JP5336055B2 - Exhaust device for internal combustion engine - Google Patents

Exhaust device for internal combustion engine Download PDF

Info

Publication number
JP5336055B2
JP5336055B2 JP2007192290A JP2007192290A JP5336055B2 JP 5336055 B2 JP5336055 B2 JP 5336055B2 JP 2007192290 A JP2007192290 A JP 2007192290A JP 2007192290 A JP2007192290 A JP 2007192290A JP 5336055 B2 JP5336055 B2 JP 5336055B2
Authority
JP
Japan
Prior art keywords
exhaust
pipe
exhaust pipe
main
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007192290A
Other languages
Japanese (ja)
Other versions
JP2009030445A (en
Inventor
直樹 原
Original Assignee
直樹 原
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 直樹 原 filed Critical 直樹 原
Priority to JP2007192290A priority Critical patent/JP5336055B2/en
Publication of JP2009030445A publication Critical patent/JP2009030445A/en
Application granted granted Critical
Publication of JP5336055B2 publication Critical patent/JP5336055B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust system capable of effectively preventing reduction in exhaust efficiency, by changing the flow passage cross-sectional area of exhaust gas stepwise to an exhaust flow rate of a low speed, a medium speed and high speed rotation area of an internal combustion engine. <P>SOLUTION: This exhaust system 1 has an exhaust introducing pipe 21 for introducing the exhaust gas from an engine, an expansion chamber 22 connected to a downstream end part of the exhaust introducing pipe 21, a main exhaust pipe 23 and an auxiliary exhaust pipe 24 connected to a downstream side wall of the expansion chamber 22, and an extension exhaust pipe 25 having a diameter smaller than the main exhaust pipe 23. The exhaust introducing pipe 21, the main exhaust pipe 23 and the auxiliary exhaust pipe 24 are inserted into the expansion chamber 22. The main exhaust pipe 23 is coaxially inserted into the exhaust introducing pipe 21 with a clearance, and the extension exhaust pipe 25 is coaxially inserted into the main exhaust pipe 23 with a clearance. A communicating port for exhausting the exhaust gas passing through the clearance with the extension exhaust pipe 25 to an external part, is formed in a downstream end part of the main exhaust pipe 23. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

この発明は、内燃機関の排気装置に関する。   The present invention relates to an exhaust device for an internal combustion engine.

内燃機関において、排気管内を流れる排気ガスの排気流速が低下すれば、排気効率が低下し、その結果、トルクが低下することになる。
そこで、二段階の排気の流路断面積を有し、排気ガスの排気流量に応じて制御弁を用いることなく排気の流路断面積が変わり、排気ガスの排気流速の低下を防止している、つまり、排気効率の低下を防止している内燃機関の排気装置がある。
この排気装置は、低中速回転域の排気ガスの排気流量に対する流路断面積を有する低中速用の主排気管と、当該低中速回転域の排気流量を超過した分の排気ガスを排気するための高速用の補助排気管とを備えている。そして、低中速回転域の排気流量では、排気ガスが主排気管のみから排気され、高速回転域の排気流量では、排気ガスが主排気管および補助排気管から排気される。
In an internal combustion engine, if the exhaust gas flow velocity of the exhaust gas flowing in the exhaust pipe decreases, the exhaust efficiency decreases, and as a result, the torque decreases.
Therefore, it has a two-stage exhaust cross-sectional area and the exhaust cross-sectional area changes without using a control valve in accordance with the exhaust gas exhaust flow rate, thereby preventing the exhaust gas flow velocity from decreasing. That is, there is an exhaust device for an internal combustion engine that prevents a reduction in exhaust efficiency.
This exhaust system includes a main exhaust pipe for low and medium speeds having a cross-sectional area with respect to an exhaust gas flow rate of exhaust gas in a low and medium speed rotation region, and exhaust gas in excess of the exhaust flow rate of the low and medium speed rotation region. And a high-speed auxiliary exhaust pipe for exhausting. The exhaust gas is exhausted only from the main exhaust pipe at the exhaust flow rate in the low and medium speed rotation region, and the exhaust gas is exhausted from the main exhaust pipe and the auxiliary exhaust pipe at the exhaust flow rate in the high speed rotation region.

図8および図9は、この従来の内燃機関の排気装置の要部を示している。
図8および図9に示すように、この従来の排気装置は、エンジンからの排気ガスが導入される排気導入管31と、排気導入管31の下流端部に接続された拡張室32と、拡張室32の下流側壁に接続された主排気管33および補助排気管34とを備え、拡張室32の内部で主排気管33上流端部が排気導入管31の下流端部に隙間C4を有して同軸心状に挿通されている(特許文献1参照)。
8 and 9 show the main part of the exhaust device of this conventional internal combustion engine.
As shown in FIGS. 8 and 9, this conventional exhaust system includes an exhaust introduction pipe 31 into which exhaust gas from the engine is introduced, an expansion chamber 32 connected to the downstream end of the exhaust introduction pipe 31, and an expansion. The main exhaust pipe 33 and the auxiliary exhaust pipe 34 connected to the downstream side wall of the chamber 32, and the upstream end of the main exhaust pipe 33 has a gap C 4 at the downstream end of the exhaust introduction pipe 31 inside the expansion chamber 32. Are inserted coaxially (see Patent Document 1).

特開2003−232212号公報Japanese Patent Laid-Open No. 2003-232212

上記従来の排気装置は、低中速用の流路断面積と、高速用の流路断面積とを有し、内燃機関の低速回転域と中速回転域の排気流量には同じ大きさの流路断面積で対応しているので、低速回転域の排気流量に対しては流路断面積が大きくなるため、低速回転域の排気流速および排気効率が低下するという問題がある。
また、当該流路断面積の大きさの調整が隙間C4の大きさの調整によってのみ行われるので、低速回転域の排気効率を良くすれば、中高速回転域の排気効率が悪くなるため、内燃機関の低速回転域から高速回転域全体における排気効率の低下を防止するには限界がある。
The conventional exhaust system has a low-medium-speed channel cross-sectional area and a high-speed channel cross-sectional area, and the exhaust flow rates in the low-speed rotation range and the medium-speed rotation range of the internal combustion engine are the same. Since the cross-sectional area of the flow path is used, the cross-sectional area of the flow path is increased with respect to the exhaust flow rate in the low-speed rotation region, which causes a problem that the exhaust flow velocity and the exhaust efficiency in the low-speed rotation region are reduced.
Further, since the adjustment of the size of the flow path cross-sectional area is performed only by adjusting the size of the gap C4, if the exhaust efficiency in the low-speed rotation region is improved, the exhaust efficiency in the medium-high speed rotation region is deteriorated. There is a limit to preventing a reduction in exhaust efficiency from the low speed rotation range of the engine to the entire high speed rotation range.

本発明は、このような実情に鑑み、内燃機関の低速、中速、高速回転域の排気流量に対する三段階の排気の流路断面積を有し、制御弁を用いることなく、排気ガスの排気流量に応じて排気の流路断面積を変えることにより、排気効率の低下を効果的に防止することができる内燃機関の排気装置を提供すること目的とする。   In view of such circumstances, the present invention has a three-stage exhaust passage cross-sectional area with respect to the exhaust flow rate in the low-speed, medium-speed, and high-speed rotation regions of an internal combustion engine, and exhaust gas exhaust without using a control valve. An object of the present invention is to provide an exhaust system for an internal combustion engine that can effectively prevent a reduction in exhaust efficiency by changing the cross-sectional area of the exhaust flow according to the flow rate.

本発明は、エンジンからの排気ガスが導入される排気導入管と、この排気導入管の下流端部に接続された拡張室と、この拡張室の下流側壁に接続された主排気管及び補助排気管とを備え、前記拡張室の内部で前記主排気管の上流端部が前記排気導入管の下流端部の径内側に隙間を有して同軸心状に挿通されている内燃機関の排気装置において、
前記主排気管よりも小径の延長排気管が、当該主排気管の下流端部の径内側に隙間を有して同軸心状に挿通されているとともに、その主排気管の下流端部に、前記延長排気管との隙間を通過する排気ガスを外部に排気する連通口が形成されていることを特徴とする。
The present invention relates to an exhaust introduction pipe into which exhaust gas from an engine is introduced, an expansion chamber connected to a downstream end portion of the exhaust introduction pipe, a main exhaust pipe and an auxiliary exhaust connected to a downstream side wall of the expansion chamber And an exhaust device for an internal combustion engine in which an upstream end of the main exhaust pipe is inserted coaxially with a gap inside the downstream end of the exhaust introduction pipe inside the expansion chamber In
Extension exhaust pipe diameter smaller than the main exhaust pipe, together are inserted coaxially heart shape with a gap on the radially inner side of the downstream end portion of the main exhaust pipe, the downstream end portion of the main exhaust pipe, A communication port for exhausting the exhaust gas passing through the gap with the extended exhaust pipe to the outside is formed.

本発明によれば、流路断面積の異なる排気導入管と、主排気管と、延長排気管とが上流から下流にかけて面積の大きい順で同軸心状に配置されているので、排気ガスの排気流量に応じて、排気導入管の排気ガスが延長排気管、主排気管の下流端部の連通口、排気導入管と主排気管との隙間経由の補助排気管の三か所から排気される。
通常、排気管内の流速分布によれば、管内の中心で最大流速となり管壁では0の放物線となる。具体的に説明すると、排気ガスと管壁との間には摩擦が生じているため、排気管の流路断面積に対して排気流量が少ないと、ほとんどの排気ガスが管内中心部を流れ、管内壁側では排気ガスが少量かつ低速で流れている状態になる。この排気管の排気流量が増加すれば、管内中心部の排気流速が速くなり、また、管内壁側では排気ガスが量と速度を増して流れている状態になる。
According to the present invention, the exhaust gas introduction pipe, the main exhaust pipe, and the extended exhaust pipe having different flow path cross-sectional areas are arranged coaxially in order of increasing area from upstream to downstream. Depending on the flow rate, the exhaust gas in the exhaust introduction pipe is exhausted from three places: the extension exhaust pipe, the communication port at the downstream end of the main exhaust pipe, and the auxiliary exhaust pipe through the gap between the exhaust introduction pipe and the main exhaust pipe .
Normally, according to the flow velocity distribution in the exhaust pipe, the maximum flow velocity is at the center of the pipe, and the parabola is zero on the pipe wall. Specifically, since friction is generated between the exhaust gas and the pipe wall, when the exhaust gas flow rate is small with respect to the cross-sectional area of the exhaust pipe, most of the exhaust gas flows through the center of the pipe, A small amount of exhaust gas flows at a low speed on the inner wall side of the pipe. If the exhaust flow rate of the exhaust pipe increases, the exhaust flow velocity at the center of the pipe increases, and the exhaust gas flows in an increased amount and speed on the inner wall side of the pipe.

従って、排気ガスの排気流量が少ない場合、排気導入管のほとんどの排気ガスが主排気管を経て延長排気管から排気され、また、排気ガスの排気流量が増えた場合、排気導入管の排気ガスが延長排気管と主排気管の下流端部の連通口から排気される。そして、排気ガスの排気流量が多い場合、排気導入管の排気ガスが延長排気管と、主排気管の下流端部の連通口と、排気導入管と主排気管との隙間経由の補助排気管から排気される。   Therefore, when the exhaust gas flow rate is small, most of the exhaust gas in the exhaust pipe is exhausted from the extended exhaust pipe via the main exhaust pipe, and when the exhaust gas flow rate is increased, the exhaust gas in the exhaust pipe is increased. Is exhausted from the communication port at the downstream end of the extension exhaust pipe and the main exhaust pipe. When the exhaust gas flow rate is large, the exhaust gas in the exhaust introduction pipe is connected to the extended exhaust pipe, the communication port at the downstream end of the main exhaust pipe, and the auxiliary exhaust pipe via the gap between the exhaust introduction pipe and the main exhaust pipe. Exhausted from.

このように、排気ガスの排気流量に応じて、三段階に排気の流路断面積が変わることになる。
また、排気の当該流路断面積の大きさの調整が排気導入管と主排気管の隙間と、主排気管と延長排気管の隙間の二つの隙間の大きさの調整によって行えるので、流路断面積の調整がより細かく行うことができる。すなわち、排気効率の調整がより細かくできるため、内燃機関の低速回転域から高速回転域全体における排気効率の低下を効果的に防止することができる。
In this way, the flow passage cross-sectional area of the exhaust gas changes in three stages according to the exhaust gas flow rate of the exhaust gas.
Further, since the size of the flow passage cross-sectional area of the exhaust can be adjusted by adjusting the size of the gap between the exhaust introduction pipe and the main exhaust pipe and the gap between the main exhaust pipe and the extended exhaust pipe, The cross-sectional area can be adjusted more finely. That is, since the exhaust efficiency can be adjusted more finely, it is possible to effectively prevent a reduction in exhaust efficiency from the low speed rotation area to the entire high speed rotation area of the internal combustion engine.

また、本発明は、エンジンからの排気ガスが導入される排気導入管と、この排気導入管の下流端部に接続された拡張室と、この拡張室の下流側壁に接続された主排気管及び補助排気管とを備え、前記拡張室の内部で前記主排気管の上流端部が前記排気導入管の下流端部の径内側に隙間を有して同軸心状に挿通されている内燃機関の排気装置において、
前記主排気管よりも小径の延長排気管が、当該主排気管の下流端部の径内側に隙間を有して同軸心状に挿通されているとともに、その主排気管の下流端部に、前記延長排気管との隙間を通過する排気ガスを外部に排気する連通口が形成され、また、前記延長排気管よりも小径の第二延長排気管が、当該延長排気管の下流端部の径内側に隙間を有して同軸心状に挿通されているとともに、その延長排気管の下流部に、前記第二延長排気管との隙間を通過する排気ガスを外部に排気する連通口が形成されていることを特徴とする。
The present invention also provides an exhaust introduction pipe into which exhaust gas from the engine is introduced, an extension chamber connected to the downstream end of the exhaust introduction pipe, a main exhaust pipe connected to the downstream side wall of the extension chamber, and An internal combustion engine having an auxiliary exhaust pipe, wherein the upstream end of the main exhaust pipe is inserted coaxially with a gap inside the downstream end of the exhaust introduction pipe inside the expansion chamber. In the exhaust system,
Extension exhaust pipe diameter smaller than the main exhaust pipe, together are inserted coaxially heart shape with a gap on the radially inner side of the downstream end portion of the main exhaust pipe, the downstream end portion of the main exhaust pipe, A communication port for exhausting the exhaust gas passing through the gap with the extended exhaust pipe to the outside is formed, and the second extended exhaust pipe having a smaller diameter than the extended exhaust pipe has a diameter at the downstream end of the extended exhaust pipe. In addition to being inserted coaxially with a gap on the inner side , a communication port for exhausting the exhaust gas passing through the gap with the second extended exhaust pipe to the outside is formed at the downstream portion of the extended exhaust pipe. It is characterized by.

本発明によれば、流路断面積の異なる排気導入管と、主排気管と、延長排気管と、第二延長排気管とが上流から下流にかけて面積の大きい順で同軸心状に配置されているので、排気ガスの排気流量に応じて、排気導入管の排気ガスが第二延長排気管、延長排気管の下流端部の連通口、主排気管の下流端部の連通口、排気導入管と主排気管との隙間経由の補助排気管の四か所から排気される。
通常、排気管内の流速分布によれば、管内の中心で最大流速となり管壁では0の放物線となる。具体的に説明すると、排気ガスと管壁との間には摩擦が生じているため、排気管の流路断面積に対して排気流量が少ないと、ほとんどの排気ガスが管内中心部を流れ、管内壁側では排気ガスが少量かつ低速で流れている状態になる。この排気管の排気流量が増加すれば、管内中心部の排気流速が速くなり、また、管内壁側では排気ガスが量と速度を増して流れている状態になる。
According to the present invention, the exhaust introduction pipe, the main exhaust pipe, the extension exhaust pipe, and the second extension exhaust pipe having different flow path cross-sectional areas are arranged coaxially in order of increasing area from upstream to downstream. Therefore, according to the exhaust gas flow rate, the exhaust gas in the exhaust introduction pipe is connected to the second extension exhaust pipe, the communication port at the downstream end of the extension exhaust pipe, the communication port at the downstream end of the main exhaust pipe, and the exhaust introduction pipe And exhaust from four places of the auxiliary exhaust pipe via the gap between the main exhaust pipe and the main exhaust pipe.
Normally, according to the flow velocity distribution in the exhaust pipe, the maximum flow velocity is at the center of the pipe, and the parabola is zero on the pipe wall. Specifically, since friction is generated between the exhaust gas and the pipe wall, when the exhaust gas flow rate is small with respect to the cross-sectional area of the exhaust pipe, most of the exhaust gas flows through the center of the pipe, A small amount of exhaust gas flows at a low speed on the inner wall side of the pipe. If the exhaust flow rate of the exhaust pipe increases, the exhaust flow velocity at the center of the pipe increases, and the exhaust gas flows in an increased amount and speed on the inner wall side of the pipe.

従って、排気ガスの排気流量が少ない場合、排気導入管のほとんどの排気ガスが主排気管および延長排気管を経て第二延長排気管から排気され、また、排気ガスの排気流量が増えた場合、排気導入管の排気ガスが第二延長排気管と延長排気管の下流端部の連通口から排気される。
そして、排気ガスの排気流量がより増えた場合、排気導入管の排気ガスが第二延長排気管と延長排気管と、延長排気管の下流端部の連通口と、主排気管の下流端部の連通口から排気され、また、排気ガスの排気流量が多い場合、排気導入管の排気ガスが第二延長排気管と延長排気管と、延長排気管の下流端部の連通口と、主排気管の下流端部の連通口と、排気導入管と主排気管との隙間経由の補助排気管から排気される。
Therefore, when the exhaust gas exhaust flow rate is small, most of the exhaust gas in the exhaust introduction pipe is exhausted from the second extended exhaust pipe via the main exhaust pipe and the extended exhaust pipe, and when the exhaust gas exhaust flow rate is increased, The exhaust gas in the exhaust introduction pipe is exhausted from the communication port at the downstream end of the second extension exhaust pipe and the extension exhaust pipe.
When the exhaust gas flow rate is further increased, the exhaust gas in the exhaust introduction pipe is connected to the second extension exhaust pipe, the extension exhaust pipe, the communication port at the downstream end of the extension exhaust pipe, and the downstream end of the main exhaust pipe. When the exhaust gas is exhausted and the exhaust gas flow rate is large, the exhaust gas in the exhaust introduction pipe is connected to the second extension exhaust pipe, the extension exhaust pipe, the communication port at the downstream end of the extension exhaust pipe, and the main exhaust. Exhaust gas is exhausted from the communication port at the downstream end of the pipe and the auxiliary exhaust pipe via the gap between the exhaust introduction pipe and the main exhaust pipe.

このように、排気ガスの排気流量に応じて、四段階に排気の流路断面積が変わることになる。
また、排気の当該流路断面積の大きさの調整が排気導入管と主排気管の隙間と、主排気管と延長排気管と、延長排気管と第二延長排気管の隙間の三つの隙間の大きさの調整によって行えるので、流路断面積の調整がよりきめ細かく行うことができる。すなわち、排気効率の調整がより極め細かくできるため、内燃機関の低速回転域から高速回転域全体における排気工程時の動力損失とシリンダー内の残留ガスを低減させることになり、必然的に吸気工程における充填効率が向上し、かつ、それらの要因により内燃機関内の蓄熱も低減され熱損失の減少等の効果が相まって低燃費に寄与するものである。
As described above, the flow passage cross-sectional area of the exhaust gas changes in four stages according to the exhaust gas flow rate of the exhaust gas.
In addition, the adjustment of the size of the flow passage cross-sectional area of the exhaust gas is adjusted by three gaps: a gap between the exhaust introduction pipe and the main exhaust pipe, a main exhaust pipe and the extended exhaust pipe, and a gap between the extended exhaust pipe and the second extended exhaust pipe. Therefore, the flow passage cross-sectional area can be adjusted more finely. That is, since the exhaust efficiency can be adjusted more finely, power loss and residual gas in the cylinder during the exhaust process from the low speed rotation range to the entire high speed rotation range of the internal combustion engine are reduced. The charging efficiency is improved, and the heat storage in the internal combustion engine is also reduced due to these factors, which contributes to low fuel consumption in combination with effects such as reduction of heat loss.

以上の通り、本発明によれば、制御弁を用いることなく、内燃機関の排気流量に応じて排気の流路断面積を三段階に変えることができ、これによって、より細かく排気効率の調整ができるため、従来の排気装置に比べて、内燃機関の低速回転域から高速回転域全体における排気効率の低下を効果的に防止することができる。さらに、この排気効率の低下防止が内燃機関の燃費の向上に繋がる。   As described above, according to the present invention, the flow passage cross-sectional area of the exhaust gas can be changed in three stages in accordance with the exhaust flow rate of the internal combustion engine without using a control valve, thereby finely adjusting the exhaust efficiency. Therefore, it is possible to effectively prevent a reduction in exhaust efficiency from the low speed rotation range to the high speed rotation range of the internal combustion engine as compared with the conventional exhaust system. Furthermore, prevention of the exhaust efficiency from being lowered leads to an improvement in fuel consumption of the internal combustion engine.

以下、図面に基づいて本発明の一実施形態(第1実施形態)を説明する。図1は、本実施形態に係る排気装置の要部を示す一部破断平面図であり、図2は、図1の要部拡大図である。また、図3は、図2のA−A線断面図である。
図1において、本実施形態の排気装置1は、排気ガスの騒音成分を取り除く消音部10と、排気ガスを排気する排気部20とを有している。
消音部10は、両端を閉塞された円筒状の消音室11と、消音室11に挿通された消音管12と、消音管12に装着された錐状の四つの仕切板13とを備えている。
消音室11は、上流となる内燃機関側と下流となる大気側の両端の壁面の中心に挿入孔を有し、この挿入孔に消音管12が挿通され、消音室11と消音管12が同軸心状に配置されている。消音管12は、当該挿通孔と隙間ない状態で固着され、さらに、図示していない止め具で固定されている。
Hereinafter, an embodiment (first embodiment) of the present invention will be described with reference to the drawings. FIG. 1 is a partially broken plan view showing the main part of the exhaust device according to the present embodiment, and FIG. 2 is an enlarged view of the main part of FIG. 3 is a cross-sectional view taken along line AA in FIG.
In FIG. 1, the exhaust device 1 of the present embodiment includes a silencer 10 that removes noise components of exhaust gas, and an exhaust unit 20 that exhausts exhaust gas.
The silencer 10 includes a cylindrical silencer chamber 11 closed at both ends, a silencer tube 12 inserted into the silencer chamber 11, and four conical partition plates 13 attached to the silencer tube 12. .
The silencing chamber 11 has an insertion hole at the center of the wall surfaces at both ends of the internal combustion engine on the upstream side and the atmospheric side on the downstream side, and the silencing tube 12 is inserted into the insertion hole, and the silencing chamber 11 and the silencing tube 12 are coaxial. It is arranged in a heart shape. The muffler tube 12 is fixed in a state where there is no gap with the insertion hole, and is further fixed with a stopper (not shown).

消音管12は、排気導入口14と、円周に沿って穿設された多数の小孔を有し消音室11に収容される多孔筒15と、排気吐出口16とを有している。
多孔筒15は、排気ガスの騒音成分である低周波数、中周波数、高周波数の音波を取り除くために、直径の異なる三種類の小孔を有している。また、多孔筒15は、大きい直径の小孔を有する大孔筒部15aと、中の大きさの直径の小孔を有する中孔筒部15bと、小さい直径の小孔を有する小孔筒部15cとを備え、上流から下流にかけて直径の大きい順に小孔が配置されている。
The muffler tube 12 has an exhaust introduction port 14, a porous tube 15 having a large number of small holes drilled along the circumference and accommodated in the muffler chamber 11, and an exhaust discharge port 16.
The porous cylinder 15 has three types of small holes having different diameters in order to remove low-frequency, medium-frequency, and high-frequency sound waves that are noise components of exhaust gas. The perforated tube 15 includes a large hole tube portion 15a having a small hole with a large diameter, a medium hole tube portion 15b having a small hole with a medium diameter, and a small hole tube portion having a small hole with a small diameter. 15c, and small holes are arranged in descending order of diameter from upstream to downstream.

四つの仕切板13は、消音管12の外径と同寸法の小径と、消音室11の内径と同寸法の大径とを有する錐状部材からなり、消音室11内において、当該錐状を下流方向に拡げる向きでかつ軸方向に所定の間隔をもって消音管12の外周面に装着されている。
詳しく説明すると、一つ目の仕切板13は、消音室11の上流側壁面に近接する位置に配置され、大孔筒部15aの外周面に装着されている。また、二つ目の仕切板13の上流側先端が大孔筒部15aの下流端部の外周面に装着され、三つ目の仕切板13の上流側先端が中孔筒部15bの下流端部の外周面に装着されている。さらに、四つ目の仕切板13の上流側先端が小孔筒部15cの下流端部の外周面に装着され、しかも、四つ目の仕切板13は、下流側壁面に近接する位置に配置されている。
The four partition plates 13 are made of cone-shaped members having a small diameter that is the same as the outer diameter of the muffler tube 12 and a large diameter that is the same dimension as the inner diameter of the muffler chamber 11. The sound deadening tube 12 is mounted on the outer peripheral surface in a direction extending in the downstream direction and at a predetermined interval in the axial direction.
If it demonstrates in detail, the 1st partition plate 13 will be arrange | positioned in the position close | similar to the upstream side wall surface of the muffling chamber 11, and is mounted | worn with the outer peripheral surface of the large hole cylinder part 15a. Further, the upstream end of the second partition plate 13 is attached to the outer peripheral surface of the downstream end portion of the large hole cylinder portion 15a, and the upstream end of the third partition plate 13 is the downstream end of the middle hole cylinder portion 15b. It is attached to the outer peripheral surface of the part. Further, the upstream end of the fourth partition plate 13 is attached to the outer peripheral surface of the downstream end portion of the small hole cylinder portion 15c, and the fourth partition plate 13 is disposed at a position close to the downstream side wall surface. Has been.

このとき、互いに隣接する仕切板13は、径外方向に重ならない状態で軸方向に並んでいる。
また、このとき、消音室11内において、消音管12と四つの仕切板13よって、排気ガスの騒音成分である音波を減衰させるための膨張室11a、膨張室11b、膨張室11cが形成されている。
膨張室11aは、消音室11と、排気導入口14と、大孔筒部15aと、一つ目の仕切板13と、二つ目の仕切板13とで形成された環状空間からなり、大孔筒部15aの小孔を通過した排気ガスと音波とを膨張させる。そして、膨張した排気ガスと音波は、流速を落としながら膨張室11a内の下流方向に向かって拡散され、さらに、消音室11の内周面と二つ目の仕切板13とで形成された膨張室11aの鋭角状の空間に封じ込められる。 このとき、当該音波が減衰され、消音効果が得られる。
At this time, the partition plates 13 adjacent to each other are arranged in the axial direction so as not to overlap in the radially outward direction.
Further, at this time, the expansion chamber 11a, the expansion chamber 11b, and the expansion chamber 11c for attenuating the sound wave that is the noise component of the exhaust gas are formed in the noise reduction chamber 11 by the noise reduction tube 12 and the four partition plates 13. Yes.
The expansion chamber 11a is composed of an annular space formed by the muffler chamber 11, the exhaust introduction port 14, the large-hole cylindrical portion 15a, the first partition plate 13, and the second partition plate 13. Exhaust gas and sound waves that have passed through the small hole of the hole cylinder portion 15a are expanded. The expanded exhaust gas and sound waves are diffused in the downstream direction in the expansion chamber 11a while reducing the flow velocity, and further, the expansion formed by the inner peripheral surface of the muffler chamber 11 and the second partition plate 13 is performed. It is contained in the acute-angled space of the chamber 11a. At this time, the sound wave is attenuated and a silencing effect is obtained.

膨張室11bは、消音室11と、大孔筒部15aと、大孔筒部15bと、二つ目の仕切板13と、三つ目の仕切板13とで形成された環状空間からなり、大孔筒部15bの小孔を通過した排気ガスと音波とを膨張させる。そして、膨張した排気ガスと音波は、流速を落としながら膨張室11b内の下流方向に向かって拡散され、さらに、消音室11の内周面と三つ目の仕切板13とで形成された膨張室11bの鋭角状の空間に封じ込められる。 このとき、当該音波が減衰され、消音効果が得られる。   The expansion chamber 11b is composed of an annular space formed by the sound deadening chamber 11, the large hole cylinder portion 15a, the large hole cylinder portion 15b, the second partition plate 13, and the third partition plate 13. Exhaust gas and sound waves that have passed through the small hole of the large hole cylinder portion 15b are expanded. The expanded exhaust gas and sound waves are diffused in the downstream direction in the expansion chamber 11b while reducing the flow velocity, and further, the expansion formed by the inner peripheral surface of the silencer chamber 11 and the third partition plate 13 is performed. It is contained in the acute angle space of the chamber 11b. At this time, the sound wave is attenuated and a silencing effect is obtained.

膨張室11cは、消音室11と、大孔筒部15bと、大孔筒部15cと、三つ目の仕切板13と、四つ目の仕切板13とで形成された環状空間からなり、大孔筒部15cの小孔を通過した排気ガスと音波とを膨張させる。そして、膨張した排気ガスと音波は、流速を落としながら膨張室11c内の下流方向に向かって拡散され、さらに、消音室11の内周面と四つ目の仕切板13とで形成された膨張室11cの鋭角状の空間に封じ込められる。 このとき、当該音波が減衰され、消音効果が得られる。
このようにして、内燃機関の排気ガスの騒音成分である低周波数、中周波数、高周波数の音波が取り除かれる。
The expansion chamber 11c includes an annular space formed by the sound deadening chamber 11, the large hole cylinder portion 15b, the large hole cylinder portion 15c, the third partition plate 13, and the fourth partition plate 13. Exhaust gas and sound waves that have passed through the small hole of the large hole cylinder portion 15c are expanded. The expanded exhaust gas and sound waves are diffused in the downstream direction in the expansion chamber 11c while reducing the flow velocity, and further, the expansion formed by the inner peripheral surface of the silencer chamber 11 and the fourth partition plate 13 is performed. It is contained in the acute-angled space of the chamber 11c. At this time, the sound wave is attenuated and a silencing effect is obtained.
In this way, low frequency, medium frequency, and high frequency sound waves, which are noise components of the exhaust gas of the internal combustion engine, are removed.

次に、図2および図3を参照しつつ、排気部20について説明する。
図2に示すように、排気部20は、消音管12と接続された排気導入管21と、排気導入管21の下流端部に接続された拡張室22と、拡張室22の下流側壁に接続された主排気管23および補助排気管24と、主排気管23よりも小径の延長排気管25とを備えている。
拡張室22は、上流側に一つの挿入孔と、下流となる大気側の同じ高さの位置に二つの挿入孔とを有している。
主排気管23は、排気導入管21よりも小径となる上流管部23aと、上流管部23aの下流側外周面に嵌合する下流管部23bとを有している。
Next, the exhaust part 20 is demonstrated, referring FIG. 2 and FIG.
As shown in FIG. 2, the exhaust section 20 is connected to an exhaust introduction pipe 21 connected to the muffler pipe 12, an expansion chamber 22 connected to the downstream end of the exhaust introduction pipe 21, and a downstream side wall of the expansion chamber 22. The main exhaust pipe 23 and the auxiliary exhaust pipe 24, and the extended exhaust pipe 25 having a smaller diameter than the main exhaust pipe 23 are provided.
The expansion chamber 22 has one insertion hole on the upstream side and two insertion holes at the same height position on the downstream atmosphere side.
The main exhaust pipe 23 has an upstream pipe portion 23a having a smaller diameter than the exhaust introduction pipe 21, and a downstream pipe portion 23b fitted to the outer peripheral surface on the downstream side of the upstream pipe portion 23a.

拡張室22の上流側の挿入孔には排気導入管21が挿入され、下流側の二つの挿入孔には主排気管23の上流管部23aと補助排気管24が挿入されている。
排気導入管21の下流端部は、拡張室22内の真ん中から上流側寄りの位置に配置され、また、排気導入管21の当該端部に上流管部23aが隙間C1を有して同軸心状に挿通されている。上流管部23aの上流端部は、拡張室22の上流側の壁の位置付近に配置されている。補助排気管24は、上流端部を拡張室22内の真ん中から下流側寄りの位置に配置され、下流端部を大気側に突出させている。
この場合、排気導入管21と上流管部23aと補助排気管24は、拡張室22のそれぞれの挿入孔と隙間のない状態で固着され、さらに、図示していないが、拡張室22のそれぞれの挿入孔の外側縁部に当接される止め具で固定されている。
An exhaust introduction pipe 21 is inserted into the insertion hole on the upstream side of the expansion chamber 22, and an upstream pipe portion 23 a of the main exhaust pipe 23 and an auxiliary exhaust pipe 24 are inserted into the two insertion holes on the downstream side.
The downstream end portion of the exhaust introduction pipe 21 is arranged at a position closer to the upstream side from the middle in the expansion chamber 22, and the upstream pipe portion 23a has a gap C1 at the end portion of the exhaust introduction pipe 21 and is coaxial. It is inserted in a shape. The upstream end portion of the upstream pipe portion 23 a is disposed near the position of the upstream wall of the expansion chamber 22. The auxiliary exhaust pipe 24 has an upstream end portion disposed at a position closer to the downstream side from the middle in the expansion chamber 22 and projects the downstream end portion to the atmosphere side.
In this case, the exhaust introduction pipe 21, the upstream pipe portion 23 a, and the auxiliary exhaust pipe 24 are fixed in a state where there is no gap with each insertion hole of the expansion chamber 22. It is fixed with a stopper that comes into contact with the outer edge of the insertion hole.

主排気管23の下流管部23bには、延長排気管25が隙間C2を有して同軸心状に挿通され、図示していない止め具で固定されている。このとき、下流管部23b内では、上流管部23aと延長排気管25との互いに向かい合う端面が所定の間隔をあけて配置されている。
この場合、主排気管23の上流管部23aより拡径された下流管部23bに延長排気管25が隙間C2を有して挿通されているので、拡径された下流管部23bを有しない主排気管23に延長排気管25が隙間を有して挿通する場合に比べて、延長排気管25の流路断面積を大きくすることができる。従って、延長排気管25の管壁の厚みに関わらず、主排気管23の上流端部の流路断面積に延長排気管25の流路断面積を近づけることができるため、より極め細かく流路断面積および隙間の大きさを調整することができる。
これによって、より極め細かく排気効率の調整が行えるようになる。
In the downstream pipe portion 23b of the main exhaust pipe 23, an extended exhaust pipe 25 is inserted coaxially with a gap C2 and fixed with a stopper (not shown). At this time, in the downstream pipe portion 23b, the end faces of the upstream pipe portion 23a and the extended exhaust pipe 25 facing each other are arranged at a predetermined interval.
In this case, since the extended exhaust pipe 25 is inserted with the gap C2 into the downstream pipe portion 23b having a diameter larger than that of the upstream pipe portion 23a of the main exhaust pipe 23, the downstream pipe portion 23b having an enlarged diameter is not provided. Compared with the case where the extended exhaust pipe 25 is inserted into the main exhaust pipe 23 with a gap, the flow passage cross-sectional area of the extended exhaust pipe 25 can be increased. Therefore, regardless of the thickness of the tube wall of the extended exhaust pipe 25, the flow path cross-sectional area of the extended exhaust pipe 25 can be made closer to the flow path cross-sectional area of the upstream end portion of the main exhaust pipe 23. The cross-sectional area and the size of the gap can be adjusted.
As a result, the exhaust efficiency can be adjusted more finely.

また、下流管部23bは、下流端部の円周に沿って穿設された複数の小孔からなる連通口23cと、隙間C2の軸方向下流側を閉鎖する環状部材23dとを備えている。
環状部材23dは、延長排気管25の外周面に嵌合し、かつ、下流管部23bの下流側端面に当接している。これによって、軸方向下流側の出口が塞がれた隙間C2の排気ガスが連通口23cから排気される。この連通口23cを排気ガスが通過することによって、排気ガスの騒音成分となる音波が取り除かれ、消音効果が得られる。
なお、この場合、延長排気管25は、低速回転域の排気流量に対応する流路断面積を有し、主排気管23は、中速回転域の排気流量に対応する流路断面積を有している。また、補助排気管24は、高速回転域において、中速回転域の排気流量を超過した分の排気流量に対応する流路断面積を有している。
Further, the downstream pipe portion 23b includes a communication port 23c composed of a plurality of small holes drilled along the circumference of the downstream end portion, and an annular member 23d that closes the downstream side in the axial direction of the gap C2. .
The annular member 23d is fitted to the outer peripheral surface of the extended exhaust pipe 25 and is in contact with the downstream end face of the downstream pipe portion 23b. As a result, the exhaust gas in the gap C2 in which the outlet on the downstream side in the axial direction is blocked is exhausted from the communication port 23c. By passing the exhaust gas through the communication port 23c, sound waves that are noise components of the exhaust gas are removed, and a silencing effect is obtained.
In this case, the extended exhaust pipe 25 has a flow passage cross-sectional area corresponding to the exhaust flow rate in the low speed rotation region, and the main exhaust pipe 23 has a flow passage cross sectional area corresponding to the exhaust flow rate in the medium speed rotation region. doing. In addition, the auxiliary exhaust pipe 24 has a flow path cross-sectional area corresponding to the exhaust flow rate in excess of the exhaust flow rate in the medium speed rotation range in the high speed rotation range.

次に、図4乃至図6を参照しつつ、本実施形態の内燃機関の排気装置1の作用を詳しく説明する。
図4は、低速回転域の排気経路を示す説明図であり、図5は中速回転域の排気経路を示す説明図である。また、図6は、高速回転域の排気経路を示す説明図である。
図4に示すように、排気流量の少ない低速回転域の場合、排気導入管21のほとんどの排気ガスが管内中心部を流れ、主排気管23を経て延長排気管25から排気ガスが排気される。
Next, the operation of the exhaust device 1 for the internal combustion engine of the present embodiment will be described in detail with reference to FIGS. 4 to 6.
FIG. 4 is an explanatory diagram showing an exhaust path in the low speed rotation region, and FIG. 5 is an explanatory diagram showing an exhaust route in the medium speed rotation region. FIG. 6 is an explanatory diagram showing an exhaust path in a high speed rotation region.
As shown in FIG. 4, in the low-speed rotation region where the exhaust flow rate is small, most of the exhaust gas in the exhaust introduction pipe 21 flows through the center of the pipe and is exhausted from the extended exhaust pipe 25 through the main exhaust pipe 23. .

この場合、比較的低い排気流量である低速回転域においては、排気導入管21の管内中心部だけが流速を増し内周面近傍の流速は殆ど増大しないので、排気導入管21の出口側の隙間C1が負圧になる。従って、拡張室22内の排気ガス若しくは外気が隙間C1を経て主排気管23に移動するので、拡張室22内に負圧が発生する。
このため、補助排気管24から外気が拡張室22に流入し、さらに、この流入した外気が隙間C1を経て主排気管23に流入する。この外気によって、拡張室22内および主排気管23内が冷却され、消音効果が得られる。
また、比較的低い排気流量である低速回転域においては、主排気管23についても、その管内中心部だけが流速を増し内周面近傍の流速は殆ど増大しないので、主排気管23の出口側の隙間C2が負圧になる。従って、連通口23cから外気がC2に流入し、さらに、この流入した外気が延長排気管25に流入する。この外気によって、延長排気管25内が冷却され、消音効果が得られる。
In this case, in the low speed rotation region where the exhaust flow rate is relatively low , only the central portion of the exhaust introduction pipe 21 increases the flow velocity, and the flow velocity near the inner peripheral surface hardly increases. C1 becomes negative pressure. Accordingly, the exhaust gas or the outside air in the expansion chamber 22 moves to the main exhaust pipe 23 via the gap C1, so that a negative pressure is generated in the expansion chamber 22.
For this reason, outside air flows into the expansion chamber 22 from the auxiliary exhaust pipe 24, and further, this outside air flows into the main exhaust pipe 23 through the gap C <b> 1. This outside air cools the inside of the expansion chamber 22 and the main exhaust pipe 23, thereby obtaining a silencing effect.
Further, in the low-speed rotation region where the exhaust flow rate is relatively low , only the central portion of the main exhaust pipe 23 increases the flow velocity, and the flow velocity in the vicinity of the inner peripheral surface hardly increases. The gap C2 becomes negative pressure. Accordingly, outside air flows into the C2 from the communication port 23c, and further, this outside air flows into the extended exhaust pipe 25. With this outside air, the inside of the extended exhaust pipe 25 is cooled, and a silencing effect is obtained.

図5に示すように、排気流量の増えた中速回転域の場合、排気導入管21では、依然として、排気導入管21の管内中心部だけが流速を増し内周面近傍の流速が余り増大しないので、排気導入管21の出口側の隙間C1が負圧になる。従って、ほとんどの排気ガスが管内中心部を流れ、排気導入管21の排気ガスが主排気管23に流れる。
このように、排気流量の増えた中速回転域においては、排気導入管21の出口側の隙間C1の圧力低下によって、拡張室22内の排気ガス若しくは外気が隙間C1を経て主排気管23に移動するので、拡張室22内に負圧が発生する。
このため、補助排気管24から外気が拡張室22に流入し、さらに、この流入した外気が隙間C1を経て主排気管23に流入する。この外気によって、拡張室22内および主排気管23内が冷却され、消音効果が得られる。
As shown in FIG. 5, in the middle speed rotation region where the exhaust flow rate has increased, in the exhaust introduction pipe 21, only the central portion of the exhaust introduction pipe 21 increases the flow velocity, and the flow velocity near the inner peripheral surface does not increase much. Therefore, the clearance C1 on the outlet side of the exhaust introduction pipe 21 becomes negative pressure. Therefore, most of the exhaust gas flows through the central portion of the pipe , and the exhaust gas of the exhaust introduction pipe 21 flows into the main exhaust pipe 23.
Thus, in the medium speed rotation region where the exhaust gas flow rate has increased , the exhaust gas or the outside air in the expansion chamber 22 passes through the gap C1 to the main exhaust pipe 23 due to the pressure drop in the gap C1 on the outlet side of the exhaust introduction pipe 21. Since it moves, a negative pressure is generated in the expansion chamber 22.
For this reason, outside air flows into the expansion chamber 22 from the auxiliary exhaust pipe 24, and further, this outside air flows into the main exhaust pipe 23 through the gap C <b> 1. This outside air cools the inside of the expansion chamber 22 and the main exhaust pipe 23, thereby obtaining a silencing effect.

一方、排気流量の増えた中速回転域の場合、主排気管23では管内中心部および管内壁側ともに排気ガスが量と速度を増しているので、管内中心部の排気ガスが直進して延長排気管25に流れるとともに、管内壁側の内周面近傍の排ガスも隙間C2に溢れだして隙間C2が正圧になり、排気ガスが隙間C2に流れる。
そして、最終的に、排気ガスは、延長排気管25と隙間C2経由の連通口23cから排気される。
On the other hand, in the case of the medium speed rotation region where the exhaust flow rate has increased, in the main exhaust pipe 23, the amount and speed of exhaust gas has increased both in the center of the pipe and on the inner wall side of the pipe. flow Rutotomoni extension exhaust pipe 25, the exhaust gas of the inner peripheral surface near the inner wall side becomes the gap C2 and overflow into the gap C2 is positive pressure, exhaust gas flows into the gap C2.
Finally, the exhaust gas is exhausted from the extended exhaust pipe 25 and the communication port 23c via the gap C2.

図6に示すように、排気流量の多い高速回転域の場合、排気導入管21および主排気管23では、管内中心部および管内壁側ともに排気ガスが量と速度を増している。排気導入管21では、管内中心部の排気ガスがそのまま直進して主排気管23に流れ、管内壁側の排気ガスが隙間C1に流れ、さらに、隙間C1に流れた排気ガスが拡張室22を経て補助排気管24に流れる。また、主排気管23では、管内中心部の排気ガスがそのまま直進して延長排気管25に流れ、管内壁側の排気ガスが隙間C2に流れる。そして、最終的に、排気ガスは、延長排気管25と隙間C2経由の連通口23cと隙間C1経由の補助排気管24から排気される。   As shown in FIG. 6, in the high-speed rotation region where the exhaust gas flow rate is large, in the exhaust introduction pipe 21 and the main exhaust pipe 23, the amount and speed of exhaust gas increase both in the central part of the pipe and the inner wall side. In the exhaust introduction pipe 21, the exhaust gas at the center of the pipe goes straight and flows to the main exhaust pipe 23, the exhaust gas on the inner wall side flows into the gap C 1, and the exhaust gas that has flowed into the gap C 1 passes through the expansion chamber 22. Then, it flows into the auxiliary exhaust pipe 24. Further, in the main exhaust pipe 23, the exhaust gas in the central portion of the pipe advances straight as it is and flows into the extended exhaust pipe 25, and the exhaust gas on the inner wall side of the pipe flows into the gap C2. Finally, the exhaust gas is exhausted from the extended exhaust pipe 25, the communication port 23c via the gap C2, and the auxiliary exhaust pipe 24 via the gap C1.

上記構成を有する本実施形態の排気装置1によれば、低速回転域の排気流量に対応する流路断面積を有する延長排気管25と、中速回転域の排気流量に対応する流路断面積を有する主排気管23と、高速回転域において、中速回転域の排気流量を超過した分の排気流量に対応する流路断面積を有する補助排気管24とを備え、排気ガスの導入口となる排気導入管21と、主排気管23と、延長排気管25とが同軸心状に配置されているので、低、中、高速回転域の排気流量に対して、制御弁を用いることなく、排気の流路断面積を三段階に変えることができる。   According to the exhaust apparatus 1 of the present embodiment having the above-described configuration, the extended exhaust pipe 25 having a flow path cross-sectional area corresponding to the exhaust flow rate in the low-speed rotation region, and the flow path cross-sectional area corresponding to the exhaust flow rate in the medium-speed rotation range. And an auxiliary exhaust pipe 24 having a channel cross-sectional area corresponding to the exhaust flow rate in excess of the exhaust flow rate in the medium speed rotation range in the high speed rotation range, Since the exhaust introduction pipe 21, the main exhaust pipe 23, and the extended exhaust pipe 25 are arranged coaxially, the control valve is not used for the exhaust flow rate in the low, medium, and high speed rotation regions. The cross-sectional area of the exhaust passage can be changed in three stages.

また、当該流路断面積の大きさの調整を隙間C1と隙間C2の二つの隙間の大きさの調整によって行うので、隙間C4の一つだけで調整を行う従来例(図8)の場合に比べて、流路断面積の調整がより細かく行うことができる。すなわち、排気効率の調整がより細かく行えるため、内燃機関の低速回転域から高速回転域全体における排気効率の低下を効果的に防止することができる。
また、制御弁を用いることなく、排気流量に応じて排気の流路断面積が三段階に変わるので、流路断面積を変えるための特別な制御等の部品が必要なく、材料コストが低減できるとともに、可動部分が存在しないのでそれによる故障が無く、また製造作業が容易になる。
Further, since the size of the cross-sectional area of the flow path is adjusted by adjusting the sizes of the two gaps C1 and C2, in the case of the conventional example (FIG. 8) in which the adjustment is performed with only one of the gaps C4. In comparison, the flow path cross-sectional area can be adjusted more finely. That is, since the exhaust efficiency can be adjusted more finely, it is possible to effectively prevent a decrease in exhaust efficiency from the low speed rotation area to the entire high speed rotation area of the internal combustion engine.
Moreover, since the flow passage cross-sectional area of the exhaust gas changes in three stages according to the exhaust flow rate without using a control valve, there is no need for special control parts for changing the flow passage cross-sectional area, and the material cost can be reduced. At the same time, since there are no movable parts, there is no failure due to this, and the manufacturing work is facilitated.

図7は、本発明の第2実施形態に係る排気装置の要部を示す拡大平断面図を示している。
本実施形態では、排気部20は、延長排気管25よりも小径の第二延長排気管26を有している。また、延長排気管25は、主排気管23よりも小径となる延長上流管部25aと、延長上流管部25aの下流端部の外周面に嵌合する延長下流管部25bとを有している。
この場合、主排気管23の下流管部23bに延長上流管部25aが隙間C2を有して同軸心状に挿通され、図示していない止め具で固定されている。また、延長下流管部25bに第二延長排気管26が隙間C3を有して同軸心状に挿通され、図示していない止め具で固定されている。このとき、延長下流管部25bでは、延長上流管部25aと第二延長排気管26との互いに向かい合う端面が所定の間隔をあけて配置されている。
FIG. 7: has shown the expanded plane sectional view which shows the principal part of the exhaust apparatus which concerns on 2nd Embodiment of this invention.
In the present embodiment, the exhaust part 20 has a second extended exhaust pipe 26 having a smaller diameter than the extended exhaust pipe 25. The extended exhaust pipe 25 has an extended upstream pipe portion 25a having a smaller diameter than the main exhaust pipe 23, and an extended downstream pipe portion 25b fitted to the outer peripheral surface of the downstream end portion of the extended upstream pipe portion 25a. Yes.
In this case, the extended upstream pipe portion 25a is inserted coaxially into the downstream pipe portion 23b of the main exhaust pipe 23 with a gap C2, and is fixed by a stopper (not shown). A second extended exhaust pipe 26 is inserted coaxially into the extended downstream pipe portion 25b with a gap C3, and is fixed with a stopper (not shown). At this time, in the extended downstream pipe portion 25b, the end surfaces of the extended upstream pipe portion 25a and the second extended exhaust pipe 26 facing each other are arranged at a predetermined interval.

また、延長下流管部25bは、下流端部の円周に沿って穿設された複数の小孔からなる連通口25cと、隙間C3の軸方向下流側を閉鎖する環状部材25dとを備えている。
環状部材25dは、第二延長排気管26の外周面に嵌合し、かつ、下流管部25bの下流側端面に当接している。これによって、軸方向下流側の出口が塞がれた隙間C3の排気ガスが連通口25cから排気される。この連通口25cを排気ガスが通過することによって、排気ガスの騒音成分となる音波が取り除かれ、消音効果が得られる。
また、本実施形態では、内燃機関の排気流量に応じて、排気導入管21の排気ガスが第二延長排気管26と、隙間C3経由の連通口25cと、隙間C2経由の連通口23cと、隙間C1経由の補助排気管24とから排気される。
The extended downstream pipe portion 25b includes a communication port 25c composed of a plurality of small holes drilled along the circumference of the downstream end portion, and an annular member 25d that closes the downstream side in the axial direction of the gap C3. Yes.
The annular member 25d is fitted to the outer peripheral surface of the second extended exhaust pipe 26 and is in contact with the downstream end face of the downstream pipe portion 25b. As a result, the exhaust gas in the gap C3 in which the outlet on the downstream side in the axial direction is blocked is exhausted from the communication port 25c. By passing the exhaust gas through the communication port 25c, the sound wave that is a noise component of the exhaust gas is removed, and a silencing effect is obtained.
Further, in the present embodiment, the exhaust gas in the exhaust introduction pipe 21 corresponds to the exhaust flow rate of the internal combustion engine, the second extended exhaust pipe 26, the communication port 25c via the gap C3, the communication port 23c via the gap C2, The air is exhausted from the auxiliary exhaust pipe 24 via the gap C1.

すなわち、第1実施形態における排気装置1では、内燃機関の低速回転域から高速回転域の排気流量に応じた三段階の排気の流路断面積を有しているのに対し、本実施形態においては、内燃機関の低速回転域から高速回転域の排気流量に対して四段階の排気の流路断面積を有している。
また、当該流路断面積の大きさの調整を隙間C1と隙間C2と隙間C3の三つの隙間の大きさの調整によって行うので、流路断面積の調整がより極め細かく行うことができる。すなわち、排気効率の調整がより極め細かく行えるため、内燃機関の低速回転域から高速回転域全体における排気効率の低下をさらに効果的に防止することができる。
その他の点については、第1実施形態と異なるところは無いので詳細な説明は省略する。
That is, the exhaust system 1 in the first embodiment has a three-stage exhaust passage cross-sectional area corresponding to the exhaust flow rate from the low-speed rotation range to the high-speed rotation range of the internal combustion engine. Has a four-stage exhaust cross-sectional area with respect to the exhaust flow rate from the low speed rotation range to the high speed rotation range of the internal combustion engine.
Further, since the size of the flow path cross-sectional area is adjusted by adjusting the sizes of the three gaps of the gap C1, the gap C2, and the gap C3, the flow path cross-sectional area can be adjusted more finely. That is, since the exhaust efficiency can be adjusted more finely, it is possible to more effectively prevent the exhaust efficiency from decreasing from the low speed rotation range to the high speed rotation range of the internal combustion engine.
The other points are not different from those of the first embodiment, and detailed description thereof is omitted.

なお、本発明は上記実施形態に限定されるものではない。
本発明の要旨を逸脱しない範囲において種々なる態様で実施し得る。
The present invention is not limited to the above embodiment.
The present invention can be implemented in various modes without departing from the gist of the present invention.

第1実施形態に係る排気装置の要部を示す一部破断平面図である。It is a partially broken top view which shows the principal part of the exhaust apparatus which concerns on 1st Embodiment. 図1の要部拡大図である。It is a principal part enlarged view of FIG. 図2のA−A線断面図である。It is the sectional view on the AA line of FIG. 低速回転域の排気経路を示す説明図である。It is explanatory drawing which shows the exhaust path of a low speed rotation area. 中速回転域の排気経路を示す説明図である。It is explanatory drawing which shows the exhaust path of a medium speed rotation area. 高速回転域の排気経路を示す説明図である。It is explanatory drawing which shows the exhaust path of a high speed rotation area. 第2実施形態に係る排気装置の要部を示す拡大平断面図である。It is an expanded plane sectional view which shows the principal part of the exhaust apparatus which concerns on 2nd Embodiment. 従来の排気装置の要部を示す平断面図である。It is a plane sectional view showing the important section of the conventional exhaust device. 図8のB−B線断面図である。It is the BB sectional drawing of FIG.

符号の説明Explanation of symbols

1 排気装置
10 消音部
11 消音室
12 消音管
13 仕切板
15 多孔筒
20 排気部
21 排気導入管
22 拡張室
23 主排気管
23a 上流管部
23b 下流管部
23c 連通口
23d 環状部材
24 補助排気管
25 延長排気管
25a 延長上流管部
25b 下流管部
25c 連通口
25d 環状部材
26 第二延長排気管
DESCRIPTION OF SYMBOLS 1 Exhaust device 10 Silencer part 11 Silencer room 12 Silencer pipe 13 Partition plate 15 Porous cylinder 20 Exhaust part 21 Exhaust introduction pipe 22 Expansion chamber 23 Main exhaust pipe 23a Upstream pipe part 23b Downstream pipe part 23c Communication port 23d Annular member 24 Auxiliary exhaust pipe 25 extended exhaust pipe 25a extended upstream pipe section 25b downstream pipe section 25c communication port 25d annular member 26 second extended exhaust pipe

Claims (2)

エンジンからの排気ガスが導入される排気導入管と、
この排気導入管の下流端部に接続された拡張室と、
この拡張室の下流側壁に接続された主排気管及び補助排気管とを備え、
前記拡張室の内部で前記主排気管の上流端部が前記排気導入管の下流端部の径内側に隙間を有して同軸心状に挿通されている内燃機関の排気装置において、
前記主排気管よりも小径の延長排気管が、当該主排気管の下流端部の径内側に隙間を有して同軸心状に挿通されているとともに、
その主排気管の下流端部に、前記延長排気管との隙間を通過する排気ガスを外部に排気する連通口が形成されていることを特徴とする内燃機関の排気装置。
An exhaust introduction pipe through which exhaust gas from the engine is introduced;
An expansion chamber connected to the downstream end of the exhaust pipe,
A main exhaust pipe and an auxiliary exhaust pipe connected to the downstream side wall of the expansion chamber;
In the exhaust system of the internal combustion engine in which the upstream end portion of the main exhaust pipe is inserted coaxially with a gap inside the downstream end portion of the exhaust introduction pipe inside the expansion chamber,
The extended exhaust pipe having a smaller diameter than the main exhaust pipe is inserted coaxially with a gap inside the downstream end of the main exhaust pipe,
An exhaust system for an internal combustion engine, characterized in that a communication port for exhausting exhaust gas passing through a gap with the extended exhaust pipe to the outside is formed at a downstream end portion of the main exhaust pipe.
エンジンからの排気ガスが導入される排気導入管と、
この排気導入管の下流端部に接続された拡張室と、
この拡張室の下流側壁に接続された主排気管及び補助排気管とを備え、
前記拡張室の内部で前記主排気管の上流端部が前記排気導入管の下流端部の径内側に隙間を有して同軸心状に挿通されている内燃機関の排気装置において、
前記主排気管よりも小径の延長排気管が、当該主排気管の下流端部の径内側に隙間を有して同軸心状に挿通されているとともに、
その主排気管の下流端部に、前記延長排気管との隙間を通過する排気ガスを外部に排気する連通口が形成され、
また、前記延長排気管よりも小径の第二延長排気管が、当該延長排気管の下流端部の径内側に隙間を有して同軸心状に挿通されているとともに、
その延長排気管の下流部に、前記第二延長排気管との隙間を通過する排気ガスを外部に排気する連通口が形成されていることを特徴とする内燃機関の排気装置。
An exhaust introduction pipe through which exhaust gas from the engine is introduced;
An expansion chamber connected to the downstream end of the exhaust pipe,
A main exhaust pipe and an auxiliary exhaust pipe connected to the downstream side wall of the expansion chamber;
In the exhaust system of the internal combustion engine in which the upstream end portion of the main exhaust pipe is inserted coaxially with a gap inside the downstream end portion of the exhaust introduction pipe inside the expansion chamber,
The extended exhaust pipe having a smaller diameter than the main exhaust pipe is inserted coaxially with a gap inside the downstream end of the main exhaust pipe,
At the downstream end of the main exhaust pipe, a communication port for exhausting the exhaust gas passing through the gap with the extended exhaust pipe to the outside is formed,
Further, the second extended exhaust pipe having a smaller diameter than the extended exhaust pipe is inserted coaxially with a gap inside the diameter of the downstream end of the extended exhaust pipe,
An exhaust system for an internal combustion engine, characterized in that a communication port for exhausting the exhaust gas passing through the gap with the second extended exhaust pipe to the outside is formed in the downstream portion of the extended exhaust pipe.
JP2007192290A 2007-07-24 2007-07-24 Exhaust device for internal combustion engine Expired - Fee Related JP5336055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007192290A JP5336055B2 (en) 2007-07-24 2007-07-24 Exhaust device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192290A JP5336055B2 (en) 2007-07-24 2007-07-24 Exhaust device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009030445A JP2009030445A (en) 2009-02-12
JP5336055B2 true JP5336055B2 (en) 2013-11-06

Family

ID=40401228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192290A Expired - Fee Related JP5336055B2 (en) 2007-07-24 2007-07-24 Exhaust device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5336055B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073736A (en) * 1998-09-02 2000-03-07 Kimimasa Ishii Muffler for internal combustion engine
JP2000257414A (en) * 1999-03-09 2000-09-19 Kimimasa Ishii Muffler for internal combustion engine
JP2002168111A (en) * 2000-12-01 2002-06-14 Blitz:Kk Inner silencer
JP2003232212A (en) * 2002-02-08 2003-08-22 Naoki Hara Variable type exhaust device for internal combustion engine
JP3965602B2 (en) * 2004-03-15 2007-08-29 アペクセラ株式会社 Retrofit silencer

Also Published As

Publication number Publication date
JP2009030445A (en) 2009-02-12

Similar Documents

Publication Publication Date Title
US7461719B2 (en) Resonator performance by local reduction of component thickness
EP3204936B1 (en) Concentric resonators for machines
JP2005069228A (en) Muffler
US7503427B2 (en) Muffler
KR101339421B1 (en) Silencer for ship
JP5336055B2 (en) Exhaust device for internal combustion engine
KR100835709B1 (en) Exhaust silencer for engine exhaust system
KR100587811B1 (en) Apparatus to reduce the exhaust pressure of muffler
JPH0849521A (en) Muffler
KR101488324B1 (en) Structure for preventing a thermal damage of active noise control speaker
JP4934829B2 (en) Engine unit
KR100535478B1 (en) Variable muffler
JP2020002786A (en) Noise eliminator
KR200178295Y1 (en) A muffler
KR19990024890U (en) silencer
JP4296107B2 (en) Silencer
JP2000073736A (en) Muffler for internal combustion engine
KR100999057B1 (en) Muffler for vehicle
KR100462798B1 (en) Muffler of automobile
JP2007224825A (en) Exhaust gas treatment device for internal combustion engine
KR100448767B1 (en) Stamp type muffler for decreasing noise in an automotive exhaust system
JP2007278185A (en) Tube structure of muffler for internal combustion engine
KR100350889B1 (en) Variable Exhaust Muffler of Vehicle
JP2006214425A (en) Muffler
JPH0658131A (en) Silencer for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130418

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130801

R150 Certificate of patent or registration of utility model

Ref document number: 5336055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees