JP5335843B2 - Manufacturing method of substrates for electronic devices - Google Patents

Manufacturing method of substrates for electronic devices Download PDF

Info

Publication number
JP5335843B2
JP5335843B2 JP2011062046A JP2011062046A JP5335843B2 JP 5335843 B2 JP5335843 B2 JP 5335843B2 JP 2011062046 A JP2011062046 A JP 2011062046A JP 2011062046 A JP2011062046 A JP 2011062046A JP 5335843 B2 JP5335843 B2 JP 5335843B2
Authority
JP
Japan
Prior art keywords
oxide
atmosphere
thermosetting resin
resins
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011062046A
Other languages
Japanese (ja)
Other versions
JP2011142341A (en
Inventor
忠弘 大見
明大 森本
丈佳 加藤
Original Assignee
公益財団法人国際科学振興財団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人国際科学振興財団 filed Critical 公益財団法人国際科学振興財団
Priority to JP2011062046A priority Critical patent/JP5335843B2/en
Publication of JP2011142341A publication Critical patent/JP2011142341A/en
Application granted granted Critical
Publication of JP5335843B2 publication Critical patent/JP5335843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To find out that characteristics of an electronic device to be manufactured are adversely affected by an atmosphere of a heat treatment apparatus used for manufacture of the electronic device and to reduce adverse influence. <P>SOLUTION: An inner surface of the heat treatment apparatus is covered with an oxide passivation film, and has a center average roughness Ra of &le;1 &mu;m. Such a heat treatment apparatus can reduce deterioration of thermosetting resin due to dissolution, dissociation etc., of thermosetting resin during a treatment for curing the thermosetting resin. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、電子装置用基板の製造法に関する。 The present invention relates to a method for manufacturing a substrate for an electronic device .

従来から、あらゆる電子装置は基板上に絶縁層とともに形成された配線層を含んで構成されている。その一例として表示装置とくにフラットパネルディスプレイ装置を例にとって説明すると、液晶表示装置や有機EL表示装置は、マトリクス状に配置されたTFTに対する配線構造(アクティブマトリクス構造)を有している。アクティブマトリクス構造においては、データ信号の書き込みタイミングを伝達する走査線と、表示画像に応じたデータ信号を画素に供給する信号線と、走査線に生じるタイミング信号に合わせ画素にデータ信号を供給するスイッチング素子としての薄膜トランジスタ(以下 TFT)とから構成されている。走査線、信号線、TFTを含む基板はアクティブマトリクス基板とも呼ばれ、基板の表面に、減圧雰囲気における成膜やフォトリソグラフィなどのプロセスにより幾層もの回路パターンを形成し構成されている。一方表示装置の性能向上のために、開口率と呼ばれる表示装置の有効画素面積比率を高める検討が進められている。第一の方法として特開平09−080416(特許文献1)や特開平09−090404(特許文献2)等に記載されている、通常段差のあるTFTを被覆する層間絶縁膜さらにその上に透明電極を蒸着法やスパッタ法で形成し、信号線と透明電極を多層構造にすることで開口率を高める工夫がなされている。この中で層間絶縁膜の光線透過率は90%以上必要とされている。第二の方法として、本発明者等は、先に特願2003−40030(特許文献3)において、ゲート配線により生じる段差を吸収するためにゲート配線を囲むように平坦化層を構成することを提案している。さらに信号線を厚膜化し、配線幅を狭くすることで開口率を高めることを実現している。第一,第二の方法とも層間絶縁膜や平坦化層には、透明な熱硬化性樹脂を用いている。   Conventionally, every electronic device includes a wiring layer formed on a substrate together with an insulating layer. As an example, a display device, particularly a flat panel display device, will be described. A liquid crystal display device and an organic EL display device have a wiring structure (active matrix structure) for TFTs arranged in a matrix. In the active matrix structure, a scanning line for transmitting a data signal writing timing, a signal line for supplying a data signal corresponding to a display image to the pixel, and a switching for supplying the data signal to the pixel in accordance with the timing signal generated on the scanning line. It is composed of a thin film transistor (hereinafter referred to as TFT) as an element. A substrate including scan lines, signal lines, and TFTs is also called an active matrix substrate, and is formed by forming several layers of circuit patterns on the surface of the substrate by a process such as film formation in a reduced-pressure atmosphere or photolithography. On the other hand, in order to improve the performance of the display device, studies are underway to increase the effective pixel area ratio of the display device called the aperture ratio. As a first method, an interlayer insulating film for covering a TFT having a normal step described in JP-A-09-080416 (Patent Document 1), JP-A-09-090404 (Patent Document 2) and the like, and further a transparent electrode thereon Has been devised to increase the aperture ratio by forming a signal line and a transparent electrode in a multilayer structure. Among these, the light transmittance of the interlayer insulating film is required to be 90% or more. As a second method, the present inventors previously described in Japanese Patent Application No. 2003-40030 (Patent Document 3) that the planarization layer is configured so as to surround the gate wiring in order to absorb the step generated by the gate wiring. is suggesting. Further, the signal line is made thicker and the wiring width is narrowed to increase the aperture ratio. In both the first and second methods, a transparent thermosetting resin is used for the interlayer insulating film and the planarizing layer.

現状硬化時の加熱雰囲気に関して、環境制御は行われていない。一般的には大気中やパーセントオーダーの不純物を含む窒素などの環境で加熱する場合が多い。そのため条件によっては熱硬化性樹脂が分解・解離し、光線透過率を低下させ、結果として表示装置の明るさが暗くなるなど表示性能を劣化させる。光線透過率劣化の原因としては、加熱条件が熱硬化性樹脂を熱的に分解させる温度以上での処理によるものと、加熱処理雰囲気中の残留酸素や残留水分により熱硬化性樹脂の劣化が促進されるものが挙げられる。   Environmental control is not performed regarding the heating atmosphere at the time of curing at present. In general, heating is often performed in the atmosphere or in an environment such as nitrogen containing impurities of a percentage order. Therefore, depending on the conditions, the thermosetting resin is decomposed and dissociated to lower the light transmittance, and as a result, the display performance is deteriorated such that the brightness of the display device becomes dark. The cause of light transmittance deterioration is that the heating conditions are due to the treatment at a temperature higher than the temperature at which the thermosetting resin is thermally decomposed, and the deterioration of the thermosetting resin is promoted by residual oxygen and residual moisture in the heat treatment atmosphere. What is done.

一方、ゲート配線を囲むように平坦化層を形成する場合、アクティブマトリックス基板の構造として、平坦化層直上にプラズマ処理装置によってTFT用の半導体層を成膜する必要がある。一般的にプラズマ成膜する際の基板表面温度は、300〜350℃に達する。また、半導体層形成プロセス中に、プロセス雰囲気からの水分や炭素成分の混入が半導体特性に大きな影響を及ぼすことは以前から知られている。そのため、平坦化層からの発ガス量を抑えるためには、半導体層成膜温度と同等もしくはより高温、例えば300℃以上の加熱処理を行う必要がある。しかしながら、現状の平坦化層形成のための熱硬化性樹脂の加熱プロセスは、雰囲気中の残存酸素量や水分量に関して管理が十分とは言えず、熱硬化性樹脂の劣化が生じ光線透過率が低下するといった問題があった。   On the other hand, when a planarization layer is formed so as to surround the gate wiring, as a structure of the active matrix substrate, it is necessary to form a semiconductor layer for TFT by a plasma processing apparatus directly on the planarization layer. Generally, the substrate surface temperature during plasma film formation reaches 300 to 350 ° C. In addition, it has been known for a long time that the mixing of moisture and carbon components from the process atmosphere greatly affects the semiconductor characteristics during the semiconductor layer formation process. Therefore, in order to suppress the amount of gas generated from the planarization layer, it is necessary to perform a heat treatment that is equal to or higher than the semiconductor layer deposition temperature, for example, 300 ° C. or higher. However, the current process of heating the thermosetting resin for flattening layer formation is not sufficiently controlled with respect to the amount of residual oxygen and moisture in the atmosphere, and the thermosetting resin deteriorates and the light transmittance is low. There was a problem of a drop.

以上のような問題は、アクティブマトリクス基板に限らず、プリント基板や電子装置一般においても、微細化に伴い生ずる問題である。   The problems as described above are not limited to active matrix substrates, but are also problems that occur with miniaturization in printed circuit boards and electronic devices in general.

特開平09−080416号公報JP 09-080416 A 特開平09−090404号公報JP 09-090404 A 特願2003−40030号公報Japanese Patent Application No. 2003-40030

本発明の目的は、電子装置の高性能化高信頼性化に効果がある加熱雰囲気の制御を可能にする電子装置の製造装置、および製造方法を提供することにある。また本発明はそれらの方法によって製造された高性能・高信頼性の表示装置等電子装置を提供することも目的とする。   An object of the present invention is to provide an electronic device manufacturing apparatus and a manufacturing method that enable control of a heating atmosphere that is effective in improving the performance and reliability of the electronic device. It is another object of the present invention to provide an electronic device such as a high-performance and high-reliability display device manufactured by these methods.

本発明者らは、上記目的を達成するために鋭意検討を加えたところ、電子装置製造における製造装置特に加熱設備の内表面の粗さや材質が加熱雰囲気の酸素や水分などの不純物含有量に大きく影響を及ぼすこと、および加熱雰囲気の残存酸素量、残存水分量や還元性ガス量を制御することが熱硬化性樹脂の透明性向上に効果があることを見出し、本発明の完成に至った。   The inventors of the present invention have made extensive studies in order to achieve the above-described object. It has been found that controlling the residual oxygen amount, residual moisture amount and reducing gas amount in the heating atmosphere is effective in improving the transparency of the thermosetting resin, and has led to the completion of the present invention.

かくして本発明によれば、電子装置製造用加熱処理装置の内表面の表面粗さが中心平均粗さRaで1μm以下の製造装置が提供される。   Thus, according to the present invention, there is provided a manufacturing apparatus in which the surface roughness of the inner surface of the heat treatment apparatus for manufacturing an electronic device is 1 μm or less in terms of the center average roughness Ra.

また、本発明によれば、加熱処理装置の内表面が、酸化性ガスを接触させて熱処理を行うことにより、酸化物不働態膜を形成することを特徴とする電子装置製造装置が提供される。   In addition, according to the present invention, there is provided an electronic device manufacturing apparatus characterized in that an inner surface of a heat treatment apparatus forms an oxide passive film by performing heat treatment in contact with an oxidizing gas. .

なお、上記製造装置の酸化物不働態膜は、酸化クロム、酸化アルミニウム、酸化チタンの少なくとも一つであることが好ましい。   In addition, it is preferable that the oxide passivation film of the manufacturing apparatus is at least one of chromium oxide, aluminum oxide, and titanium oxide.

また、本発明によれば、加熱処理雰囲気中を不活性ガスで置換し、かつ雰囲気中の残存酸素濃度を10ppm以下に制御することが好ましい。さらに残存水分も10ppm以下に制御することが好ましい。また、不活性ガス中に水素のような還元性ガスを0.1〜100体積%添加することが好ましい。   Further, according to the present invention, it is preferable to replace the heat treatment atmosphere with an inert gas and control the residual oxygen concentration in the atmosphere to 10 ppm or less. Furthermore, it is preferable to control residual moisture to 10 ppm or less. Moreover, it is preferable to add 0.1-100 volume% of reducing gas like hydrogen in an inert gas.

なお、上記熱硬化性樹脂がアクリル系樹脂、シリコーン系樹脂、フッ素系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、脂環式オレフィン系樹脂、エポキシ系樹脂およびシリカ系樹脂からなる群から選ばれた樹脂を一種または複数種含むことが好ましい。   The thermosetting resin is a resin selected from the group consisting of acrylic resins, silicone resins, fluorine resins, polyimide resins, polyolefin resins, alicyclic olefin resins, epoxy resins and silica resins. It is preferable that 1 type or multiple types are included.

さらに、本発明は上記製造装置および製造方法によって製造されたことを特徴とするフラットパネル表示装置等の高性能表示装置、プリント基板、パソコンや携帯電話端末のような電子装置一般を提供する。   Furthermore, the present invention provides high-performance display devices such as flat panel display devices, electronic devices such as printed circuit boards, personal computers and mobile phone terminals, which are manufactured by the above manufacturing apparatus and manufacturing method.

本発明では、電子装置の製造に使用される加熱処理装置の内表面の表面粗さを制御することによって、当該加熱処理装置内で使用される熱硬化性樹脂の分解、解離等による悪影響を軽減し、光線透過率の高い膜を形成することができる。このため、本発明は、光線透過率の高い膜を必要とするアクティブマトリックス基板等の電子装置製造に適用して、効果を上げることができる。   In the present invention, by controlling the surface roughness of the inner surface of the heat treatment apparatus used in the manufacture of electronic devices, adverse effects due to decomposition, dissociation, etc. of the thermosetting resin used in the heat treatment apparatus are reduced. Thus, a film having a high light transmittance can be formed. For this reason, the present invention can be applied to the manufacture of an electronic device such as an active matrix substrate that requires a film having a high light transmittance, and the effect can be improved.

本発明に係る酸化物不働態膜を有する配管を評価する評価装置を説明する図である。It is a figure explaining the evaluation apparatus which evaluates piping which has an oxide passive state film concerning the present invention. 図1に示された評価装置による評価結果を説明するグラフである。It is a graph explaining the evaluation result by the evaluation apparatus shown by FIG. 本発明に係る処理を施した焼成装置を用いた電子装置製造システムを説明する図である。It is a figure explaining the electronic device manufacturing system using the baking apparatus which performed the process which concerns on this invention. 本発明に係るアクティブマトリクス基板の断面を説明する図である。It is a figure explaining the cross section of the active matrix substrate which concerns on this invention. (a)〜(i)は図4に示されたアクティブマトリクス基板の製造工程を工程順に説明する図である。(A)-(i) is a figure explaining the manufacturing process of the active matrix substrate shown by FIG. 4 in order of a process.

本発明の実施例において、表示装置等電子装置製造用加熱処理装置内表面の材質としてはステンレス鋼、アルミニウム合金が適用される。特にステンレス鋼としては、オーステナイト系、フェライト系、オーステナイト・フェライト系およびマルテンサイト系ステンレス鋼が使用可能であるが、例えば、オーステナイト系SU304、SUS304L、SU316、SUS316L、SUS317、SUS317L等が好適に使用される。ステンレス鋼の表面研磨としては酸洗、機械研磨、ベルト研磨、バレル研磨、バフ研磨、流動砥粒研磨、ラップ研磨、バニッシング研磨、化学研磨、電解複合研磨または電解研磨処理等が可能であり、もちろん一つの材料中にこれらの研磨が混在しても構わない。ただし、表示装置等電子装置製造用加熱処理装置の内表面の表面粗さが中心平均粗さRaであらわしたとき、1μm以下のバフ研磨、流動砥粒研磨、ラップ研磨、バニッシング研磨、化学研磨、電解複合研磨および電解研磨が有効である。表面粗さは、中心平均粗さRaで1μm以下が好ましく、0.5μm以下がより好ましく、0.1μm以下が最も好ましい。表面粗さが中心平均粗さRaで1μmより大きいと容器の内壁に吸着している酸素や水分などの不純物ガスなどが加熱装置内雰囲気中へ混入する恐れがある。   In the embodiment of the present invention, stainless steel or aluminum alloy is used as the material of the inner surface of the heat treatment apparatus for manufacturing electronic devices such as display devices. In particular, as the stainless steel, austenitic, ferritic, austenitic / ferritic and martensitic stainless steels can be used. For example, austenitic SU304, SUS304L, SU316, SUS316L, SUS317, SUS317L and the like are preferably used. The As surface polishing of stainless steel, pickling, mechanical polishing, belt polishing, barrel polishing, buff polishing, fluidized abrasive polishing, lapping polishing, burnishing polishing, chemical polishing, electrolytic composite polishing or electrolytic polishing treatment are possible. These polishings may be mixed in one material. However, when the surface roughness of the inner surface of the heat treatment apparatus for manufacturing an electronic device such as a display device is represented by the center average roughness Ra, buff polishing of 1 μm or less, fluidized abrasive polishing, lapping polishing, burnishing polishing, chemical polishing, Electrolytic composite polishing and electrolytic polishing are effective. The surface roughness is preferably 1 μm or less, more preferably 0.5 μm or less, and most preferably 0.1 μm or less in terms of the center average roughness Ra. If the surface roughness is greater than 1 μm in terms of the center average roughness Ra, impurity gases such as oxygen and moisture adsorbed on the inner wall of the container may be mixed into the atmosphere inside the heating apparatus.

一方、本発明における表示装置等電子装置製造用加熱処理装置の内表面は、特開平7−233476、特開平11−302824に記載の酸化性雰囲気ガス中で熱処理を行うことにより、酸化物不働態膜を形成することが望ましい。   On the other hand, the inner surface of the heat treatment apparatus for manufacturing an electronic device such as a display device according to the present invention is subjected to heat treatment in an oxidizing atmosphere gas described in JP-A-7-233476 and JP-A-11-302824, so that the oxide is in a passive state. It is desirable to form a film.

例として酸化アルミニウムの形成条件は、酸素もしくは水分を含む酸化性ガスにアルミニウム含有ステンレス鋼に接触させ酸化アルミニウム不働態膜を形成することを特徴とし、酸素濃度は、500ppb〜100ppm、好ましくは1ppm〜50ppmであり、また水分濃度は、200ppb〜50ppm、好ましくは500ppb〜10ppmである。さらに、酸化性ガス中に水素を含む酸化性混合ガスでも良い。酸化処理温度は700℃〜1200℃、好ましくは800℃〜1100℃である。酸化処理時間は30分〜3時間である。   As an example, the formation condition of aluminum oxide is characterized by forming an aluminum oxide passive film by contacting aluminum or stainless steel with an oxidizing gas containing oxygen or moisture, and the oxygen concentration is 500 ppb to 100 ppm, preferably 1 ppm to The water concentration is 50 ppb to 50 ppm, preferably 500 ppb to 10 ppm. Further, an oxidizing mixed gas containing hydrogen in the oxidizing gas may be used. The oxidation treatment temperature is 700 ° C to 1200 ° C, preferably 800 ° C to 1100 ° C. The oxidation treatment time is 30 minutes to 3 hours.

酸化物不働態膜を形成することにより、耐食性の改善や表面吸着水分量の低減が可能となる。また、電解研磨のような清浄化表面処理が施されたステンレス鋼であっても、配管内表面から放出される水分量制御が不十分であるため、加熱雰囲気形成用の高純度不活性ガスや還元性ガスと接する部分には不動態膜形成することが望ましい。酸化物不働態膜の種類としては、酸化クロム、酸化アルミニウム、酸化チタン等が挙げられるが、材料の耐食性や内表面吸着水分量低減の点で酸化アルミニウムが特に望ましい。   By forming the oxide passivation film, it is possible to improve the corrosion resistance and reduce the amount of moisture adsorbed on the surface. Even in the case of stainless steel that has been subjected to a cleaning surface treatment such as electropolishing, the amount of water released from the inner surface of the pipe is insufficiently controlled. It is desirable to form a passive film on the portion in contact with the reducing gas. Examples of the oxide passive film include chromium oxide, aluminum oxide, titanium oxide, and the like, and aluminum oxide is particularly desirable in terms of the corrosion resistance of the material and the reduction of the amount of moisture adsorbed on the inner surface.

また、本発明の実施例に適用されるアクティブマトリックス表示装置等電子装置に用いる熱硬化性樹脂の加熱雰囲気は、加熱処理装置内部を不活性ガスで置換した際の残存酸素濃度を10ppm以下に制御することが望ましい。不活性ガスの種類は特に限定されないが、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドンなどの希ガス類や窒素が挙げられる。特に水分等の不純物が1ppb以下の高純度化したガスの入手のし易さから、アルゴンや窒素が特に望ましい。加熱処理装置内雰囲気の残存酸素濃度は10ppm以下、好ましくは1ppm以下、更に好ましくは100ppb以下であることが望ましい。雰囲気中の残存酸素濃度が10ppm以上の場合、加熱処理装置内温度が200℃以上で熱硬化性樹脂の酸化劣化が始まり、透明性が劣化する。   In addition, the heating atmosphere of the thermosetting resin used in the electronic device such as the active matrix display device applied to the embodiment of the present invention controls the residual oxygen concentration when the inside of the heat treatment apparatus is replaced with an inert gas to 10 ppm or less. It is desirable to do. The type of the inert gas is not particularly limited, and examples thereof include rare gases such as helium, neon, argon, krypton, xenon, and radon, and nitrogen. In particular, argon or nitrogen is particularly desirable because it is easy to obtain a highly purified gas having impurities such as moisture of 1 ppb or less. The residual oxygen concentration in the atmosphere in the heat treatment apparatus is desirably 10 ppm or less, preferably 1 ppm or less, and more preferably 100 ppb or less. When the residual oxygen concentration in the atmosphere is 10 ppm or more, when the temperature in the heat treatment apparatus is 200 ° C. or more, the oxidative deterioration of the thermosetting resin starts and the transparency deteriorates.

加熱処理装置内の不活性ガス雰囲気中への、還元性ガスの添加は熱硬化性樹脂の劣化による光線透過率低下を抑制する効果がある。還元性ガスの添加量としては不活性ガスに対し、0.1〜100体積%、好ましくは1〜50体積%、特に好ましくは10〜30体積%である。還元性ガスの添加量が0.1%以下では、熱硬化性樹脂劣化を抑制する効果が得られない。   Addition of a reducing gas into the inert gas atmosphere in the heat treatment apparatus has an effect of suppressing a decrease in light transmittance due to deterioration of the thermosetting resin. The amount of reducing gas added is from 0.1 to 100% by volume, preferably from 1 to 50% by volume, particularly preferably from 10 to 30% by volume, based on the inert gas. If the amount of reducing gas added is 0.1% or less, the effect of suppressing thermosetting resin deterioration cannot be obtained.

本発明に使用する還元性ガスの種類は、樹脂の酸化反応を抑制する効果があれば特に限定されないが、還元効果と高純度化したガスの入手のし易さから水素が好ましい。   The kind of the reducing gas used in the present invention is not particularly limited as long as it has an effect of suppressing the oxidation reaction of the resin, but hydrogen is preferable from the viewpoint of the reducing effect and the availability of highly purified gas.

本発明に適用される電子装置の配線構造は特に限定されないが、絶縁性基板上に配線層が平坦化層とともに設けられる構造が好ましい。たとえば、アクティブマトリクス基板では、走査線と、信号線と、該走査線と該信号線の交差部付近に、該走査線にゲート電極が接続され、該信号線にソースあるいはドレイン電極が接続された薄膜トランジスタを有し、薄膜トランジスタと透明電極間に平坦化層が存在し、該平坦化層は熱硬化性樹脂によって形成された構造、または信号線およびソース電極ならびにドレイン電極の表面はこれらを囲む平坦化層と実質上同一平面を形成し、該平坦化層は熱硬化性樹脂によって形成された構造が望ましい。特に信号線およびソース電極ならびにドレイン電極の表面はこれらを囲む平坦化層と実質上同一平面を形成する構造の場合は、一般的な構造に比べ平坦化層が増加することによる光線透過率の劣化を抑制するため、より好ましい。   The wiring structure of the electronic device applied to the present invention is not particularly limited, but a structure in which the wiring layer is provided on the insulating substrate together with the planarizing layer is preferable. For example, in an active matrix substrate, a gate electrode is connected to the scan line, a signal line, and an intersection of the scan line and the signal line, and a source or drain electrode is connected to the signal line. The thin film transistor has a flattening layer between the thin film transistor and the transparent electrode, and the flattening layer is a structure formed of a thermosetting resin, or the surface of the signal line, the source electrode, and the drain electrode surrounds them. It is desirable that the layer is substantially flush with the layer, and the planarization layer has a structure formed of a thermosetting resin. In particular, in the case of a structure in which the surface of the signal line, source electrode, and drain electrode forms substantially the same plane as the surrounding flattening layer, the light transmittance deteriorates due to the increase in the number of flattening layers compared to the general structure Is more preferable.

本発明に使用する平坦化層は樹脂によって形成されていることを特徴とし、感光性樹脂組成物によって形成されていることが好ましい。また、前記平坦化層は無機物を含んでいてもよい。前記平坦化層はより好ましくは、アルカリ可溶性脂環式オレフィン樹脂と感放射線成分とを含有する樹脂組成物を用いて形成されていることが望ましいが、前記感光性樹脂組成物はアクリル系樹脂、シリコーン系樹脂、フッ素系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、脂環式オレフィン系樹脂、およびエポキシ系樹脂からなる群から選ばれた樹脂をふくんでいてもよい。   The planarization layer used in the present invention is characterized by being formed of a resin, and is preferably formed of a photosensitive resin composition. The planarization layer may contain an inorganic material. The planarization layer is more preferably formed using a resin composition containing an alkali-soluble alicyclic olefin resin and a radiation-sensitive component, but the photosensitive resin composition is an acrylic resin, A resin selected from the group consisting of a silicone resin, a fluorine resin, a polyimide resin, a polyolefin resin, an alicyclic olefin resin, and an epoxy resin may be included.

[実施例]
以下に本発明の実施例を説明する。なお、当然のことであるが、本発明は以下の実施例に限定されるものではない。また、以下の実施例および比較例中の分析値は、いずれも四捨五入して求めた値である。
[Example]
Examples of the present invention will be described below. Of course, the present invention is not limited to the following examples. The analytical values in the following examples and comparative examples are values obtained by rounding off.

また、以下の実施例および比較例における分析条件は下記の通りである。   The analysis conditions in the following examples and comparative examples are as follows.

(分析条件1)X線光電子分光分析(以下、「XPS分析」と略す。)
装置:島津製作所製 ESCA−1000
(分析条件2)大気圧イオン化質量分析(以下、「API−MS分析」と略す。)
装置:バイオラッド社製 FTS−50A
(分析条件3)全光線透過率(紫外分光光度分析)
装置:島津製作所製 UV−2550
全光線透過率は400nmから800nm間の各波長での光線透過率の平均値と定義した。
(分析条件4)残膜率(段差測定)
装置:KLA−Tencor社製 P−10
残膜率は下記式から導かれる値と定義した。
残膜率=(加熱処理後膜厚/加熱処理前膜厚)×100
(Analysis condition 1) X-ray photoelectron spectroscopic analysis (hereinafter abbreviated as “XPS analysis”)
Equipment: ESCA-1000 manufactured by Shimadzu Corporation
(Analysis condition 2) Atmospheric pressure ionization mass spectrometry (hereinafter abbreviated as “API-MS analysis”)
Apparatus: FTS-50A manufactured by Bio-Rad
(Analysis condition 3) Total light transmittance (ultraviolet spectrophotometric analysis)
Apparatus: Shimadzu UV-2550
The total light transmittance was defined as the average value of the light transmittance at each wavelength between 400 nm and 800 nm.
(Analysis condition 4) Residual film rate (step difference measurement)
Apparatus: P-10 manufactured by KLA-Tencor
The remaining film rate was defined as a value derived from the following formula.
Residual film ratio = (film thickness after heat treatment / film thickness before heat treatment) × 100

[実施例1]
本実施例では、Cr含有量29.1重量%のフェライト系ステンレス鋼配管の内表面を電解研磨処理し使用した。配管外径1/4インチ、配管長2m、表面粗度は約0.5μmとした。電解研磨処理後、炉内に上記のステンレス鋼を装入し、不純物濃度が数ppb以下のArガスを炉内に流しながら室温から550℃まで1時間かけて昇温し、同温度で1時間ベーキングを行い表面から付着水分を除去した。上記ベーキング終了後、水素濃度10%、水分濃度100ppmの処理ガスに切り替え3時間の熱処理を行なった。上記配管の一部を切り取り、XPS分析によって配管内表面に100%Cr2O3が深さ方向に約15nmの厚さで形成されていることを確認した。
[Example 1]
In this example, the inner surface of a ferritic stainless steel pipe having a Cr content of 29.1% by weight was electrolytically polished and used. The pipe outer diameter was 1/4 inch, the pipe length was 2 m, and the surface roughness was about 0.5 μm. After the electrolytic polishing treatment, the above stainless steel is charged into the furnace, and the temperature is raised from room temperature to 550 ° C. over 1 hour while flowing Ar gas having an impurity concentration of several ppb or less into the furnace. Baking was performed to remove adhering moisture from the surface. After the baking, the heat treatment was performed for 3 hours by switching to a treatment gas having a hydrogen concentration of 10% and a water concentration of 100 ppm. A part of the pipe was cut out, and it was confirmed by XPS analysis that 100% Cr 2 O 3 was formed on the inner surface of the pipe with a thickness of about 15 nm in the depth direction.

[実施例2]
本実施例ではAl含有量4.0重量%のオーステナイト系ステンレス鋼配管の内表面を電解研磨処理し使用した。実施例1と同様サイズの配管を使用した。電界研磨処理後、炉内に上記のステンレス鋼を装入し、不純物濃度が数ppb以下のArガスを炉内に流しながら室温から400℃まで1時間かけて昇温した。同温度で1時間ベーキングを行い表面から付着水分を除去した。上記ベーキング終了後、水分濃度5ppm、さらに水分混合ガス中に水素を10%添加した酸化性雰囲気に切り替え、処理温度は900℃、処理時間は1時間で酸化処理を行なった。上記配管の一部を切り取り、XPS分析によって配管内表面に100%Al2O3が深さ方向に約200nmの厚さで形成されていることを確認した。
[Example 2]
In this example, the inner surface of an austenitic stainless steel pipe having an Al content of 4.0% by weight was electropolished and used. The same size pipe as in Example 1 was used. After the electropolishing treatment, the stainless steel was charged into the furnace, and the temperature was raised from room temperature to 400 ° C. over 1 hour while flowing Ar gas having an impurity concentration of several ppb or less into the furnace. Baking was performed at the same temperature for 1 hour to remove adhering moisture from the surface. After completion of the baking, the oxidizing atmosphere was switched to an oxidizing atmosphere with a moisture concentration of 5 ppm and hydrogen added to the moisture mixed gas at a treatment temperature of 900 ° C. and a treatment time of 1 hour. A part of the pipe was cut out, and it was confirmed by XPS analysis that 100% Al 2 O 3 was formed on the inner surface of the pipe with a thickness of about 200 nm in the depth direction.

[各種表面処理された配管の水枯れ特性評価]
実施例1、2で処理したステンレス鋼配管および同サイズの内表面を電解研磨したSUS316−EP管、焼鈍し処理したSUS316−BA管を用い、配管の水枯れ特性を図1に示された評価装置により評価した。前記配管を水分量0.1ppb以下のアルゴンガス雰囲気で500℃に加熱し完全に内表面に吸着した水分を除去した後、温度23℃で相対湿度45%のクリーンルーム空気に24時間曝した。
[Evaluation of drainage characteristics of various surface-treated pipes]
Evaluation using the stainless steel pipe treated in Examples 1 and 2 and the SUS316-EP pipe obtained by electropolishing the inner surface of the same size and the annealed SUS316-BA pipe as shown in FIG. The device was evaluated. The piping was heated to 500 ° C. in an argon gas atmosphere with a moisture content of 0.1 ppb or less to completely remove the moisture adsorbed on the inner surface, and then exposed to clean room air at a temperature of 23 ° C. and a relative humidity of 45% for 24 hours.

その後、各種表面処理された直径1/4インチ、長さ2mのチューブに1.2L/分のArガスを室温で10時間流し、その間のAr中の水分量をAPI−MSで測定した。その結果を図2に示す。なお、最初の3分間は水分発生量が膨大であるため、Arガスを流し始めて3分後からのデータになっている。焼鈍し処理したSUS316−BA表面では、10時間720LのArガスを流した後でも10ppb以上の水分量が発生しているのに対し、実施例1、2で処理したステンレス鋼配管および電解研磨したSUS316−EP管では3ppb以下にまで低下している。特に実施例1、2で処理したステンレス鋼配管においては、4時間280LのArガスを流すと1ppb以下の水分発生量に抑えられる。   Thereafter, Ar gas of 1.2 L / min was allowed to flow for 10 hours at room temperature in a tube having a diameter of 1/4 inch and a length of 2 m subjected to various surface treatments, and the moisture content in Ar during that time was measured by API-MS. The result is shown in FIG. In addition, since the amount of water generation is enormous for the first 3 minutes, the data is obtained after 3 minutes from the start of flowing Ar gas. On the annealed SUS316-BA surface, a water content of 10 ppb or more was generated even after flowing 720 L of Ar gas for 10 hours, whereas the stainless steel pipe treated in Examples 1 and 2 and electrolytic polishing were performed. In the SUS316-EP tube, the pressure drops to 3 ppb or less. In particular, in the stainless steel pipes treated in Examples 1 and 2, when 280 L of Ar gas is allowed to flow for 4 hours, the amount of water generated is 1 ppb or less.

[実施例3]
[平坦化層の分光光度分析]
20mm×30mmサイズの無アルカリガラス基板を洗浄後、高純度窒素中で脱水加熱を行った。その後、ヘキサメチレンジシラザン(HMDS)の蒸気処理によって密着層を形成した。密着層形成後、熱硬化性樹脂のJSR株式会社製感光性アクリル樹脂(ポジ型)をスピンコート法によって塗布し、約1μm厚みの樹脂膜を形成した。樹脂膜を形成した無アルカリガラス基板をマスクアライナー(CANON製PLA501)で500mJ(g、h、i線混合)基板全面を露光した。露光後、装置内を電解研磨処理したSUS316L−EP表面の図3の焼成装置を用い、高純度窒素と酸素により装置内の酸素濃度を10ppmに制御した雰囲気の下、300℃で60分間加熱し、樹脂膜を硬化した。加熱処理したガラス基板の分光光度計による光線透過率測定と触針式膜厚計による膜厚測定を行った。結果を表1に示す。
[Example 3]
[Spectrophotometric analysis of planarization layer]
After washing a 20 mm × 30 mm non-alkali glass substrate, dehydration heating was performed in high-purity nitrogen. Thereafter, an adhesion layer was formed by steam treatment of hexamethylene disilazane (HMDS). After forming the adhesion layer, a thermosetting resin photosensitive acrylic resin (positive type) manufactured by JSR Corporation was applied by a spin coating method to form a resin film having a thickness of about 1 μm. The alkali-free glass substrate on which the resin film was formed was exposed on the entire surface of the 500 mJ (g, h, i-line mixed) substrate with a mask aligner (PLA501 manufactured by CANON). After the exposure, the apparatus is heated at 300 ° C. for 60 minutes in an atmosphere in which the oxygen concentration in the apparatus is controlled to 10 ppm with high-purity nitrogen and oxygen using the baking apparatus shown in FIG. The resin film was cured. The light transmittance of the heat-treated glass substrate was measured with a spectrophotometer and the film thickness was measured with a stylus type film thickness meter. The results are shown in Table 1.

Figure 0005335843
Figure 0005335843

[比較例1]
焼成装置内の酸素濃度を100ppmに制御した以外は、実施例3と同様に行った。結果を表1に示す。
[Comparative Example 1]
It carried out similarly to Example 3 except having controlled the oxygen concentration in a baking apparatus to 100 ppm. The results are shown in Table 1.

[比較例2]
焼成装置内の酸素濃度を1000ppmに制御した以外は、実施例3と同様に行った。結果を表1に示す。
[Comparative Example 2]
It carried out similarly to Example 3 except having controlled the oxygen concentration in a baking apparatus to 1000 ppm. The results are shown in Table 1.

[実施例4]
酸素の代わりに水素を2%添加した以外は、実施例3と同様に行った。結果を表1に示す。
[Example 4]
The same operation as in Example 3 was performed except that 2% of hydrogen was added instead of oxygen. The results are shown in Table 1.

[実施例5,6および比較例3]
熱硬化性樹脂として日本ゼオン株式会社製感光性脂環式オレフィン樹脂(ポジ型)を用いた以外は、実施例3,4および比較例1と同様に行った。結果を表1に示す。
[Examples 5 and 6 and Comparative Example 3]
It carried out similarly to Example 3, 4 and the comparative example 1 except having used the photosensitive alicyclic olefin resin (positive type) by Nippon Zeon Co., Ltd. as a thermosetting resin. The results are shown in Table 1.

[実施例7]
水素濃度を20%添加した以外は、実施例6と同様に行った。結果を表1に示す。
[Example 7]
The same operation as in Example 6 was performed except that 20% of the hydrogen concentration was added. The results are shown in Table 1.

[実施例8,9]
熱硬化性樹脂としてJSR株式会社製感光性シリコーン樹脂(ネガ型)を用いた以外は、実施例5,6と同様に行った。結果を表1に示す。
[Examples 8 and 9]
It carried out similarly to Example 5 and 6 except having used the photosensitive silicone resin (negative type) by JSR Corporation as a thermosetting resin. The results are shown in Table 1.

[実施例10]
焼成装置内の酸素濃度10ppm、水素を2%添加した以外は、実施例8と同様に行った。結果を表1に示す。
[Example 10]
The same operation as in Example 8 was performed except that oxygen concentration of 10 ppm in the baking apparatus and 2% of hydrogen were added. The results are shown in Table 1.

[比較例4]
焼成装置内の酸素濃度を1%に制御した以外は、実施例8と同様に行った。結果を表1に示す。
[Comparative Example 4]
The same operation as in Example 8 was performed except that the oxygen concentration in the baking apparatus was controlled to 1%. The results are shown in Table 1.

[実施例11]
本発明の実施例11におけるアクティブマトリクス表示装置について、図4を参照して説明する。図4は本実施例11のアクティブマトリクス液晶ディスプレイの構造を示す断面図であり、ガラス基板上に形成された走査線と、信号線と、該走査線と該信号線の交差部付近に、該走査線にゲート電極が接続され、該信号線にソースあるいはドレイン電極が接続された薄膜トランジスタを有しており、信号線、ソース電極、およびドレイン電極を囲むように平坦化層が形成され、信号線、ソース電極、ドレイン電極と該平坦化層とは実質的に同一平面を形成している。この平面上に層間絶縁膜を介して画素電極が配置され、アクティブマトリクス基板を構成し、対向基板との間で液晶を挟持して構成される。本実施例11の走査線およびゲート電極配線をインクジェット法による埋め込み配線とした。ここでは、ゲート配線部の形成方法について述べる。まずガラス基板の表面に1μmの厚さの感光性を有する脂環式オレフィン樹脂系の透明樹脂膜(熱硬化性樹脂)をスピンコート法等の手法により形成する。この感光性樹脂膜はフォトレジスト膜としての機能を有している。次に、感光性透明樹脂膜を活性放射線を用いて選択的に露光、現像および除去、加熱硬化をすることにより図5(a)に示すように感光性透明樹脂膜に溝を形成する。加熱硬化条件は、感光性透明樹脂の光線透過率を高めるため、装置内表面をSUS316の電解研磨処理した加熱装置を用い、更に残存酸素濃度を10ppmに制御し、300℃で60分焼成した。配線幅が微細である場合は、印刷精度を高めるために、前記透明樹脂層表面に撥水性を持たせる処理を行ってもよい。具体的にはNF3などのフッ素系ガスのプラズマを用いて表面をフッ素処理したり、樹脂の加熱硬化前にフッ素系シリル化剤を樹脂前駆体に含浸したりすることなどが例示される。次にインクジェット印刷法などの印刷法やメッキ法により、前記溝部に配線前駆体を充填する。配線形成方法はインクの効率的な使用の観点からインクジェット法が好ましいが、スクリーン印刷法などを用いてもよい。本実施例では配線前駆体として特開2002−324966に開示されるものと同様の銀ペーストインクを用いて配線を形成した。配線前駆体を充填後250度の温度で30分間焼成を行い、走査線およびゲート電極配線とした(図5(b))。次に、マイクロ波励起プラズマを用いたプラズマCVD法によりSiH4ガスとH2ガスとN2ガスとArガスを用いてシリコン窒化膜(SiNx膜)を成膜した。通常の高周波励起プラズマを用いてもSiNx膜の成膜が可能であるが、マイクロ波励起プラズマを用いることで、より低温でのSiNx膜の成膜が可能である。成膜温度は300℃とし、膜厚は0.2μmとした(図5(b))。次にマイクロ波励起プラズマを用いたプラズマCVD法により、アモルファスシリコン層およびn+型アモルファスシリコン層を成膜した。アモルファスシリコン層はSiH4ガスを用い、n+型アモルファスシリコン層はSiH4ガスおよびPH3ガス、Arガスを用い、300℃の温度で成膜した(図5(c))。次に、全面にフォトレジストをスピンコート法により塗布し、100℃で1分間、ホットプレート上で乾燥し溶剤を除去した。次にg線ステッパを用いて、36mJ/cm2のエネルギードーズ量で露光を行った。露光に際しては、素子領域を残存するようにマスクを形成し、素子領域内部のチャネル領域に相当する部分はスリットマスクを用いて、露光量を調整した。2.38%のTMAH溶液を用いてパドル現像70秒間を行った結果、図5(d)に示すフォトレジスト形状を得た。次に、プラズマエッチング装置を用いて、n+型アモルファスシリコン層、アモルファスシリコン層のエッチングを行った。この際、フォトレジストも若干エッチングされ、膜厚が減少するため、フォトレジスト膜厚の薄いチャネル領域部のレジストはエッチング除去され、n+シリコン層もエッチングされる。素子領域部以外のn+型アモルファスシリコン層およびアモルファスシリコン層がエッチング除去され、チャネル領域のn+型アモルファスシリコン層がエッチング除去された時点で、エッチング処理を終了すると図5(e)に示す形状を得る。ソース電極部およびドレイン電極部のn+型アモルファスシリコン層上のフォトレジストは残存したままである。次にこの状態で、Arガス、N2ガス、H2ガスを用いて、マイクロ波励起プラズマ処理を行い、チャネル部のアモルファスシリコン表面に直接、窒化膜を形成する(図5(f))。一般的な高周波プラズマを用いても窒化膜の形成は可能であるが、マイクロ波励起プラズマを用いることにより、電子温度が低いプラズマを生成できるため、チャネル部にプラズマによるダメージを与えることなく窒化膜を形成でき好ましい。また、CVD法により窒化膜を形成することも可能であるが、ソース電極およびドレイン電極領域にも窒化膜が形成され、後に除去工程が必要になるため、直接窒化膜がより好ましい。次に、ソース電極、およびドレイン電極領域上に残存するフォトレジスト膜を、酸素プラズマアッシングを施した後、レジスト剥離液などにより除去することで図5(g)のような形状を得る。続いて、信号線、ソース電極配線およびドレイン電極配線をインクジェット印刷法などの印刷法やメッキ法で形成する際に必要となる配線形成補助層として脂環式オレフィン樹脂系の感光性透明樹脂膜前駆体(熱硬化性樹脂)を塗布し、信号線、ソース電極配線およびドレイン電極配線用フォトマスクを用いて露光、現像、加熱硬化を行うことで透明樹脂層を形成し、図5(h)に記載のように、信号線、ソース電極配線およびドレイン電極配線領域となる溝を得る。加熱硬化条件は、感光性透明樹脂の光線透過率を高めるため、装置内表面をSUS316の電解研磨処理した加熱装置を用い、更に残存酸素濃度を10ppmに制御し、250℃で60分焼成した。配線幅が微細である場合は、精度を高めるために、前記透明樹脂層表面に撥水性を持たせる処理を行ってもよい。具体的にはNF3などのフッ素系ガスを用いたプラズマを用いて表面をフッ素処理したり、樹脂のポストベーク前にフッ素系シリル化剤を樹脂前駆体に含浸したりすることなどが例示される。次にインクジェット印刷法などの印刷法やメッキ法により、前記溝部に配線前駆体を充填する。配線形成方法はインクの効率的な使用の観点からインクジェット法が好ましいが、スクリーン印刷法などを用いてもよい。本実施例では配線前駆体として特開2002−324966に開示されるものと同様の銀ペーストインクを用いて配線を形成した。配線前駆体を充填後250度の温度で30分間焼成を行い、配線とした(図5(i))。このようにして、TFTの形成を完了した。次に、層間絶縁膜として、脂環式オレフィン樹脂系の感光性透明樹脂を成膜し、露光、現像を行うことで、画素電極から前記TFT電極へのコンタクトホールを形成した。感光性透明樹脂の硬化はこれまでの工程と同様に、感光性透明樹脂の光線透過率を高めるため、装置内表面をSUS316の電解研磨処理した加熱装置を用い、更に残存酸素濃度を10ppmに制御し、250℃で60分焼成した。これに引き続き、基板全面にITOをスパッタ成膜し、パターニングすることで画素電極とした。ITOの代わりにSnO2などの透明導電膜材料を用いてもよい。この表面に液晶の配向膜としてポリイミド膜を形成し、対向基板との間に液晶を挟持することで、アクティブマトリクス液晶表示装置を得た。
[Example 11]
An active matrix display device according to Example 11 of the present invention will be described with reference to FIG. FIG. 4 is a cross-sectional view showing the structure of the active matrix liquid crystal display according to the eleventh embodiment. The scanning lines formed on the glass substrate, the signal lines, and the intersections between the scanning lines and the signal lines A thin film transistor in which a gate electrode is connected to the scan line and a source or drain electrode is connected to the signal line, a planarization layer is formed so as to surround the signal line, the source electrode, and the drain electrode, and the signal line The source electrode, the drain electrode, and the planarization layer form substantially the same plane. A pixel electrode is disposed on this plane via an interlayer insulating film to constitute an active matrix substrate, and a liquid crystal is sandwiched between the opposite substrate. The scanning lines and gate electrode wirings of Example 11 were embedded wirings by the ink jet method. Here, a method for forming the gate wiring portion will be described. First, an alicyclic olefin resin-based transparent resin film (thermosetting resin) having a thickness of 1 μm is formed on the surface of a glass substrate by a technique such as spin coating. This photosensitive resin film has a function as a photoresist film. Next, the photosensitive transparent resin film is selectively exposed, developed, removed and heat-cured using actinic radiation to form grooves in the photosensitive transparent resin film as shown in FIG. In order to increase the light transmittance of the photosensitive transparent resin, the heating and curing conditions were performed by using a heating device in which the inner surface of the device was electrolytically polished with SUS316, further controlling the residual oxygen concentration to 10 ppm, and baking at 300 ° C. for 60 minutes. When the wiring width is fine, a treatment for imparting water repellency to the surface of the transparent resin layer may be performed in order to increase printing accuracy. Specifically, the surface is treated with fluorine using a plasma of fluorine gas such as NF3, or the resin precursor is impregnated with a fluorine silylating agent before heat curing of the resin. Next, a wiring precursor is filled in the groove by a printing method such as an ink jet printing method or a plating method. The wiring forming method is preferably an ink jet method from the viewpoint of efficient use of ink, but a screen printing method or the like may be used. In this example, wiring was formed using the same silver paste ink as that disclosed in JP-A-2002-324966 as a wiring precursor. After filling with the wiring precursor, baking was performed at a temperature of 250 ° C. for 30 minutes to form scanning lines and gate electrode wirings (FIG. 5B). Next, a silicon nitride film (SiNx film) was formed using SiH 4 gas, H 2 gas, N 2 gas, and Ar gas by plasma CVD using microwave excitation plasma. Although it is possible to form a SiNx film using normal high frequency excitation plasma, it is possible to form a SiNx film at a lower temperature by using microwave excitation plasma. The film forming temperature was 300 ° C., and the film thickness was 0.2 μm (FIG. 5B). Next, an amorphous silicon layer and an n + type amorphous silicon layer were formed by a plasma CVD method using microwave excitation plasma. The amorphous silicon layer was formed using SiH 4 gas, and the n + type amorphous silicon layer was formed using SiH 4 gas, PH 3 gas, and Ar gas at a temperature of 300 ° C. (FIG. 5C). Next, a photoresist was applied to the entire surface by spin coating, and dried on a hot plate at 100 ° C. for 1 minute to remove the solvent. Next, using a g-line stepper, exposure was performed with an energy dose of 36 mJ / cm 2. At the time of exposure, a mask was formed so as to leave the element region, and the exposure amount was adjusted by using a slit mask for a portion corresponding to the channel region inside the element region. As a result of performing paddle development for 70 seconds using a 2.38% TMAH solution, the photoresist shape shown in FIG. 5D was obtained. Next, the n + type amorphous silicon layer and the amorphous silicon layer were etched using a plasma etching apparatus. At this time, since the photoresist is also slightly etched and the film thickness is reduced, the resist in the channel region where the photoresist film thickness is thin is removed by etching, and the n + silicon layer is also etched. When the n + -type amorphous silicon layer and the amorphous silicon layer other than the element region are removed by etching and the n + -type amorphous silicon layer in the channel region is removed by etching, the shape shown in FIG. . The photoresist on the n + type amorphous silicon layer of the source electrode portion and the drain electrode portion remains. Next, in this state, a microwave-excited plasma treatment is performed using Ar gas, N2 gas, and H2 gas to form a nitride film directly on the amorphous silicon surface of the channel portion (FIG. 5F). Although a nitride film can be formed using general high-frequency plasma, plasma with a low electron temperature can be generated by using microwave-excited plasma, so the nitride film does not damage the channel due to the plasma. Is preferable. Although a nitride film can be formed by a CVD method, a nitride film is also formed in the source electrode and drain electrode regions, and a removal step is required later. Therefore, a direct nitride film is more preferable. Next, the photoresist film remaining on the source electrode and drain electrode regions is subjected to oxygen plasma ashing and then removed with a resist stripping solution or the like to obtain a shape as shown in FIG. Subsequently, an alicyclic olefin resin-based photosensitive transparent resin film precursor as a wiring formation auxiliary layer required when forming signal lines, source electrode wirings and drain electrode wirings by a printing method such as an ink jet printing method or a plating method. A transparent resin layer is formed by applying a body (thermosetting resin) and performing exposure, development, and heat curing using a photomask for signal lines, source electrode wirings, and drain electrode wirings, as shown in FIG. As described, trenches to be signal lines, source electrode wirings, and drain electrode wiring regions are obtained. In order to increase the light transmittance of the photosensitive transparent resin, the heating and curing conditions were performed by using a heating device in which the inner surface of the device was subjected to electrolytic polishing treatment of SUS316, further controlling the residual oxygen concentration to 10 ppm, and baking at 250 ° C. for 60 minutes. When the wiring width is fine, a treatment for imparting water repellency to the surface of the transparent resin layer may be performed in order to improve accuracy. Specifically, the surface is fluorinated using plasma using a fluorine-based gas such as NF3, or the resin precursor is impregnated with a fluorine-based silylating agent before the post-baking of the resin. . Next, a wiring precursor is filled in the groove by a printing method such as an ink jet printing method or a plating method. The wiring forming method is preferably an ink jet method from the viewpoint of efficient use of ink, but a screen printing method or the like may be used. In this example, wiring was formed using the same silver paste ink as that disclosed in JP-A-2002-324966 as a wiring precursor. After filling the wiring precursor, firing was performed at a temperature of 250 ° C. for 30 minutes to form a wiring (FIG. 5I). In this way, the formation of the TFT was completed. Next, an alicyclic olefin resin-based photosensitive transparent resin was formed as an interlayer insulating film, and exposure and development were performed to form a contact hole from the pixel electrode to the TFT electrode. In the same way as in the previous steps, the photosensitive transparent resin is cured using a heating device in which the inner surface of the device is electropolished with SUS316 in order to increase the light transmittance of the photosensitive transparent resin, and the residual oxygen concentration is further controlled to 10 ppm. And calcined at 250 ° C. for 60 minutes. Subsequently, ITO was sputtered on the entire surface of the substrate and patterned to form a pixel electrode. A transparent conductive film material such as SnO2 may be used instead of ITO. A polyimide film was formed on this surface as a liquid crystal alignment film, and an active matrix liquid crystal display device was obtained by sandwiching the liquid crystal with the opposing substrate.

本実施例のアクティブマトリクス液晶表示装置によれば、平坦化層の透明性が高いため、低消費電力かつ輝度が高く、高品質な表示を得ることができた。   According to the active matrix liquid crystal display device of this example, since the flattening layer has high transparency, low power consumption, high luminance, and high quality display can be obtained.

本発明は、アクティブマトリクス基板等の表示装置を製造するのに適用できるだけでなく、プリント配線板等を含む各種電子装置の製造にも適用できる。   The present invention can be applied not only to manufacturing a display device such as an active matrix substrate but also to manufacturing various electronic devices including a printed wiring board.

Claims (3)

中心平均粗さ1μm以下の表面粗さを有する内表面に、酸化クロム、酸化アルミニウム、酸化チタン、酸化イットリウム、酸化マグネシウムのうちの少なくとも一つを含む酸化物不働態膜を設けた内部構造を有し加熱処理を行う処理装置を用意する工程と、
前記処理装置の内部に不活性ガスを導入してベーキング処理を所定時間施すことで残存酸素濃度が10ppm以下、残存水分量が10ppm以下の雰囲気を形成する工程と、
不活性ガスと該不活性ガスに対して0.1〜100体積%の割合の還元ガスとを前記雰囲気中に導入して不活性ガス・還元ガスの混合ガス雰囲気を形成する工程と、
所定の位置に設けた熱硬化性樹脂の層を有し前記混合ガス雰囲気中に配されている電子装置用基板の前記熱硬化性樹脂を熱硬化させて平坦化層を形成する工程と、
を有することを特徴とする電子装置用基板の製造法。
It has an internal structure in which an oxide passivation film containing at least one of chromium oxide, aluminum oxide, titanium oxide, yttrium oxide, and magnesium oxide is provided on the inner surface having a center average roughness of 1 μm or less. Preparing a treatment apparatus for performing heat treatment;
A step of forming an atmosphere having a residual oxygen concentration of 10 ppm or less and a residual water content of 10 ppm or less by introducing an inert gas into the processing apparatus and performing a baking process for a predetermined time;
Introducing an inert gas and a reducing gas at a ratio of 0.1 to 100% by volume with respect to the inert gas into the atmosphere to form a mixed gas atmosphere of the inert gas and the reducing gas;
A step of thermosetting the thermosetting resin of the substrate for an electronic device, which has a thermosetting resin layer provided at a predetermined position and arranged in the mixed gas atmosphere, to form a planarization layer;
A method for producing a substrate for an electronic device, comprising:
中心平均粗さ1μm以下の表面粗さを有する内表面に、酸化クロム、酸化アルミニウム、酸化チタン、酸化イットリウム、酸化マグネシウムのうちの少なくとも一つを含む酸化物不働態膜を設けた内部構造を有し加熱処理を行う処理装置を用意し、
前記処理装置の内部には、不活性ガスと該不活性ガスに対して0.1〜100体積%の割合の還元ガスとが導入されており、残存酸素濃度が10ppm以下、残存水分量が10ppm以下である雰囲気が形成され、該雰囲気中に配され、所定の位置に設けた熱硬化性樹脂の層を有する電子装置用基板の前記熱硬化性樹脂を熱硬化させて平坦化層を形成する、
ことを特徴とする電子装置用基板の製造法。
It has an internal structure in which an oxide passivation film containing at least one of chromium oxide, aluminum oxide, titanium oxide, yttrium oxide, and magnesium oxide is provided on the inner surface having a center average roughness of 1 μm or less. Prepare a treatment device that performs heat treatment,
An inert gas and a reducing gas in a proportion of 0.1 to 100% by volume with respect to the inert gas are introduced into the processing apparatus, the residual oxygen concentration is 10 ppm or less , and the residual water content is 10 ppm. The following atmosphere is formed, and the planarizing layer is formed by thermosetting the thermosetting resin of the electronic device substrate having the thermosetting resin layer disposed in the atmosphere at a predetermined position. ,
The manufacturing method of the board | substrate for electronic devices characterized by the above-mentioned.
前記熱硬化性樹脂がアクリル系樹脂、シリコーン系樹脂、フッ素系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、脂環式オレフィン系樹脂、エポキシ系樹脂およびシリカ系樹脂からなる群から選ばれた樹脂を一種または複数種含むことを特徴とする請求項1または2に記載の電子装置用基板の製造法。 The thermosetting resin is a resin selected from the group consisting of acrylic resins, silicone resins, fluorine resins, polyimide resins, polyolefin resins, alicyclic olefin resins, epoxy resins and silica resins. Or the method of manufacturing the board | substrate for electronic devices of Claim 1 or 2 characterized by the above-mentioned.
JP2011062046A 2011-03-22 2011-03-22 Manufacturing method of substrates for electronic devices Expired - Fee Related JP5335843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011062046A JP5335843B2 (en) 2011-03-22 2011-03-22 Manufacturing method of substrates for electronic devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011062046A JP5335843B2 (en) 2011-03-22 2011-03-22 Manufacturing method of substrates for electronic devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004076645A Division JP4763245B2 (en) 2004-03-17 2004-03-17 Manufacturing apparatus and manufacturing method for electronic device such as display device, and electronic device such as display device

Publications (2)

Publication Number Publication Date
JP2011142341A JP2011142341A (en) 2011-07-21
JP5335843B2 true JP5335843B2 (en) 2013-11-06

Family

ID=44457930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011062046A Expired - Fee Related JP5335843B2 (en) 2011-03-22 2011-03-22 Manufacturing method of substrates for electronic devices

Country Status (1)

Country Link
JP (1) JP5335843B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6101467B2 (en) * 2012-10-04 2017-03-22 東京エレクトロン株式会社 Film forming method and film forming apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3349697B2 (en) * 1988-01-11 2002-11-25 忠弘 大見 Thin film forming apparatus and method
JP2730695B2 (en) * 1989-04-10 1998-03-25 忠弘 大見 Tungsten film forming equipment
JPH07142438A (en) * 1993-11-22 1995-06-02 Tadahiro Omi Cleaning equipment, production system and line for semiconductor
JP2991050B2 (en) * 1994-08-23 1999-12-20 住友金属工業株式会社 Stainless steel pipe for high purity gas
JP2000208431A (en) * 1999-01-13 2000-07-28 Tadahiro Omi Metallic material wherein chromium oxide passivation film is formed, its manufacture and corrosive fluid contacting part and fluid supply/discharge system
JP2004002752A (en) * 2002-03-28 2004-01-08 Toray Ind Inc Treating method for poly(alicyclic olefin) composition, semiconductor device, optical component, and organic electroluminescent device

Also Published As

Publication number Publication date
JP2011142341A (en) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5145654B2 (en) Substrate processing apparatus and substrate processing method
JP5599026B2 (en) Thin film transistor manufacturing method
US20070209200A1 (en) Circuit Board, Method Of Manufacturing Circuit Board, And Display Device Having Circuit Board
US8293651B2 (en) Method of forming thin film pattern for semiconductor device and apparatus for the same
KR101338301B1 (en) Apparatus for producing electronic device such as display device, process for producing electronic device such as display device, and electronic device such as display device
WO2017008497A1 (en) Method of manufacturing oxide thin film transistor
JP2007256666A (en) Substrate processing method and chemical used therefor
US20100255409A1 (en) Attenuated phase-shift photomasks, method of fabricating the same and method of fabricating semiconductor using the same
JP4737386B2 (en) Manufacturing method of circuit board for electronic device, circuit board for electronic device, and display device
KR20050042963A (en) Fabrication method of liquid crystal display device
US20130029446A1 (en) Method of forming transparent electrode and fabricating array substrate for liquid crystal display device
TW201603145A (en) Semiconductor device, manufacturing method thereof, and manufacturing apparatus
TWI633385B (en) Photomask blank and method of manufacturing the same
JP5335843B2 (en) Manufacturing method of substrates for electronic devices
CN107393832A (en) A kind of method for improving polysilicon surface flatness
WO2020177145A1 (en) Display panel and manufacturing method therefor, and etching system
JP4763245B2 (en) Manufacturing apparatus and manufacturing method for electronic device such as display device, and electronic device such as display device
US20170012065A1 (en) Array substrate, a method for manufacturing the same, and display device
JP4468679B2 (en) PATTERN FORMING METHOD AND ELECTRIC DEVICE MANUFACTURING METHOD USING THE SAME
JP2007183623A (en) Method for manufacturing bottom substrate of liquid crystal display device
JP2007140556A (en) Method of manufacturing thin film transistor and liquid crystal display device using the same
US9922998B2 (en) Display apparatus and method of manufacturing the same
KR100579511B1 (en) Etchant for forming metal line and fabrication method for metal line using the same
KR100705616B1 (en) Method for manufacturing thin film transistor liquid crystal display device
TWI380450B (en) Apparatus and method for manufacturing an electronic device such as a display device and electronic device such as a display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees