JP5336455B2 - Boron free glass - Google Patents
Boron free glass Download PDFInfo
- Publication number
- JP5336455B2 JP5336455B2 JP2010233534A JP2010233534A JP5336455B2 JP 5336455 B2 JP5336455 B2 JP 5336455B2 JP 2010233534 A JP2010233534 A JP 2010233534A JP 2010233534 A JP2010233534 A JP 2010233534A JP 5336455 B2 JP5336455 B2 JP 5336455B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- weight
- content
- glass according
- cao
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011521 glass Substances 0.000 title claims description 150
- 229910052796 boron Inorganic materials 0.000 title description 10
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 title description 6
- 239000002253 acid Substances 0.000 claims description 29
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 16
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 16
- 230000007062 hydrolysis Effects 0.000 claims description 16
- 238000006460 hydrolysis reaction Methods 0.000 claims description 16
- 239000003513 alkali Substances 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 10
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 9
- 239000006025 fining agent Substances 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 7
- 239000012602 primary packaging material Substances 0.000 claims description 6
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 5
- 239000003814 drug Substances 0.000 claims description 5
- 239000005394 sealing glass Substances 0.000 claims description 5
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 239000000470 constituent Substances 0.000 claims description 3
- 238000004870 electrical engineering Methods 0.000 claims description 3
- 230000035939 shock Effects 0.000 claims description 3
- 229910020630 Co Ni Inorganic materials 0.000 claims description 2
- 229910002440 Co–Ni Inorganic materials 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 239000005328 architectural glass Substances 0.000 claims 2
- 238000010248 power generation Methods 0.000 claims 1
- 238000007670 refining Methods 0.000 claims 1
- 239000011734 sodium Substances 0.000 description 19
- 230000007935 neutral effect Effects 0.000 description 18
- 239000002994 raw material Substances 0.000 description 17
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 16
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Inorganic materials [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 14
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 13
- 238000002844 melting Methods 0.000 description 13
- 230000008018 melting Effects 0.000 description 13
- 239000000155 melt Substances 0.000 description 11
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 239000011787 zinc oxide Substances 0.000 description 8
- 150000001340 alkali metals Chemical class 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 6
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 229910052810 boron oxide Inorganic materials 0.000 description 4
- 239000005388 borosilicate glass Substances 0.000 description 4
- 238000004031 devitrification Methods 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 3
- 239000005354 aluminosilicate glass Substances 0.000 description 3
- 229910021538 borax Inorganic materials 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- RSCACTKJFSTWPV-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane;pentahydrate Chemical compound O.O.O.O.O.[Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 RSCACTKJFSTWPV-UHFFFAOYSA-N 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000005292 fiolax Substances 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 3
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 235000010339 sodium tetraborate Nutrition 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000003280 down draw process Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 2
- 229910001948 sodium oxide Inorganic materials 0.000 description 2
- 239000004328 sodium tetraborate Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 150000003457 sulfones Chemical class 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 1
- HLLSOEKIMZEGFV-UHFFFAOYSA-N 4-(dibutylsulfamoyl)benzoic acid Chemical class CCCCN(CCCC)S(=O)(=O)C1=CC=C(C(O)=O)C=C1 HLLSOEKIMZEGFV-UHFFFAOYSA-N 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910017709 Ni Co Inorganic materials 0.000 description 1
- 229910003267 Ni-Co Inorganic materials 0.000 description 1
- 229910003262 Ni‐Co Inorganic materials 0.000 description 1
- 238000006124 Pilkington process Methods 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- GMBCWYJNYUIBKS-UHFFFAOYSA-N [B]=O.OB(O)O Chemical compound [B]=O.OB(O)O GMBCWYJNYUIBKS-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000006063 cullet Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- YNPKJCSIKJCODK-UHFFFAOYSA-N disodium boric acid hydrogen borate decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].OB(O)O.OB(O)O.OB(O)O.OB([O-])[O-] YNPKJCSIKJCODK-UHFFFAOYSA-N 0.000 description 1
- AJFXNBUVIBKWBT-UHFFFAOYSA-N disodium;boric acid;hydrogen borate Chemical compound [Na+].[Na+].OB(O)O.OB(O)O.OB(O)O.OB([O-])[O-] AJFXNBUVIBKWBT-UHFFFAOYSA-N 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 239000005293 duran Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000156 glass melt Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 231100000091 reproductive toxicant Toxicity 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/11—Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
- C03C3/112—Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/20—Compositions for glass with special properties for chemical resistant glass
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Description
本発明は、ホウ素含有原料を添加せずに溶融できるホウ素フリーガラス、好ましくは中性(ニュートラル)ガラスに関する。 The present invention relates to a boron-free glass, preferably a neutral glass, which can be melted without adding a boron-containing raw material.
「中性ガラス」という用語は非常に優れた耐加水分解性および非常に優れた耐酸性を備えるガラスを意味すると解釈される。このようにこれらのガラスは「中性」作用を有し、溶液にガラスの構成成分をほとんど溶出させることがないため、とりわけ製薬業界において、特に注射液用の一次包装材料として使用できる。
表1は、さまざまな規格にしたがい、水、酸、およびアルカリに対する化学的耐久性に関してガラスの分類をまとめている。
The term “neutral glass” is taken to mean a glass with very good hydrolysis resistance and very good acid resistance. In this way, these glasses have a “neutral” action and hardly elute glass constituents into the solution, so that they can be used especially in the pharmaceutical industry as primary packaging materials, especially for injectable solutions.
Table 1 summarizes the glass classifications for chemical durability to water, acids, and alkalis according to various standards.
周知の商業的に入手できる中性ガラス、例えばマインツのショット社(Schott AG)のSCHOTT FIOLAX(登録商標)8412および8414またはSCHOTT DURAN(登録商標)8330は、B2O3を8%より多く含有するため、ホウケイ酸ガラスのグループに分類される。これらは、加水分解クラス1、かつ酸クラス1、かつアルカリクラス2のガラスであり、ここでは簡略化して「1−1−2ガラス」という。 Well-known commercially available neutral glasses such as SCHOTT FIOLAX® 8412 and 8414 from Schott AG or SCHOTT DURAN® 8330 contain more than 8% B 2 O 3 Therefore, it is classified into the group of borosilicate glass. These are glasses of hydrolysis class 1, acid class 1, and alkali class 2, and are simply referred to herein as “1-1-2 glass”.
SCHOTT FIOLAX(登録商標)8412には酸化ホウ素が約11%の量しか存在しないが、原料の四ホウ酸二ナトリウム五水和物は原料の総コストの約半分になる。酸化ナトリウムを含有しないホウケイ酸ガラス、例えばLCDディスプレイ用のアルカリ金属フリーガラスの原料に関する状況はさらに望ましくない。この場合、はるかに高価な原料である酸化ホウ素(ホウ酸)を使用する必要があり、これはまずホウ砂から技術的な手段で得なければならないからである。酸化ホウ素を原料とするB2O3ガラス成分のコストは、四ホウ酸二ナトリウム五水和物を原料とするB2O3のコストより7倍高い。 SCHOTT FIOLAX® 8412 has only about 11% boron oxide, but the raw material disodium tetraborate pentahydrate is about half the total raw material cost. The situation with respect to raw materials for borosilicate glasses that do not contain sodium oxide, such as alkali metal free glass for LCD displays, is further undesirable. In this case, it is necessary to use a much more expensive raw material, boron oxide (boric acid), since it must first be obtained from borax by technical means. The cost of the B 2 O 3 glass component made from boron oxide is 7 times higher than the cost of B 2 O 3 made from disodium tetraborate pentahydrate.
最近EU(欧州連合)は、ホウ酸、三酸化二ホウ素、四ホウ酸二ナトリウム無水物、四ホウ酸二ナトリウム十水和物および四ホウ酸二ナトリウム五水和物を生殖毒性に分類した。その結果、このような原料を使用する製造中には一定の境界条件に適合し、一定の予防措置を講じる必要がある。
ホウ素含有原料のコストが相対的に高いこと、適した品質に満たないことが予測されること、および現在持ち上がっているホウ素化合物の毒性の再分類に関する議論のために、ホウケイ酸ガラスの代替物としてホウ素フリーガラスに関心がもたれている。
Recently, the EU (European Union) has classified boric acid, diboron trioxide, disodium tetraborate anhydrous, disodium tetraborate decahydrate and disodium tetraborate pentahydrate as reproductive toxicants. As a result, certain manufacturing conditions must be met and certain precautions must be taken during production using such raw materials.
As an alternative to borosilicate glass due to the relatively high cost of boron-containing raw materials, expected to be less than suitable quality, and discussions on the reclassification of the toxicity of currently emerging boron compounds There is interest in boron-free glass.
しかしながら、非常に優れた化学的耐久性に加えて、中性ガラスにはなお一層の要求が課せられている。
例として、ガラスは従来の溶融ユニットで製造できなければならない。すなわち、溶融物の粘度は過度に高くできず、作業点(粘度が104dPasになるときの温度、VAまたはT4ともいう)は1320℃の最高値を絶対に超えてはならない。省エネ製造のために、T4はできるだけ低くするべきである。
However, in addition to very good chemical durability, there are still more demands on neutral glass.
As an example, the glass must be able to be produced in a conventional melting unit. That is, the viscosity of the melt cannot be excessively high and the working point (temperature at which the viscosity reaches 10 4 dPas, also referred to as VA or T4) must never exceed the maximum value of 1320 ° C. For energy saving manufacturing, T4 should be as low as possible.
製薬向け一次包装材料として使用するには20℃ないし300℃の範囲における熱膨張は特別に重要ではないが、それでも熱衝撃に対する耐性をSCHOTT FIOLAX(登録商標)8412などの周知の中性ガラスに匹敵させるためには、約5.0・10−6K−1の値を目標にするべきである。また、この熱膨張を有するガラスは、一部の金属および合金が同様にこの膨張範囲にあり、そのため安定したガラス/金属合成物、例えばリードスルーが可能であるため、電気工学におけるいわゆるシーリングガラスとしても使用できる。VACON(登録商標)など、20℃ないし300℃の範囲における熱膨張係数αが5.4・10−6K−1のFe−Ni−Co合金、ジルコニウム(α20/300=5.9・10−6K−1)またはジルコニウム合金を使用する場合、ガラス/金属シール用シーリングガラスとしては、膨張係数α20/300が5・10−6K−1ないし6・10−6K−1の範囲のガラスが必要である。 Thermal expansion in the range of 20 ° C. to 300 ° C. is not particularly important for use as a primary packaging material for pharmaceuticals, but still has resistance to thermal shock comparable to known neutral glasses such as SCHOTT FIOLAX® 8412 In order to achieve this, a value of about 5.0 · 10 −6 K −1 should be targeted. Also, the glass with this thermal expansion has some metals and alloys as well in this expansion range, so that stable glass / metal composites, such as lead-through, are possible, so-called sealing glass in electrical engineering. Can also be used. Fe-Ni-Co alloy having a thermal expansion coefficient α of 5.4 · 10 −6 K −1 in the range of 20 ° C. to 300 ° C., such as VACON (registered trademark), zirconium (α 20/300 = 5.9 · 10) −6 K −1 ) or zirconium alloy, the glass / metal seal sealing glass has an expansion coefficient α 20/300 in the range of 5 · 10 −6 K −1 to 6 · 10 −6 K −1 . Glass is required.
さまざまなホウ素フリーガラスが先行技術で周知であるが、これらは本定義の意味における中性ガラスとしては実質的に適していない。
下記特許文献1はホウ素フリーガラスファイバ用のガラスを開示しており、59〜62重量%のSiO2と、20〜24重量%のCaOと、12〜15重量%のAl2O3と、1〜4重量%のMgOと、0〜0.5重量%のF2と、0.1〜2重量%のNa2Oと、0〜0.9重量%のTiO2と、0〜0.5重量%のFe2O3と、0〜2重量%のK2Oと、0〜0.5重量%のSO3とを含む。
Various boron-free glasses are well known in the prior art, but they are not substantially suitable as neutral glasses in the sense of this definition.
The following Patent Document 1 discloses a glass for boron-free glass fiber: 59 to 62 wt% SiO 2 , 20 to 24 wt% CaO, 12 to 15 wt% Al 2 O 3 , 1 and 4% of MgO, 0 to 0.5 wt% of F 2, 0.1 to 2% by weight of Na 2 O, and TiO 2 of 0 to 0.9 wt%, 0 to 0.5 including the weight% of Fe 2 O 3, 0~2 wt% of K 2 O, and SO 3 0 to 0.5 wt%.
この種のガラスは連続ガラスファイバの製造には適しているが、中性ガラスに課せられる要求は満たさない。
下記特許文献2は、95℃で5%濃度のHCl水溶液に24時間浸漬後の重量損失が2.5mg/cm2未満であるアルミノケイ酸ガラスを含むフラットガラスディスプレイを開示している。ガラスは49〜67重量%のSiO2と少なくとも6重量%のAl2O3とを含有し、Al2O3はSiO2が55〜67重量%のときには6〜14重量%であり、SiO2が49〜58重量%のときには6〜23重量%である。SiO2およびAl2O3の総含有量は68%より多い。ガラスはさらに0〜8重量%未満のB2O3と、少なくとも1種のアルカリ土類金属酸化物、具体的には0〜21重量%のBaO、0〜15重量%のSrO、0〜7.1重量%のCaO、0〜8重量%のMgOとを含有し、BaO+CaO+SrO+MgOの総含有量は12〜30重量%である。
While this type of glass is suitable for the production of continuous glass fibers, it does not meet the requirements imposed on neutral glass.
The following Patent Document 2 discloses a flat glass display including an aluminosilicate glass having a weight loss of less than 2.5 mg / cm 2 after being immersed in an aqueous 5% HCl solution at 95 ° C. for 24 hours. Glass containing at least 6 wt% Al 2 O 3 and SiO 2 of 49 to 67 wt%, Al 2 O 3 is 6-14 wt% when SiO 2 is 55 to 67 wt%, SiO 2 Is 49 to 58% by weight, it is 6 to 23% by weight. The total content of SiO 2 and Al 2 O 3 is greater than 68%. The glass further comprises 0 to less than 8% by weight of B 2 O 3 and at least one alkaline earth metal oxide, specifically 0 to 21% by weight of BaO, 0 to 15% by weight of SrO, 0 to 7%. 0.1% by weight of CaO and 0-8% by weight of MgO, and the total content of BaO + CaO + SrO + MgO is 12-30% by weight.
このガラスは第一に十分な耐酸性を有していないこと、第二に少なくとも酸化ストロンチウムまたは酸化バリウムと、ことによると酸化ホウ素も含有している。そのため、ホウ素フリー中性ガラスとして適していない。
下記特許文献3は、40〜70重量%のSiO2と、2〜25重量%のAl2O3と、0〜20重量%のB2O3と、0〜10重量%のMgOと、0〜15重量%のCaOと、0〜10重量%のSrOと、0〜30重量%のBaOと、0〜10重量%のZnOと、0〜25重量%のR2O(Li2O、Na2O、K2O)と、0.4重量%のAs2O3と、0〜3重量%のSb2O3と、0.01〜1重量%のSnO2とを含むガラスからなるディスプレイ用ガラス基板を開示している。このガラスはダウンドロー法を使用したフラットガラスの製造に適するように意図されている。高い耐酸性と低い熱膨張係数とを得るために、SiO2の含有量は57〜64重量%が好ましい。ガラスをダウンドロー法を使用して、またはロータリー法、リドロー法または同様な他の方法を使用して製造できるようにするために、ガラスは十分な流動性をもたなければならず、このために好ましくは5〜15重量%のB2O3、特に好ましくは7.5〜11重量%のB2O3を添加する。好ましくは、このガラスは酸化ストロンチウムと酸化バリウムとをさらに含有する。
This glass firstly does not have sufficient acid resistance, and secondly contains at least strontium oxide or barium oxide and possibly also boron oxide. Therefore, it is not suitable as a boron-free neutral glass.
The following Patent Document 3 describes 40 to 70 wt% SiO 2 , 2 to 25 wt% Al 2 O 3 , 0 to 20 wt% B 2 O 3 , 0 to 10 wt% MgO, and 0 and 15 wt% of CaO, and 0-10 wt% of SrO, and from 0 to 30 wt.% BaO, and 0-10 wt% of ZnO, 0 to 25 wt% R 2 O (Li 2 O , Na 2 O, K 2 O), 0.4 wt% As 2 O 3 , 0 to 3 wt% Sb 2 O 3 and 0.01 to 1 wt% SnO 2 display. A glass substrate is disclosed. This glass is intended to be suitable for the production of flat glass using the downdraw method. In order to obtain high acid resistance and a low coefficient of thermal expansion, the content of SiO 2 is preferably 57 to 64% by weight. The glass must have sufficient fluidity so that it can be produced using the downdraw method or using the rotary method, redraw method or other similar methods. 5 to 15% by weight of B 2 O 3 , particularly preferably 7.5 to 11% by weight of B 2 O 3 is added. Preferably, the glass further contains strontium oxide and barium oxide.
そのため、この種のガラスは、高い耐酸性に加えて、高い耐加水分解性および耐アルカリ性ももたなければならないホウ素フリー中性ガラスとしては適していない。
下記特許文献4は電子ディスプレイ用のガラス基板を開示しており、ガラスは42〜62重量%のSiO2と、16.5〜28重量%のAl2O3と、0〜4重量%のB2O3と、3〜10重量%のNa2Oと、1〜11重量%のK2Oと、0〜6重量%のMgOと、9.5〜24重量%のCaOと、0.2〜8重量%のSrOと、0〜16重量%のBaOと、0〜4重量%のZrO2とを含有し、アルカリ金属の総含有量は4〜16重量%である。
Therefore, this type of glass is not suitable as a boron-free neutral glass that must have high hydrolysis resistance and alkali resistance in addition to high acid resistance.
The following Patent Document 4 discloses a glass substrate for an electronic display, and the glass is 42 to 62 wt% SiO 2 , 16.5 to 28 wt% Al 2 O 3 , and 0 to 4 wt% B. 2 O 3 , 3-10 wt% Na 2 O, 1-11 wt% K 2 O, 0-6 wt% MgO, 9.5-24 wt% CaO, 0.2 It contains ˜8 wt% SrO, 0 to 16 wt% BaO, and 0 to 4 wt% ZrO 2, and the total alkali metal content is 4 to 16 wt%.
SiO2の含有量が低いため、この種のガラスは十分な化学的耐久性を有していない。
さらに、下記特許文献5は濾材用のホウ素フリーガラス組成を開示しており、62〜68モル%のSiO2と、2〜6モル%のAl2O3と、10〜16モル%のNa2Oと、0〜6モル%のK2Oと、0〜6モル%のLi2Oと、3〜10モル%のCaOと、0〜8モル%のMgOと、0〜3モル%のBaOと、2〜6モル%のZnOと、0〜2モル%のTiO2と、0〜2モル%のF2とを含み、アルカリ金属の総含有量は18モル%未満である。
Because the content of SiO 2 is low, the glass of this type does not have sufficient chemical durability.
Further, Patent Document 5 discloses a boron free glass composition for the filter medium, and SiO 2 of 62 to 68 mol%, and 2-6 mol% of Al 2 O 3, 10 to 16 mol% of Na 2 O and, and K 2 O 0-6 mol%, and Li 2 O 0-6 mol%, and 3-10 mol% CaO, and 0-8 mol% of MgO, 0 to 3 mol% of BaO When a 2-6 mole percent of ZnO, and TiO 2 0-2 mol%, and a F 2 0-2 mol%, the total content of alkali metal is less than 18 mol%.
このガラスは、ガラスファイバからなるHEPAクリーンルーム用フィルターの製造に特に適している。この目的のため、耐加水分解性および耐アルカリ性を特別に重視されないが、ガラスは相対的に優れた耐酸性をもたなければならない。
実際には、この周知のガラスはホウ素フリー中性ガラスとして適するには、酸化アルミニウムの含有量が過度に低く、アルカリ金属の含有量が過度に高い。
This glass is particularly suitable for the production of HEPA clean room filters made of glass fiber. For this purpose, no particular emphasis is given to hydrolysis resistance and alkali resistance, but the glass must have a relatively good acid resistance.
In fact, this well-known glass has an aluminum oxide content that is too low and an alkali metal content that is too high to be suitable as a boron-free neutral glass.
下記特許文献6は、64〜68モル%のSiO2と、12〜16モル%のNa2Oと、8〜12モル%のAl2O3と、0〜3モル%のB2O3と、2〜5モル%のK2Oと、4〜6モル%のMgOと、0〜5モル%のCaOとを含むアルカリ金属アルミノケイ酸ガラスを開示している。このガラスでは、SiO2+B2O3+CaOの総含有量は66〜69モル%であり、Na2O+K2O+B2O3+MgO+CaO+SrOの総含有量は10モル%より多い。MgO+CaO+SrOの総含有量は5〜8モル%である。Na2O+B2O3の総含有量からAl2O3の含有量を引いた差は2モル%より多くするべきであり、Na2O−Al2O3の差は2〜6モル%にするべきである。Na2O+K2Oの総含有量からAl2O3の含有量を引いた差は4〜10モル%にするべきである。 Patent Document 6, a SiO 2 of 64-68 mol%, and Na 2 O 12 to 16 mol%, and 8-12 mol% Al 2 O 3, and 0-3 mole% B 2 O 3 An alkali metal aluminosilicate glass containing 2 to 5 mol% K2O, 4 to 6 mol% MgO, and 0 to 5 mol% CaO is disclosed. In this glass, the total content of SiO 2 + B 2 O 3 + CaO is 66 to 69 mol%, and the total content of Na 2 O + K 2 O + B 2 O 3 + MgO + CaO + SrO is more than 10 mol%. The total content of MgO + CaO + SrO is 5-8 mol%. The difference obtained by subtracting the content of Al 2 O 3 from the total content of Na 2 O + B 2 O 3 should be more than 2 mol%, and the difference of Na 2 O—Al 2 O 3 should be 2-6 mol%. Should do. The difference obtained by subtracting the content of Al 2 O 3 from the total content of Na 2 O + K 2 O should be 4 to 10 mol%.
実際には、このガラスは中性ガラスとして適するには酸化ナトリウムおよび酸化カリウムの含有量が過度に高い。 In practice, this glass has an excessively high content of sodium oxide and potassium oxide to be suitable as a neutral glass.
本発明の目的は、中性ガラスとして理想的に適し、溶融温度が理想的には高すぎない従来の溶融システムで製造できるように十分な化学的耐久性を有する酸化ホウ素を含まないガラスを開示することである。 The object of the present invention is to disclose a boron oxide-free glass that is ideally suited as a neutral glass and has sufficient chemical durability so that it can be produced in a conventional melting system whose melting temperature is not ideally too high. It is to be.
この目的は少なくとも以下の構成成分(酸化物基準の重量%)
SiO2 65〜72
Al2O3 11〜17
Na2O 0.1〜8
MgO 3〜8
CaO 4〜12
ZnO 0〜10
を含有し、
CaO/MgOの重量比は1.4ないし1.8であり、
不可避の不純物を除き、B2O3、SrO、BaOおよびPbOは存在せず、
DIN ISO 719による加水分解クラス1の耐加水分解性が得られ、
DIN 12116による少なくとも酸クラス2の耐酸性が得られ、
DIN ISO 695による少なくともアルカリクラス2の耐アルカリ性が得られるガラスにより達成される。
This purpose is at least the following components (weight percent on oxide basis)
SiO 2 65~72
Al 2 O 3 11-17
Na 2 O 0.1-8
MgO 3-8
CaO 4-12
ZnO 0-10
Containing
The weight ratio of CaO / MgO is 1.4 to 1.8,
Except for inevitable impurities, B 2 O 3 , SrO, BaO and PbO are not present,
Hydrolysis class 1 hydrolysis resistance according to DIN ISO 719 is obtained,
Acid resistance of at least acid class 2 according to DIN 12116 is obtained,
This is achieved by a glass that has at least alkali class 2 alkali resistance according to DIN ISO 695.
本発明の目的はさらに、少なくとも以下の構成成分(酸化物基準の重量%)
SiO2 65〜72
Al2O3 11〜17
Na2O 0〜8
K2O 0〜2
MgO 3〜8
CaO 4〜12
ZnO 0.1〜10
を含有し、
CaO/MgOの重量比は1.4ないし1.8であり、
不可避の不純物を除き、B2O3、SrO、BaOおよびPbOは存在せず、
DIN ISO 719による加水分解クラス1の耐加水分解性が得られ、
DIN 12116による酸クラス1の耐酸性が得られ、
DIN ISO 695による少なくともアルカリクラス2の耐アルカリ性が得られるガラスにより達成される。
The object of the present invention is further at least the following components (weight percent on oxide basis):
SiO 2 65~72
Al 2 O 3 11-17
Na 2 O 0~8
K 2 O 0~2
MgO 3-8
CaO 4-12
ZnO 0.1-10
Containing
The weight ratio of CaO / MgO is 1.4 to 1.8,
Except for inevitable impurities, B 2 O 3 , SrO, BaO and PbO are not present,
Hydrolysis class 1 hydrolysis resistance according to DIN ISO 719 is obtained,
Acid class 1 acid resistance according to DIN 12116 is obtained,
This is achieved by a glass that has at least alkali class 2 alkali resistance according to DIN ISO 695.
本発明の目的はこのように完全に達成される。
本文において、「不可避の不純物」とは、不純物を含む原料のために不可避的に生じる不純物を意味すると解釈される。使用する原料の純度により、これは1重量%以下、特に0.5重量%以下、さらに特に好ましくは0.1重量%以下の不純物を意味すると解釈される。
The object of the invention is thus completely achieved.
In the present text, “inevitable impurities” is understood to mean impurities that are inevitably generated due to raw materials containing impurities. Depending on the purity of the raw materials used, this is taken to mean impurities of 1% by weight or less, in particular 0.5% by weight or less, more particularly preferably 0.1% by weight or less.
本発明によるガラスは、ホウ素フリー、ストロンチウムフリーおよびバリウムフリーであり、高い化学的耐久性を有する。耐加水分解性はクラス1である一方、耐アルカリ性および耐酸性はクラス1または2である。
本発明によるガラスは好ましくは、作業点T4(ガラス溶融物の粘度が104dPasになるときの温度)が1320℃未満であり、さらに好ましくは1300℃未満であり、特に好ましくは1260℃未満である。
The glass according to the invention is boron-free, strontium-free and barium-free and has a high chemical durability. Hydrolysis resistance is class 1 while alkali resistance and acid resistance are class 1 or 2.
The glass according to the invention preferably has a working point T4 (temperature at which the viscosity of the glass melt is 10 4 dPas) of less than 1320 ° C., more preferably less than 1300 ° C., particularly preferably less than 1260 ° C. is there.
このために低いエネルギーコストで優れた生産性をもたらす。
さらに、本発明によるガラスは優れた条痕および泡品質と高い失透安定性とを特徴とする。
高価な原料であるホウ砂、ホウ酸および炭酸マグネシウムをもはや使用しないため、本発明によるガラスはホウケイ酸ガラスベースの周知の中性ガラスよりはるかに低いコストで製造できる。
This results in excellent productivity at low energy costs.
Furthermore, the glass according to the invention is characterized by excellent streak and foam quality and high devitrification stability.
Since the expensive raw materials borax, boric acid and magnesium carbonate are no longer used, the glass according to the invention can be produced at a much lower cost than the well-known neutral glass based on borosilicate glass.
熱膨張係数α20/300は、約5・10−6K−1の好適な範囲である。
本発明によるガラスはSiO2の最低含有量が65重量%であり、これは高い耐酸性の必要条件である。最高含有量が72重量%を超えると、作業点は1320℃を超える値まで上昇し、そのため溶融物は、従来の溶融ユニットで経済的に製造することが困難になるであろう。
The coefficient of thermal expansion α 20/300 is in the preferred range of about 5 · 10 −6 K −1 .
The glass according to the invention has a minimum content of SiO 2 of 65% by weight, which is a requirement for high acid resistance. If the maximum content exceeds 72% by weight, the working point will rise to a value above 1320 ° C., so that the melt will be difficult to produce economically in conventional melting units.
酸化アルミニウムは安定化効果を有し、アルカリ金属およびアルカリ土類金属イオンが恒久的にガラス構造に組み込まれるため化学的耐久性が増す。本発明によるガラスは、酸化アルミニウムの含有量が11〜17重量%、好ましくは14〜17重量%、さらに好ましくは15〜17重量%である。含有量が低い場合、それに応じて結晶化の傾向とガス成分の蒸発とがタンク炉内の高い溶融温度で増す。含有量が過度に高い場合の不利な影響は、処理温度および溶融温度の上昇であろう。 Aluminum oxide has a stabilizing effect and increases chemical durability because alkali metal and alkaline earth metal ions are permanently incorporated into the glass structure. The glass according to the present invention has an aluminum oxide content of 11 to 17% by weight, preferably 14 to 17% by weight, more preferably 15 to 17% by weight. If the content is low, the tendency to crystallize and the evaporation of the gas components increase accordingly at the high melting temperature in the tank furnace. A detrimental effect if the content is too high would be an increase in processing and melting temperatures.
アルカリ金属酸化物の添加により、溶融温度は下がるが、熱膨張係数も上がることになるため、相対的に少量のみ使用する。
Na2Oの含有量は、好ましくは0.5〜8重量%であり、さらに好ましくは1〜8重量%であり、さらに好ましくは2〜8重量%であり、特に好ましくは2〜6重量%である。
The addition of the alkali metal oxide lowers the melting temperature, but also increases the coefficient of thermal expansion. Therefore, only a relatively small amount is used.
The content of Na 2 O is preferably 0.5 to 8% by weight, more preferably 1 to 8% by weight, further preferably 2 to 8% by weight, and particularly preferably 2 to 6% by weight. It is.
本発明によるガラスは0〜2重量%、好ましくは0.1〜2重量%のLi2Oを含み得る。
コスト面の理由でNa2Oが好ましいが、Na2Oの代替物として、またはNa2Oに加えて、原則として、他にも2種のアルカリ金属酸化物Li2OおよびK2Oを使用することも可能である。また、K2O含有溶融物はときにタンクブロックの腐食を増すことになる。最終的に、天然由来のカリウム含有原料はすべて放射性同位体40Kを含有し、これは一部の電子工学のアプリケーションには望ましくない。
The glass according to the invention may contain 0-2% by weight, preferably 0.1-2% by weight of Li 2 O.
While Na 2 O is preferred for reasons of cost, as an alternative to the Na 2 O, or in addition to Na 2 O, in principle, be used two kinds of alkali metal oxides Li 2 O and K 2 O in the other It is also possible to do. Also, K 2 O containing melts sometimes increase corrosion of the tank block. Ultimately, all naturally occurring potassium-containing raw materials contain the radioisotope 40 K, which is undesirable for some electronic applications.
そのため、本発明によると、K2Oの含有量は0〜2重量%、Na2Oを使用しない場合でも、好ましくは0.1〜2重量%に制限される。
熱膨張を高めつつ溶融物の粘度を低下させるために(いわゆる融剤(フラックス))、ガラスは2種のアルカリ土類金属酸化物であるMgOおよびCaOを含有する。特に化学的耐久性があり、失透に対して安定しているガラスは、MgOに対するCaOの比(重量%を基準にして)が1.4ないし1.8の間にある場合に得られる。モル分率で表すと、MgOに対するCaOの比は1.0ないし1.6にするべきである。CaO/MgOの(重量)比が1.4より大きい場合、高価な原料であるMgCO3(またはさらに高価なマグネシウム含有原料)を追加で使用する必要がなく、安価な原料であるドロマイトおよび石灰石を使用することが可能である。MgOはCaOよりもはるかに効果的にT4を下げるため、CaO/MgO比は1.8の値を超えるべきではない。
Therefore, according to the present invention, the content of K 2 O is preferably 0 to 2% by weight, and even when Na 2 O is not used, it is preferably limited to 0.1 to 2% by weight.
In order to reduce the viscosity of the melt while increasing thermal expansion (so-called flux), the glass contains two alkaline earth metal oxides MgO and CaO. Glasses that are particularly chemically durable and stable against devitrification are obtained when the ratio of CaO to MgO (based on weight percent) is between 1.4 and 1.8. Expressed in mole fraction, the ratio of CaO to MgO should be 1.0 to 1.6. When the (weight) ratio of CaO / MgO is larger than 1.4, there is no need to additionally use an expensive raw material MgCO 3 (or more expensive magnesium-containing raw material), and inexpensive raw materials such as dolomite and limestone are used. It is possible to use. Since MgO lowers T4 much more effectively than CaO, the CaO / MgO ratio should not exceed a value of 1.8.
CaOの含有量は好ましくは7.1〜12重量%、さらに好ましくは8〜12重量%、特に好ましくは8〜11重量%である。
アルカリ土類金属酸化物SrOおよびBaOは、これらの成分が毒物学的にまったく無害というわけではなく、特にガラスを製薬向け一次包装材料として使用する場合、ある特定の、通常硫黄含有の活性物質(硫酸塩、スルホンおよび同様な物質)の溶液と反応して雲状の析出が発生することがあるため、添加しないことが好ましい。
The content of CaO is preferably 7.1 to 12% by weight, more preferably 8 to 12% by weight, and particularly preferably 8 to 11% by weight.
The alkaline earth metal oxides SrO and BaO are not toxicologically harmless in their constituents, especially when glass is used as the primary packaging material for pharmaceuticals, certain specific, usually sulfur-containing active substances ( It is preferable not to add it because it may react with a solution of sulfate, sulfone and similar substances) to cause cloud-like precipitation.
酸化鉛PbOは毒物学的な理由のために使用しないことが好ましい。
ZnOの含有量は好ましくは3〜4重量%にできる。さらに好適な範囲は4〜10重量%であり、6〜10重量%である。
酸化亜鉛ZnOの添加は融剤として作用する。10重量%以下の、好ましくは少なくとも0.1重量%のZnOがガラスに存在し得る。この成分の使用に関連する欠点は、蒸発の傾向とその後の蒸発生成物の凝結とであり、これは特にフロート法ではガラス粒子の表面に望ましくないガラス欠陥を引き起こす可能性がある。
Lead oxide PbO is preferably not used for toxicological reasons.
The content of ZnO can be preferably 3 to 4% by weight. A more preferable range is 4 to 10% by weight, and 6 to 10% by weight.
The addition of zinc oxide ZnO acts as a flux. Up to 10% by weight of ZnO may be present in the glass, preferably at least 0.1% by weight. The disadvantages associated with the use of this component are the tendency to evaporate and subsequent condensation of the evaporated product, which can cause undesirable glass defects on the surface of the glass particles, especially in the float process.
本発明によるガラスはさらに、0〜10重量%、好ましくは1〜10重量%のTiO2を含有し得る。
酸化チタンTiO2の添加はガラスの耐加水分解性を改善でき、必ずUV放射の吸収を高めてくれる。しかし、この成分はバッチ価格の上昇にもなり、ある用途のガラス成分としては望ましくない。また、茶色の形成がしばしば観察され、これはある用途にとっては破壊的影響をもつ。この着色は、原料またはカレットの再利用をとおしてガラスに混入する酸化鉄の量が増えるにつれてだんだん顕著になってくる。用途によっては、酸化チタンはまったく使用しない。
The glass according to the invention can further contain 0 to 10% by weight, preferably 1 to 10% by weight of TiO 2 .
The addition of titanium oxide TiO 2 can improve the hydrolysis resistance of the glass and will certainly increase the absorption of UV radiation. However, this component also increases the batch price and is not desirable as a glass component for certain applications. Also, brown formation is often observed, which has a destructive effect for some applications. This coloring becomes more pronounced as the amount of iron oxide mixed into the glass through the reuse of the raw material or cullet increases. Depending on the application, no titanium oxide is used.
本発明によるガラスはさらに、0.0〜10重量%、適切なら1〜10重量%のZrO2を含有できる。
酸化ジルコニウムの添加は、ほとんどの用途には特に大きな関連はないが、ガラスの耐アルカリ性を大幅に改善する。その使用はバッチコストを高め、特に少量のアルカリ金属を含有する組成のバッチの溶融挙動を弱め、溶融物の粘度を高めるので、酸化ジルコニウムをまったく使用しないことも可能であり、ある用途の重金属として望ましくない。
Glass according to the invention further, 0.0 to 10 wt%, may contain if appropriate 1 to 10 wt% of ZrO 2.
The addition of zirconium oxide is not particularly relevant for most applications, but significantly improves the alkali resistance of the glass. Its use increases the batch cost, especially weakening the melting behavior of batches with compositions containing small amounts of alkali metals and increasing the viscosity of the melt, so it is possible not to use zirconium oxide at all, as a heavy metal for certain applications Not desirable.
清澄剤を添加せずに実験室規模で泡フリーおよび条痕フリーのガラスを得られるとしても、本発明によるガラスは、大規模製造のために、0.01〜2重量%、好ましくは0.1〜1.5重量%の清澄剤を含有できる。
清澄剤として、合計で1.5重量%以下のAs2O3、Sb2O3、SnO2、CeO2、MnO2、Fe2O3、Cl−(例、NaClまたはZnCl2として)、F−(たとえば、CaF2またはMgF2として)および/または硫酸塩(たとえば、Na2SO4またはZnSO4として)を添加できる。
Even if it is possible to obtain bubble-free and streak-free glass on a laboratory scale without the addition of fining agents, the glass according to the invention is 0.01 to 2% by weight, preferably 0. 1 to 1.5% by weight of fining agent can be included.
As a fining agent, a total of 1.5 wt% or less of As 2 O 3 , Sb 2 O 3 , SnO 2 , CeO 2 , MnO 2 , Fe 2 O 3 , Cl − (eg, as NaCl or ZnCl 2 ), F - (e.g., CaF 2, or as MgF 2) and / or sulfate (e.g., as Na 2 SO 4 or ZnSO 4) can be added.
フッ化物の添加は溶融物の粘度を減じるため、清澄化を加速する。環境保護のために、As2O3またはSb2O3の添加は理想的には避けるべきである。
清澄剤としての塩化物またはフッ化物の添加は、ガラスの耐酸性を減じる傾向がある。さらに、中性ガラスに塩化物を添加すると、加熱作業のたびに塩化物が蒸発し、ガラス生成物上に凝結する影響をもつおそれがある。フッ化物の添加は作業点T4を下げるが、これも耐酸性をわずかに減じる。蒸発および凝結の現象も塩化物の添加の結果現れるおそれがある。最終的に、フッ化物の添加によりタンク炉の安定性が損なわれる可能性がある。
The addition of fluoride reduces the viscosity of the melt and thus accelerates clarification. For environmental protection, the addition of As 2 O 3 or Sb 2 O 3 should ideally be avoided.
The addition of chloride or fluoride as a fining agent tends to reduce the acid resistance of the glass. Furthermore, when chloride is added to the neutral glass, the chloride evaporates every time the heating operation is performed, which may have the effect of condensing on the glass product. Addition of fluoride lowers the working point T4, but this also slightly reduces acid resistance. The phenomenon of evaporation and condensation may also appear as a result of the addition of chloride. Ultimately, the addition of fluoride can impair the stability of the tank furnace.
このため、清澄剤として添加する塩化物およびフッ化物の量は、1.5重量%以下の塩化物またはフッ化物に制限される。
本発明によるガラスは、従来のホウ素含有中性ガラスに完全に置き換わることのできるホウ素フリー中性ガラスとして適している。
本発明によるガラスの好適な用途は以下のとおりである。
―製薬向け一次包装材料、特に瓶、シリンジ、アンプル
―実験用ガラスおよび化学用ガラス
―シーリングガラス、特にFe−Co−Ni合金のシーリングガラス
―基板、スーパーストレートまたはカバー、特に電気工学用途、TFT、PWPおよびOLEDスクリーン用、および太陽光発電用のもの
―管ガラス、特にランプ、ハロゲンランプもしくは蛍光管用、または太陽熱用途のもの
―反射ガラス、特にランプ用のもの、および建築用ガラス
―耐熱衝撃性ガラス、特にオーブン、冷蔵庫および調理器具の部品用のもの
言うまでもなく、上記述べた本発明の特徴およびさらに以下に説明する特徴は、本発明の範囲を逸脱することなく、各事例にあげられる組み合わせだけでなく、他の組み合わせまたは単独でも使用することができる。
For this reason, the amount of chloride and fluoride added as a fining agent is limited to 1.5 wt% or less chloride or fluoride.
The glass according to the present invention is suitable as a boron-free neutral glass that can completely replace the conventional boron-containing neutral glass.
Preferred uses of the glass according to the present invention are as follows.
-Primary packaging materials for pharmaceuticals, especially bottles, syringes, ampoules-Laboratory glass and chemical glass-Sealing glass, especially Fe-Co-Ni alloy sealing glass-Substrates, super straight or covers, especially electrical engineering applications, TFT, For PWP and OLED screens and for photovoltaic power generation—tube glass, especially for lamps, halogen lamps or fluorescent tubes, or for solar heating—reflective glass, especially for lamps, and architectural glass—heat-resistant glass Of course, especially for oven, refrigerator and cookware parts, the features of the present invention described above and further described below are only combinations given in each case without departing from the scope of the present invention. Other combinations or alone can be used.
本発明の別の利点および特徴は以下の好適な例示的実施形態の説明から明らかとなろう。 Additional advantages and features of the present invention will become apparent from the following description of the preferred exemplary embodiments.
表2は、実施例B1ないしB3として、本発明によるさまざまなガラスの組成を重量%でまとめたものである。ガラスB4、B5は同様な組成であるが、もはや酸クラス1ではない。 Table 2 summarizes the composition of the various glasses according to the invention in% by weight as examples B1 to B3. Glasses B4 and B5 have similar compositions but are no longer acid class 1.
また、次の特性、α20/300は10−6/Kの単位で、ガラス転移温度Tgは℃で、軟化点T7.6は℃で、作業点T4は℃で示す。耐加水分解性Hはmg Na2O/gガラスフリット単位で酸消費の塩基当量として示し、酸の侵食後の材料除去値としての耐酸性Sはmg/dm2で示し、アルカリの侵食時の材料除去値としての耐アルカリ性Lはmg/dm2で示す。 Further, the following characteristics, α 20/300 is a unit of 10 −6 / K, the glass transition temperature Tg is ° C., the softening point T 7.6 is ° C., and the working point T 4 is ° C. Hydrolysis resistance H is expressed as the base equivalent of acid consumption in mg Na 2 O / g glass frit units, acid resistance S as material removal value after acid erosion is expressed in mg / dm 2 , The alkali resistance L as a material removal value is expressed in mg / dm 2 .
表3はガラスB1ないしB5のガラス組成をモル%で示す。 Table 3 shows the glass compositions of glasses B1 to B5 in mol%.
ガラスは、通常の原料を1650℃で誘導加熱したPt/Rhルツボ(Pt20Rh)で溶融して溶融した。溶融作業は3時間ないし4時間続けた。均質化するために、さらに溶融物を1600℃で1時間攪拌した後、存在する泡を表面に上昇させるために、この温度で攪拌せずに2時間静置した。溶融物は定められた冷却速度30K/時で冷却した。 The glass was melted by melting with a Pt / Rh crucible (Pt20Rh) in which ordinary raw materials were induction-heated at 1650 ° C. The melting operation lasted for 3 to 4 hours. In order to homogenize, the melt was further stirred at 1600 ° C. for 1 hour and then allowed to stand for 2 hours without stirring at this temperature in order to raise the foam present on the surface. The melt was cooled at a defined cooling rate of 30 K / hour.
失透を試験するために、ガラスB1を1500℃で30分間溶融し、勾配炉で5時間熱処理した。1150℃ないし1423℃の温度範囲では、明確な失透は観察されなかった。
ガラスB1、B2、B3およびB5の耐加水分解性は、すべてクラス1である。ガラスB1ないしB3の耐酸性は耐アルカリ性と同様クラス1である。
To test devitrification, glass B1 was melted at 1500 ° C. for 30 minutes and heat treated in a gradient furnace for 5 hours. In the temperature range from 1150 ° C. to 1423 ° C., no clear devitrification was observed.
The glass B1, B2, B3 and B5 all have class 1 hydrolysis resistance. The acid resistance of the glasses B1 to B3 is class 1 like the alkali resistance.
しかし、ガラスB2、B3は作業点が相対的に高く、このためこれらのガラスを経済的に製造することはより困難である。
組成の点で、B5の場合には清澄剤として塩化ナトリウムNaClの形で1%のNa2Oが導入されたものの、ガラスB5はガラスB1に一致する。ガラスを実験用ガラスとして製造した場合に認められる限りでは、B5およびB1は同じように優れた泡品質を有する。
However, the glasses B2 and B3 have a relatively high working point, which makes it more difficult to economically manufacture these glasses.
In terms of composition, in the case of B5, 1% Na 2 O in the form of sodium chloride NaCl was introduced as a fining agent, but glass B5 corresponds to glass B1. As far as it is observed when the glass is produced as laboratory glass, B5 and B1 have equally good foam quality.
しかし、耐酸性は塩化物の添加によりいくらか減じられ、すでに酸クラス2である。しかし、塩化物が蒸発し、その後再加熱したときにガラス粒子上に凝結が発生することがあるため、塩化物の使用は問題がある可能性もある。この現象は「ランプ・リング」の名前で知られており、例えば、(ランプ製造前の)管を所定の長さに切断するときに起こる。そのため塩化物の添加はできるだけ低くしておくべきである。 However, acid resistance is somewhat reduced by the addition of chloride and is already acid class 2. However, the use of chlorides can be problematic because the chlorides can evaporate and then condense on the glass particles when reheated. This phenomenon is known under the name “lamp ring” and occurs, for example, when a tube (before lamp manufacture) is cut to a predetermined length. Therefore, chloride addition should be kept as low as possible.
あるいは、他の周知の精製法、例えば、硫酸塩精製法および高温ブースティング法を使用することも可能である。ガラスB1と比べ、ガラスB4は、フッ化物の添加により軟化点T7.6および作業点T4の両方を低下できていることが分かる。耐酸性はやや減じられており、すでに耐酸性クラス2である。
フッ化物の使用は、塩化物の使用と同様に、高温成型中に高揮発性のために蒸発および凝結の現象を引き起こす可能性があり、ことによるとタンク炉の安定性を減じることになりかねない。水溶液または他の溶液の作用のために、フッ化物はガラスから液体に移送される可能性もあり、その場合、構成成分と望ましくない反応が起こる。
Alternatively, other well-known purification methods such as sulfate purification and high temperature boosting methods can be used. It can be seen that glass B4 can lower both softening point T7.6 and working point T4 by addition of fluoride as compared to glass B1. Acid resistance has been somewhat reduced and is already in acid resistance class 2.
The use of fluoride, like the use of chloride, can cause evaporation and condensation due to high volatility during high temperature molding, possibly reducing tank furnace stability. Absent. Due to the action of aqueous solutions or other solutions, fluoride may be transferred from the glass to the liquid, in which case undesired reactions with components occur.
そのためフッ化物の含有量はできるだけ低くしておくべきであり、1.5重量%の上限を超えてはならない。
表4は比較実施例としてV1ないしV4を示しており、文献で知られる組成を有しており、実験室規模で溶融されている。
V1は上記非特許文献1から引用した。V2は上記非特許文献2から引用した。V3は上記特許文献2の実施例2である。V4は上記特許文献2の実施例6である。
Therefore, the content of fluoride should be kept as low as possible and should not exceed the upper limit of 1.5% by weight.
Table 4 shows V1 to V4 as comparative examples, which have compositions known in the literature and are melted on a laboratory scale.
V1 is cited from Non-Patent Document 1 above. V2 is cited from Non-Patent Document 2 above. V3 is Example 2 of Patent Document 2 above. V4 is Example 6 of Patent Document 2 above.
ガラスは、従来の原料を1650℃で誘導加熱したPt/Rhルツボ(Pt20Rh)で溶融して溶融した。溶融作業は3時間ないし4時間続けた。均質化するために、さらに溶融物を1600℃で1時間攪拌した後、存在する泡を表面に上昇させるために、この温度で攪拌せずに2時間静置した。溶融物は定められた冷却速度30K/時で冷却した。他の特性は表2と同じ単位で示す。 The glass was melted by melting with a Pt / Rh crucible (Pt20Rh) obtained by induction heating of a conventional raw material at 1650 ° C. The melting operation lasted for 3 to 4 hours. In order to homogenize, the melt was further stirred at 1600 ° C. for 1 hour and then allowed to stand for 2 hours without stirring at this temperature in order to raise the foam present on the surface. The melt was cooled at a defined cooling rate of 30 K / hour. Other characteristics are shown in the same units as in Table 2.
V1およびV2は水による侵食に対しては非常に安定しているが、酸クラス1(0.7mg/dm2以下の重量損失)または酸クラス2(1.5mg/dm2以下の重量損失)という目標にはほど遠い。V3の溶融物は非常に粘りが強く、このため、適したガラス塊を成型できないであろう。V4は酸化ホウ素を含有しないガラスで、耐加水分解性および耐酸性はクラス1、耐アルカリ性はクラス2である。しかし、1320℃を超える作業点T4は、商業用溶融ユニットで経済的な製造をするには高すぎる。また、SrOおよびBaOの含有量が高く、硫黄含有薬剤(スルホン、硫酸塩および同様な物質)に反応して析出するリスクがあるため、中性ガラスには望ましくない。 V1 and V2 are very stable against water erosion, but acid class 1 (weight loss below 0.7 mg / dm 2 ) or acid class 2 (weight loss below 1.5 mg / dm 2 ) Is far from the goal. The melt of V3 is very sticky and will not be able to mold a suitable glass mass. V4 is a glass that does not contain boron oxide. It has class 1 hydrolysis resistance and acid resistance, and class 2 alkali resistance. However, the working point T4 above 1320 ° C. is too high for economical production in a commercial melting unit. Also, it is not desirable for neutral glass because of the high SrO and BaO content and the risk of precipitation in response to sulfur-containing agents (sulfones, sulfates and similar materials).
表5(表5−1〜表5−3)は、アルミノケイ酸ガラスの別の比較実施例G1からG17を重量%単位の組成と合わせて示す。 Table 5 (Tables 5-1 to 5-3) shows the other comparative examples G1 to G17 of aluminosilicate glass together with the composition in weight% units.
これらのガラスのいくつかは、他のガラスのガラス耐久性にプラス効果があると分かっているため、相対的に高い比率のTiO2および/またはZrO2を含有する。実施例から、この方法で、特に成分TiO2が相対的に高い比率で存在する場合に、加水分解に対して安定したガラスが得られることが分かる。特に成分ZrO2が相対的に高い比率で存在する場合に、クラス1の耐アルカリ性のガラスを得ることも可能である。しかし、これらの成分を含有するガラスは、それが個別に存在するかまたはともに存在するかにかかわらず、所要の酸クラス1は達成しない。 Some of these glasses contain relatively high proportions of TiO 2 and / or ZrO 2 since they have been found to have a positive effect on the glass durability of other glasses. From the examples it can be seen that in this way a glass which is stable against hydrolysis is obtained, especially when the component TiO 2 is present in a relatively high proportion. It is also possible to obtain a class 1 alkali-resistant glass, particularly when the component ZrO 2 is present in a relatively high proportion. However, glasses containing these components do not achieve the required acid class 1 regardless of whether they are present individually or together.
表2に示す本発明によるガラスB1ないしB3から分かるように、TiO2またはZrO2の添加もまったく必要ない。ただし、相対的に少量の添加がプラス効果をもつことがある。 As can be seen from the glasses B1 to B3 according to the invention shown in Table 2, no addition of TiO 2 or ZrO 2 is necessary. However, the addition of relatively small amounts may have a positive effect.
Claims (24)
SiO2 65〜72
Al2O3 11〜17
Na2O 0〜8
K2O 0〜2
MgO 3〜8
CaO 4〜12
ZnO 0.1〜10
CaO/MgOの重量比が1.4ないし1.8であり、
不可避の不純物を別にして、B2O3、SrO、BaOおよびPbOが存在せず、
DIN ISO 719による加水分解クラス1の耐加水分解性が得られ、
DIN 12116による酸クラス1の耐酸性が得られ、
DIN ISO 695による少なくともアルカリクラス2の耐アルカリ性が得られることを特徴とするガラス。 A glass containing at least the following constituents in weight percent based on oxides,
SiO 2 65~72
Al 2 O 3 11-17
Na 2 O 0~8
K 2 O 0~2
MgO 3-8
CaO 4-12
ZnO 0.1-10
The weight ratio of CaO / MgO is 1.4 to 1.8;
Aside from inevitable impurities, B 2 O 3 , SrO, BaO and PbO are absent,
Hydrolysis class 1 hydrolysis resistance according to DIN ISO 719 is obtained,
Acid class 1 acid resistance according to DIN 12116 is obtained,
Glass having at least alkali class 2 alkali resistance according to DIN ISO 695.
実験用ガラスもしくは化学用ガラス、
シーリングガラス、
基板、スーパーストレートもしくはカバー、
管ガラス、
反射ガラス、
建築用ガラス、または
耐熱衝撃性ガラス
としての請求項1ないし22のいずれか1項に記載のガラスの使用。 Primary packaging materials for pharmaceuticals ,
Laboratory glass or chemical glass,
Sealing glass ,
Board, super straight or cover ,
Tube glass ,
Reflective glass ,
Architectural glass or a heat shock resistance glass,
The use of glass according to any one of claims 1 to 22 as a.
実験用ガラスもしくは化学用ガラス、 Laboratory glass or chemical glass,
Fe−Co−Ni合金のシーリングガラス、 Sealing glass of Fe-Co-Ni alloy,
電気工学アプリケーション用、TFT、PDPもしくはOLEDスクリーン用、もしくは太陽光発電用の、基板、スーパーストレートもしくはカバー、 For electrical engineering applications, for TFT, PDP or OLED screens, or for photovoltaic power generation, substrates, super straights or covers,
ランプ用、蛍光管用、もしくは太陽熱用途の管ガラス、 Tube glass for lamps, fluorescent tubes, or solar applications,
ランプ用の反射ガラス、 Reflective glass for lamps,
建築用ガラス、または Architectural glass, or
オーブン、冷蔵庫もしくは調理器具の部品用の耐熱衝撃性ガラス Thermal shock resistant glass for oven, refrigerator or cookware parts
としての請求項1ないし22のいずれか1項に記載のガラスの使用。Use of the glass according to any one of claims 1 to 22 as.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009051852A DE102009051852B4 (en) | 2009-10-28 | 2009-10-28 | Borless glass and its use |
DE102009051852.5 | 2009-10-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011093792A JP2011093792A (en) | 2011-05-12 |
JP5336455B2 true JP5336455B2 (en) | 2013-11-06 |
Family
ID=43825244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010233534A Expired - Fee Related JP5336455B2 (en) | 2009-10-28 | 2010-10-18 | Boron free glass |
Country Status (7)
Country | Link |
---|---|
US (1) | US8629072B2 (en) |
EP (1) | EP2338847B1 (en) |
JP (1) | JP5336455B2 (en) |
KR (1) | KR101343767B1 (en) |
CN (1) | CN102050572B (en) |
DE (1) | DE102009051852B4 (en) |
TW (1) | TWI448443B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014500848A (en) * | 2010-12-08 | 2014-01-16 | ショット アクチエンゲゼルシャフト | Boron-free general purpose glass |
US10077208B2 (en) | 2014-03-13 | 2018-09-18 | Corning Incorporated | Glass article and method for forming the same |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6149284B2 (en) | 2010-10-06 | 2017-06-21 | コーニング インコーポレイテッド | Alkali-free glass composition having high heat and chemical stability |
US10350139B2 (en) | 2011-10-25 | 2019-07-16 | Corning Incorporated | Pharmaceutical glass packaging assuring pharmaceutical sterility |
RU2691186C2 (en) | 2011-10-25 | 2019-06-11 | Корнинг Инкорпорейтед | Alkali-earth aluminosilicate glass compositions with improved chemical and mechanical resistance |
US9517966B2 (en) | 2011-10-25 | 2016-12-13 | Corning Incorporated | Glass compositions with improved chemical and mechanical durability |
EP2683666B1 (en) | 2011-10-25 | 2017-12-13 | Corning Incorporated | Glass compositions with improved chemical and mechanical durability |
US9850162B2 (en) * | 2012-02-29 | 2017-12-26 | Corning Incorporated | Glass packaging ensuring container integrity |
EP2771294B1 (en) | 2011-10-25 | 2017-12-13 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US11497681B2 (en) | 2012-02-28 | 2022-11-15 | Corning Incorporated | Glass articles with low-friction coatings |
US10737973B2 (en) | 2012-02-28 | 2020-08-11 | Corning Incorporated | Pharmaceutical glass coating for achieving particle reduction |
KR102047016B1 (en) * | 2012-02-28 | 2019-11-20 | 코닝 인코포레이티드 | Glass Articles with Low-Friction Coatings |
US11179295B2 (en) | 2012-02-29 | 2021-11-23 | Corning Incorporated | Glass packaging ensuring container integrity |
FR2988465B1 (en) * | 2012-03-20 | 2014-03-14 | Eurokera | OVEN DOOR |
US10273048B2 (en) | 2012-06-07 | 2019-04-30 | Corning Incorporated | Delamination resistant glass containers with heat-tolerant coatings |
US9988174B2 (en) | 2012-06-07 | 2018-06-05 | Corning Incorporated | Delamination resistant glass containers |
US9034442B2 (en) | 2012-11-30 | 2015-05-19 | Corning Incorporated | Strengthened borosilicate glass containers with improved damage tolerance |
JP2014037343A (en) | 2012-07-18 | 2014-02-27 | Nippon Electric Glass Co Ltd | Glass for medicine container and glass tube using the same |
US10117806B2 (en) * | 2012-11-30 | 2018-11-06 | Corning Incorporated | Strengthened glass containers resistant to delamination and damage |
US9603775B2 (en) | 2013-04-24 | 2017-03-28 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US9839579B2 (en) | 2013-04-24 | 2017-12-12 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US9707155B2 (en) | 2013-04-24 | 2017-07-18 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US9707153B2 (en) | 2013-04-24 | 2017-07-18 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US9713572B2 (en) | 2013-04-24 | 2017-07-25 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US9700486B2 (en) | 2013-04-24 | 2017-07-11 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US9717649B2 (en) | 2013-04-24 | 2017-08-01 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US9717648B2 (en) | 2013-04-24 | 2017-08-01 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US9700485B2 (en) | 2013-04-24 | 2017-07-11 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US9849066B2 (en) | 2013-04-24 | 2017-12-26 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US9707154B2 (en) | 2013-04-24 | 2017-07-18 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
KR101615525B1 (en) * | 2013-05-08 | 2016-04-26 | 코닝정밀소재 주식회사 | Light extraction substrate for oled, method of fabricating thereof and oled including the same |
JP6455799B2 (en) * | 2013-06-06 | 2019-01-23 | 日本電気硝子株式会社 | Glass tubes for pharmaceutical containers and pharmaceutical containers |
WO2015178434A1 (en) * | 2014-05-21 | 2015-11-26 | 旭硝子株式会社 | Alkali-free float sheet glass, and method for producing alkali-free float sheet glass |
WO2016037083A1 (en) | 2014-09-05 | 2016-03-10 | Corning Incorporated | Glass articles and methods for improving the reliability of glass articles |
WO2016085867A1 (en) | 2014-11-26 | 2016-06-02 | Corning Incorporated | Methods for producing strengthened and durable glass containers |
WO2016093176A1 (en) * | 2014-12-10 | 2016-06-16 | 日本電気硝子株式会社 | Glass for medicine container and glass tube for medicine container |
DE102015113558A1 (en) * | 2015-08-17 | 2017-02-23 | Schott Ag | Light guide plate and optical display with backlighting |
DE102015116097B4 (en) | 2015-09-23 | 2017-09-21 | Schott Ag | Chemically resistant glass and its use |
EP3150564B1 (en) | 2015-09-30 | 2018-12-05 | Corning Incorporated | Halogenated polyimide siloxane chemical compositions and glass articles with halogenated polylmide siloxane low-friction coatings |
DE102016101090A1 (en) | 2015-11-26 | 2017-06-01 | Schott Ag | Thermally toughened glass element and its uses |
CN106495494A (en) * | 2016-10-20 | 2017-03-15 | 广西大学 | A kind of mobile phone screen and preparation method thereof |
DE102017203997B3 (en) * | 2017-03-10 | 2018-07-26 | Schott Ag | Process for producing tubes of alkali-rich, barium-free aluminosilicate glasses, alkali-rich BaO-free aluminosilicate glass tube and its use |
CN107935385A (en) * | 2017-11-30 | 2018-04-20 | 滕州市耀海玻雕有限公司 | A kind of heat insulation type composite fireproof glass and preparation method thereof |
DE102019117498B4 (en) * | 2018-07-06 | 2024-03-28 | Schott Ag | Glasses with improved ion exchangeability |
DE102018116460A1 (en) | 2018-07-06 | 2020-01-09 | Schott Ag | Highly resistant and chemically toughened glasses |
DE102018133413A1 (en) * | 2018-12-21 | 2020-06-25 | Schott Ag | Chemically resistant, boron and alkali free glasses |
DE112019006477T5 (en) * | 2018-12-27 | 2021-09-09 | Nippon Electric Glass Co., Ltd. | Glass for medicine container and medicine container glass tube and medicine container using the same |
CA3130390A1 (en) * | 2019-03-15 | 2020-09-24 | Nadja Teresia Lonnroth | Chemically durable aluminosilicate glass compositions and glass articles formed therefrom |
CN112250306B (en) * | 2020-10-22 | 2022-07-19 | 淄博宝特化工科技有限公司 | High-temperature high-pressure acid and alkali resistant porcelain glaze and preparation method thereof |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU631471A1 (en) * | 1977-04-15 | 1978-11-05 | Белорусский Ордена Трудового Красного Знамени Политехнический Институт | Glass |
JPS5841736A (en) * | 1981-08-31 | 1983-03-11 | Hoya Corp | Glass for photoetching mask |
FR2648805B1 (en) * | 1989-06-21 | 1992-11-13 | Ceramiques Composites | COMPOSITE MATERIALS WITH REINFORCED VITREOUS MATRIX AND PROCESS FOR PREPARING THE SAME |
JPH0742123B2 (en) * | 1991-12-12 | 1995-05-10 | 日本電気硝子株式会社 | Method for producing patterned crystallized glass |
US5508237A (en) * | 1994-03-14 | 1996-04-16 | Corning Incorporated | Flat panel display |
WO1996039362A1 (en) * | 1995-06-06 | 1996-12-12 | Owens Corning | Boron-free glass fibers |
JP3930113B2 (en) * | 1996-08-30 | 2007-06-13 | Hoya株式会社 | Glass substrate for magnetic disk |
US5854153A (en) * | 1997-01-09 | 1998-12-29 | Corning Incorporated | Glasses for display panels |
US6313052B1 (en) * | 1998-02-27 | 2001-11-06 | Asahi Glass Company Ltd. | Glass for a substrate |
JPH11240733A (en) * | 1998-02-27 | 1999-09-07 | Asahi Glass Co Ltd | Glass composition for substrate |
FR2775476B1 (en) * | 1998-03-02 | 2000-04-14 | Saint Gobain Vitrage | GLASS SHEET FOR THERMALLY TEMPERED |
US6087282A (en) * | 1998-07-10 | 2000-07-11 | Jeneric/Pentron Incorporated | Non-greening porcelain compositions |
US6277777B1 (en) * | 1999-08-03 | 2001-08-21 | Johns Manville International, Inc. | Boron-free glass composition and filtration media |
US7273668B2 (en) * | 2003-06-06 | 2007-09-25 | Hoya Corporation | Glass composition including zirconium, chemically strengthened glass article, glass substrate for magnetic recording media, and method of producing glass sheet |
JP2005060215A (en) * | 2003-07-29 | 2005-03-10 | Nippon Electric Glass Co Ltd | Glass substrate for display, and its manufacturing method |
DE102004022629B9 (en) * | 2004-05-07 | 2008-09-04 | Schott Ag | Flooded lithium aluminosilicate flat glass with high temperature resistance, which can be preloaded chemically and thermally and its use |
CN101484838B (en) * | 2006-06-30 | 2011-11-02 | 旭硝子株式会社 | Liquid crystal display panel |
US7666511B2 (en) * | 2007-05-18 | 2010-02-23 | Corning Incorporated | Down-drawable, chemically strengthened glass for cover plate |
DE102007036774B4 (en) * | 2007-08-03 | 2012-08-16 | S.D.R. Biotec Verwaltungs GmbH | Thermally stable glass fibers, process for their trimming and use |
-
2009
- 2009-10-28 DE DE102009051852A patent/DE102009051852B4/en not_active Expired - Fee Related
-
2010
- 2010-07-28 EP EP10171054.9A patent/EP2338847B1/en not_active Not-in-force
- 2010-10-08 CN CN2010105126718A patent/CN102050572B/en not_active Expired - Fee Related
- 2010-10-18 TW TW099135448A patent/TWI448443B/en not_active IP Right Cessation
- 2010-10-18 JP JP2010233534A patent/JP5336455B2/en not_active Expired - Fee Related
- 2010-10-25 US US12/911,382 patent/US8629072B2/en active Active
- 2010-10-28 KR KR1020100106282A patent/KR101343767B1/en active IP Right Grant
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014500848A (en) * | 2010-12-08 | 2014-01-16 | ショット アクチエンゲゼルシャフト | Boron-free general purpose glass |
US10077208B2 (en) | 2014-03-13 | 2018-09-18 | Corning Incorporated | Glass article and method for forming the same |
US10710927B2 (en) | 2014-03-13 | 2020-07-14 | Corning Incorporated | Glass article and method for forming the same |
Also Published As
Publication number | Publication date |
---|---|
CN102050572A (en) | 2011-05-11 |
EP2338847A1 (en) | 2011-06-29 |
KR20110046379A (en) | 2011-05-04 |
EP2338847B1 (en) | 2018-10-31 |
US8629072B2 (en) | 2014-01-14 |
CN102050572B (en) | 2013-05-08 |
JP2011093792A (en) | 2011-05-12 |
DE102009051852A1 (en) | 2011-05-05 |
DE102009051852B4 (en) | 2013-03-21 |
KR101343767B1 (en) | 2013-12-19 |
TW201130773A (en) | 2011-09-16 |
TWI448443B (en) | 2014-08-11 |
US20110098172A1 (en) | 2011-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5336455B2 (en) | Boron free glass | |
JP5798195B2 (en) | Boron-free general purpose glass | |
JP6877113B2 (en) | Chemically stable glass and its use | |
JP4454266B2 (en) | Borosilicate glass and use thereof | |
JP5767253B2 (en) | Lithium aluminosilicate glass having high elastic modulus and method for producing the same | |
JP4307245B2 (en) | Borosilicate glass production method | |
JP5977841B2 (en) | Glass composition, glass composition for chemical strengthening, tempered glass article, and cover glass for display | |
JP5764084B2 (en) | Glass composition, glass composition for chemical strengthening, tempered glass article, cover glass for display and method for producing tempered glass article | |
JPH0867529A (en) | Borosilicate glass low in boric acid and application thereof | |
TW200804220A (en) | Glass substrates for flat screens | |
CN109133612A (en) | A kind of high alumina silicate glass compound clarifier | |
KR101212910B1 (en) | glass composition | |
JP2006525213A (en) | In particular, soda lime silica glass composition for making substrates | |
WO2014069177A1 (en) | Medicinal glass and medicinal glass tube | |
JP2007217192A (en) | Glass article and method for producing the same | |
JP5092564B2 (en) | Substrate glass for display devices | |
US20180257976A1 (en) | Process For Producing Alkali Metal-Rich Aluminosilicate Glasses, Alkali Metal-Rich Aluminosilicate Glasses and Use Thereof | |
TW200948739A (en) | Alkali free glass | |
JP2019112245A (en) | Glass composition for illumination and glass tube, and method for producing glass composition for illumination | |
JPS6025378B2 (en) | glass composition | |
JP2016113353A (en) | Lead-free glass for illumination | |
CN101830637A (en) | Glass tube of cold cathode fluorescent lamp for back light sources |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120629 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121011 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130704 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130801 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5336455 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |