. 13A and 13B schematically show a plan view and a cross-sectional view of an example of a sample in which diffracted X-ray acquisition is attempted through the package material by the non-destructive warpage measuring method for a single crystal substrate according to the present invention. Show. In the figure, a sample 30 has a structure in which a Si chip 32 made from a Si (001) substrate is mounted on a printed circuit board 31 and sealed with a mold (main component: SiO 2 ) 33.

図14は、本発明になる単結晶基板の非破壊反り測定装置の一実施形態の概略構成図を示す。同図中、図1〜図5と同一構成部分には同一符号を付してある。図14において、試料ステージ6には図13に示した試料30が載置固定されている。   FIG. 14 shows a schematic configuration diagram of an embodiment of a non-destructive warpage measuring apparatus for a single crystal substrate according to the present invention. In the figure, the same components as those in FIGS. 1 to 5 are denoted by the same reference numerals. In FIG. 14, the sample 30 shown in FIG. 13 is placed and fixed on the sample stage 6.

図14において、適切なX線源2で発生したX線4は入射スリット3を通過し、試料ステージ6上に固定された試料30のパッケージ材料であるモールド33を透過して単結晶基板であるSiチップ32の照射領域に入射する。これにより、Siチップ32の照射領域からは回折X線が出射する。   In FIG. 14, X-rays 4 generated by an appropriate X-ray source 2 pass through an entrance slit 3 and pass through a mold 33 which is a package material of a sample 30 fixed on the sample stage 6 to form a single crystal substrate. The light enters the irradiation region of the Si chip 32. Thereby, diffracted X-rays are emitted from the irradiation region of the Si chip 32.

X線検出器1を固定したまま、入射X線4の波数ベクトル8の方向から測定した試料ステージ6の回転角ωを変化させると、ブラッグ条件が満たされるとき、すなわちSiチップ32の照射領域の表面と入射X線4の波数ベクトル8とのなす角αがある特定の値をとるとき、X線の結晶回折が生じX線検出器1で、モールド33を透過した回折X線9が検出される。   When the rotation angle ω of the sample stage 6 measured from the direction of the wave vector 8 of the incident X-ray 4 is changed while the X-ray detector 1 is fixed, the Bragg condition is satisfied, that is, the irradiation region of the Si chip 32 is changed. When the angle α formed between the surface and the wave vector 8 of the incident X-ray 4 takes a specific value, X-ray crystal diffraction occurs, and the X-ray detector 1 detects the diffracted X-ray 9 transmitted through the mold 33. The

次に、このようにして、X線検出器1で取得されたロッキング曲線について説明する。図15は、X線4として比較的低エネルギーのX線(CuKα特性X線、E=8.05keV)を用いた場合のロッキング曲線を示す。図13のSiチップ32からの回折X線((004)反射)がモールド33を透過し図14のX線検出器1に達していれば、試料ステージ6の回転角ωが34.56°付近に回折ピークが観測されるはずである。しかし、モールド材料による吸収のため、回折ピークを観測することができなかった。   Next, the rocking curve acquired by the X-ray detector 1 in this way will be described. FIG. 15 shows a rocking curve when a relatively low energy X-ray (CuKα characteristic X-ray, E = 8.05 keV) is used as the X-ray 4. If the diffracted X-ray ((004) reflection) from the Si chip 32 in FIG. 13 passes through the mold 33 and reaches the X-ray detector 1 in FIG. 14, the rotation angle ω of the sample stage 6 is around 34.56 °. A diffraction peak should be observed. However, a diffraction peak could not be observed due to absorption by the mold material.

図16は、X線4として比較的高エネルギーのX線(MoKα特性X線、E=17.5keV)を用いて上記と同様の実験を行った場合のロッキング曲線を示す。このロッキング曲線は、試料ステージ6の回転角ωが15.47°付近で回折ピークを示す。図16において、試料ステージ6の回転角ωが15.57°付近に見られるサブピークはMoKα1特性X線と僅かに波長が異なるMoKα2特性X線による回折ピークである。この結果は、高エネルギーのX線を入射X線4として用いることで、図1〜図12と共に前述したような反り測定がパッケージの破壊無しに行われ得ることを示している。 FIG. 16 shows a rocking curve when an experiment similar to the above is performed using X-rays 4 with relatively high energy (MoKα characteristic X-rays, E = 17.5 keV). This rocking curve shows a diffraction peak when the rotation angle ω of the sample stage 6 is around 15.47 °. 16, sub-peak rotation angle of the sample stage 6 omega is observed around 15.57 ° is the diffraction peak due MoKarufa 1 characteristic X-ray and slightly different wavelengths MoKarufa 2 characteristic X-ray. This result shows that by using high-energy X-rays as the incident X-rays 4, the warpage measurement as described above with reference to FIGS. 1 to 12 can be performed without breaking the package.

このように、本実施形態では、モールド33で封止したSiチップ32の反り(応力含む)をモールド33越しに非破壊で測定できることが可能となるので、これに基づいた実装材料やプロセスの最適化が可能となり、高性能及び高信頼の製品開発を促進させることができる。   Thus, in this embodiment, it becomes possible to measure the warp (including stress) of the Si chip 32 sealed with the mold 33 through the mold 33 in a nondestructive manner. Therefore, the optimum mounting material and process based on this can be measured. And development of high performance and high reliability products can be promoted.

なお、上記の実施形態では入射X線としてMoKα特性X線を用いたが、モールド33越しにSiチップ32からの回折X線を測定できる程度のエネルギーを持っているX線であれば、入射X線4はMoKα特性X線でなくともよい。   In the above embodiment, MoKα characteristic X-rays are used as the incident X-rays. However, if the X-rays have such energy that can measure the diffracted X-rays from the Si chip 32 through the mold 33, the incident X-rays are used. The line 4 may not be a MoKα characteristic X-ray.

実験室規模の回折装置を用いて実験する場合には、特性X線が線源として好適であるが、上の目的に適切かつ現実的なものとしては、エネルギーではおおむね10keVを上回るX線が好ましい。このようなX線としては、ZnKα特性X線、RhKα特性X線、PdKα特性X線、AgKα特性X線、MoKα特性X線や、WKα特性X線などが挙げられる。また、適切なエネルギーであれば、荷電粒子の加速度運動から得られるX線、例えばシンクロトロン放射から得られるX線を用いてもよい。   When experimenting with a lab-scale diffractometer, characteristic X-rays are suitable as a source, but as an appropriate and realistic source for the above purposes, X-rays above about 10 keV are preferred for energy. . Examples of such X-rays include ZnKα characteristic X-rays, RhKα characteristic X-rays, PdKα characteristic X-rays, AgKα characteristic X-rays, MoKα characteristic X-rays, and WKα characteristic X-rays. Further, X-rays obtained from the acceleration motion of charged particles, for example, X-rays obtained from synchrotron radiation, may be used as long as the energy is appropriate.

また、検出した回折X線は(004)反射であったが、他の格子面による回折X線でも構わない。例えば、(008)、(0012)等の(004)反射の系統反射でもよいし、(113)反射など非対称反射でもよい。   Further, although the detected diffracted X-rays are (004) reflection, diffracted X-rays from other grating surfaces may be used. For example, system reflection of (004) reflection such as (008), (0012), or asymmetric reflection such as (113) reflection may be used.

チップのもととなる基板も(001)基板31以外であっても構わない。(011)基板、(111)基板あるいは他の面指数の格子面を表面に平行にした基板であっても、検出する回折X線を適切に選ぶことにより、同様の測定が可能である。   The substrate on which the chip is based may be other than the (001) substrate 31. Even if the substrate is a (011) substrate, a (111) substrate, or another substrate having a plane index parallel to the surface, the same measurement can be performed by appropriately selecting the diffracted X-rays to be detected.

更に、上記の実施形態では測定試料はSiチップ32であったが、これまでの説明から明らかなように、単結晶基板であればよく、GaAg等の化合物半導体であっても構わないし、半導体以外の単結晶基板でもよい。   Further, in the above embodiment, the measurement sample is the Si chip 32. However, as is clear from the above description, it may be a single crystal substrate, may be a compound semiconductor such as GaAg, or the like. A single crystal substrate may be used.

ところで、上記の実施形態では、モールド33を透過させるために入射X線の高エネルギー化を図ったが、入射X線の高エネルギー化は、複数枚の半導体チップを積層したMCPやSiPに対しては、複数枚の半導体チップからの回折X線を一度に検出できる可能性を生む。   In the above embodiment, the energy of incident X-rays is increased in order to transmit the mold 33. However, the energy increase of incident X-rays is higher than that of MCP or SiP in which a plurality of semiconductor chips are stacked. Creates the possibility of detecting diffracted X-rays from a plurality of semiconductor chips at once.

そこで、本発明者は、MoKα特性X線を入射X線に用いて、3枚のSiチップを積層した試料からモールド越しに回折スペクトルを取得することを試みた。図17(A)、(B)は、この場合の試料40の平面図、断面図を模式的に示す。図17(B)に示すように、試料40は、プリント基板41上にSi(001)基板から作成した、積層された3枚のSiチップ42が搭載され、これをモールド(主成分:SiO)43で封止した構造のSiP製品である。この試料40は、図13に示した試料30に似ているが、図17(B)に示す断面図から分かるように、3枚のSiチップ42が積層されているのが特徴である。 Therefore, the present inventor attempted to acquire a diffraction spectrum through a mold from a sample in which three Si chips were laminated using MoKα characteristic X-rays as incident X-rays. FIGS. 17A and 17B schematically show a plan view and a cross-sectional view of the sample 40 in this case. As shown in FIG. 17B, the sample 40 has three stacked Si chips 42 made from a Si (001) substrate mounted on a printed circuit board 41, and this is molded (main component: SiO 2). ) SiP product having a structure sealed at 43. This sample 40 is similar to the sample 30 shown in FIG. 13, but is characterized in that three Si chips 42 are laminated as can be seen from the cross-sectional view shown in FIG.

図18は、本発明になる単結晶基板の非破壊反り測定装置の他の実施形態の概略構成図を示す。同図中、図1〜図5と同一構成部分には同一符号を付してある。図18において、試料ステージ6には図17に示した試料40が載置固定されている。   FIG. 18 shows a schematic configuration diagram of another embodiment of a non-destructive warpage measuring apparatus for a single crystal substrate according to the present invention. In the figure, the same components as those in FIGS. 1 to 5 are denoted by the same reference numerals. 18, the sample 40 shown in FIG. 17 is placed and fixed on the sample stage 6.

18において、適切なX線源2で発生した高エネルギーのX線4(ここでは、一例としてMoKα特性X線)は入射スリット3を通過し、試料ステージ6上に固定された試料40のパッケージ材料であるモールド43を透過して積層された3枚のSiチップ42の照射領域に入射する。これにより、Siチップ42の照射領域からは回折X線が出射する。
In FIG. 18 , high energy X-rays 4 (here, as an example, MoKα characteristic X-rays) generated by an appropriate X-ray source 2 pass through the entrance slit 3 and are a package of the sample 40 fixed on the sample stage 6. The light passes through the mold 43 that is the material and enters the irradiation region of the three Si chips 42 stacked. Thereby, diffracted X-rays are emitted from the irradiation region of the Si chip 42.

X線検出器1を固定したまま、入射X線4の波数ベクトル8の方向から測定した試料ステージ6の回転角ωを変化させると、ブラッグ条件が満たされるとき、すなわちSiチップ42の照射領域の表面と入射X線4の波数ベクトル8とのなす角αがある特定の値をとるとき、X線の結晶回折が生じX線検出器1で、モールド43を透過した回折X線9が検出される。   When the rotation angle ω of the sample stage 6 measured from the direction of the wave vector 8 of the incident X-ray 4 is changed while the X-ray detector 1 is fixed, the Bragg condition is satisfied, that is, the irradiation region of the Si chip 42 is changed. When the angle α formed by the surface and the wave vector 8 of the incident X-ray 4 takes a certain value, X-ray crystal diffraction occurs, and the X-ray detector 1 detects the diffracted X-ray 9 transmitted through the mold 43. The

次に、このようにして、X線検出器1で取得されたロッキング曲線について説明する。図19は、図18の構成により取得されたロッキング曲線の一例を示す。回折ピークがローレンツ分布であると仮定して、白抜き丸で示した測定値に対してピーク分離を行うと、図19中の実線のようになる。分離された曲線はあわせて6本のピークからなるが、Kα線によるピークとKα線によるピークが組みであるので、独立なピークは3組である。従って、積層された3枚のSiチップ42からの回折X線が一つのロッキング曲線の中に観測されていると判断される。 Next, the rocking curve acquired by the X-ray detector 1 in this way will be described. FIG. 19 shows an example of a rocking curve acquired by the configuration of FIG. Assuming that the diffraction peak has a Lorentz distribution, when peak separation is performed on the measurement values indicated by white circles, a solid line in FIG. 19 is obtained. The separated curves are composed of six peaks in total, but since the peak due to the Kα 1 line and the peak due to the Kα 2 line are a pair, there are three independent peaks. Therefore, it is determined that the diffracted X-rays from the three stacked Si chips 42 are observed in one rocking curve.

図19では、ピーク分離により得られたピークと測定値の差異が大きいωの領域があるが、これは、回折ピークがローレンツ分布であるという仮定が厳密には正しくないためであり、積層された3枚のSiチップ42から回折X線9が観測されたという結果に変わりはない。   In FIG. 19, there is a region of ω in which the difference between the peak obtained by peak separation and the measured value is large. This is because the assumption that the diffraction peak has a Lorentz distribution is not strictly correct, and the layers were stacked. The result that the diffracted X-rays 9 were observed from the three Si chips 42 remains unchanged.

以上の結果は、高エネルギーのX線を入射X線4として用いることで、反り測定をパッケージ43内に積層された3枚のSiチップ42のうち個々のSiチップに対して行うことが可能であることを示している。   The above results show that, by using high energy X-rays as incident X-rays 4, warpage measurement can be performed on individual Si chips among the three Si chips 42 stacked in the package 43. It shows that there is.

このように、本実施形態では、モールド43で封止した積層された3枚のSiチップ42の個々のSiチップの反り(応力含む)をモールド43越しに非破壊で測定できることが可能となるので、これに基づいた実装材料やプロセスの最適化が可能となり、SiP製品等の高性能及び高信頼の製品開発を促進させることができる。   Thus, in this embodiment, it becomes possible to measure the warp (including stress) of the individual Si chips of the three stacked Si chips 42 sealed with the mold 43 through the mold 43 in a nondestructive manner. Based on this, it is possible to optimize the mounting materials and processes, and it is possible to promote the development of high-performance and highly reliable products such as SiP products.

なお、上記の実施形態では、3枚のSiチップ42を積層したSiP製品に対してMoKα特性X線を用いて測定したが、半導体チップの材質はSi以外でもよく、単結晶基板であればよい。   In the above embodiment, the SiK product in which the three Si chips 42 are stacked is measured using the MoKα characteristic X-ray. However, the material of the semiconductor chip may be other than Si and may be a single crystal substrate. .

また、入射X線4はMoKα特性X線以外でも、対象の単結晶基板を所望の枚数だけ透過し回折X線が検出されるのに十分なエネルギーを持っているものであればよい。このX線の例としては、既に述べた、ZnKα特性X線、RhKα特性X線、PdKα特性X線、AgKα特性X線、MoKα特性X線や、WKα特性X線が挙げられる。また、入射X線4は荷電粒子の加速度運動から得られるX線、例えばシンクロトロン放射から得られるX線でもよい。すなわち、適切なX線源2は、対象の単結晶基板の種類、透過すべき基板の枚数等を考慮し選ばれるべきである。   Further, the incident X-ray 4 may be other than the MoKα characteristic X-ray as long as it has sufficient energy to pass through a desired number of single crystal substrates and detect diffracted X-rays. Examples of the X-ray include the already described ZnKα characteristic X-ray, RhKα characteristic X-ray, PdKα characteristic X-ray, AgKα characteristic X-ray, MoKα characteristic X-ray, and WKα characteristic X-ray. The incident X-ray 4 may be an X-ray obtained from the acceleration motion of charged particles, for example, an X-ray obtained from synchrotron radiation. That is, an appropriate X-ray source 2 should be selected in consideration of the type of the target single crystal substrate, the number of substrates to be transmitted, and the like.

本発明の単結晶基板の非破壊反り測定方法の基本となるX線回折法で用いる手段と構成、及びX線光線図の概略を示す図(その1)である。BRIEF DESCRIPTION OF THE DRAWINGS It is the figure (the 1) which shows the outline of the means and structure used with the X-ray-diffraction method used as the basis of the nondestructive curvature measuring method of the single crystal substrate of this invention, and an X-ray ray diagram. 本発明の単結晶基板の非破壊反り測定方法の基本となるX線回折法で用いる手段と構成、及びX線光線図の概略を示す図(その2)である。It is the figure (the 2) which shows the outline of the means and structure used with the X-ray-diffraction method used as the basis of the nondestructive curvature measuring method of the single crystal substrate of this invention, and an X-ray ray diagram. 本発明の単結晶基板の非破壊反り測定方法の基本となるX線回折法で用いる手段と構成、及びX線光線図の概略を示す図(その3)である。It is the figure (the 3) which shows the outline of the means and structure used with the X-ray-diffraction method used as the basis of the nondestructive curvature measuring method of the single crystal substrate of this invention, and an X-ray ray diagram. 本発明の単結晶基板の非破壊反り測定方法の基本となるX線回折法で用いる手段と構成、及びX線光線図の概略を示す図(その4)である。It is the figure (the 4) which shows the outline of the means and structure used with the X-ray-diffraction method used as the basis of the nondestructive curvature measuring method of the single crystal substrate of this invention, and an X-ray ray diagram. 本発明の単結晶基板の非破壊反り測定方法の基本となるX線回折法で用いる手段と構成、及びX線光線図の概略を示す図(その5)である。It is the figure (the 5) which shows the outline of the means and structure used with the X-ray-diffraction method used as the basis of the nondestructive curvature measuring method of the single crystal substrate of this invention, and an X-ray ray diagram. 図1〜図5において反り測定を行った試料の一例の模式図である。It is a schematic diagram of an example of the sample which performed the curvature measurement in FIGS. 入射X線、回折X線、X線の照射領域と試料の位置関係の一例を示す模式図である。It is a schematic diagram which shows an example of the positional relationship of the irradiation area | region and sample of incident X-ray | X_line, a diffraction X-ray | X_line, and an X-ray. 本発明の反り測定の測定手順の説明図である。It is explanatory drawing of the measurement procedure of the curvature measurement of this invention. 図1〜図5に示す反り測定方法により測定された試料ステージの回転角ωの試料位置依存性を示す図である。It is a figure which shows the sample position dependence of rotation angle (omega) B of the sample stage measured by the curvature measuring method shown in FIGS. 図1〜図5に示す反り測定方法により測定されたΔωの試料位置依存性を示す図である。It is a figure which shows the sample position dependence of (DELTA) (omega) B measured by the curvature measuring method shown in FIGS. 試料断面図における基板表面を表す曲線を示す図である。It is a figure which shows the curve showing the board | substrate surface in sample cross section. 図1〜図5に示す反り測定方法により測定されたSiチップの断面の一例を示す図である。It is a figure which shows an example of the cross section of Si chip | tip measured by the curvature measuring method shown in FIGS. 本発明の単結晶基板の非破壊反り測定方法及び測定装置により回折X線の取得を試みた試料の一例の模式図である。It is the schematic diagram of an example of the sample which tried acquisition of the diffraction X-ray with the nondestructive curvature measuring method and measuring apparatus of the single crystal substrate of this invention. 本発明の単結晶基板の非破壊反り測定装置の一実施形態の概略構成図である。It is a schematic block diagram of one Embodiment of the nondestructive curvature measuring apparatus of the single crystal substrate of this invention. 図14に示す測定装置において、図13に示した試料に対してCuKα特性X線を用いてパッケージ材料越しに得たロッキング曲線の一例を示す図である。FIG. 15 is a diagram showing an example of a rocking curve obtained through the package material using CuKα characteristic X-rays for the sample shown in FIG. 13 in the measurement apparatus shown in FIG. 14. 図14に示す測定装置において、図13に示した試料に対してMoKα特性X線を用いてパッケージ材料越しに得たロッキング曲線の一例を示す図である。FIG. 15 is a diagram illustrating an example of a rocking curve obtained through the package material using MoKα characteristic X-rays for the sample illustrated in FIG. 13 in the measurement apparatus illustrated in FIG. 14. 本発明の単結晶基板の非破壊反り測定方法及び測定装置により回折X線の取得を試みた試料の他の例の模式図である。It is a schematic diagram of the other example of the sample which tried acquisition of the diffraction X-ray with the nondestructive curvature measuring method and measuring apparatus of the single crystal substrate of this invention. 本発明の単結晶基板の非破壊反り測定装置の他の実施形態の概略構成図である。It is a schematic block diagram of other embodiment of the nondestructive curvature measuring apparatus of the single crystal substrate of this invention. 図18に示す測定装置において、図17に示した試料に対してMoKα特性X線を用いてパッケージ材料越しに得たロッキング曲線の一例を示す図である。FIG. 19 is a diagram illustrating an example of a rocking curve obtained through the package material using MoKα characteristic X-rays for the sample illustrated in FIG. 17 in the measurement apparatus illustrated in FIG. 18.

符号の説明Explanation of symbols

1 X線検出器
2 X線源
3 入射スリット
4、13 入射X線
5 単結晶基板
6 試料ステージ
7、12、12’、25、26、27 照射領域
8 入射X線の波数ベクトル
9、14 回折X線
10 樹脂基板
11、32 Siチップ
15、16 ロッキング曲線
30 モールドでパッケージされたSiチップを含む試料
31、41 プリント基板
33、43 モールド
40 モールドでパッケージされた3枚の積層されたSiチップを含む試料(SiP製品)
42 積層された3枚のSiチップ
DESCRIPTION OF SYMBOLS 1 X-ray detector 2 X-ray source 3 Incident slit 4, 13 Incident X-ray 5 Single crystal substrate 6 Sample stage 7, 12, 12 ', 25, 26, 27 Irradiation area 8 Wave vector of incident X-ray 9, 14 Diffraction X-ray 10 Resin substrate 11, 32 Si chip 15, 16 Rocking curve 30 Sample 31 including Si chip packaged in mold Printed circuit board 33, 43 Mold 40 Three stacked Si chips packaged in mold 40 Including sample (SiP product)
42 Three stacked Si chips

Claims (12)

一枚のプリント基板上に積層された複数の単結晶基板を前記プリント基板と共にパッケージ材料で封止した部品にX線を照射する照射ステップと、
個々の前記単結晶基板からの回折X線を前記パッケージ材料越しに一つのロッキング曲線の中にピーク分離を行うことにより検出して、前記複数の単結晶基板のそれぞれの反りを非破壊で測定する検出・測定ステップと
を含むことを特徴とする単結晶基板の非破壊反り測定方法。
An irradiation step of irradiating a component obtained by sealing a plurality of single crystal substrates stacked on a single printed board together with the printed board with a package material,
It is detected by performing the peak separation in a single rocking curve in the packaging material over the diffracted X-rays from each of the single crystal substrate, measuring the respective warp before Symbol plurality of single crystal substrate in a non-destructive And a non-destructive warpage measuring method for a single crystal substrate, comprising:
前記検出・測定ステップは、
前記単結晶基板からのロッキング曲線を取得して前記単結晶基板からの回折X線を検出する検出ステップと、
前記部品を一定距離移動する移動ステップと
を前記部品の一端部から反対側の端部まで繰り返すことを特徴とする請求項1記載の単結晶基板の非破壊反り測定方法。
The detection / measurement step includes
A detection step of obtaining a rocking curve from the single crystal substrate and detecting diffracted X-rays from the single crystal substrate;
Nondestructive method of measuring warpage single crystal substrate according to claim 1 Symbol placement and repeating the moving steps of a predetermined distance moves the parts to the opposite end from the one end of the component.
前記照射ステップは、10keV以上のエネルギーを持つX線を前記部品に照射するステップであることを特徴とする請求項1記載の単結晶基板の非破壊反り測定方法。 The irradiation step is a non-destructive method of measuring warpage single crystal substrate according to claim 1 Symbol mounting, characterized in that a step of irradiating the X-rays having an energy higher than 10keV to said component. 前記10keV以上のエネルギーを持つX線は、Zn、Rh、Pd、Ag、Mo及びWのいずれかから得られるX線であることを特徴とする請求項記載の単結晶基板の非破壊反り測定方法。 4. The nondestructive warpage measurement of a single crystal substrate according to claim 3, wherein the X-ray having an energy of 10 keV or more is an X-ray obtained from any one of Zn, Rh, Pd, Ag, Mo and W. Method. 前記10keV以上のエネルギーを持つX線は、荷電粒子の加速度運動により得られるX線であることを特徴とする請求項記載の単結晶基板の非破壊反り測定方法。 4. The method for measuring a non-destructive warpage of a single crystal substrate according to claim 3, wherein the X-ray having an energy of 10 keV or more is an X-ray obtained by acceleration motion of charged particles. 前記荷電粒子の加速度運動により得られるX線は、前記荷電粒子のシンクロトロン放射から得られるX線であることを特徴とする請求項記載の単結晶基板の非破壊反り測定方法。 6. The method for measuring non-destructive warpage of a single crystal substrate according to claim 5 , wherein the X-rays obtained by the acceleration motion of the charged particles are X-rays obtained from synchrotron radiation of the charged particles. 一枚のプリント基板上に積層された複数の単結晶基板を前記プリント基板と共にパッケージ材料で封止した部品にX線を照射する照射手段と、
個々の前記単結晶基板からの回折X線を前記パッケージ材料越しに一つのロッキング曲線の中にピーク分離を行うことにより検出して、前記複数の単結晶基板のそれぞれの反りを非破壊で測定する検出・測定手段と
を有することを特徴とする単結晶基板の非破壊反り測定装置。
Irradiation means for irradiating X-rays on a component in which a plurality of single crystal substrates stacked on a single printed board are sealed together with the printed board with a package material;
It is detected by performing the peak separation in a single rocking curve in the packaging material over the diffracted X-rays from each of the single crystal substrate, measuring the respective warp before Symbol plurality of single crystal substrate in a non-destructive A non-destructive warpage measuring apparatus for a single crystal substrate, characterized by comprising:
前記検出・測定手段は、
前記単結晶基板からのロッキング曲線を取得して前記単結晶基板からの回折X線を検出する検出手段と、
前記部品を一定距離移動する移動手段と
を前記部品の一端部から反対側の端部まで繰り返すことを特徴とする請求項7記載の単結晶基板の非破壊反り測定装置。
The detection / measurement means includes:
Detecting means for acquiring a rocking curve from the single crystal substrate and detecting diffracted X-rays from the single crystal substrate;
Nondestructive warpage measuring apparatus of the single-crystal substrate according to claim 7 Symbol mounting and repeating and moving means for a predetermined distance moves the parts to the opposite end from the one end of the component.
前記照射手段は、10keV以上のエネルギーを持つX線を前記部品に照射する手段であることを特徴とする請求項7記載の単結晶基板の非破壊反り測定装置。 Said illumination means, nondestructive warpage measuring apparatus of the single-crystal substrate according to claim 7 Symbol mounting, characterized in that the X-ray is a means for irradiating the part with a more energy 10 keV. 前記10keV以上のエネルギーを持つX線は、Zn、Rh、Pd、Ag、Mo及びWのいずれかから得られるX線であることを特徴とする請求項9記載の単結晶基板の非破壊反り測定装置。 The X-ray having energy higher than 10keV is, Zn, Rh, Pd, Ag , nondestructive warpage of the single crystal substrate according to claim 9 Symbol mounting, characterized in that an X-ray obtained from any of Mo and W measuring device. 前記10keV以上のエネルギーを持つX線は、荷電粒子の加速度運動により得られるX線であることを特徴とする請求項9記載の単結晶基板の非破壊反り測定装置。 The X-ray having energy higher than 10keV is nondestructive warpage measuring apparatus of the single-crystal substrate according to claim 9 Symbol mounting, characterized in that an X-ray obtained by the acceleration motion of charged particles. 前記荷電粒子の加速度運動により得られるX線は、前記荷電粒子のシンクロトロン放射から得られるX線であることを特徴とする請求項11記載の単結晶基板の非破壊反り測定装置。 12. The apparatus for measuring a non-destructive warpage of a single crystal substrate according to claim 11 , wherein the X-ray obtained by the acceleration motion of the charged particle is an X-ray obtained from synchrotron radiation of the charged particle.
JP2008260226A 2008-10-07 2008-10-07 Nondestructive warpage measuring method and measuring apparatus for single crystal substrate Expired - Fee Related JP5359165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008260226A JP5359165B2 (en) 2008-10-07 2008-10-07 Nondestructive warpage measuring method and measuring apparatus for single crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008260226A JP5359165B2 (en) 2008-10-07 2008-10-07 Nondestructive warpage measuring method and measuring apparatus for single crystal substrate

Publications (2)

Publication Number Publication Date
JP2010091354A JP2010091354A (en) 2010-04-22
JP5359165B2 true JP5359165B2 (en) 2013-12-04

Family

ID=42254222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008260226A Expired - Fee Related JP5359165B2 (en) 2008-10-07 2008-10-07 Nondestructive warpage measuring method and measuring apparatus for single crystal substrate

Country Status (1)

Country Link
JP (1) JP5359165B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5924778B2 (en) 2013-06-24 2016-05-25 株式会社リガク Method and apparatus for measuring warpage of single crystal substrate
DE102016101988A1 (en) * 2016-02-04 2017-08-10 Bundesrepublik Deutschland, Vertreten Durch Den Bundesminister Für Wirtschaft Und Energie, Dieser Vertreten Durch Den Präsidenten Der Bundesanstalt Für Materialforschung Und -Prüfung (Bam) X-ray analyzer, apparatus and method for X-ray absorption spectroscopy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298208A (en) * 1985-10-25 1987-05-07 Jeol Ltd Surface roughness measuring instrument using electron beam
JPH116723A (en) * 1997-06-18 1999-01-12 Fuji Electric Co Ltd Surface roughness evaluation method and magnetic recording medium
JP2003007962A (en) * 2001-06-19 2003-01-10 Toshiba Corp Multilayer semiconductor module
JP2005268299A (en) * 2004-03-16 2005-09-29 Shinko Electric Ind Co Ltd Semiconductor package and its manufacturing process
JP4841458B2 (en) * 2007-02-22 2011-12-21 富士通株式会社 Crystal sample shape evaluation method, shape evaluation apparatus, and program

Also Published As

Publication number Publication date
JP2010091354A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
JP5390075B2 (en) Overlay measurement using X-rays
JP4768377B2 (en) Combined X-ray reflectometer and diffractometer
KR20200097353A (en) Systems and methods for combined X-ray reflectometry and photoelectron spectroscopy
EP3428630B1 (en) Simultaneous multi-element analysis x-ray fluorescence spectrometer, and simultaneous multi-element x-ray fluorescence analyzing method
US7023955B2 (en) X-ray fluorescence system with apertured mask for analyzing patterned surfaces
JP2021500702A (en) Liquid metal rotary anode X-ray source for semiconductor measurement
US8437450B2 (en) Fast measurement of X-ray diffraction from tilted layers
JP6142135B2 (en) Obliquely incident X-ray fluorescence analyzer and method
KR102408134B1 (en) Method for accurately determining the thickness and/or elemental composition of small features on thin-substrates using micro-xrf
KR20220050976A (en) Method and system for semiconductor metrology based on wavelength-resolved soft X-ray reflectometry
JP2007285923A5 (en)
JP5359165B2 (en) Nondestructive warpage measuring method and measuring apparatus for single crystal substrate
US20210199428A1 (en) Device and method applicable for measuring ultrathin thickness of film on substrate
JP5712778B2 (en) Method for measuring film thickness of SOI layer of SOI wafer
JP5321815B2 (en) Nondestructive single crystal substrate warpage measuring method and measuring device
JP5338517B2 (en) Nondestructive single crystal substrate stress measurement method, measurement device, and measurement program
Gorji et al. Nondestructive, in situ mapping of die surface displacements in encapsulated ic chip packages using x-ray diffraction imaging techniques
JP2011215092A (en) Method and instrument for measuring warpage on single crystal substrate
JP2008224308A (en) Thin film laminate testing method
JP4537149B2 (en) X-ray fluorescence analysis method
KR100839076B1 (en) Apparatus for inspecting multilayer and semiconductor manufacturing apparatus having the same of
CN1555486A (en) Method of examining a wafer of semiconductor material by means of x-rays
McNally B-Spline X-Ray Diffraction Imaging techniques for die warpage and stress monitoring inside fully encapsulated packaged chips
Stopford Stresses and strain in silicon: 3-dimensional analytical capabilities for the non-invasive evaluation of strain fields in Si wafers and packaged chips
JPH0344544A (en) Measuring method for internal strain of crystal substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees