JP5334768B2 - Optical encoder - Google Patents

Optical encoder Download PDF

Info

Publication number
JP5334768B2
JP5334768B2 JP2009209002A JP2009209002A JP5334768B2 JP 5334768 B2 JP5334768 B2 JP 5334768B2 JP 2009209002 A JP2009209002 A JP 2009209002A JP 2009209002 A JP2009209002 A JP 2009209002A JP 5334768 B2 JP5334768 B2 JP 5334768B2
Authority
JP
Japan
Prior art keywords
substrate
light receiving
receiving element
housing
predetermined direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009209002A
Other languages
Japanese (ja)
Other versions
JP2011058955A (en
Inventor
節律 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2009209002A priority Critical patent/JP5334768B2/en
Publication of JP2011058955A publication Critical patent/JP2011058955A/en
Application granted granted Critical
Publication of JP5334768B2 publication Critical patent/JP5334768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Transform (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical encoder capable of detecting main signals and subsignals and enlarging the range of operating temperatures. <P>SOLUTION: A first light-receiving element 3 is fixed to a casing 4 via a substrate 5. The substrate 5 is supported by the casing 4 movably in a prescribed direction, so that the amount of movement of the first light-receiving element 3 in the prescribed direction to changes in operating temperatures is based on a linear expansion coefficient of the substrate 5. A second light-receiving element 2 is directly fixed to the casing 4, so that its amount of movement in a prescribed direction to changes in operating temperatures is based on a linear expansion coefficient of the casing 4. By making a ratio of the distance A between a fixed part 53 of the substrate 5 fixed to the casing 4 and the first light-receiving element 3 along the prescribed direction to the distance B between the fixed part 53 and the second light-receiving element 2 along the prescribed direction equal to a ratio of the linear expansion coefficient of the casing 4 to the linear expansion coefficient of the substrate 5, it is therefore possible to reduce changes in the positional relation between the first and second light-receiving elements 3 and 2 due to changes in operating temperatures and improve measurement accuracy. Thereby, it becomes possible to enlarge the range of operating temperatures. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、光学式エンコーダに関する。   The present invention relates to an optical encoder.

従来、相対変位信号等の主信号を検出するための受光素子および原点信号等の副信号を検出するための受光素子が設けられた検出ヘッドを、反射部または透過部が例えば一定間隔で配置された主信号用の光学格子と、反射部または透過部が例えば所定位置に配置された副信号用(原点信号用)の光学格子とが形成されたスケールに対して相対移動させ、各光学格子にて反射した光または各光学格子を透過した光を各受光素子により受光して主信号および副信号を検出する光学式エンコーダが利用される(例えば、特許文献1)。
このような光学式エンコーダにおいて、主信号検出用の受光素子および副信号検出用の受光素子が設けられる検出ヘッドの構成としては以下の構成が考えられる。
Conventionally, a detection head provided with a light receiving element for detecting a main signal such as a relative displacement signal and a light receiving element for detecting a sub signal such as an origin signal is provided with a reflecting portion or a transmitting portion arranged at regular intervals, for example. The optical grating for the main signal and the optical grating for the sub signal (for the origin signal) in which the reflection part or the transmission part is arranged at a predetermined position, for example, are moved relative to the scale, and each optical grating is moved. An optical encoder that detects the main signal and the sub signal by receiving light reflected by the light or light transmitted through each optical grating by each light receiving element is used (for example, Patent Document 1).
In such an optical encoder, the following configuration is conceivable as a configuration of the detection head provided with the light receiving element for detecting the main signal and the light receiving element for detecting the sub signal.

図5は、主信号検出用の受光素子2および副信号検出用の受光素子3が設けられる検出ヘッド1Bの構成の一例を示す断面図である。
すなわち、検出ヘッド1Bの構成として、主信号検出用の受光素子2を筐体4、具体的には受光素子2をアルミ製の筐体本体41に固定された透明なガラス基板42に固定する一方、副信号検出用の受光素子3を、筐体4に固定されたガラスエポキシ製の基板5に固定する構成が考えられる。
FIG. 5 is a cross-sectional view showing an example of the configuration of a detection head 1B provided with a light receiving element 2 for detecting a main signal and a light receiving element 3 for detecting a sub signal.
That is, as the configuration of the detection head 1B, the light receiving element 2 for detecting the main signal is fixed to the casing 4, more specifically, the light receiving element 2 is fixed to the transparent glass substrate 42 fixed to the casing body 41 made of aluminum. A configuration in which the light receiving element 3 for detecting the sub signal is fixed to the glass epoxy substrate 5 fixed to the housing 4 is conceivable.

特開2008−122320公報JP 2008-122320 A

しかしながら、このような構成では、筐体4の線膨張係数(ガラス基板42の線膨張係数は非常に低いので筐体本体41の線膨張係数)と基板5の線膨張係数との差により、使用温度によっては、筐体4の伸縮量と基板5の伸縮量とに差が生じ、受光素子2、3の位置関係に変化が生じるおそれがある。受光素子2、3の位置関係に変化が生じると、測定精度が低下し、精度保証可能な使用温度範囲が限定されてしまうという問題がある。   However, in such a configuration, the linear expansion coefficient of the casing 4 (the linear expansion coefficient of the casing main body 41 because the linear expansion coefficient of the glass substrate 42 is very low) and the linear expansion coefficient of the substrate 5 are used. Depending on the temperature, there may be a difference between the amount of expansion / contraction of the housing 4 and the amount of expansion / contraction of the substrate 5, and the positional relationship between the light receiving elements 2 and 3 may change. When the positional relationship between the light receiving elements 2 and 3 changes, there is a problem that the measurement accuracy is lowered, and the use temperature range in which the accuracy can be guaranteed is limited.

本発明の目的は、主信号および副信号を検出可能で、かつ使用温度範囲を拡大できる光学式エンコーダを提供することにある。   An object of the present invention is to provide an optical encoder that can detect a main signal and a sub-signal and can expand an operating temperature range.

本発明の光学式エンコーダは、第1、第2受光素子が設けられた検出ヘッドをスケールに対して相対移動させ、前記第1受光素子により主信号および副信号のうち一方を検出し、前記第2受光素子により主信号および副信号のうち他方を検出する光学式エンコーダであって、前記検出ヘッドは、前記第1受光素子が実装された基板と、前記基板が取り付けられるとともに前記第2受光素子が固定された筐体とを備え、前記基板の所定方向の一端側には、前記筐体に固定される固定部が設けられ、前記基板の所定方向の他端側は、前記所定方向に移動可能に前記筐体に支持され、前記固定部から前記第1受光素子までの前記所定方向に沿った距離と、前記固定部から前記第2受光素子までの前記所定方向に沿った距離との比は、前記筐体の線膨張係数と、前記基板の線膨張係数との比と等しいことを特徴とする。   The optical encoder of the present invention moves a detection head provided with first and second light receiving elements relative to a scale, detects one of a main signal and a sub signal by the first light receiving element, and An optical encoder for detecting the other of the main signal and the sub-signal by two light receiving elements, wherein the detection head includes a substrate on which the first light receiving element is mounted, and the second light receiving element to which the substrate is attached. And a fixing portion fixed to the casing is provided on one end side of the substrate in a predetermined direction, and the other end side of the substrate in the predetermined direction moves in the predetermined direction. A ratio of a distance along the predetermined direction from the fixed portion to the first light receiving element, supported by the casing, and a distance along the predetermined direction from the fixed portion to the second light receiving element. Is the linear expansion of the housing And coefficients, characterized in that equal to the ratio of the linear expansion coefficient of the substrate.

本発明によれば、第1、第2受光素子により主信号および副信号を検出可能である。第1、第2受光素子のうち、第1受光素子は、基板を介して筐体に固定される。基板は筐体に前記所定方向に移動可能に支持されるので、使用温度変化に対する第1受光素子の所定方向の移動量は、基板の線膨張係数に基づく。一方、第2受光素子は筐体に直接固定されるので、使用温度変化に対する第2受光素子の所定方向の移動量は、筐体の線膨張係数に基づく。   According to the present invention, the main signal and the sub signal can be detected by the first and second light receiving elements. Of the first and second light receiving elements, the first light receiving element is fixed to the housing via the substrate. Since the substrate is supported by the housing so as to be movable in the predetermined direction, the amount of movement of the first light receiving element in the predetermined direction with respect to the change in operating temperature is based on the linear expansion coefficient of the substrate. On the other hand, since the second light receiving element is directly fixed to the housing, the amount of movement of the second light receiving element in a predetermined direction with respect to a change in operating temperature is based on the linear expansion coefficient of the housing.

ここで筐体に固定される基板の固定部から第1受光素子までの所定方向に沿った距離をA(図5)、固定部から第2受光素子までの所定方向に沿った距離をB、第1、第2受光素子間の所定方向に沿った距離をX、基板の線膨張係数をE、筐体の線膨張係数をE、使用温度変化をTとすると、第1、第2受光素子間の距離Xの変動量ΔXは、
ΔX=ΔB−ΔA
=B×E×T−A×E×T
=(B×E−A×E)×T
と表される。従って、(B×E−A×E)=0の時、すなわちA:B=E:Eの時、使用温度変化Tに関係なく第1、第2受光素子間の距離Xの変動量ΔXが0になることが分かる。
Here, the distance along the predetermined direction from the fixed portion of the substrate fixed to the housing to the first light receiving element is A (FIG. 5), the distance along the predetermined direction from the fixed portion to the second light receiving element is B, Assuming that the distance along the predetermined direction between the first and second light receiving elements is X, the linear expansion coefficient of the substrate is E A , the linear expansion coefficient of the housing is E B , and the change in operating temperature is T, the first and second The variation ΔX of the distance X between the light receiving elements is
ΔX = ΔB−ΔA
= B x E B x TA x E A x T
= (B x E B -A x E A ) x T
It is expressed. Therefore, when the (B × E B -A × E A) = 0, i.e. A: B = E B: when E A, first irrespective of the use temperature change T, the distance X between the second light-receiving element It can be seen that the fluctuation amount ΔX becomes zero.

そこで、本発明では、A:B=E:Eとなる位置に第1、第2受光素子を配置し、変動量ΔXを0とする。これにより、本発明では、使用温度変化による第1、第2受光素子間の位置関係の変化を抑制でき、測定精度を向上できる。そのため、使用温度範囲を拡大できる。 Therefore, in the present invention, the first and second light receiving elements are arranged at positions where A: B = E B : E A and the variation ΔX is set to zero. Thereby, in this invention, the change of the positional relationship between the 1st, 2nd light receiving elements by use temperature change can be suppressed, and a measurement precision can be improved. Therefore, the operating temperature range can be expanded.

本発明の光学式エンコーダでは、前記筐体における前記他端側との接触面、および前記他端側における前記筐体との接触面のうちいずれか一方には潤滑層が積層されていることが好ましい。
本発明によれば、筐体および基板の接触面のうち一方には潤滑層が積層されるので、両者の摩擦を低減でき、使用温度変化に応じて基板を確実に伸縮させることができる。従って、本発明では、使用温度変化に応じて基板および筐体が伸縮することを前提に第1、第2受光素子が所定の位置に配置されるところ、該前提が守られるので、第1、第2受光素子間の位置関係の変化を確実に抑制できる。
In the optical encoder according to the aspect of the invention, a lubricating layer may be laminated on any one of a contact surface with the other end side of the housing and a contact surface with the housing on the other end side. preferable.
According to the present invention, since the lubricating layer is laminated on one of the contact surfaces of the housing and the substrate, the friction between them can be reduced, and the substrate can be reliably expanded and contracted according to a change in operating temperature. Therefore, in the present invention, the first and second light receiving elements are disposed at predetermined positions on the premise that the substrate and the housing expand and contract in accordance with a change in use temperature. A change in the positional relationship between the second light receiving elements can be reliably suppressed.

本発明の光学式エンコーダでは、前記他端側には、前記所定方向に沿って延びた貫通孔が形成され、前記筐体は、前記貫通孔を貫通するねじを備え、前記他端側との接触面と前記ねじとで前記他端側を前記所定方向に移動可能に挟持することが好ましい。
本発明によれば、貫通孔が所定方向に沿って延びているので、筐体は、貫通孔を挿通するねじにより、基板の他端側を所定方向に移動可能に挟持できる。従って、筐体は、基板の他端側を挟持するので、基板の他端側を安定して支持できる。また、基板の他端側を所定方向に移動可能に挟持する構成をねじを用いて実現するので、該構成を簡素な構成で実現できる。
In the optical encoder according to the aspect of the invention, a through hole extending along the predetermined direction is formed on the other end side, and the housing includes a screw that penetrates the through hole, It is preferable that the other end side is held between the contact surface and the screw so as to be movable in the predetermined direction.
According to the present invention, since the through hole extends along a predetermined direction, the housing can be clamped so that the other end side of the substrate can be moved in the predetermined direction by a screw inserted through the through hole. Therefore, since the housing sandwiches the other end side of the substrate, the other end side of the substrate can be stably supported. Moreover, since the structure which clamps the other end side of a board | substrate so that a movement to a predetermined direction is implement | achieved using a screw | thread, this structure is realizable with a simple structure.

本発明の光学式エンコーダでは、前記筐体は、前記所定方向に互いに離間した位置に固定された第1、第2固定部と、前記基板が取り付けられるとともに前記第2受光素子が固定され、一端が前記第1、第2固定部の一方に接続される本体部と、前記所定方向に沿って弾性変形可能に形成され、前記本体部の他端および前記第1、第2固定部の他方を接続する弾性部とを備えることが好ましい。   In the optical encoder according to the aspect of the invention, the housing includes first and second fixing portions fixed at positions separated from each other in the predetermined direction, the substrate is attached, and the second light receiving element is fixed. Is formed so as to be elastically deformable along the predetermined direction, and the other end of the main body portion and the other of the first and second fixing portions are connected to one of the first and second fixing portions. It is preferable to provide an elastic part to be connected.

本発明によれば、筐体の本体部には、基板が取り付けられるとともに第2受光素子が固定される。この本体部の一端は、所定位置に固定された第1、第2固定部の一方に接続され、他端は、他方の第1、第2固定部に弾性部を介して接続される。使用温度変化により本体部が伸縮すると、弾性部により本体部に復元力が付与されるので、該復元力により、本体部が使用温度変化前の伸縮状態に復元することを補助できる。従って、温度に対する再現性を向上できる。   According to the present invention, the substrate is attached to the main body of the housing, and the second light receiving element is fixed. One end of the main body is connected to one of the first and second fixing parts fixed at a predetermined position, and the other end is connected to the other first and second fixing parts via an elastic part. When the main body part expands and contracts due to a change in use temperature, a restoring force is applied to the main body part by the elastic part. Therefore, the restoring force can assist the main body part in restoring to a stretched state before the use temperature change. Therefore, reproducibility with respect to temperature can be improved.

本発明の第1実施形態に係る検出ヘッドを示す断面図。1 is a cross-sectional view showing a detection head according to a first embodiment of the present invention. 第1実施形態の検出ヘッドを示す平面図。The top view which shows the detection head of 1st Embodiment. 本発明の第2実施形態に係る検出ヘッドを示す断面図。Sectional drawing which shows the detection head which concerns on 2nd Embodiment of this invention. 第2実施形態の検出ヘッドを示す平面図。The top view which shows the detection head of 2nd Embodiment. 検出ヘッドの構成の一例を示す断面図。Sectional drawing which shows an example of a structure of a detection head.

〔第1実施形態〕
以下、本発明の第1実施形態を図面に基づいて説明する。
本実施形態に係る光学式エンコーダは、相対変位信号等の主信号を検出するための受光素子および原点信号等の副信号を検出するための受光素子が設けられた検出ヘッドと、検出ヘッドに近接配置され、主信号用の光学格子および副信号用の光学格子が形成されたスケールと、各光学格子に対して光を射出する光源とを備える。検出ヘッドがスケールに対して相対移動すると、光源から出射されて各光学格子にて反射した光または各光学格子を透過した光が各受光素子にて受光される。各受光素子にて検出された主信号および副信号に基づいて、光学式エンコーダに接続されるユーザ側の装置によりスケールの相対移動量が算出される。
[First Embodiment]
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a first embodiment of the invention will be described with reference to the drawings.
The optical encoder according to the present embodiment includes a detection head provided with a light receiving element for detecting a main signal such as a relative displacement signal and a sub signal such as an origin signal, and a proximity to the detection head. And a scale on which an optical grating for main signals and an optical grating for sub signals are formed, and a light source that emits light to each optical grating. When the detection head moves relative to the scale, the light emitted from the light source and reflected by each optical grating or transmitted through each optical grating is received by each light receiving element. Based on the main signal and the sub signal detected by each light receiving element, the relative movement amount of the scale is calculated by a user side device connected to the optical encoder.

主信号用の光学格子としては、反射部または透過部が一定間隔で配置されたインクリメンタルパターンのものが例示される。副信号用の光学格子としては、反射部または透過部が所定位置に配置されて原点を示す信号を発生させるものや、反射部または透過部がランダム間隔で配置されて原点からの絶対距離を示す信号を発生させるアブソリュートパターンのものが例示される。   The optical grating for the main signal is exemplified by an incremental pattern in which reflection portions or transmission portions are arranged at regular intervals. As an optical grating for sub-signals, a reflection part or a transmission part is arranged at a predetermined position to generate a signal indicating the origin, or a reflection part or a transmission part is arranged at random intervals to indicate an absolute distance from the origin. An absolute pattern that generates a signal is exemplified.

光学格子としてインクリメンタルパターンが用いられる場合、光学式エンコーダには信号処理部が設けられ、受光素子からの信号は信号処理部にて処理された後、ユーザ側の装置へ出力される。光学格子としてアブソリュートパターンが用いられる場合、光学式エンコーダには演算装置が設けられる。受光素子からの信号に基づいて演算装置により位置情報が算出され、該位置情報がユーザ側の装置へ出力される。これらの信号に基づいて、ユーザ側の装置によりスケールの相対移動量が算出される。
2つの受光素子を用いて主信号および副信号を検出する光学式エンコーダの全体構成は、特許文献1に記載されるように既知であるので、以下では、スケール等の説明は省略し、本発明の特徴的な検出ヘッドの構成について主に説明する。
When an incremental pattern is used as the optical grating, the optical encoder is provided with a signal processing unit, and a signal from the light receiving element is processed by the signal processing unit and then output to a user side device. When an absolute pattern is used as the optical grating, the optical encoder is provided with an arithmetic unit. Based on a signal from the light receiving element, position information is calculated by an arithmetic device, and the position information is output to a user side device. Based on these signals, the relative movement amount of the scale is calculated by the device on the user side.
Since the entire configuration of an optical encoder that detects a main signal and a sub signal using two light receiving elements is known as described in Patent Document 1, description of a scale and the like is omitted below, and the present invention is omitted. The configuration of the characteristic detection head will be mainly described.

図1は、検出ヘッド1を示す断面図、図2は、検出ヘッド1を示す平面図である。以下、図1中の上下左右方向を上下左右方向とする。
検出ヘッド1は、第2受光素子としての受光素子2、第1受光素子としての受光素子3、基板5、および筐体4を備える。検出ヘッド1の図1中、下方にスケールが配置される。後述するが、このスケールに対向する筐体4の下面にガラス基板42が設けられる。
受光素子2は、前記ガラス基板42の上面に受光面を下に向けた状態で実装される。受光素子2は、スケールに形成された主信号用の光学格子にて反射した光または該光学格子を透過した光をガラス基板42を介して受光し、相対変位信号等の主信号を検出する。
FIG. 1 is a cross-sectional view showing the detection head 1, and FIG. 2 is a plan view showing the detection head 1. Hereinafter, the vertical and horizontal directions in FIG. 1 are the vertical and horizontal directions.
The detection head 1 includes a light receiving element 2 as a second light receiving element, a light receiving element 3 as a first light receiving element, a substrate 5, and a housing 4. A scale is disposed below the detection head 1 in FIG. As will be described later, a glass substrate 42 is provided on the lower surface of the housing 4 facing the scale.
The light receiving element 2 is mounted on the upper surface of the glass substrate 42 with the light receiving surface facing downward. The light receiving element 2 receives the light reflected by the optical grating for main signals formed on the scale or the light transmitted through the optical grating through the glass substrate 42, and detects the main signal such as a relative displacement signal.

また、後述するが、筐体4においてガラス基板42の上方に基板5が設けられる。
受光素子3は、この基板5の下面に受光面を下に向けた状態で実装される。受光素子3は、スケールに形成された副信号用の光学格子にて反射した光または該光学格子を透過した光をガラス基板42を介して受光し、原点信号等の副信号を検出する。
基板5はガラスエポキシ製であり、左右両端に貫通孔51、52が形成される。
As will be described later, the substrate 5 is provided above the glass substrate 42 in the housing 4.
The light receiving element 3 is mounted on the lower surface of the substrate 5 with the light receiving surface facing downward. The light receiving element 3 receives the light reflected by the optical grating for sub signals formed on the scale or the light transmitted through the optical grating through the glass substrate 42, and detects the sub signals such as the origin signal.
The substrate 5 is made of glass epoxy, and through holes 51 and 52 are formed at both left and right ends.

筐体4は、筐体本体41と、ガラス基板42と、ねじ43とを備える。
筐体本体41は、アルミ製とされ、本体部6と、突出端部71、72とを備える。
本体部6は、矩形に形成され、左右両端に突出端部71、72が接続する。突出端部71、72は上方に突出する。突出端部71、72は、本実施形態では所定位置に固定されず、筐体4は、使用温度変化により左右方向に伸縮可能とされる。
The housing 4 includes a housing body 41, a glass substrate 42, and screws 43.
The housing main body 41 is made of aluminum and includes a main body portion 6 and protruding end portions 71 and 72.
The main body portion 6 is formed in a rectangular shape, and projecting end portions 71 and 72 are connected to both left and right ends. The protruding end portions 71 and 72 protrude upward. The projecting end portions 71 and 72 are not fixed at predetermined positions in the present embodiment, and the housing 4 can be expanded and contracted in the left-right direction due to a change in use temperature.

本体部6の上端面61には凹部611が形成され、下端面62には、凹部611と平面視で重なる位置に凹部611よりも小さい凹部621が形成される。両凹部611、621の底部63は共通する。底部63には孔631が形成され、該孔631により両凹部611、621は連通する。底部63の下面632にはガラス基板42が取り付けられ、凹部621内にガラス基板42が収納される。ガラス基板42の孔631から露出した上面に受光素子2が実装される。   A recess 611 is formed on the upper end surface 61 of the main body 6, and a recess 621 smaller than the recess 611 is formed on the lower end surface 62 at a position overlapping the recess 611 in plan view. The bottom 63 of both the recesses 611 and 621 is common. A hole 631 is formed in the bottom 63, and both the recesses 611 and 621 communicate with each other through the hole 631. A glass substrate 42 is attached to the lower surface 632 of the bottom 63, and the glass substrate 42 is accommodated in the recess 621. The light receiving element 2 is mounted on the upper surface exposed from the hole 631 of the glass substrate 42.

本体部6の上端面61には基板5がねじ止めされる。具体的に、基板5の左端側には、ねじ43により本体部6に固定された固定部53が設けられる。一方、基板5の右端側に形成された貫通孔51はねじ43の軸径より径が僅かに大きいバカ穴とされ、左右方向に遊びがある、すなわち貫通孔51は左右方向に延びている。このため、基板5の右端側は、ねじ43により、左右方向に移動可能に本体部6に取り付けられる。本体部6の上端面61において、基板5の右端側が取り付けられる右側部分には、該上端面61より摩擦係数の低い潤滑層64が積層される。潤滑層64としては、ポリテトラフルオロエチレン層等のフッ素樹脂層やDLC層(Diamond like Carbon層)が採用される。基板5は、左端側が固定部53とされ、右端側が左右方向に移動可能とされるので、使用温度が変化すると、固定部53を基点として左右方向に伸縮する。この際、潤滑層64により、基板5の右端側と筐体4との摩擦が低減される。   The substrate 5 is screwed to the upper end surface 61 of the main body 6. Specifically, a fixing portion 53 fixed to the main body portion 6 with a screw 43 is provided on the left end side of the substrate 5. On the other hand, the through hole 51 formed on the right end side of the substrate 5 is a fool hole whose diameter is slightly larger than the shaft diameter of the screw 43, and there is play in the left and right direction, that is, the through hole 51 extends in the left and right direction. For this reason, the right end side of the substrate 5 is attached to the main body 6 by the screw 43 so as to be movable in the left-right direction. On the upper end surface 61 of the main body 6, a lubricating layer 64 having a lower coefficient of friction than the upper end surface 61 is laminated on the right side portion to which the right end side of the substrate 5 is attached. As the lubricating layer 64, a fluororesin layer such as a polytetrafluoroethylene layer or a DLC layer (Diamond like Carbon layer) is employed. Since the substrate 5 has a fixed portion 53 on the left end side and is movable in the left and right direction on the right end side, the substrate 5 expands and contracts in the left and right directions with the fixed portion 53 as a base point when the operating temperature changes. At this time, the friction between the right end side of the substrate 5 and the housing 4 is reduced by the lubricating layer 64.

このような本実施形態では、受光素子2は、線膨張係数が非常に低いガラス基板42を介して本体部6に取り付けられるので、使用温度変化により筐体4(本体部6)が左右方向に伸縮すると、該伸縮に伴い、受光素子2も左右方向に移動する。従って、使用温度変化に対する受光素子2の左右方向の移動量は、筐体4の線膨張係数に基づくこととなる。
一方、受光素子3は、左右方向に伸縮可能とされた基板5に固定されるので、使用温度変化により基板5が左右方向に伸縮すると、該伸縮に伴い受光素子3も左右方向に移動する。従って、使用温度変化に対する受光素子3の左右方向の移動量は、基板5の線膨張係数に基づくこととなる。
In this embodiment, the light receiving element 2 is attached to the main body 6 via the glass substrate 42 having a very low linear expansion coefficient, so that the casing 4 (main body 6) is moved in the left-right direction due to a change in operating temperature. When it expands and contracts, the light receiving element 2 moves in the left-right direction along with the expansion and contraction. Therefore, the amount of movement of the light receiving element 2 in the left-right direction with respect to the change in operating temperature is based on the linear expansion coefficient of the housing 4.
On the other hand, since the light receiving element 3 is fixed to the substrate 5 that can be expanded and contracted in the left and right direction, when the substrate 5 expands and contracts in the left and right direction due to a change in operating temperature, the light receiving element 3 also moves in the left and right direction. Therefore, the amount of movement of the light receiving element 3 in the left-right direction with respect to the change in operating temperature is based on the linear expansion coefficient of the substrate 5.

ここで、基板5左端の固定部53から受光素子3までの左右方向に沿った距離をA、固定部53から受光素子2までの左右方向に沿った距離をB、受光素子2、3間の左右方向に沿った距離をX、ガラスエポキシ製の基板5の線膨張係数をE(=60×10−6℃)、アルミ製の筐体4の線膨張係数をE(=21×10−6℃)、使用温度変化をTとすると、受光素子2、3間の距離Xの変動量ΔXは、
ΔX=ΔB−ΔA
=B×E×T−A×E×T
=(B×E−A×E)×T
と表される。従って、(B×E−A×E)=0の時、すなわちA:B=E:Eの時、使用温度変化Tに関係なく受光素子2、3間の距離Xの変動量ΔXが0になることが分かる。
Here, the distance along the left-right direction from the fixed portion 53 to the light receiving element 3 at the left end of the substrate 5 is A, the distance along the left-right direction from the fixed portion 53 to the light receiving element 2 is B, and between the light receiving elements 2 and 3 The distance along the horizontal direction is X, the linear expansion coefficient of the glass epoxy substrate 5 is E A (= 60 × 10 −6 ° C.), and the linear expansion coefficient of the aluminum housing 4 is E B (= 21 × 10). −6 ° C.), and assuming that the change in operating temperature is T, the fluctuation amount ΔX of the distance X between the light receiving elements 2 and 3 is
ΔX = ΔB−ΔA
= B x E B x TA x E A x T
= (B x E B -A x E A ) x T
It is expressed. Therefore, when the (B × E B -A × E A) = 0, i.e. A: B = E B: when E A, the fluctuation amount of the distance X between the light receiving elements 2 and 3 regardless of the use temperature change T It can be seen that ΔX becomes zero.

そこで、本実施形態では、A:B=E(=21×10−6℃):E(=60×10−6℃)=1:3となる位置に受光素子2、3が配置される。これにより、変動量ΔXが0とされるので、本実施形態では、使用温度変化Tによる受光素子2、3間の位置関係の変化を抑制でき、測定精度を向上できる。従って、使用温度範囲を拡大できる。 Therefore, in the present embodiment, the light receiving elements 2 and 3 are arranged at positions where A: B = E B (= 21 × 10 −6 ° C.): E A (= 60 × 10 −6 ° C.) = 1: 3. The Thereby, since the variation ΔX is set to 0, in this embodiment, the change in the positional relationship between the light receiving elements 2 and 3 due to the change in operating temperature T can be suppressed, and the measurement accuracy can be improved. Therefore, the operating temperature range can be expanded.

以上の本実施形態では、以下の効果を奏することができる。
受光素子2、3により主信号および副信号を検出できる。
筐体4に固定される基板5の固定部53から受光素子3までの左右方向に沿った距離Aと、固定部53から受光素子2までの左右方向に沿った距離Bとの比が、筐体4の線膨張係数E(=21×10−6℃)と基板5の線膨張係数E(=60×10−6℃)との比1:3と等しくなる位置に受光素子2、3が配置されるので、使用温度変化による受光素子2、3間の位置関係の変化を抑制でき、測定精度を向上できる。そのため、使用温度範囲を拡大できる。そして、使用温度範囲の拡大により、ユーザの使用温度の多様化への要求に対応できる。
In the above embodiment, the following effects can be obtained.
The main signal and the sub signal can be detected by the light receiving elements 2 and 3.
The ratio of the distance A along the left-right direction from the fixing portion 53 of the substrate 5 fixed to the housing 4 to the light-receiving element 3 and the distance B along the left-right direction from the fixing portion 53 to the light-receiving element 2 is The light receiving element 2 at a position equal to the ratio 1: 3 of the linear expansion coefficient E B (= 21 × 10 −6 ° C.) of the body 4 and the linear expansion coefficient E A (= 60 × 10 −6 ° C.) of the substrate 5; 3 is arranged, it is possible to suppress a change in the positional relationship between the light receiving elements 2 and 3 due to a change in operating temperature, and to improve measurement accuracy. Therefore, the operating temperature range can be expanded. And it can respond to the request | requirement of a user's use temperature diversification by expansion of a use temperature range.

基板5と接触する筐体4の上端面61には潤滑層64が積層されるので、該上端面61と基板5との摩擦を低減でき、使用温度変化に応じて基板5を確実に伸縮させることができる。従って、使用温度変化に応じて基板5および筐体4が伸縮することを前提に受光素子2、3が所定の位置に配置されるところ、該前提が守られるので、受光素子2、3間の位置関係の変化を確実に抑制できる。
筐体4が基板5の右端側を挟持するので、基板5の右端側を安定して支持できる。加えて、基板5の右端側を左右方向に移動可能に挟持する構成をねじ43を用いて実現するので、該構成を簡素な構成で実現できる。
Since the lubricating layer 64 is laminated on the upper end surface 61 of the housing 4 in contact with the substrate 5, friction between the upper end surface 61 and the substrate 5 can be reduced, and the substrate 5 is reliably expanded and contracted according to a change in use temperature. be able to. Therefore, when the light receiving elements 2 and 3 are arranged at predetermined positions on the premise that the substrate 5 and the housing 4 expand and contract in accordance with a change in operating temperature, the precondition is maintained. Changes in the positional relationship can be reliably suppressed.
Since the housing 4 sandwiches the right end side of the substrate 5, the right end side of the substrate 5 can be stably supported. In addition, since the configuration for holding the right end side of the substrate 5 so as to be movable in the left-right direction is realized using the screw 43, the configuration can be realized with a simple configuration.

〔第2実施形態〕
図3は、本実施形態に係る検出ヘッド1Aの断面図、図4は、検出ヘッド1Aを示す平面図である。
本実施形態では、突出端部71、72(第1、第2固定部)が互いに左右方向に離間した位置に固定され、右方の突出端部72(第2固定部)と本体部6とが弾性部8により接続される。弾性部8は、平行板ばねであり、平面視クランク形状を有して左右方向に弾性変形可能とされる。本実施形態の他の構成は第1実施形態と同様である。
[Second Embodiment]
FIG. 3 is a sectional view of the detection head 1A according to the present embodiment, and FIG. 4 is a plan view showing the detection head 1A.
In the present embodiment, the protruding end portions 71 and 72 (first and second fixing portions) are fixed at positions separated from each other in the left-right direction, and the right protruding end portion 72 (second fixing portion) and the main body portion 6 Are connected by the elastic portion 8. The elastic portion 8 is a parallel leaf spring, has a crank shape in plan view, and can be elastically deformed in the left-right direction. Other configurations of the present embodiment are the same as those of the first embodiment.

本実施形態では、第1実施形態と同様の効果を奏することができるうえ、使用温度変化により本体部6が伸縮すると、弾性部8により本体部6に復元力が付与されるので、該復元力により、本体部6が使用温度変化前の伸縮状態に復元することを補助できる。従って、温度に対する再現性を向上できる。   In the present embodiment, the same effects as in the first embodiment can be obtained, and when the main body portion 6 expands and contracts due to a change in use temperature, a restoring force is applied to the main body portion 6 by the elastic portion 8. Thereby, it can assist that the main-body part 6 restore | restores in the expansion-contraction state before use temperature change. Therefore, reproducibility with respect to temperature can be improved.

〔実施形態の変形〕
なお、本発明は前記各実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
前記各実施形態では、基板5の右端側は、ねじ43と筐体4とにより挟持されたが、基板5の右端側は、単に筐体4上に載置されて筐体4に支持されてもよい。
前記各実施形態では、基板5の左端側に設けられた固定部53は、ねじ43により筐体4に固定されたが、固定部53は、接着により筐体4に固定されてもよい。
[Modification of Embodiment]
Note that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope in which the object of the present invention can be achieved are included in the present invention.
In each of the above embodiments, the right end side of the substrate 5 is sandwiched between the screw 43 and the casing 4, but the right end side of the substrate 5 is simply placed on the casing 4 and supported by the casing 4. Also good.
In each of the above embodiments, the fixing portion 53 provided on the left end side of the substrate 5 is fixed to the housing 4 by the screw 43, but the fixing portion 53 may be fixed to the housing 4 by adhesion.

前記各実施形態では、潤滑層64は筐体4側に積層されたが、潤滑層64は基板5側に積層されてもよい。
前記各実施形態では、貫通孔51はバカ穴とされたが、貫通孔51は左右方向に延びたスリット状に形成されてもよい。
In each of the above embodiments, the lubricating layer 64 is laminated on the housing 4 side, but the lubricating layer 64 may be laminated on the substrate 5 side.
In each said embodiment, although the through-hole 51 was made into a fool hole, the through-hole 51 may be formed in the slit shape extended in the left-right direction.

前記各実施形態では、筐体4はアルミ製、基板5はガラスエポキシ製とされたが、両部材4,5の材料は適宜のものを採用できる。
前記各実施形態では、透明なガラス基板42とガラスエポキシ製の基板5とは、スケールの法線方向に沿って積層配置されたが、ガラス基板42と基板5とは、スケールの平面方向に沿って並設されてもよい。
本発明の光学式エンコーダは、リニアエンコーダ、ロータリーエンコーダ、リニアゲージ、円弧エンコーダ等に適用できる。
In each of the above embodiments, the casing 4 is made of aluminum and the substrate 5 is made of glass epoxy. However, the materials of the members 4 and 5 can be appropriately selected.
In each of the above embodiments, the transparent glass substrate 42 and the glass epoxy substrate 5 are stacked and disposed along the normal direction of the scale. However, the glass substrate 42 and the substrate 5 are along the plane direction of the scale. May be arranged side by side.
The optical encoder of the present invention can be applied to a linear encoder, a rotary encoder, a linear gauge, an arc encoder, and the like.

1,1A 検出ヘッド
2 受光素子(第2受光素子)
3 受光素子(第1受光素子)
4 筐体
5 基板
6 本体部
8 弾性部
43 ねじ
51 貫通孔
53 固定部
61 上端面(筐体における他端側との接触面)
64 潤滑層
71 突出端部(第1固定部)
72 突出端部(第2固定部)
1,1A Detection head 2 Light receiving element (second light receiving element)
3 Light receiving element (first light receiving element)
4 Housing 5 Substrate 6 Main body 8 Elastic portion 43 Screw 51 Through hole 53 Fixing portion 61 Upper end surface (contact surface with other end side of housing)
64 Lubrication layer 71 Protruding end (first fixed part)
72 Protruding end (second fixed part)

Claims (4)

第1、第2受光素子が設けられた検出ヘッドをスケールに対して相対移動させ、前記第1受光素子により主信号および副信号のうち一方を検出し、前記第2受光素子により主信号および副信号のうち他方を検出する光学式エンコーダであって、
前記検出ヘッドは、前記第1受光素子が実装された基板と、前記基板が取り付けられるとともに前記第2受光素子が固定された筐体とを備え、
前記基板の所定方向の一端側には、前記筐体に固定される固定部が設けられ、前記基板の所定方向の他端側は、前記所定方向に移動可能に前記筐体に支持され、
前記固定部から前記第1受光素子までの前記所定方向に沿った距離と、前記固定部から前記第2受光素子までの前記所定方向に沿った距離との比は、前記筐体の線膨張係数と、前記基板の線膨張係数との比と等しい
ことを特徴とする光学式エンコーダ。
The detection head provided with the first and second light receiving elements is moved relative to the scale, one of the main signal and the sub signal is detected by the first light receiving element, and the main signal and the sub signal are detected by the second light receiving element. An optical encoder that detects the other of the signals,
The detection head includes a substrate on which the first light receiving element is mounted, and a housing to which the substrate is attached and the second light receiving element is fixed.
A fixing portion fixed to the housing is provided at one end side of the substrate in a predetermined direction, and the other end side of the substrate in the predetermined direction is supported by the housing so as to be movable in the predetermined direction,
The ratio of the distance along the predetermined direction from the fixed part to the first light receiving element and the distance along the predetermined direction from the fixed part to the second light receiving element is the linear expansion coefficient of the casing. And the ratio of the linear expansion coefficient of the substrate to the optical encoder.
請求項1に記載の光学式エンコーダにおいて、
前記筐体における前記他端側との接触面、および前記他端側における前記筐体との接触面のうちいずれか一方には潤滑層が積層されている
ことを特徴とする光学式エンコーダ。
The optical encoder according to claim 1,
An optical encoder, wherein a lubricating layer is laminated on one of a contact surface with the other end side of the housing and a contact surface with the housing on the other end side.
請求項2に記載の光学式エンコーダにおいて、
前記他端側には、前記所定方向に沿って延びた貫通孔が形成され、
前記筐体は、前記貫通孔を貫通するねじを備え、前記他端側との接触面と前記ねじとで前記他端側を前記所定方向に移動可能に挟持する
ことを特徴とする光学式エンコーダ。
The optical encoder according to claim 2, wherein
A through hole extending along the predetermined direction is formed on the other end side,
The housing includes a screw penetrating the through hole, and the other end side is movably clamped in the predetermined direction by the contact surface with the other end side and the screw. .
請求項1から請求項3のいずれかに記載の光学式エンコーダにおいて、
前記筐体は、
前記所定方向に互いに離間した位置に固定された第1、第2固定部と、
前記基板が取り付けられるとともに前記第2受光素子が固定され、一端が前記第1、第2固定部の一方に接続される本体部と、
前記所定方向に沿って弾性変形可能に形成され、前記本体部の他端および前記第1、第2固定部の他方を接続する弾性部とを備える
ことを特徴とする光学式エンコーダ。
The optical encoder according to any one of claims 1 to 3,
The housing is
First and second fixing portions fixed at positions separated from each other in the predetermined direction;
A main body portion to which the substrate is attached and the second light receiving element is fixed, and one end is connected to one of the first and second fixing portions,
An optical encoder, comprising: an elastic portion formed so as to be elastically deformable along the predetermined direction and connecting the other end of the main body portion and the other of the first and second fixing portions.
JP2009209002A 2009-09-10 2009-09-10 Optical encoder Active JP5334768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009209002A JP5334768B2 (en) 2009-09-10 2009-09-10 Optical encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009209002A JP5334768B2 (en) 2009-09-10 2009-09-10 Optical encoder

Publications (2)

Publication Number Publication Date
JP2011058955A JP2011058955A (en) 2011-03-24
JP5334768B2 true JP5334768B2 (en) 2013-11-06

Family

ID=43946760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009209002A Active JP5334768B2 (en) 2009-09-10 2009-09-10 Optical encoder

Country Status (1)

Country Link
JP (1) JP5334768B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017106726A (en) * 2015-12-07 2017-06-15 キヤノンプレシジョン株式会社 Optical encoder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112111A (en) * 1987-10-26 1989-04-28 Sony Corp Optical rotary encoder
JP2000097686A (en) * 1998-09-25 2000-04-07 Nikon Corp Length measuring device
JP4763914B2 (en) * 2001-05-17 2011-08-31 キヤノン株式会社 Rotation angle detector

Also Published As

Publication number Publication date
JP2011058955A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP6214072B1 (en) Force sensor
JP5513497B2 (en) Device for clamping and fixing the reference scale
JP2010078489A (en) Fiber optic sensor
JP2016099342A (en) Length-measuring device
JP5334768B2 (en) Optical encoder
JP5502963B2 (en) Displacement measuring device and displacement measuring method
EP1959226A2 (en) Optical axis polarization type laser interferometer
JP6752598B2 (en) Length gauge and touch probe with optical scale
JP2014211347A (en) Encoder, driving device and robotic system
TW201131147A (en) Vibration sensor structure
US8223346B2 (en) Optics positioning sensor system
WO2017122496A1 (en) Pressure sensor
JP6161501B2 (en) Linear gauge sensor
JP6462248B2 (en) Length measuring device, displacement amount calculating means, and alignment method between scale portion and pattern reading portion of length measuring device
JP2018066629A (en) Load cell
JP2018040778A (en) FBG temperature sensor
JP6983713B2 (en) An optical sensor and a device equipped with the optical sensor.
JP4703376B2 (en) Linear encoder
KR101178039B1 (en) Calibration sensor target for capacitive displacement sensor
JP2006071549A (en) Temperature sensor
JP2017106726A (en) Optical encoder
RU2180100C2 (en) Amplitude fiber-optical converter of mechanical quantities
JP7109298B2 (en) Length measuring instrument
JP6957376B2 (en) Surveying instrument with little angle measurement error due to temperature changes
JP2004125638A (en) Displacement sensor and method for fixing interferometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R150 Certificate of patent or registration of utility model

Ref document number: 5334768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250